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Pattern recognition in lymphoid 
malignancies using CytoGPS and Mercator
Zachary B. Abrams1*, Dwayne G. Tally2, Lin Zhang3, Caitlin E. Coombes1, Philip R. O. Payne3, Lynne V. Abruzzo4 
and Kevin R. Coombes1

Background
Cytogenetics

As biology and medicine advance, our ability to generate ever-increasing amounts of 
data also expands [1]. While a boon for biomedical research, this increase in the volume 
and diversity of data poses challenges to data scientists [2]. Issues of noisiness, dimen-
sionality, and heterogeneity can prove problematic when performing large-scale bio-
medical analyses [3]. These problems become more common and more severe as larger, 
higher-dimensional data sets are collected; as a result, some biomedical data remain 
underused.

Abstract 

Background:  There have been many recent breakthroughs in processing and analyz-
ing large-scale data sets in biomedical informatics. For example, the CytoGPS algorithm 
has enabled the use of text-based karyotypes by transforming them into a binary 
model. However, such advances are accompanied by new problems of data sparsity, 
heterogeneity, and noisiness that are magnified by the large-scale multidimensional 
nature of the data. To address these problems, we developed the Mercator R package, 
which processes and visualizes binary biomedical data. We use Mercator to address 
biomedical questions of cytogenetic patterns relating to lymphoid hematologic malig-
nancies, which include a broad set of leukemias and lymphomas. Karyotype data are 
one of the most common form of genetic data collected on lymphoid malignancies, 
because karyotyping is part of the standard of care in these cancers.

Results:  In this paper we combine the analytic power of CytoGPS and Mercator to 
perform a large-scale multidimensional pattern recognition study on 22,741 karyotype 
samples in 47 different hematologic malignancies obtained from the public Mitelman 
database.

Conclusion:  Our findings indicate that Mercator was able to identify both known 
and novel cytogenetic patterns across different lymphoid malignancies, furthering our 
understanding of the genetics of these diseases.

Keywords:  Karyotype, Pattern recognition, CytoGPS, Mercator, Lymphoid 
malignancies
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For years, technical issues have limited the use of karyotype data in secondary compu-
tational analyses. Karyotype data are one of the most common forms of genetic informa-
tion collected on patients, since cytogenetic karyotyping is part of the standard of care 
for most hematologic malignancies [4]. The current standard for large-scale cytogenetic 
analyses is manual classification by cytogenetic pathologists. This is extremely time con-
suming and can introduce human error into downstream analysis. Thus, these data have 
not been used in large-scale computational analyses because of the text-based standard 
format in which they are recorded [4]. In response, we recently developed the CytoGe-
netic Pattern Sleuth (CytoGPS), a tool that converts karyotypes into binary vectors that 
can be analyzed using modern computational methods [5]. However, CytoGPS is only 
a first step in understanding and exploring these data, since it merely enables (but does 
not carry out) the application of pattern recognition methods. To actually apply such 
methods systematically, we developed the Mercator R package. Mercator provides a 
consistent, unified interface to a suite of unsupervised pattern recognition algorithms. 
Mercator uses 10 distance metrics between binary vectors, selected from 76 metrics 
described and classified in a review paper by Choi et al. [6], to provide a representative 
sample of this wide scope of different metrics. Mercator also supports five data visu-
alization methods designed for both standard and high dimensional data analysis; the 
visualization tools work with arbitrary distance metrics for any data type, not just binary. 
Mercator makes it easy to produce visualizations with consistent color schemes. More 
importantly, since cluster labels from different unsupervised algorithms are arbitrary, 
Mercator includes tools to synchronize and compare these labels. Thus, Mercator ena-
bles the exploratory unsupervised analysis of large, high-dimensional data sets, accom-
panied by clear, easy visualizations.

Research design

In this article, we apply CytoGPS and Mercator to understand the structure of a data 
set containing more than 22,000 karyotypes from lymphoid malignancies. Lymphoid 
cells are one of the two most common cell types from which leukemias and lympho-
mas are derived, the other cell type being myeloid cells [7, 8]. Lymphoid cells include 
B cells, T cells, and natural killer (NK) cells. The current World Health Organization 
(WHO) classification of lymphoid malignancies [9] incorporates a variety of factors, 
including cytogenetics, cell-of-origin, location (bone marrow, blood, lymph node, etc.), 
clinical findings, immunophenotype, histological patterns (e.g., follicular or diffuse), 
and mutations or rearrangements of specific genes. The current WHO classification 
of lymphoid malignancies includes at least 60 subtypes; the historical karyotype data 
from the Mitelman. Database of Chromosome Aberrations and Gene Fusions in Cancer 
includes 47 named subtypes [10]. These subtypes include chronic lymphocytic leukemia 
(CLL), which is known to include at least four prognostic subgroups defined by different 
cytogenetic abnormalities [11]. Similarly, various cytogenetic abnormalities are known 
to be prognostic in subsets of acute lymphocytic leukemia (ALL) [12, 13]. One of the 
strengths of the Mercator approach is its ability to discover, visualize, and interpret large 
numbers of subtypes in large data sets. Here, our goal is to apply Mercator in order to 
determine whether lymphoid malignancies can be separated into clusters based on their 
patterns of cytogenetic abnormalities alone.
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Implementation
We first describe the data source, then the software packages and computational algo-
rithms used to perform the analysis.

Data

Cytogenetic data were obtained from the Mitelman Database of Chromosome Aber-
rations and Gene Fusions in Cancer, a curated, publicly available database containing 
all cytogenetic karyotypes published since the early 1970s [10]. When downloaded on 
4 April 2019, it contained 22,741 karyotypes from patients with lymphoid malignan-
cies, classified into 47 different disease domains. The karyotypes were written using the 
International System for Human Cytogenomic Nomenclature (ISCN) [14]. The ISCN is 
a semi-structured, semi-context-free grammar that produces a textual representation of 
the complete genetic information seen by the cytogeneticist evaluating the sample. We 
transformed the ISCN karyotypes representations into a binary representation based on 
a loss, gain, and fusion (LGF) biological model using CytoGPS (www.cytog​ps.org) [5].

Algorithms

The Mercator package (version 0.10.0) facilitates the exploration of binary data sets. 
Mercator (1) removes redundant features, (2) calculates a variety of distance metrics, 
and (3) generates multiple visualizations using a consistent color scheme and interface. 
This approach is designed to help users more easily navigate through the process of data 
analysis and visualization for pattern recognition. Although the Mercator package imple-
ments multiple distance metrics (Jaccard, Sokal & Michener, Hamming, Russell-Rao, 
Pearson, Goodman & Kruskal, Manhattan, Canberra, Binary and Euclidean) between 
binary vectors [6], in this article we rely primarily on a metric derived from Jaccard simi-
larity [15]. The Jaccard similarity index between two binary vectors is defined as J = N11/
(N11 + N10 + N01), where Nij is the number of entries where the first vector contains the 
value i and the second vector contains the value j. Because it ignores the “insignificant” 
0–0 matches, it is particularly well adapted to finding structure in sparse binary data. 
(For comparison, the Additional files 1 and 2 also investigates the Soakl–Michener and 
Goodman–Kruskal metrics.)

Mercator relies on the Thresher (version 1.1.2) and PCDimension (version 1.1.11) 
R packages to remove outliers and to determine the number of clusters [16, 17]. The 
number of clusters depends on the number of significant principal components, which 
is determined using the Bayesian method of Auer and Gervini [18]. Next, samples are 
assigned to clusters using Partitioning Around Medoids (PAM) [19]. Although PAM is 
the default clustering algorithm, Mercator allows the user to apply their preferred clus-
tering algorithm before using its visualization tools. Finally, Mercator provides an inter-
face to data visualization (with a consistent color scheme) using a variety of techniques 
including multidimensional scaling (MDS) [20], hierarchical clustering [21], t-distrib-
uted Stochastic Neighbor Embedding (t-SNE) [22], and adjacency graphs. To simplify 
the visualization of graphs with more than 20,000 nodes, we also used Mercator to per-
form down-sampling. This approach was inspired by Peng Qiu’s implementation of the 
Spanning-tree Progression Analysis of Density-normalized Events (SPADE) clustering 

http://www.cytogps.org
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algorithm for mass cytometry data [23]. The main point is to under-sample the densest 
regions of the data space to make it more likely that rare clusters will still be adequately 
sampled. Mercator is available as an R package at (https​://cran.r-proje​ct.org/web/packa​
ges/Merca​tor/index​.html) where further information on the packages available.

Results
In this section, we present results using the Jaccard distance metric. For theoretical rea-
sons, we prefer the Jaccard metric, which is directly specifically designed to calculate 
distances for sparse binary data, where most of the values are zero [15]. Since most of 
each patient’s genome is normal, the cytogenetic data vectors for each patient are sparse. 
In the Mitelman data set, most cytogenetic features are also sparse, occurring in rela-
tively small subsets of patients. However, analogs of all four figures and the final table 
from parallel analyses using the Sokal–Michener distance and the Goodman–Kruskal 
distance are presented in Additional files 1 and 2.

Number of components and clusters

We applied CytoGPS to the lymphoid malignancy samples from the Mitelman data-
base, which generated a binary matrix of 22,741 samples and 2748 binary LGF features. 
Because large-scale copy number changes such as gains or losses of entire chromosomes 
affect many cytogenetic bands in the same way, we next removed any redundant features 
(i.e., features represented by identical vectors across the full data set). This step reduced 
the size to 1,144 unique features. We then applied Thresher to the features in order to 
identify “outliers” that do not contribute significantly to the principal components [16]. 
After this step, 814 unique informative features remained. Transposing the data, we also 
used the Jaccard metric to compute the distance between samples based on cytogenetic 
profiles. We used Thresher to find the number, K, of significant components (Fig. 1). We 
then assigned patient karyotypes to clusters using PAM with K = 134.

Fig. 1  Number of principal components. a The scree plot shows the percent of variance explained. b The 
Auer–Gervini plot shows the maximum posterior number of components as a step function of the parameter 
theta selecting an exponentially decaying prior. In both panels, the green line is the number (N = 72) selected 
by the broken-stick model. The orange (N = 110), purple (N = 134), and blue (N = 167) lines mark “long” steps 
that are potential cutoffs for the number of components. We selected N = 134

https://cran.r-project.org/web/packages/Mercator/index.html
https://cran.r-project.org/web/packages/Mercator/index.html
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Data visualizations

To visualize the results of PAM clustering, we applied a variety of standard methods 
(Fig. 2). As an initial pass through the data, we performed hierarchical clustering using 
the Jaccard distance matrix. The first two principal coordinates derived from multi-
dimensional scaling were unable to separate the PAM-defined clusters, which is unsur-
prising since we believe the principal component dimension to be K = 134 (Fig. 2a). In 
order to visualize the distance matrix as an adjacency graph, we down-sampled the data 
from 22,000 nodes to 2000 (Fig.  2b). Nodes were connected by an edge if the Jaccard 
distance was less than 0.6 or, equivalently, if the Jaccard similarity was greater than 0.4. 
This threshold was determined by identifying an inflection point in the distribution of 
all Jaccard values (data not shown). This threshold thus removed uninformative edges 
while preserving biologically informative connections. This would connect nodes if the 
two corresponding karyotypes shared 40% or more of their cytogenetic abnormalities, 
indicating a high degree a cytogenetics similarity. Both the adjacency graph and the 
dendrogram produced by hierarchical clustering (Fig.  2c) gave some visual support to 
the clusters found by PAM. Finally, we used the non-linear t-SNE algorithm to produce 
yet another plot of the data (Fig. 3). This visualization technique clearly shows separa-
tion between most of the PAM-clusters throughout the entire plot. Some of the tightest 

Fig. 2  LGF binary karyotypes color-coded based on PAM clustering based on Jaccard distance were 
visualized using three methods. a Multi-dimensional scaling. b Down-sampled adjacency graph. c 
Hierarchical clustering using Ward’s linkage rule
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lusters form a distinguishing eye-shape; such clusters form an oval with a single point in 
the center. These clusters consist of groups of samples with identical or nearly identical 
karyotypes.

Clustering and interpreting LGF features

We now turned our attention to the 814 unique informative LGF features. Using Thresher 
and the Auer-Gervini method, we determined that the 814 features could be clustered into 
72 groups. We again assigned features to clusters using PAM. In order to interpret these 
feature clusters, we determined all cytogenetic event types (loss, gain, or fusion) and chro-
mosome bands present in any of the members of each cluster. (See the dendrogram and the 
labels along the side of Fig. 4.) Of the 72 clusters, 26 were only associated with a loss of a 
single chromosome or chromosome arm and 22 clusters were only associated with a gain of 
a single chromosome or chromosome arm. The remaining 24 clusters were associated with 
fusions and either one (N = 16 clusters) two (n = 7 clusters), or three (N = 1 cluster) chro-
mosomes. Further, 11 of the 24 fusion-associated clusters were also associated with a loss 
of chromosomal material, 7 were associated with a gain, and 6 were pure fusions. All of the 
associations are consistent with single cytogenetic events.

Interpreting sample clusters using high frequency cytogenetic aberrations

In order to interpret the sample-clusters, we next computed, for each cluster, the fraction 
of patients in that cluster who exhibited the well-characterized cytogenetic events defined 
by each of the 72 feature clusters described in the previous section. These frequency data 
were used to construct a two-way clustered heatmap based on Pearson correlation and 
Ward’s linkage (Fig. 4). The main split in the feature-dendrogram along the side of the heat-
map is between losses (top branch) and gains and fusions (bottom branch). In other words, 
gains tend to occur along with other gains, and losses tend to occur along with other losses. 

Fig. 3  T-distributed Stochastic Neighbor Embedding (t-SNE) plot of the 134 karyotype clusters. Samples are 
color coded based on PAM clustering using Jaccard distance
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Finally, we recorded the most frequent events (down to a frequency cutoff of 60%) in each 
sample-cluster. For 18 of the 134 clusters, at least one cytogenetic abnormality was pre-
sent in at least 99% of the cases; for 42, at least one abnormality in at least 95% of case; for 
50, 90%; for 71, 80%; for 84, 70%, and for 94, 60%. The 40 best characterized sample clus-
ters by this measure are listed in Table 1. For each cluster we also calculated the disease 
prevalence based on karyotype disease labels. This was performed to with data interpreta-
tion, as some clusters contain multiple disease groups. The following diseases are part of 
at least one of the top 40 best characterized clusters: ALL = acute lymphocytic leukemia, 
CLL = chronic lymphocytic leukemia, Burkitt = Burkitt’s lymphoma, FL = follicular lym-
phoma, DLBCL = diffuse large B-cell lymphoma and MM = multiple myeloma.

Discussion
Lymphoid karyotype clusters

We have shown that, by combining CytoGPS with Mercator to analyze 22,741 karyo-
types obtained from the public Mitelman database, we are able to recover both simple 
and complex cytogenetic events that are important for understanding and classify-
ing lymphoid malignancies. Using Mercator to cluster the binary LGF features, we 
found 72 clusters. Of these, 71 clusters represented simple losses restricted to one 

Fig. 4  Heat map of high-frequency cytogenetic events (right) by clusters (bottom)
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chromosome, simple gains restricted to one chromosome, or simple fusions involving 
at most two chromosomes. The remaining cluster was a fusion event involving three 
chromosomal arms: 1q, 11q, and 19p. Although more complicated than the others, 
this cluster represents a known phenomenon of “jumping” translocations involving 
1q that has been seen in both lymphoid and myeloid malignancies [24, 25].

The lymphoid karyotypes from the Mitelman database represent 47 disease mor-
phologies. Our analysis with Mercator found 134 clusters based on cytogenetics. We 
used the 72 elementary cytogenetic events above to characterize the 134 sample clus-
ters. One of the well-known patterns is the t(8q;14q) translocation, which produces 
a fusion protein by juxtaposing the immunoglobulin heavy chain locus on chromo-
some 14 with the MYC oncogene on chromosome 8 [26]. This abnormality is the only 
recurrent event in cluster ST047 of Table 1, and occurs in 100% of the cases in that 

Table 1  The top forty well characterized sample clusters
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cluster. However, it is not unique to that cluster; as shown in Fig. 4, it is present at 
varying frequencies in the majority of lymphoid malignancy clusters. This finding can 
be explained by the fact that this translocation does not just occur as the sole abnor-
mality in lymphoid malignancies, but also occurs in concert with many other combi-
nations of abnormalities.

One of the strengths of using Mercator is its ability to uncover more complicated pat-
terns that represent the recurrent co-occurrence of cytogenetic events. The most striking 
examples in Table 1 are clusters ST087 (with gains of four and loss of one chromosome) 
and ST055 (with gains of seven and loss of one chromosome). Both of these clusters 
display complex cytogenetic patterns that could only be uncovered using computational 
techniques and are unlikely to have been found simply by visual inspection of large sets 
of complex karyotypes. Looking deeper at these two clusters reveals that they share the 
events − 14 and + 21. In fact, these two events also co-occur in other clusters, including 
ST092 (which has only those two recurrent events) and ST075 (which combines them 
with an extra copy of the X chromosome). To our knowledge, this co-occurrence has not 
previously been recognized as a separate entity by cytogeneticists or hematopatholo-
gists. Preliminary visual inspections of the text-based karyotypes suggests that − 14 and 
+ 21 almost always occur in the context of highly complex karyotypes where picking this 
pair out as a separate feature would be unlikely without computational assistance.

In general, the co-occurrence of a monosomy with a trisomy is unusual. A primary 
feature of Fig. 4 is that losses (monosomies) cluster together and gains (trisomies) cluster 
together, on separate branches in the (side) dendrogram. Hyperdiploidy (having more 
than the usual number of chromosomes) is a common feature of multiple myeloma [27] 
and of acute lymphoblastic leukemia [28] and has been reported in diffuse large B-cell 
lymphoma [29]. Hypodiploidy (having fewer than the normal number of chromosomes) 
is also common in lymphoid malignancies [30, 31].

A fundamental challenge when using any clustering method to perform unsupervised 
analysis arises from the difficulty of correctly ascertaining the number of clusters pre-
sent in the data. We found that 94 (70%) of the 134 clusters have at least one cytogenetic 
abnormality that is present in at least 60% of the cases, and that many of those clusters 
have one or more abnormalities present at much higher frequencies. Thus, Mercator is 
able to identify high fidelity patterns and generates clusters that have a natural biological 
interpretation. It is possible, however, that the “true” number of clusters lies somewhere 
between the 134 found by Mercator and Thresher and the 47 known disease morpholo-
gies. Ideally, every cytogenetic cluster should be characterized by a unique combination 
of events.

Distance metrics

We looked at different distance metrics to determine which metric would work best on 
cytogenetic data. In addition to the Jaccard distance, we performed our analyses using 
both the Sokal–Michener and Goodman–Kruskal metrics. These results are shown in 
Additional file  1 (Sokal–Michener) and Additional file  2 (Goodman–Kruskal). Sokal–
Michener was not selected due to poor cluster differentiation (Additional file 1: Figure 
S2). Sokal–Michener did identify complex cytogenetic clusters, so it may be of research 
benefit for identifying recurrent complex events. Goodman–Kruskal identified weaker 
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connections between karyotypes than Jaccard (Additional file 2: Figure S2), and thus was 
not selected. This is likely due to Goodman–Kruskal taking into consideration zero-zero 
matches when looking at binary data. This is in contrast to Jaccard, which only considers 
one–one matches to be meaningful. Since the LGF model data is a sparse binary vector 
it makes sense that a distance metric that only values one–one matches would outper-
form a metric that considers all matches.

One critically important aspect of Mercator is its use of shared cluster color schemes 
across different methods. It has been known for many years that humans are better than 
computers at determining visual patterns [32]. For this reason we designed Mercator to 
use a shared color scheme when using different methods on the same data set. This ena-
bles users to look at plots generated by different algorithms and visually compare them 
to determine the best algorithm for a given dataset. Keeping the color schemes consist-
ent allows clusters that are based on a similar underlying characteristic can be compared 
across different clustering algorithms. This allows Mercator to leverage the intelligence 
of the researcher to help identify the best algorithm for a given dataset.

Conclusions
In the future, it may be possible to address this issue by applying Mercator recursively. 
That is, we would first remove any cytogenetic event that is used to fully characterize 
one or more clusters at very high frequencies, and would then remove samples that 
only present with those abnormalities. We could then apply Mercator to the remain-
ing features and samples to see if the resulting clusters can be characterized by other 
abnormalities at high frequency. We also intend to examine the associations between 
cytogenetically defined sample clusters and the known disease morphologies. A cur-
sory examination suggests that the cytogenetic classification may be independent of 
and orthogonal to the known disease classification. If that observation holds up, then 
it will also be important to find other karyotype data sets that can be linked to clini-
cal outcomes in order to test whether the cytogenetics can give better insight into an 
appropriate choice of therapies across disease types.

Mercator, in conjunction with CytoGPS, was able to identify biological patterns of 
shared elements within the cytogenetic profiles of different diseases. Data heteroge-
neity remains a very common problem in karyotype data analysis due to the innate 
linkage of cytogenetic features with one another due to colocating on the same 
chromosome. Mercator solves this problem by identifying unique feature sets and 
combining features to reduce the dimensionality while still preserving all relevant 
information. Mercator solves the related problem of data sparsity by selecting the 
proper measurement of distance. By utilizing the Jaccard distance, we were able to 
address the high levels of sparsity within our data set by focusing solely on 1 to 1 
matches across our binary vectors. This elegant solution enabled both clustering and 
large-scale visualizations to be performed on an otherwise highly sparse and noisy 
high-dimensional data set.

Although we highlighted the usage of the Mercator package on binary cytogenetic data 
in this paper, it is important to note that Mercator is “data-type agnostic”. Many other 
forms of biomedical data could be easily processed and visualized using the Mercator 
methodology. This is particularly relevant in many omics fields where the large feature 
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space requires clever feature reduction techniques, such as Thresher, to improve the 
overall computational analysis of the data. The standard visualizations used by Mercator 
will also aid these omics experiments, providing a clear visualization of the underlying 
data and thus a better understanding of the structure of omics data sets.

Availability and requirements

Project name: Mercator
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