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Abstract

Deep Aptamer Evolutionary Model (DAPTEV Model).

Typical drug development processes are costly, time consuming and often man-

ual with regard to research. Aptamers are short, single-stranded oligonucleotides

(RNA/DNA) that bind to, and inhibit, target proteins and other types of molecules

similar to antibodies. Compared with small-molecule drugs, these aptamers can bind

to their targets with high affinity (binding strength) and specificity (designed to

uniquely interact with the target only). The typical development process for aptamers

utilizes a manual process known as Systematic Evolution of Ligands by Exponential

Enrichment (SELEX), which is costly, slow, and often produces mild results.

The focus of this research is to create a deep learning approach for the generat-

ing and evolving of aptamer sequences to support aptamer-based drug development.

These sequences must be unique, contain at least some level of structural complexity,

and have a high level of affinity and specificity for the intended target. Moreover,

after training, the deep learning system, known as a Variational Autoencoder, must

possess the ability to be queried for new sequences without the need for further train-

ing. Currently, this research is applied to the SARS-CoV-2 (Covid-19) spike protein’s

receptor-binding domain (RBD). However, careful consideration has been placed in

the intentional design of a general solution for future viral applications.

Each individual run took five and a half days to complete. Over the course of two

months, three runs were performed for three different models. After some sequence,

score, and statistical comparisons, it was observed that the deep learning model

was able to produce structurally complex aptamers with strong binding affinities

and specificities to the target Covid-19 RBD. Furthermore, due to the nature of

VAEs, this model is indeed able to be queried for new aptamers of similar quality

based on previous training. Results suggest that VAE-based deep learning methods

are capable of optimizing aptamer-target binding affinities and specificities (multi-



objective learning), and are a strong tool to aid in aptamer-based drug development.
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Chapter 1

Introduction

There are two main types of nucleic acids. The first type is known as deoxyribonucleic

acid (DNA) and the other is known as ribonucleic acid (RNA). DNA is typically

double-stranded, houses instructions for protein creation, and resides in the nucleus

of the cells within one’s body. DNA contains four bases, each known as a type

of nucleotide (nt). These bases are Adenine (A), Cytosine (C), Guanine (G), and

Thymine (T). RNA is similar to DNA except that it is single-stranded and has bases

of Adenine (A), Cytosine (C), Guanine (G), and Uracil (U). While there are many

types of RNA, for the purposes of this introduction, RNA can be further divided into

three types - messenger ribonucleic acid (mRNA), ribosomal ribonucleic acid (rRNA)

also known as the ribosome, and transfer ribonucleic acid (tRNA).

The synthesis of mRNA also occurs in the cell nucleus. The mRNA will read the

sequence information from the DNA and produce an RNA-relative copy (complemen-

tary bases) in a process known as transcription. Surrounding the cell nucleus is an

area of cytoplasm. This area of cytoplasm between the cell walls and the cell nu-

cleus contains other types of molecules such as amino acids, tRNA, rRNA, and others

outside the scope of this research.

These three types of RNA are crucial in the protein creation process. The mRNA

is responsible for carrying instructions from the DNA to the ribosome. The ribosome

then interprets the instructions from the mRNA and tasks various tRNA to collect

surrounding amino acids from the cytoplasm area. This process is known as trans-

lation. When the tRNA return with the requested amino acid, the ribosome will

connect these amino acids in a chain according to the mRNA instruction. This chain

of amino acids is known as a polypeptide chain. This is the first form of a protein.

Then the polypeptide chain conforms to its secondary, then tertiary structure (a lit-

eral three-dimensional structure). At this point, many three-dimensionally conformed

1
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polypeptide chains are considered proteins. However, there exist some proteins which

interact with other polypeptide chains that form a quaternary structure and this too

would be considered a protein [21, 23, 40, 85].

1.1 Problem Statement

Viruses have outer protein shells and contain infectious DNA or RNA. A virus is

incapable of self-reproduction and must commandeer the cell’s protein creation ca-

pabilities to reproduce. After the virus protein has successfully reproduced, it then

goes on to infect other cells in a process known as proliferation. The attaching and

injecting of infectious DNA is achieved through a cell’s receptor. Thus, these viral

proteins have what is known as a receptor-binding domain (RBD), an area on the

viral protein that has adapted to the conditions of the host cell receptor. In the case

of the SARS-CoV-2 spike protein, which is the subject of this research topic, the RBD

has adapted to the lung cell ACE2 receptors [43, 48, 70, 72, 76, 81, 86].

Typical drug development focuses on either triggering a host’s immune system

or interrupting the life cycle of the virus. The former is typically thought of as a

preventative measure. This usually takes the form of vaccines preparing the host’s

immune system. The latter is known as a therapeutic, attempting to halt the infection

process in a currently-infected host [43, 84, 87].

For antibody-related preventative drugs (vaccines), if all goes well, the biological

response is to develop antibodies that last for a period of time. In the case of SARS-

CoV-2, the antibody immunity period lasts approximately five to seven months [68].

Should the host become infected with the virus targeted by the vaccine during the

immunity period, the antibodies will bind to the virus and inhibit it from interacting

with cell receptors.

These vaccines can be cultivated in several ways. Usually, this involves introduc-

ing the host to a weakened virus, injecting the DNA to begin minor viral protein

production in host cells or, in the case of the SARS-CoV-2 mRNA vaccine, skipping

the DNA transcription step and proceeding right to translation via mRNA [16].

There are some issues inherent with the vaccine and vaccine development process,

however. The first issue is the amount of time required to cultivate the virus, DNA,

or RNA into a vaccine. Another issue is that there is often a large development cost

associated with researching and producing vaccines. Lastly, these vaccines tend to

focus on infection prevention. If the host is already infected, the immune system is

weakened and attempting to produce antibodies. Injecting a weakened version of the
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virus or the infectious nucleic acid will not help [66, 87].

This is where aptamers can help. Aptamers are short, single-stranded, oligonu-

cleotides (DNA or RNA), that have folded into their tertiary structures and can bind

to specific targets with high affinity and specificity. Notice that aptamers binding

mimics antibody binding. Here, affinity refers to how well the aptamer will bind to

its target and specificity refers to the ability to only bind to its target. However,

unlike vaccines which invoke the immune system to produce antibodies prior to in-

fection, aptamers can halt a virus during its life cycle by binding to the virus protein

RBD, inhibiting the protein from binding to the host cell receptor. This classifies

aptamer-based drugs as therapeutics. Also, aptamers can be created and modified

easily and can bind to many molecules, unlike antibodies. Unfortunately, one of the

main ways to develop aptamers is through a process known as systematic evolution of

ligands by exponential enrichment (SELEX) which can take anywhere from 4 weeks

to eight or more months (depending on required additional steps) just to produce

aptamers with mild binding qualities on average [1, 71]. Also, the SELEX process is

very labour-intensive and is essentially a random search similar to the “hill climber”

algorithm as described in “Experiments” [9, 15, 42, 43, 44, 71, 85, 87, 88].

With all of the issues regarding the SELEX process, this creates a need to digitally

simulate the binding process. This is the main focus of this research, applied only to

RNA data against the SARS-CoV-2 spike protein. RNA data was chosen specifically

because DNA data has been explored extensively, but RNA data seems to be under-

researched. Note that when binding is simulated in silico, it is called docking. Rosetta

will be used to simulate and score the docking procedures [41].

1.2 Contributions

The goal of this research is to determine if a deep generative model (DGM) can ac-

celerate the RNA aptamer drug development process. Thus, the DGM must display

three capabilities. First, the DGM must produce a list of aptamers that yield strong

docking scores to the SARS-CoV-2 spike protein’s receptor-binding domain (RBD),

suggesting a strong target binding affinity. Secondly, the DGM must produce struc-

turally complex sequences, suggesting a strong target binding specificity. Thirdly,

the model should provide the ability to produce new sequences immediately rather

than having to retrain every time. Furthermore, it would be ideal if the training for

this model could be achieved in a reasonable amount of time.

In addition to these requirements, this research also contributes the following: (1)
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a method to generate an entire dataset rather than having to wait for experimen-

tal data to be gathered; (2) entire secondary structure prediction capabilities over

substructure motif selection; (3) tertiary structure prediction for better control and

understanding of aptamer information; (4) aptamer-target RBD docking predictions,

allowing the user to target a specific virus; and (5) a pipeline that connects the input

and output of well-performing prediction programs to a deep learning (DL) system,

serving as an end-to-end model. While this research is applied to the SARS-CoV-

2 spike protein, careful consideration has been placed into the universal design of

nearly any protein target that can be obtained from the Protein Data Bank (PDB)

website or elsewhere. Henceforth, “the model” will be referred to as the deep aptamer

evolutionary model (DAPTEV Model).

1.3 Related Work

At the beginning of this research, during the literature review (completed around

June, 2020), finding sources of related work was difficult. There were many papers on

aptamers, nucleic acid design, and drug development, but it was only recently that

the patents expired for the SELEX process [85]. This limited a lot of the potential

exploration and innovation regarding aptamers. Moreover, machine learning (ML)

applied to aptamers was even more scarce. However, shortly after performing the

literature review, several related papers were released. Some of which implemented a

model similar to the one proposed in this research.

1.3.1 Similar Research

Grantham et al. have developed a DL model that they refer to as deep evolution-

ary learning (DEL) for molecular design. They found their method was “beneficial

for improving sample populations” and that their model “exhibits improvements on

property distributions, and dominates samples generated by other baseline molecular

optimization algorithms” [26]. Their model serves as inspiration for this DAPTEV

Model. Published April 12, 2022.

Im et al. used a generative model to build DNA and RNA sequences that bind

to a “target protein”. At the time of publication, it was specified that their research

was ongoing, but they were able to train a long short-term memory (LSTM) recurrent

neural network (RNN) on a “huge dataset of sequences from high-throughput experi-

mental technologies”. It was found that the produced sequences possessed structural
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motifs similar to known motifs, and that the produced sequences had a strong binding

affinity and specificity to their intended target [36]. This research was continued by

Park et al. and a similar conclusion was drawn for RNA aptamers specifically [62].

Published August 15, 2018 and January 07, 2020 respectively.

Iwano et al. have a similar approach to Im et al. and Park et al., also utiliz-

ing DeepBind. Except, Iwano et al. implemented a convolutional neural network

(CNN)-LSTM as their encoder and a profile hidden Markov model as their decoder

for their variational autoencoder (VAE). Additionally, while Iwano et al. started with

static sequence lengths, they utilized some post-processing techniques to extend the

sequence lengths to a set of other fixed sizes, technically achieving sequence genera-

tion with variable lengths [38]. Published February 17, 2021. Their code and dataset

is available at https://github.com/hmdlab/raptgen.

Lee et al. produced research that is the most similar to this DAPTEV Model. Lee

et al. created a generative model which produces RNA of various lengths (30, 50, 70,

and 90 nt) and their method allows for the specifying of a target sequence through the

use of ZDOCK. It should be noted that Lee et al. attempted to accept DNA in their

model similar to how this DAPTEV Model accepts DNA data, by converting thymine

to uracil. However, Lee et al.’s “generative model” is a decision tree with a random

forest algorithm that results in the “generating” of sequences. There is no mention of

Gaussian distributions or a latent space, nor a decoder. In other words, their method

does not use a DGM/VAE nor probabilistic learning. Lee et al. explain that they

also use a “Monte Carlo tree search approach” to mimic an end-to-end generative

model. Thus, Lee et al.’s model is not a DL algorithm. Lee et al.’s score function

is the Matthew’s correlation coefficient. This research was not applied to Covid-19.

Although, it does seem like this would be possible. Results indicated equal or better

performance of generated aptamers to target proteins than previous benchmarks [50].

Published June 25, 2021.

Song et al. produced similar results to Lee et al. except their implementation

involved a Markov Cluster-based ML approach. Song et al. attempted to address

the current issue of building secondary substructures and using these structures with

SELEX data, stating this negatively affects the accuracy. Song et al.’s implementation

focuses on classification rather than generation [71]. Published December 26, 2019.

Wornow et al. propose a conditional VAE, utilizing LSTMs as well, to generate

novel high-binding aptamers. This research is applied to daunomycin. This too is

similar to the DAPTEV Model’s work and findings. However, Wornow et al.’s work

utilized 8 rounds of SELEX data as a proof of concept. This creates a limitation

https://github.com/hmdlab/raptgen
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of requiring experimental data to be collected before their model’s efficacy can be

illustrated or be used in practice [85]. Published April, 2020.

1.3.2 Tangentially Related Research

Li et al.’s work attempted to classify aptamer-target pairs. In other words, they

attempted to discern if an aptamer would or would not bind to its target. This is a

classification model and not a generative model [51]. Published January 22, 2014.

Hamada discusses in silico approaches for RNA aptamers. However, very little

was discussed regarding artificial intelligence (AI)/ML/DL and instead a focus was

given to discrete applications [28]. This was a useful source of RNA design knowledge.

Published February 01, 2018.

Chen et al. performed a review discussing the advancements of different discrete

and ML/DL approaches to the prediction of aptamer binding ability. It was found that

structure-based methods are the most widely used in silico method for drug design.

It was also mentioned that Chen et al.’s hope is to facilitate ML-aided applications

of high-throughput aptamer selection [15]. Published March 30, 2021

Bashir et al. explore the usage of ML models as a means to predict DNA aptamer

binding affinity. For example, one of their models received sequences as one-hot

encoding vectors and the output was the predicted affinity score. It was found that

ML algorithms are capable of learning structural motifs and other aptamer features,

and can be a useful tool in expediting the search for therapeutic agents [8]. Published

April 22, 2021.

Heredia et al. developed a novel ML approach which extracted sequence infor-

mation via a natural language processing (NLP) model. This extracted information

was used in the training of a logistic regression model, a decision tree, a Gaussian

Näıve Bayes model, and a support vector machine. Heredia et al.’s goal was “to

help discriminate binding between DNA aptamers from those unspecified targets of

DNA-binding sequences”. In other words, Heredia et al. attempted to discern if a

sequence was indeed an aptamer or not [31]. Published August 3, 2021.

A worthy mention is the work performed by Fare et al. They attempted to combine

a genetic algorithm (GA) with a neural network, acting as a fitness function, to

optimize the SELEX process for RNA aptamers. However, there does not seem to be

any published work, and most online sources are no longer operational [35].



CHAPTER 1. INTRODUCTION 7

1.3.3 Deviations from Past Research

When this research first began, it seemed that similar publications mostly focused on

predicting the binding affinity of DNA aptamers, or classifying if an aptamer would

bind to its target. Since then, more research was published attempting both DNA

and RNA aptamer sequence generation utilizing a plethora of implementations. Im

et al. and Song et al. where among the few to previously publish sequence generating

models. However, the work published in this space seems to be limited by a number

of factors.

Many models utilize a previously-developed and trained ML system known as

“DeepBind” to predict “the interactions between proteins and nucleic acids” [62].

DeepBind was trained on hundreds of distinct proteins. However, DeepBind only

yields binding affinity scores without the context of the target’s RBD and does not

provide the ability to specify target proteins, nor the target’s RBD. Furthermore,

the usage of DeepBind restricts the user to the proteins on which DeepBind trained.

This means any new viruses or mutations are not updated within the previously

trained model. Even if this was included, the scores provided by the system would

be generalizations and not specific to the target unless an individual model for the

target was trained specifically. Conversely, this DAPTEV Model utilizes Rosetta to

“model RNA-protein complexes by simultaneously folding and docking RNA to a

protein surface” via a highly accurate statistical RNA-protein scoring function [41].

This allows the user of the DAPTEVModel to specify a target protein and the target’s

RBD. The target in question for this research is the SARS-CoV-2 spike protein’s RBD,

but any protein target can be used. The main drawback for the DAPTEVModel is the

computational demand and time required to perform docking simulations. However,

this limitation can be overcome via the use of multiprocessing and cluster-distributed

computing.

Most models seem to require a starting dataset derived by high-throughput ex-

perimentation. Even the dataset obtained through DeepBind, which is currently

unavailable, is developed using this method. This creates the limitation of requir-

ing previous high-throughput data before the model can be used. This DAPTEV

Model allows users to generate random sequences, and a starting dataset, with con-

trol over the percentage of guanine-cytosine (GC) in each sequence, and the ability

to only allow folded structures into the model. This also allows the user to start with

experimental data if they so choose, but does not require it. Additionally, further

augmentation to the random sequence generation can serve to improve initial data

generation and can provide greater control over the initially produced sequences.
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Most of the aforementioned generative models utilize either an LSTM RNN, or

some form of tree structure. The DAPTEV Model implements a gated recurrent unit

(GRU) RNN for the encoder and decoder models. Additionally, the DAPTEV Model

also implements a multilayer perceptron (MLP) model into the VAE for the purpose

of binding classification and serves as an additional regularization method.

Lastly, there is an observed commonality that previous implementations either

restrict the length of the sequences or allow for accepted, predetermined, sequence

lengths. The DAPTEV Model uses and produces variable length sequences with a

range of 20 to 40 nt chosen in the parameters. However, this range can increase

or decrease according to the user’s preference. Also, there does not seem to be any

secondary or tertiary structure prediction capabilities in the majority of these model.

While this does add additional complexity and computational demand, the tradeoff

is finer control and knowledge over the produced sequences. It is for this reason that

the DAPTEV Model implements these features.

To the best of our knowledge, this is the first attempt to combine: (1) an RNA-

aptamer sequence probabilistic DGM model with evolutionary computation (EC);

(2) the ability to specify the target and the target’s RBD; (3) the inclusion of non-

canonical random aptamer sequence generation of true variable length; (4) complete

secondary structure prediction and tertiary structure prediction capabilities; (5) dock-

ing predictions; and (6) the ability to also include DNA if the user converts to RNA

via thymine to uracil base change.



Chapter 2

System Design

The approach for the development of RNA aptamers designed for a specific virus is

as follows:

1. Download target virus data from the PDB website

2. Modify the raw PDB and FASTA files

3. Compile starting dataset

4. Set Rosetta parameters

5. Set dataset preparation script parameters

6. Generate dataset

7. Set starting DAPTEV Model parameters

8. Load PDB virus and compiled dataset into DAPTEV Model

9. Deep learning and evolutionary computation

10. Random RNA sequence generation

11. RNA secondary structure prediction

12. Multiprocessing: tertiary structure prediction & docking simulation

13. Merge data, sort by score, take top M sequences

14. Repeat from step 9 until complete

The user must first download the target virus data from the Protein Data Bank

(PDB) website [10] and modify the contents to be compatible with Rosetta [41]. For

a more in-depth description of this process, see “Data Preparation”. Following this

step, the user will compile all (if any) known RNA aptamer sequences and secondary

structures into one or more comma-separated value (CSV) files. It is expected that

the secondary structures for these sequences are known ahead of time. If secondary

structures are unknown, these can be quickly computed using Arnie [83] (see “RNA

Secondary Structure Prediction”).

9
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The next step is for the user to create the dataset as it relates to the target virus.

This can be accomplished by initially setting the Rosetta and dataset preparation

script parameters (see “Parameters”), and running the dataset creation Python code

(called “create dataset.py”). The execution of this script is required as it will perform

several necessary actions. First, this script will check each RNA sequence against the

user-specified requirements established during parameter entry. If any starting data

does not conform to the user’s requirements, the script will filter out and replace

these sequences with random RNA sequences and Arnie-predicted secondary struc-

tures until the desired number of data points has been reached. Then, the script will

run each data point through Rosetta’s RNA tertiary structure prediction and docking

simulation to obtain target virus-related docking scores. Multiprocessing is utilized

during this step to accelerate the prediction computation time. See “Tertiary Struc-

ture & Docking Prediction”, “Score Functions”, and “Multiprocessing” for more on

information. Lastly, the script will save the resulting dataset in a DAPTEV Model-

compatible format. Note that the user can generate an entire dataset of random RNA

structures with this script but this is not recommended. More information on this

can be found in “The Data”, “Random Sequence Generation”, and “RNA Secondary

Structure Prediction”.

With the last step complete, the user has a fully prepared dataset. Now, the

user must enter their desired starting parameters for the ML system (the DAPTEV

Model) and direct the DAPTEV Model to the recently-constructed dataset. At this

point, the user is ready to run the DAPTEV Model program via the “run all.py”

script. What follows is a description of the steps performed by the DAPTEV Model.

A flowchart visualizing this process can be seen in Figure 2.1. Note that the VAE

and EC approach is inspired by similar research conducted by Grantham et al. [26].

Upon execution of the DAPTEV Model, the dataset is loaded in. Then, the

sequences and their docking scores are sent into a deep probabilistic neural generative

model, or DGM for short, known as a VAE. This VAE is responsible for learning how

to effectively simplify (encode) key features of the sequences, storing these features

in a latent space, then rebuilding (decoding) samples from the latent space. These

produced samples will be similar, possibly even identical (depending on how well the

VAE learns), to the input sequences based on the learned features. The nature of the

learnable latent features is respective to the application. For this application, some

examples of “key features” are nucleic acid base pair interactions, structural motifs

like stem loops and bulges, and other observable characteristics of RNAs. See “Deep

Learning and Evolutionary Computation” for more information on this subject and



CHAPTER 2. SYSTEM DESIGN 11

how features are stored.

After the VAE has encoded key features to the latent space, Darwinian evolution-

ary operations such as selection, crossover, and mutation are performed on the latent

space to explore the docking score landscape for the specified target. Each genera-

tion requires a new round of structure predictions and docking simulations to obtain

new scores and confirm the next generation’s performance. This process is repeated

multiple times until a certain number of generations have occurred. The optimal

number of generations depends on one’s parameter choices and is determined empir-

ically. Further discussion on this can be found in “Deep Learning and Evolutionary

Computation” and Figure 2.1.

Additionally, as a comparison method, another AI model, known as a genetic

algorithm (GA), will perform the same operations as the ones performed on the latent

space of the VAE. Except, this GA will operate only on the initial input sequences and

not the latent space. This way, the sequences obtained from the VAE can be compared

against the separate GA-produced sequences, serving as a benchmark. Figure 2.2

illustrates the GA process. It is expected that the encoding nature of the VAE will

be able to identify the most important features of the sequences, making the search

space more robust.

Once the evolutionary operations are complete, if the predicted data contains

duplicates, these duplicates will be removed and replaced with random sequences

that contain at least one connection/base pairing in its secondary structure (similar

to the dataset script). “Duplicates”, in this case, refers to repeat sequences in the

current generation’s prediction, predicted sequences that already exist in the training

set, or predicted sequences that have been predicted in a previous generation.

Following the duplicate replacement process, the newly updated dataset of se-

quences will have their secondary structures predicted. Then, this data is sent to

Rosetta for another round of tertiary structure and docking predictions, computed

using multiprocessing. The associated scores are added to the dataset.

At this point, the dataset is two times its original size. The dataset will then be

sorted according to the score values from smallest to largest. The top M sequences

will be collected and the remainder will be discarded. “M” in this instance refers

to the user’s chosen population size for the DAPTEV Model (see “Machine Learning

Parameters”). If this is not the final generation, this data will be used to fine-tune

(continue training) the VAE, and the process will repeat. If this is the final generation,

this data will be returned to the user as the output from the DAPTEV Model.
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2.1 Deep Learning and Evolutionary Computation

In the following sections, the example of performing an experiment with parameters

of 800 for the population size, 10 for the number of generations, and 3 for the number

of runs in the context of reducing computation time is discussed. It should be noted

these values can be considered conservative for DL applications. Additionally, DL

systems typically utilize thousands of data points in the initial dataset for training.

Traditional ML methods usually require some data preprocessing (filtering out

noisy data, outliers, incorrect information, etc.) before data can be used for training.

This is because the quantity of data points is often relatively low and we do not want

the ML system to learn inaccurate associations or base its conclusions on errors. DL,

however, is a subset of ML that typically uses significantly more data and, as a result,

often does not require as much data preprocessing. Note that, while DL is a subset of

ML, not all ML models can be considered DL models. The distinction here is between

ML models and DL models that do not overlap.

DL aims to model human learning as closely as possible. Humans are often sub-

jected to noisy and incorrect data, but human brains are proficient at filtering these

inaccuracies out and updating logic during the learning process. As such, DL models

are often considered to be more effective than traditional ML models at exploring a

fitness landscape.

2.1.1 Fitness Landscape

The term “fitness/problem/score landscape” has been mentioned multiple times now,

but what exactly does it mean? Consider a problem’s solution search space as a

landscape containing hills and valleys as depicted in Figure 2.3. A problem may have

many potential solutions, but some solutions will be inherently better than others. For

example, when searching for a needle in a haystack, one could sift through the hay one

at a time or one could use a metal detector. This landscape, therefore, constitutes all

possible solutions to any problem containing numeric values representing the quality

of the solutions. These numerical values are known as a solution’s “fitness”. Thus,

changes in elevation on this plane are indicative of how well suited, how fit, a potential

solution is to the task at hand. Neighbouring solutions also tend to have similar

fitness values. As such, this landscape can have hills and valleys of different sizes and

in different locations. For optimization tasks, where one attempts to find the single

best answer to a problem, the goal is to locate the solution at the global maximum

(tallest hill) or global minimum (lowest valley). Here, “global” means “for the entire
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Figure 2.3: A three-dimensional plot of a “fitness landscape”. Source: the “peaks”
function in MATLAB (a translation and scaling of Gaussian distributions) [56]

Formula: z = 3(1− x)2e−x2−(y+1)2 − 10
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problem’s search space”. Conversely, a local minima or maxima means the potential

solution is only the best of its neighbours and translates to a smaller hill or more

shallow valley. Note that the best solution or goal can be either a minimum or

a maximum. It all depends on whether the goal is to minimize or maximize the

solution’s numerical values. In the case of aptamer discovery for drug development,

the goal is to minimize the returned docking scores, thus prioritizing the minima.

A good example of encountering a local minimum in this application would be the

production of an unfolded RNA in silico as discussed in “Additional Considerations”

and “Native Rosetta Score Function”. Unfolded RNAs are less likely to experience

penalties during the structure prediction and docking process due to the RNA’s lack

of self-interaction and its malleability to the target RBD conditions. This, in turn,

can yield very low structure prediction and docking scores, resulting in the algorithm

prioritizing unfolded RNAs. However, aptamers are designed not only for high target

binding affinity but also for target specificity [9, 15, 42, 43, 44, 85, 87, 88]. Thus, this

scenario is unlikely to occur in vitro or in vivo and is, therefore, not the best solution

for aptamer drug development. For an example of a docked unfolded RNA, see the

best and median complexes in Figure 3.12b.

When one begins learning AI concepts, they are often taught that models have a
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single, static, learning rate to teach students the basic concept. This learning rate tells

the model how large of a step to take on the fitness landscape to increase proximity

to the global optimum. The issue with implementing a static learning rate is the

possibility that the model may have this value set too high and could pass by the

optimum. In this scenario, the model would not consider this a success and would

likely continue stepping back and forth, never settling. Conversely, having too small

of a learning rate means the model may take a very long time to learn or may never

learn what it needs to due to encountering a local minimum. To address this issue,

the DAPTEV Model model implements learning rate cosine annealing [54, 63]. This

way, the learning rate can start large, causing the model to make bigger leaps at the

beginning, and then the model can reduce the learning rate to discern more nuanced

details thereafter [11, 25]. Note that the transition from the starting learning rate to

the end learning rate occurs in the first generation for a given run. All subsequent

generations in that run will have their beginning learning rate set to the same value

as the ending learning rate.

2.1.2 Variational Auto-Encoder

A VAE is a type of probabilistic DGM that receives data, learns how to represent

(encode) the important features of the data in a latent space, then attempts to recreate

(decode) the latent data [45]. For typical VAEs, the goal is to perfectly recreate the

input. This way, one can provide new random data to the VAE and be confident

that the output will be something that seems plausible within the problem space.

For example, one could train a VAE on images of handwritten digits between 0 and

10. Then provide a random, normally distributed, sample to the VAE as input and

receive a predicted digit output that looks as if it was hand-written, but that exact

image likely would not exist in the training set. It is for this generative capability

that a VAE was used in this research. Figure 2.4 illustrates this process.

If both the encoding and decoding models of a VAE are a type of RNN, then

sequence information can be provided to the VAE in a manner similar to NLP systems.

These are known as sequence-to-sequence (Seq2Seq) models. Considering RNAs are

in fact sequences, this makes VAEs an ideal tool for learning and producing sequences.

The RNNs implemented for this DAPTEV Model’s encoder and decoder are known

as a GRU and are an evolution of an LSTM model.

The RNN encoding and decoding models of a VAE cannot learn possible sequence

information for anything without a starting vocabulary. If the VAE was being applied
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Figure 2.4: Mathematical and graphical representation of the implemented VAE.

to an NLP application, the known vocabulary might be the English alphabet or, for

more advanced learning, it could be all the words contained in the entire dictionary.

In this application, the vocabulary would represent the characters required to build

RNA sequences (“a” for adenine, “c” for cytosine, “g” for guanine, and “u” for

uracil). However, this alone does not provide the VAE with enough context for

how an RNA structure will interact with itself and the possible structural motifs

that can occur. Thus, it is a good idea to include all the possible combinations

of these four base characters with respect to the maximum sequence length. For

example A, C, G, U, AA, AC, AG, AU, CA, CC, .... Conversely, adding too many

combinations could drastically increase the computation time as each increase in

combination length (1 character, 2 characters, 3 characters, ...) essentially equates to

4x possible combinations. Here, the 4 represents the four base characters and the x

represents the maximum character combination length.

In the context of this DAPTEV Model, the data starts as strings of RNA base

characters (see “The Data” for more on this). Then, the VAE will detect all unique

individual characters from the provided data. For example, “a”, “c”, “g”, “u”. From

these base characters, the VAE will build all possible combinations up to the user-

specified vocabulary length limit. Note that the combinations implemented in this

model excludes duplicates produced from palindromes. Once the vocabulary has been

built, three more values are inserted. These values are “<BOS>” for beginning of

sequence, “<EOS>” for end of sequence, and “<PAD>” for padding. When the

VAE encounters a <BOS> value, it knows that the sequence has started. When the
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VAE produces a <BOS> value, the DAPTEV Model will know to consider what

follows as a new sequence and will filter out the <BOS> before proceeding to the

scoring procedure. <EOS> is treated similarly, except this value marks the end

of the sequence. While the <PAD> value will be filtered in the same manner as

the <BOS> and <EOS> values, it is used slightly differently. When working with

sequences, one inevitably must choose how to deal with sequences of variable length.

One method is to restrict all sequences to the same length. However, doing so limits

the versatility of the model and its learning capabilities. Instead, this DAPTEV

Model implements a <PAD> value to be inserted into each sequence as they are

presented to the VAE. As this DAPTEV Model uses a “maximum sequence length”

parameter, the amount of padding added to any sequence will simply be equal to

this max length parameter minus the current sequence length. If this parameter did

not exist, the amount of padding added to a sequence would depend on the largest

sequence provided to the VAE. When the VAE encounters a <PAD> value, it knows

that this is not important and will essentially ignore it.

Once the vocabulary is built, all produced combinations will be saved as “em-

beddings”. Embeddings are essentially just ways of numerically representing com-

binations and their associations with other combinations. Each combination in the

vocabulary list is assigned an index. Then, a square, two-dimensional look-up table

is made with the indices along both the top row and the side column. The values

stored at each intersection represents how strongly related the pair of combinations

are according to the learning of the VAE [57, 65]. Thus, these embedding values are

constantly updating as the VAE learns.

Next, the training sequence data, now in the form of embeddings, is passed through

the GRU encoding model which is responsible for learning important features of

the provided data. Learned features are unique to the given problem or task. For

the DAPTEV Model, “features” can represent nucleic acid base pair interactions,

structural motifs like stem loops and bulges, and other observable characteristics of

RNAs. All output (important features) from the encoder is then compressed and

saved in a latent space.

The latent space is a collection of latent vectors (z) which represent a probabilistic

distribution of the learned features. These vectors are considered samples from the

distribution and are characterized by the mean (µ) and standard deviation (σ) for

each z, as seen in Figure 2.4. The VAE also uses log variance when performing

calculations, but this can be determined from the σ value [45, 64]. To obtain the

µ and σ vectors, the output (hidden state) from the GRU is passed through two
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separate linear layers (see Pytorch documentation for more details [63]). This process

of passing data through linear layers is the aforementioned “compression” process,

meaning the encoder determines important features, then represents these features

as the statistical parameters µ and σ. It is important to mention that this DAPTEV

Model assumes the latent space is a Gaussian distribution with a mean of 0 and a

variance of 1.

The µ and log variance vectors are then used to calculate the Kullback-Leibler

divergence (KL) loss. This loss function measures the difference between the current

distribution of the latent space and the standard normal distribution. The goal is

to shift the current distribution to be as close to the standard normal distribution

as possible. In doing so, the KL loss function acts as a regularizer, encouraging the

posterior closer to the prior [13, 25, 45, 47].

Following the latent space contributions from the encoder, the decoder will then

sample from this space and attempt to recreate the input data. First, the sample is

passed through a linear layer to scale the latent data. Then the scaled data is sent to

the decoder GRU which attempts to recreate the sequence. This recreation is then

sent through another linear layer which outputs the probabilities for each vocabulary

value.

In an ideal world, the input data would be perfectly reconstructed. To measure

this, a reconstruction loss is computed [45]. While the reconstruction loss was de-

veloped in relation to the KL divergence, representing the negative log-likelihood, in

implementation it can be represented by a cross entropy function. This is because

the cross entropy function also calculates the difference between two distributions.

As such, the cross entropy function is implemented in the DAPTEV Model.

If left to its own devices, the KL loss function can tend to vanish during training.

This can negatively affect the total loss function and, thus, also affect the recon-

struction learning process. Additionally, the raw KL value can greatly influence the

decoder’s learning at the beginning of training. To address these issues, the DAPTEV

Model implements a technique known as KL annealing [22]. The annealing process

applies a small weight, between 0 and 1, to the KL loss value and linearly increases

this weight during training.

For typical VAEs, the total loss function would simply be the addition of the KL

and the reconstruction loss values. This is because VAEs are usually concerned with

recreating data as its sole purpose. Thus, an encoder and decoder model is generally

sufficient.

Up to this point, the VAE is not necessarily learning what makes an RNA sequence
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good or bad with respect to the Rosetta docking score. Technically, as long as the

VAE is provided with only well-performing sequences, it would likely recreate similar-

performing sequences. This, however, is not “learning”. This is preferential omission

and qualifies more as a heuristic, which is not the aim of this research. The goal is to

supply all data, good and bad, to the DL system and to have the model determine the

qualities of “good RNA” for itself. The VAE should then be able to produce sequences

with strong docking capabilities to a specified target. It is for this reason that an

MLP model was included in the architecture of the VAE. This MLP exists between

the VAE’s encoder and decoder, training at the same time. However, the MLP is not

learning how to reproduce sequences. Instead, it is learning the associations between

sequences and their docking classifications as determined by the score threshold. The

associated MLP loss value is also added to the total loss function.

After the encoder has seen the sequence data and produced a latent vector, this

vector and its associated score will be given to an MLP. The MLP is responsible

for performing score-based classification and to further regularize the model with

respect to the sequence scores. It was found during model testing that performing

mean-squared error (MSE) and root-mean-squared error (RMSE)-based regression on

the raw scores performed poorly, which negatively affected the overall performance

of the encoder and decoder. The same was true when the scores were normalized

based on the length of the sequence (number of nts). There was even an attempt to

institute a custom function which penalized sequences for having too many or too few

connections. The formula for this penalty function was a simple parabolic function:

y = n(0.8(x−2.5)2+0.001) where y is the new “score” that has been normalized and

penalized, n is the original score normalized by sequence length, and x is the number

of nt pairings in the secondary structure. These normalized and penalty-normalized

scores also yielded poor performance by the regression model. Ultimately, via the

suggestion of Dr. Li, the method arrived at was to classify the original score as

“a good docking score” (≤ score threshold parameter) or “a bad docking score” (>

score threshold parameter). This converted the scores to 1 (good) or 0 (bad) and

allowed to the MLP to perform classification with a binary cross entropy (BCE) loss

function rather than regression. This is the third and final value added to the total

loss function for the VAE.

It should be noted that one cannot simply set the score threshold parameter to

any low value desired. DL systems require a certain amount of data from which to

learn. If the starting dataset has too few instances of sequence scores equal to or

below the chosen score threshold, the DL system will not be able to learn properly
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and will overgeneralize all sequence scores to be “bad”. To determine the optimal

score threshold, it is recommended that the user perform some preprocessing dataset

analytics. In doing so, the user can determine the best score threshold that contains

at least 25% of the data in the dataset. For example, upon analyzing the starting

dataset in this research, it was found that 26.28% of the data fell within the range of

3,500 and below. Thus, a score threshold of 3,500 was chosen.

See Figure 2.5 for a depiction of the implemented VAE’s process. Note that the

evolutionary operations performed after the MLP occurs later as shown in Figure 2.1.

These operations are shown here simply to illustrate that the evolutionary operations

are applied to the latent vector, not the sequences.
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Figure 2.5: Depiction of the implemented VAE’s process.

See tables 2.1, and 2.2 for more information on the model structure. See subsec-

tions “Machine Learning Parameters” and “DAPTEV Model Parameters” for chosen

model parameter. For a summary of the VAE algorithms, see the pseudocode 1 below.
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Table 2.1: The chosen parameters for the VAE structure. Note: for vocabulary and
embedding size, as well as other VAE parameters, see Table 3.6.

Input
Size

Hidden
Size

Num.
Layers

Dropout
Z

Size
Bidirectional

Encoder
embedding

size
256 1 0 10 True

Decoder
embedding
size + Z size

512 3 0 10 False

Algorithm 1 DAPTEV Model’s VAE algorithm

1: Build vocab

2: for each Run do

3: for each Generation do

4: for each Epoch do

5: for each Batch do

6: for Encoder do

7: convert sequences to embedding values

8: convert scores to 0 or 1 based on score threshold

9: pass embedding values to encoder GRU

10: get hidden state he

11: pass he to linear layers

12: get µ and σ

13: use µ and σ to calculate logvar and z

14: use µ and logvar to get KL Loss

15: for MLP do

16: pass z into MLP to get output

17: pass output to sigmoid function to classify as 0 or 1

18: get BCE Loss via known score comparison

19: for Decoder do

20: pad embedded sequences to equal lengths

21: pass z into decoder linear layer to scale up features

22: pass scaled z and padded sequences to decoder

23: pad output

24: send output to fully connected layer

25: get prediction for each element in vocabulary

26: compute cross entropy loss to get reconstruction loss

27: compute total loss function

28: update model via backprop
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Table 2.2: The VAE’s implemented model structures. Note (1): LL stands for “Linear
Layer”. Note(2): the output for the GRU says “N/A” because it does not have an
“output” parameter. See Pytorch documentation for more details [63].

Input Hidden Layers Dropout Bidir. Output
Encoder Structure

GRU
Encoder
Input

Encoder
Hidden

Encoder
Layers

Dropout
Encoder
Bidir.

N/A

Mu
LL

2x Encoder
Hidden Size

- - - - Z Size

Sigma
LL

2x Encoder
Hidden Size

- - - - Z Size

MLP Structure
LL 1 Z Size - - - - 64
LL 2 64 - - - - 32
LL 3 32 - - - - 1

Decoder Structure
Decoder
GRU

Decoder
Input

Decoder
Hidden

Decoder
Layers

Dropout
Decoder
Bidir.

N/A

Latent
LL

Z Size - - - -
2x Z
Size

Predict
LL

2x Z Size - - - -
Vocab
Size

Lastly, a point must be made about the efficacy of this DAPTEV Model. The

results from the DAPTEV Model are obtained via the last generation’s training out-

put. In fact, every data point seen by the VAE is solely training data (predicted

sequences eventually become training data). This means the VAE sees this data mul-

tiple times depending on the number of epochs parameter. This can affect the VAE

output such that the VAE may produce duplicates due to learning too well how to

reconstruct the input data. These duplicates are then replaced as explained in “The

Data”. Additionally, as the output from the DAPTEV Model is obtained from the

last set of sequences in the final generation, the scores will be slightly higher than they

could be. This is because the VAE trains on the initial dataset for many more epochs

than the future predicted sequences. As this DAPTEV Model performs optimization,

this means that the dataset likely contains many poor-performing sequences at the

beginning of training which could skew the final output. Note that the GA does not

suffer from this issue as much due to the nature of simply carrying forward strong

sequence attributes and forgetting poor attributes. See “Evolutionary Operations”

and “Genetic Algorithm” for more on genetic operations and GAs. The initial dataset
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can still heavily influence the GA, but the VAE is likely more affected by this due

to the patterns and features the VAE learned earlier at the beginning of training.

The choice to do this, however, was one made out of necessity. The VAE requires

input to return a prediction. However, to select strong candidates via tournament

selection, one must know the sequence’s score. This would be unknown if a random

normally distributed sample was provided. Thus there would be no way to know if

the prediction yielded from the input was based on a well-performing RNA or not.

2.1.3 Evolutionary Operations

Three important notes must be mentioned before proceeding. First, for the remain-

der of this and the “Genetic Algorithm” subsection, when discussing the topics of

genetics and evolution, it is in reference to algorithmic/AI representations and not

the actual scientific fields of study. The second note here is the concept of genetic

diversity. In “Machine Learning Parameters” it is stated that too small of a popula-

tion size will result in a low amount of genetic diversity, quickly converging to a local

minimum. This should be avoided by increasing the population size parameter. In

the context of this research, this means that there will not be enough sequences in a

given generation to produce sufficiently dissimilar children from the parent sequences

and other produced children. Eventually, all produced sequences could start to re-

semble each other and/or the ML algorithm will be unable to find better sequences

for the given task due to the lack of genetic diversity among each sequence. Genetic

diversity, with regard to EC algorithms like GAs, refers to the difference between the

data (sequences). It is this inability to discover better options (sequences) for the

given task that is referred to as convergence. Ideally, the goal is to prolong the search

before convergence to more fully explore the problem/solution space.

Each generation ensures the DAPTEV Model’s VAE has finished a round of train-

ing. Once a round has finished, the DAPTEV Model will begin the sequence opti-

mization step. This is an important step as this is when the DAPTEV Model will

search for better sequences and update its running data accordingly. This step occurs

every generation and involves three Darwinian evolutionary operations.

The first operation is known as tournament selection with elitism. Elitism, as

implemented in this DAPTEV Model, is the action of selecting the top x best indi-

viduals (sequences) in a population to be carried forward into the next generation.

Here, x is a percentage of the population as specified by the elitism parameter, with

at least one individual being the lowest possible value. This is done to ensure the
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best individuals remain in the running data and are not filtered during tournament

selection. Tournament selection is the process of randomly sampling sequences from

the dataset and having these candidates compete in a tournament. The winner of

each tournament will be selected as a parent to produce the next generation of chil-

dren. This process is repeated multiple times until the parent pool equals the chosen

population size parameter. Note that the same individual can be selected more than

once.

The tournament selection process has a couple parameters. One such parameter

is the k value (see “Machine Learning Parameters”) which indicates how many con-

tenders with which to build a tournament round. The higher the k value, the more

likely a stronger performing individual will be selected to win the tournament and

proceed as a parent for the next generation. This, in turn, means there is a higher

likelihood that poor-performing individuals will not be selected to proceed as parents.

This is known as selection pressure and may be detrimental as sometimes things must

worsen before they can become better, as discussed in “Fitness Landscape”. As a

visual, imagine a model, starting at the top of a mountain, that wants to find the

lowest valley. On its way down, it encounters a small hill and does not want to

climb up because that would be increasing in elevation, not decreasing. However,

just past that hill is the lowest possible valley. The “poor performing individual” can

be thought of as that hill and should be allowed in the next generation. Figure 2.3

illustrates this well, starting at the global maximum (mountain) and moving to the

global minimum (valley), but a local maximum (hill) is in the way.

Another tournament selection parameter is the selection rate. This parameter

creates a possibility for the best-performing individual in a tournament pool to opt

out of the tournament, allowing some poor-performing individuals to be selected

instead. This exists to further reduce selection pressure.

The second evolutionary operation is called crossover. This is the process of

producing children from two parents. The crossover operator attempts to simulate a

child obtaining features from their parents. After the selection operation is performed,

the sequences are passed through the VAE’s encoder model to obtain their latent

representations (z). Then, the crossover operation is applied to these parent z vectors

whereby parent zpa and parent zpb will each copy random parts of their latent vector

to new children vectors zca and zcb. This procedure is repeated until the number of

children equals the population size parameter. This operation is performed to carry

forward the best-performing aspects of the previous generation, while still exploring

the fitness landscape. Similar to tournament selection, this operation also has a
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probability of not occurring (called crossover rate). For this DAPTEV Model, if a

parent fails to perform crossover, it will simply be cloned into the next generation.

Thus, it is best if the value for this rate is kept small.

The last evolutionary operation is mutation. Mutation, in terms of AI, is an

attempt to mimic random mutations in evolution. In practice, this is used as a way

to shift individuals to a random spot on the fitness landscape. If this operator was not

present in the algorithm, the only exploration taking place would be along the same

trajectory as the starting data. In other words, the starting dataset can be considered

a starting position on the fitness landscape. If one only performed crossover, the

search would essentially be moving in one direction along that landscape. This is

still exploring, but it is possible that a better solution exists elsewhere entirely. Thus,

some random influence should be allowed such that an individual may find themselves

performing significantly better than the rest. For the DAPTEV Model, mutation

is implemented by selecting a random individual, then selecting a random index

of that individual’s z vector and replacing it with a random, normally distributed,

value. The parameter controlling this operator is the mutation rate. This controls

the frequency/chance of mutation occurring. It is best if the value for this rate is very

small. Too high of a mutation rate, and the algorithm will essentially be performing

just a random search and could be corrupting any learning.

Once the new latent vectors have completed a round of evolutionary operations,

they are sent through the VAE’s decoder. This will reconstruct the sequences based

on the VAE’s previously trained decoding capabilities. The output will be a list of new

sequences. Any duplicates in this list, as compared to itself, the starting dataset, and

any previously predicted sequences will be removed and replaced with new, folded,

random sequences. However, docking scores for these new sequences are unknown.

Thus, the docking simulation must be repeated before the VAE can continue training.

2.1.4 Genetic Algorithm

At its core, a GA is an optimization algorithm that attempts to model evolution. In

comparison to the DAPTEV Model, a typical GA is not able to learn key features.

Instead, it starts with the sequences only and searches more randomly via crossover

and mutation while identifying and prioritizing stronger generations based on docking

score alone. Thus, while GAs are often utilized for global optimization tasks, in this

scenario, a GA will tend to find and struggle with local minimums associated to RNA

folds more easily. It is possible that further consideration of sequence folding and its
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relation to the docking score could be included in the GA’s fitness function. However,

(a) this would create another issue of determining the optimal method of numerically

assessing how sequence folding affects the docking score, which is an entirely different

field of research unto its own; and (b) this would be changing too many variables

between the DAPTEVModel and a GA which would affect the comparability between

these models. The goal was to simply remove the VAE from the DAPTEV Model,

resulting in a GA operating on the problem space rather than the latent space, to see

how their performance differs. To see the process for the GA comparison model and

how it is similar to the DAPTEV Model process, see 2.2.

The GA comparison model behaves fairly similar to the DAPTEV Model. The

main difference is that there is no VAE and the evolutionary operations are performed

on the problem space (the sequences themselves) rather than the latent space. As

such, the crossover and mutation steps have slightly different implementations. For

the GA crossover function, parent sequences a and b be first be padded. Then, instead

of selecting random indices of parent zpa and parent zpb (latent vectors), parents a and

b will have random indices of the sequence space selected for crossover. The resulting

children will be new sequences with padding values. This, however, introduces the

issue of potentially selecting the <BOS>, <PAD>, and <EOS> characters from

the parent sequences and shuffling their locations in the children sequences. Should

it occur that the <BOS> and <EOS> characters are not respectively at the be-

ginning and end of the child sequence, the GA will simply filter these out. This is

possible as the length of sequence is already known by the size of the data structure

holding the sequence. Removing <BOS>, <PAD>, and <EOS> will leave only

the remaining sequence information. Thus, having shuffled <BOS>, <PAD>, and

<EOS> characters does not significantly affect the GA.

For the mutation function, rather than selecting a random index, generating a

random normally distributed number, and replacing the value at that index with the

random number, as implemented by the VAE. The GA, instead, selects a random

index and a random value from the vocabulary list that is not <BOS>, <PAD>, or

<EOS>. The GA then replaces the value at the random location with the random

vocabulary selection. This introduces another issue. Now, there is a chance that the

<BOS> or <EOS> characters will be overwritten. This too is accounted for in the

GA as these characters are eventually removed anyway.

It is worth noting that the VAE and the GA are not restricted to producing

only folded structures. As such, these models do have a possibility of generating

unfolded sequences. This was allowed to more deeply explore the solution landscape
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and potentially encounter stronger sequences through the ML prediction process.

2.2 The Data

To understand how the parameters affect the DAPTEV Model, the data prepara-

tion, format, amalgamation, and considerations must be discussed. The first step

is to obtain a target from the PDB website [10]. This DAPTEV Model uses the

SARS-CoV-2 spike glycoprotein (closed state) [81] as the docking target with an

RBD between residues 333 and 524 [48, 67, 70, 76, 81, 86]. See Figures 2.6 and 2.7

for an illustration.

Figure 2.6: Realistic three-dimensional illustration of SARS-CoV-2 virus structure
diagram [46].

2.2.1 Data Preparation

Once the PDB file and the respective FASTA file (sequence information) is down-

loaded, the user may experience some issues utilizing the raw data as input into

Rosetta. Many FASTA files on the PDB website contain sequences which can be con-

sidered “inconsistent” to their PDB file counterparts. This is because the sequence

downloaded from the PDB website likely includes residues which do not appear in the

PDB file’s atom coordinate area, leaving gaps in the PDB file’s residue numbering

system. This typically occurs because these residues could not be found at the time

of protein sequencing. These residues in the FASTA file are essentially place-holders
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Figure 2.7: Visualization for SARS-CoV-2 Spike protein (closed) RBD.

used during the protein analysis phase to represent that some residue is present but

which one specifically is unknown. The presence of these residues in the FASTA

sequence can cause Rosetta to return errors during the tertiary structure prediction

and docking process. Additionally, the downloaded FASTA file may only contain

the sequence for one chain of the protein, as a protein can be made up of multiple

repeating chains. This is an issue for Rosetta as the software expects to receive each

chain’s sequence that makes up the entire protein. Furthermore, in the case of the

SARS-CoV-2 spike protein, as Figure 2.7 shows, the RBD is a relatively small area on

top of the protein. If the entire spike protein is used for the docking procedure, this

will drastically increase the docking simulation computation time as the protein is

rather large. For example, performing five runs of the docking process with an RNA

nt count of 25 on the full SARS-CoV-2 spike protein took over 98 minutes (5,891

seconds) to finish computing. This is the case even if a constraint file is present to

restrict the docking region. See “Constraint Score Function” and “Implementation

and Considerations” for more information on constraints and their implementation

in this model. As the DAPTEV Model defaults to five runs of the docking procedure

per RNA, and repeats the docking procedure according to the user-specified popula-

tion size, number of generation, and number of runs (see “Parameters”), it is entirely
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possible for the model to take upwards of 4 years to complete if each docking process

is performed sequentially.

To address these issues, some modifications to the raw data likely needs to take

place prior to running the DAPTEV Model. First, the user will have to remove all

unnecessary residues from the target PDB file and save the new PDB structure and

the new FASTA sequence. Unnecessary residues are target residues that an RNA

could not possibly interact with during the RBD-docking process due to constraint

specification. Removing these residues will reduce the size of the target and the

PDB file which will significantly accelerate Rosetta’s computation time. For the

implementation of this model, all but the spike protein’s RBD and some neighbouring

residues were removed, reducing the file to 30% of its original size. The new PDB

and FASTA files were then saved for use. This was done via a molecular visualization

software called PyMOL [69]. Running the docking simulation again after this change,

with the same RNA of 25 nts, only took a little more than 6 minutes (385 seconds)

to complete. A significant improvement over the previous 98 minutes. However,

removing residues will likely create larger gaps in the PDB file residue numbering

system and could change a considerable amount of the sequence. Additionally, with

these edits, the PDB file may now have chains of differing sizes rather than equal-

length chains of repeated residues.

This leads to the second modification. The new PDB file must be “cleaned” via a

secondary Rosetta script called “clean pdb.py”. This script will renumber the existing

residues sequentially, remove any extraneous information in the PDB file, and will

write out a new PDB and FASTA file. Doing so will also change the protein’s RBD

residue range. This means, for the SARS-CoV-2 spike protein, the RBD of 333 to

524 established in recent scientific literature [48, 67, 70, 76, 81, 86] will not be the

same anymore. Also, while this new PDB file is necessary for the remaining process,

the user can discard the FASTA file written through the “clean pdb.py” script as this

FASTA file will likely contain an incorrect sequence. Instead, the user should use the

sequence that was previously saved via PyMol. Now, the user can open the PDB file

in a text editor and note the new ranges for each chain. These new ranges should be

specified in the FASTA file header. Then, the user should open the new PDB file in

their molecule visualization software and note the new RBD residue numbers. This

will be important later when specifying constraint parameters (see “Score Functions”

for more details). Performing these actions should prevent Rosetta from returning

errors or taking an inordinate amount of time to complete. A summary of these steps

can be seen below in the subsection “Modification Summary”.
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2.2.2 Data Format and Amalgamation

Following the modification of the raw PDB and FASTA files, the user should then

provide starting RNA aptamer input data. Input data begins in one or more CSV

files which contain RNA sequences and associated secondary structure information.

These should be known and confirmed aptamers. The more known aptamer data

provided, the better it is for the system to learn and explore these options.

RNA sequences are stored as strings of RNA base characters known as nt where

“a” equates to adenine, “c” is cytosine, “g” is guanine, and “u” is uracil. An example

of an RNA sequence is 5’ - cggcaacgaguuaaccucg - 3’. The secondary structure infor-

mation is represented as a string in dot-bracket notation. The secondary structure

for the provided RNA sequence example is ......((((.....)))).

2.2.3 Additional Considerations

While an entire dataset can be created using the random sequence generator, as

described in “Random Sequence Generation”, it is best to augment the dataset with

known aptamers. Providing existing aptamer data will add diversity into the dataset,

will expose the model to physical aptamer characteristics found in nature (or post-

development), and will help the model learn these traits. This will also allow the

DAPTEV Model to rule out or confirm existing aptamers as potential solutions to

the given problem as it is possible that a known aptamer is already a good fit for the

specified target. As a result, supplying existing aptamer data could provide the ML

system with a strong starting position before it begins exploring other options.

Any data provided by the user will be subjected to the minimum and maximum

sequence lengths that the user specified during parameter entry (see “Dataset Prepa-

ration Parameters”). Thus, the user could provide, for example, 1000 aptamer data

points, but not actually have the full 1000 data points captured in the output from

the dataset preparation script. The result will be a subset of the loaded data. The

GC percentage parameter will not affect entered data as this parameter is only used

when generating new random sequences.

It is important to mention that this DAPTEV Model does not allow unfolded

RNA secondary structures to be created when performing random sequence genera-

tion. Associated secondary structures will be restricted to having at least one set of

brackets (base pair connections). At any point during the dataset creation process

or the DAPTEV Model’s duplicate replacement process, if the generated secondary

structure does not have at least one connection (base pairing), this sequence will be
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discarded and a new sequence and secondary structure will be generated. Sequences

will also be discarded each time the VAE produces new sequence predictions, or dur-

ing the sequence duplication removal process, if the sequences already exist within the

starting dataset or in the previously predicted data. This discarding and generating

process will be repeated until unique sequences are discovered.

In the case of unfolded RNA structures (structures represented entirely as dots

in dot-bracket notation), this was decided during the literature review stage as very

few aptamers with unfolded secondary structures were found, indicating that these

structures are not optimal, are rarely developed, or are scarcely found in nature.

Additionally, it has been observed during the experimental phase that unfolded sec-

ondary structures produce RNA tertiary structures that are more malleable when

docking to the target’s RBD. Thus, unfolded sequences can better form to the tar-

get’s RBD conditions, producing strong binding scores (binding affinity). However,

aptamers are designed not only for high binding affinity but also for target specificity

[9, 15, 42, 43, 44, 85, 87, 88]. An unfolded structure would not be considered “spe-

cific” to a target because it could potentially bind just as well to another target. This

is likely why unfolded aptamers were not found. Furthermore, the Rosetta scoring

function for the docking process includes the quality of the RNA tertiary structure

prediction. This means that the returned score for any sequence in this model may

be deceptively “improved” due to encountering few stability-related penalties dur-

ing the structure prediction process. As a result, the scores produced by unfolded

RNA structures are artificially, and significantly, better than their more structurally-

complex peers. For more details on this behaviour, see “Native Rosetta Score Func-

tion”. If unfolded structures are introduced into the model from the starting dataset

or during the duplication replacement process, it increases the chance of the algorithm

becoming stuck in a local minimum (see “Fitness Landscape” for more explanation

on fitness landscapes and local minima). This can result in the algorithm producing

many unfolded RNA aptamers, which would not be ideal for aptamer drug develop-

ment as the goal is to optimize the aptamer development process for a specific target

only (specificity). For this reason, any data the user enters should be scrubbed of

sequences with unfolded secondary structures to avoid introducing these instances

into the algorithm.

With regard to the discarding of repeat sequence data, the intent was to only

present unique data to the VAE to prevent overfitting. The DAPTEV Model fine-

tunes itself (performs additional training steps) on the newly produced sequences each

generation (see Figure 2.1 for illustration). Should the VAE train further on data that
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it has already seen, this could lead to the VAE associating greater importance to the

features of these sequences over all other sequences. This would essentially equate

to an unfair advantage for the repeat data and a biased output from the DAPTEV

Model.

2.2.4 Modification Summary

Steps to modify the raw PDB file and the sequence obtained from the PDB website:

1. Open the original PDB file in a molecular visualization software.

• PyMOL [69] was used throughout the experiments.

2. Delete any unnecessary residues that are not pertinent to the RBD.

• This can be accomplished by manual selection and deletion in PyMOL.

3. Save the new pdb file

• In PyMOL, this can be achieved through the context menu.

4. Save the new sequence as a FASTA file.

• In PyMOL, this can be achieved through the command “save name.fasta”.

• Note: this FASTA file will contain the entire sequence, but the sequence
will be broken down into multiple lines. The user must remove the new-line
characters, concatenating the entire sequence and placing it on one line.

5. Update the sequence in the fasta.txt file (the file Rosetta reads from) with the
output FASTA file from the previous step.

6. Renumber the new pdb file with the Rosetta “clean pdb.py” script by typing
python $ROSETTA_TOOLS/protein_tools/scripts/clean_pdb.py 6vxx.pdb ignorechain

into the terminal with the current working directory set to the same location
as the pdb file.

• Python 2 is required for this process as Rosetta was written in Python 2.
If one has a different python version installed, the “python” call at the
beginning of this command should be “python2”

• 6vxx.pdb is the SARS-CoV-2 spike protein. Substitute with the target’s
PDB file name.

• “Ignorechain” tells the script to ignore any specific chain and simply num-
ber each residue sequentially.

7. Update the chain ranges in the fasta.txt file with newly produced residue ranges
in the PDB file.

8. Make sure the “flag” file (see “Parameters”) points to the fasta.txt file and the
Rosetta script-produced renumbered PDB file.
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2.3 Random Sequence Generation

Following the data loading operation, the remainder of the dataset (dataset size pa-

rameter minus selected elements from the loaded data) will be built using a custom

random RNA sequences generator and a thermodynamic-based secondary structure

prediction system (see “RNA Secondary Structure Prediction”). Random RNA se-

quences will be generated according to the minimum and maximum sequence length

and the GC percentage parameters. The GC percentage is required as it has been

discovered that there is a strong correlation between the amount GC content and

the stability of the RNA structure [23]. By default, the minimum length for RNA

sequences is set to 20 characters (nt), the maximum length is set to 40 characters, and

the GC percentage is set to 50%. If the user does not have any starting aptamer data

to load, an entire dataset can be created according to the user’s entered parameters.

However, it is best not to do this as discussed in “The Data”. This random sequence

generator is also used after each round of predictions provided by the VAE during

the sequence duplicate replacement process. This too is discussed in “The Data”.

2.4 RNA Secondary Structure Prediction

During the primary sequence generation, the DAPTEV Model will perform secondary

structure predictions and will associate these structures with the respective RNA

sequences. This is achieved utilizing EternaFold, an accurate thermodynamic-based

RNA secondary structure prediction software, interfaced by a python package called

Arnie [83]. The outputs from the Arnie package are RNA secondary structures in

dot-bracket notation.

The secondary structure information must be present before proceeding as Rosetta

requires it to perform tertiary structure prediction (see section “Tertiary Structure

& Docking Prediction”). For example, the following RNA sequence will yield the

associated secondary structure when passed through Arnie. The two-dimensional

structure is shown in Figure 2.8.

• 5’ - cgcugucuguacuuguaucaguacacugacgagucccuaaaggacgaaacagcg - 3’

• ((((((.((((((......)))))).......((((.....))))...))))))
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Figure 2.8: Visualization for the Arnie-returned secondary structure output for the
provided RNA sequence.

2.5 Tertiary Structure & Docking Prediction

Once the initial dataset of primary sequences and secondary structures has been

loaded or created, the DAPTEV Model sends this information to Rosetta [41] to begin

the tertiary structure prediction and docking simulation. Both the tertiary structure

prediction and docking simulation are performed per sequence before moving on to

the next sequence. Rosetta does this to indicate how well the RNA conformed to its

tertiary structure and how well that structure docked to the target. The quality of

the structure prediction and the docking simulation is expressed through Rosetta’s

score function (see “Score Functions” for more on this). During this process, the

produced score is associated with the corresponding RNA sequence and utilized as

a fitness function (a measure of performance) in the ML process. This process is

affected by the Rosetta-specific parameters as discussed in “Parameters”. A visual of

the Rosetta-predicted tertiary structure for the sequence provided in “RNA Secondary

Structure Prediction” can be seen in Figure 2.9. Notice that the pentagonal structures

(the nucleic bases) between the RNA backbone folds appear to connect with their

complementary bases on the opposing side of the RNA strand or point outwards in

the same pattern as the secondary structure in section “RNA Secondary Structure

Prediction”. For a depiction of the same RNA when docked to the PP7 coat protein

dimer [14], see Figure 2.10.
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Figure 2.9: Visualization for the Rosetta-predicted tertiary structure of the example
RNA sequence in section “RNA Secondary Structure Prediction”.

Figure 2.10: Visualization for docked complex of the example RNA sequence in section
“RNA Secondary Structure Prediction” and the PP7 coat protein dimer as predicted
by Rosetta.

It is worth noting that Rosetta does allow the user to provide their own full,

or partial, RNA tertiary structures. This capability exists for those whom already

know the RNA tertiary information and want to enforce this full, or partial, RNA

tertiary structure during the docking process. Should the user wish to do so, they

must also point Rosetta to the RNA tertiary structure PDB file prior to docking by

specifying the file path and file name in the “flag” file. Providing a partial RNA PDB

file will tell Rosetta to predict any unspecified conformations. Rosetta even allows

the user to predict just the RNA tertiary structure as a separate process prior to
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performing docking. Doing so provides the user with the ability to visually inspect

the resulting tertiary structure predictions and to choose one for the docking process.

However, the implementation of this DAPTEVModel does not provide access to these

functionalities, favouring the combined structure prediction and docking simulation

process instead.

The decision to utilize the combined prediction and simulation process was made

for a few reasons. Firstly, it was noticed that predicting just the RNA tertiary struc-

ture took almost as long as the structure prediction and docking process. Secondly,

providing a pre-built RNA tertiary structure yielded no improvement in the docking

simulation speed. In other words, providing an RNA PDB file to the docking simula-

tion took the same amount of time to compute as the combined structure prediction

and docking simulation process. This suggests that it is either a trivial matter to

predict the tertiary structure during the combined structure prediction and docking

process or that the combined process is optimized, in some capacity, for computation

time. Regardless, performing tertiary structure prediction first, then performing the

docking process, rather than just performing the combined process, essentially dou-

bled the computation time. Moreover, performing the structure prediction process

requires the writing and reading of multiple RNA PDB files, and an additional step

of either manual (visual) inspection of the produced RNA structures or the utilizing

of some computational method to determine “the best” RNA to proceed with for

docking. Note that utilizing a “computational method” is irrelevant as the predic-

tion and simulation process already yields a single, combined, structure and docking

score. Lastly, the starting aptamers dataset did not contain any tertiary structures,

requiring tertiary structure predictions for every data point in the dataset. Thus,

there was no need to preemptively predict the aptamer tertiary structures.

2.6 Score Functions

There are two scoring functions within this DAPTEV Model’s usage of Rosetta.

The first is the native Rosetta docking score function. The second is a constraint

scoring function. For the Rosetta scoring function, the lower the returned score is

after the tertiary structure prediction and docking simulation, the more stable the

predicted complex is considered to be for the given protein, RNA, and their combined

conformation. The constraint score affects incurred penalties the RNA will experience

during the docking process and is used to specify the target’s RBD.
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2.6.1 Native Rosetta Score Function

The native Rosetta scoring function is a low-resolution, coarse-grained, knowledge-

based (statistical) RNA-protein potential. This serves as an energy function for scor-

ing Monte Carlo steps within the tertiary structure prediction and docking simula-

tion. In a recent study published by Dr. Kappel and Dr. Das, it was stated that they

included all previously published score terms describing RNA structure and RNA-

protein interactions in this scoring function while also providing rapid computation

and maintaining coarse-granularity. It was also found that, over ten popular scoring

systems, the best-performing scoring models achieved an average atomic root-mean-

squared deviation (RMSD) of 11.6 Å for 3dRPC and 10.2 Å for DARS-RNP, whereas

Rosetta’s score function achieved an RMSD of 6.4 Å [41].

Rosetta’s docking score function includes the prediction and scoring of the pro-

vided RNA’s tertiary structure. This means two elements are being represented in

one produced score. It is, therefore, possible to have a low score for the RNA ter-

tiary structure prediction due to the RNA’s lack of self-interaction, reducing penalties

associated with stability, with an average or high score for the predicted combined

complex, producing an artificially well-performing complex overall (when only con-

sidering the score). Furthermore, it is also possible that the predicted RNA structure

could return unfolded, as a result of an unfolded secondary structure, before proceed-

ing to the docking simulation. In this instance, an unfolded RNA would experience

few penalties during the docking process (see following paragraphs from more on

“penalties”) as the RNA is less restricted in its tertiary structure and can better

adapt to the target’s RBD conditions. This too would produce an artificially low

score and could outperform other predictions upon quick inspection or during algo-

rithmic comparisons.

2.6.2 Constraint Score Function

The constraint scoring function applies to where on the protein the RNA docks. This

constraint function allows the user to specify the target’s RBD region without having

to force a fixed binary interaction between specific atoms of the RNA and the target

protein. Instead, the user indicates to Rosetta their chosen constraint type, to which

atoms on the target and the RNA the constraint applies, and what built-in formula

the constraint will use to calculate an energetic penalty. This penalty will be applied

against the returned Rosetta score to passively discourage the RNA from docking

elsewhere on the target. As a result, the RNA has a range of acceptable distances it
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can deviate from the target’s RBD during the docking simulation. If the RNA atom

leaves the specified region, Rosetta will apply the scaling penalty.

To illustrate this concept, let us use the example of choosing an atom pair con-

straint with the flat harmonic function. The Rosetta documentation describes an

“atom pair” constraint as constraining the distance between a specific RNA atom

and the target’s atom. While the atoms are technically “constrained” to each other

with this option, it is the choice of function and function parameters that dictates

whether these two atoms will have a fixed or variable distance between them. The

formula of the harmonic function is shown in equation 2.1, where x represents the

distance between the two atoms (this varies as Rosetta attempts multiple confor-

mations), x0 is the ideal distance between the atoms, sd is the acceptable standard

deviation from the ideal distance, and f(x) is the returned penalty. The flat har-

monic function is an extension of the harmonic function which produces a penalty of

0 between the ranges of x0− tol to x0 + tol, where tol means tolerance.

f(x) =

(
x− x0

sd

)2

(2.1)

An example input for the constraint file is as follows:

AtomPair CA 201A C5 838 FLAT HARMONIC 0 1 1

Here, “AtomPair” specifies the type of constraint, indicating that a specific atom

of the target and the RNA are bound to each other in some capacity. This tells

Rosetta what geometric property to measure. “CA” is the chosen atom on the target

to be bound to the RNA atom. “201A” is the atom residue number for the target in

chain “A” (a location within the target’s RBD). This number can be found in the pdb

file next to the chain letter or it can be obtained from the FASTA file based on the

index (column number) of the desired residue. “C5” is the chosen atom on the RNA to

be bound to the target atom. 838 is the nucleotide number for the RNA according to

its expected position (index) in the FASTA file. “Flat Harmonic” tells Rosetta what

function to use when calculating the penalty. “0” (x0) is the ideal distance between

these atoms measured in Å. The first “1” (sd) affects the magnitude or severity of

the returned penalty. The severity of the returned penalty increases the closer the sd

approaches 0. The second “1” (tol) is the acceptable range (+/-) that the atom is

allowed to move from x0 before incurring a penalty. For the flat harmonic formula,

see 2.2. For a plotted visual of this example penalty function, see Figure 2.11. To see

how this constraint function affects the docking process, an example applied to the

SARS-CoV-2 RBD is provided in Figure 2.12.
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f(x) =


0 for x0− tol ≤ x ≤ x0 + tol(
x− x0

sd

)2

Otherwise
(2.2)

Figure 2.11: The Rosetta flat harmonic constraint penalty function for inputs x0 = 0,
sd = 1, tol = 1.
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Figure 2.12: Depiction of the SARS-CoV-2 spike protein with an RNA molecule
of sequence 5’ - ggcacagaagauauggcuucgugcc - 3’ and secondary structure
(((((.((((......))))))))) docked at the RBD site.

For more information on the constraint file, constraint types, and penalty formula

options, see https://www.rosettacommons.org/docs/latest/rosetta_basics/

file_types/constraint-file. For a tutorial on constraint files implementations

and interpretations, see https://new.rosettacommons.org/demos/latest/tutori

als/Constraints_Tutorial/Constraints. The options for this score function are

controlled in the constraint file (see “Parameters”).

https://www.rosettacommons.org/docs/latest/rosetta_basics/file_types/constraint-file
https://www.rosettacommons.org/docs/latest/rosetta_basics/file_types/constraint-file
https://new.rosettacommons.org/demos/latest/tutorials/Constraints_Tutorial/Constraints
https://new.rosettacommons.org/demos/latest/tutorials/Constraints_Tutorial/Constraints
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2.6.3 Implementation and Considerations

While the implementation of the native Rosetta docking score function was relatively

straightforward, the implementation for the constraint function required some cre-

ativity and problem-solving regarding the RNA-specific parameters. The first issue

was that the constraint function requires the specification of a certain nucleotide for

theRNA (838 in the example above) but the DAPTEV Model generates RNAs of

variable lengths during iteration. Even if tertiary structure prediction was performed

ahead of time, there is no obvious way to know what would be the best nucleotide

to choose for the constraint. Also, incorporating an additional tertiary structure pre-

diction would drastically increase computation time as this does not speed up the

docking simulation, but doubles the tertiary structure prediction process. The sec-

ond issue is the atom choice for the chosen nucleotide (C5 in the example above). If

the DAPTEV Model creates random RNA sequences of variable length, then it will

also select a random base every time for the constraint parameter.

To address the first issue of selecting a specific nucleotide, the middle position

(nucleotide) of every produced RNA sequence was utilized. An argument could be

made that it would have been better to select the first or last quarter of the sequence

as, once the RNA folds at the middle following tertiary structure prediction, a quar-

ter of the sequence length would likely equate to somewhere in the middle of the

new structure. However, an RNA folding perfectly in the middle of the sequence

may not always occur as this largely depends on the location of the connections in

the secondary structure. Additionally, it is possible to have an RNA with most of

the connections towards one end, say near the 3’ end, leaving a long unfolded tail.

Selecting the nucleotide located a quarter of the length away from the 5’ end may

not be ideal at that point. With this in mind, choosing the middle of the sequence

seemed acceptable. Especially as the constraint does not necessarily equal physical

atom interaction and only forces general proximity. The other atoms and nucleotides

are still free to interact and bind in the given range.

The second issue with regard to selecting a specific atom without knowing what

nucleotide would be chosen by the DAPTEV Model. This is an issue because nucleic

bases are comprised of many atoms, but not necessarily all the same ones. For

example, the atom H1 does not appear in the base uracil, but it does appear in

guanine. Initially, storing a unique atom for each base separately and selecting these

atoms according to their respective base was considered. Then it was noticed that

the atom C5 is ubiquitous among nucleic acid bases [55]. Thus, this research simply

chooses to always use the C5 atom.
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2.7 Multiprocessing

In “The Data”, it is mentioned that the docking procedure could take a long time

if performed sequentially. Notice that the computation time went from 5,891 sec-

onds per sequence to 385 seconds due to reducing the target PDB file. Assuming

the same user-entered parameters for population size (800), number of generations

(10), and number of runs (3) for one experiment, this reduces the total computation

time from 4 years to roughly one-third of a year. However, one-third of a year is

still far too long to wait for results from just one experiment. Thus, an additional

strategy was implemented into the DAPTEV Model system. This strategy is known

as multiprocessing.

Processes (separate programs or sets of instructions) in a computer utilize the

computer’s central processing unit (CPU). Computers lately have multiple CPUs.

The operating system is tasked with distributing and managing these processes among

all available CPUs for that machine. Multiprocessing is a technique employed to run

multiple processes, such as docking simulations, on the machine’s many CPUs at the

same time (in parallel). For this DAPTEV Model, the percentage of available CPUs

utilized to perform docking was 50%, or 18 CPUs. This means 18 docking commands

were running at the same time.

This strategy increases the computation time per sequence from roughly 6.5 min-

utes to approximately 18 minutes due to the overhead involved with creating and

managing multiple processes. However, the ability to run these commands in paral-

lel effectively reduces the computation time down to roughly 1 minute per sequence

because all 18 docking commands finish around the same time. Thus, 18 commands

that finish in roughly 18 minutes total is approximately 1 minute per sequence (if

viewed sequentially). Again, for the same parameter choices, this technique reduces

the total computation time for the experiment from approximately one-third of a year

down to roughly 16.5 days, or 5.5 days for one run of 10 generations at 800 docking

simulations.

Ideally, it would be better to distribute these docking processes over a cluster of

computers rather than just one computer. Then, one could perform multiprocessing

on each computer, drastically accelerating computation time. For example, if one had

45 computers in a cluster, each with 18 available CPUs, one could finish one generation

of the DAPTEV Model in just 18 minutes. This would make one experiment with

starting parameters of 800 for the population size, 10 for the number of generations,

and 3 for the number of runs, take only 9 hours to complete. This processing time
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could be further reduced if more of the machine’s CPUs are utilized. However, this

research could only be performed on one machine and it was a shared environment.

Thus, only 50% of the available CPUs on the machine was utilized so others could

use the remaining resources.

There are two important notes here for multiprocessing. The first is that there

is no point in creating more processes than the available CPUs amount. While the

operating system will manage these tasks and schedule them, one will not see a

significant decrease in processing time because each process must either share the

CPUs, or queued processes will have to wait until the previous ones finish. Secondly,

it is best to leave at least one cpu available so the operating system has one to operate

on or use for other purposes.

2.8 Development and Acknowledgments

This system was built by connecting the input and output from multiple tools. First,

a random RNA sequence generator script was required to build an initial dataset and

to replace any duplicate sequences produced during the DL training process. This

was a custom tool created at the beginning of this research.

Next, a secondary structure prediction program was required. This was obtained

from Das Lab’s Arnie python package [83]. Luckily, this package could be imported

into python directly. The output from the random sequence generator was fed into

Arnie to obtain secondary structures.

Then, tertiary structure prediction and docking simulations were required. Both

of these requirements were satisfied by the “RNP denovo” capabilities of Rosetta [41].

The primary and secondary data was received and given to Rosetta to compute the

tertiary structure and docking scores. However, while there is a python implementa-

tion of Rosetta, this implementation did not yet include the “RNP denovo” script at

the time of developing this DAPTEV Model. Thus, the subprocess module in python

was required to call Rosetta from the terminal. This required some file-editing to be

performed prior to running the “RNP denovo” script as explained in “Rosetta Param-

eters”. The reason for this is that Rosetta needs the FASTA, secondary structure,

constraint, and flag files to contain the information on which Rosetta will operate

prior to running the program. Unfortunately, this posed another issue. To accelerate

computation time, these terminal calls had to be performed in parallel (multiprocess-

ing), which required multiple instances of file editing. However, overwriting a file that

Rosetta is using with new data will corrupt Rosetta’s computation and could yield
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errors. Thus, multiple temporary files were created and Rosetta was redirected to

those scripts. Then, python was instructed to repeatedly iterate over each running

process and communicate with the terminals to collect the output without blocking

and waiting. This was required to keep each terminal active and prevent the subpro-

cesses from entering into sleep mode. During this communication step, python filters

the output, via regular expression, searching for lines that start with “total score” as

this was the output docking affinity score for a given sequence.

Once Rosetta returned the docking scores, all starting and obtained data was

given to a VAE to begin training. This algorithm was implemented in Pytorch.

Then, evolutionary operations were performed on the training data and the VAE-

yielded results. This process was implemented in python itself. Both the VAE and

the EC were coded directly into the DAPTEV Model and did not require separate

terminal calls. The steps performed by the VAE and EC were inspired by Grantham

et al. and Patel [26, 64].

2.9 Parameters

There are three groups of parameters the user must set. The first set of parameters

pertains to Rosetta. The second group of parameters affects the dataset preparation

script. The third parameter group influences the overall ML process (the DAPTEV

Model itself). The user may notice some overlap between the dataset preparation

script parameters and the DAPTEV Model parameters. The user required the ability

to set these parameters separately as this script may need to be executed prior to

performing some other crucial steps before running the DAPTEV Model.

2.9.1 Rosetta Parameters

The user starts by specifying parameters relating to the operation of Rosetta. This

is done via file editing before running the DAPTEV Model. The following are the

editable files and their purposes:

• Flag file

– This is a parameter file Rosetta uses when performing docking simulations.
In this file, the user specifies the following:

∗ The read location and name of the FASTA file.

∗ The read location and name of the secondary structure file.

∗ The read location and name of the constraint file.
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∗ The read location and name of the protein PDB file.

∗ The write location and name of the Rosetta output file.

∗ The number of docking prediction and produced complexes per RNA
sequence.

∗ The number of random docking attempts per sequence.

∗ Additional customization options for the docking simulation.

• Fasta file

– A .txt file describing the protein and RNA data.

– This file has a header which includes the protein PDB file name, the chains
and chain ranges found in the protein PDB file plus the RNA chain and
range at the end, and a second line containing the protein sequence with
the RNA sequence appended at the end. The protein sequence must match
the protein PDB file.

– However, the DAPTEV Model automatically fills in the RNA information.
Thus, RNA information is omitted from this file at run time.

• Secondary structure file

– A .txt file describing the secondary structure of the protein (technically
meant to contain RNA data, but the DAPTEV Model fills in this infor-
mation as it runs as well).

– This file contains two lines of data. The first is the dot-bracket notation
for the protein sequence (this will be entirely represented as dots only)
with the RNA notation concatenated at the end, and the second line is the
protein and RNA sequence (same as the FASTA file sequence).

• Constraint file

– A .cst text file describing to where, approximately, on the target protein
the RNA should dock. This is useful for enforcing RNA docking to the
target’s receptor-binding domain (RBD).

– This file requires a pairing of the target protein and RNA atoms, the
scoring function choice, and the values for the scoring function to use.

– Note: users likely will not be able to simply enter the established RBD
atom numbers into this constraint file. A calculation is usually required
first. See the note in the following “protein PDB file” point and section
“Score Functions” for more information.

• Protein PDB file

– A .pdb file describing the atom coordinates for a particular protein.

– This is usually obtained from the PDB website [10].
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– Note: it is best to keep the size of this protein as small as possible. Only
the affected RBD and anything else that might be affected during the RNA
docking process should remain. Otherwise, the docking prediction will take
a very long time per RNA for each generation of the ML algorithm. After
the target is reduced in size, a new protein sequence and atom numbering
must be calculated, usually via a visualization program such as PyMOL
[69]. It is for this reason that users cannot simply enter the established
RBD for their target as the RBD atom number has likely changed at this
point. Users can use the same visualization software to find the new RBD
atom number.

• Rosetta output file

– This parameter specifies where (if at all) to write the output file produced
by Rosetta.

– This output file contains necessary data for generating Protein-RNA com-
plexes in PDB format.

– By default, this parameter is set to “/dev/null/” for the DAPTEV Model,
meaning no complexes will be saved to disk, to save disk space. However,
the sequences and the Rosetta docking seed is still written so the user can
obtain the docked complex information at a later time.

2.9.2 Dataset Preparation Parameters

Next, the user set the parameters for the dataset creation, filtering, scoring and

formatting script. The parameters for this script are edited in the python file itself.

The following are the dataset creation script parameters and their descriptions:

• The minimum and maximum lengths of the RNA sequences.

– Newly produced sequences are subjected to a minimum and maximum
length of characters to keep Rosetta score calculation times minimized.

– These parameters specify the minimum and maximum lengths (inclusive)
for any new sequences.

• The approximate percentage of GC for new sequences.

– Prior to generating new sequences, the system must also know the ap-
proximate amount of GC content to build into the new RNAs. For more
information on why this is required, see “Random Sequence Generation”.

– This parameter specifies the approximate percentage of GC content in
newly produced random RNA sequences.

• Whether to allow unconnected (unfolded) secondary structures during the pre-
diction process.
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– Allowing unfolded secondary structures into the VAE can cause the algo-
rithm to prioritize this feature, producing an output of entirely unfolded
RNAs. See “The Data” for an explanation of why this is not desirable.
See “Deep Learning and Evolutionary Computation” for an explanation of
how this phenomenon occurs.

– This parameter is a True or False setting indicating whether RNAs are
allowed to be unfolded (True) or not (False).

• Data size.

– This parameter allows the user to specify how many data points they want
the dataset to have.

– This is useful if the user does not have enough starting aptamer data, had
too many starting aptamers filtered out during the execution of this script,
or if the user wants to create an entire dataset.

– Any starting aptamers filtered out will be replaced with random RNA
sequences and associated Arnie-predicted secondary structures.

• Percentage of data points classified as training.

– This parameter allows the user to choose what percentage of the total data
will be classified as a training set. The remainder will be classified as a
testing set.

– For most ML models, the user usually specifies how many data points
and which ones are to be used for training, validation, and testing. How-
ever, the implementation of this DAPTEV Models does not use training
and validation sets. The classification capability was built into this script
should the user desire to utilize the same data in another model, but this
parameter is set to “1.0” (100% training data) for the DAPTEV Model.

• The percentage of available CPUs to use.

– The dataset creation script utilizes multiprocessing (parallel computing)
to run many instances of Rosetta at once when scoring sequences. Ideally,
this task should be distributed over a cluster of computers to disperse the
workload and speed up the scoring process. However, access to a cluster
was not available. Instead, the Rosetta scoring system was distributed
amongst the available CPUs on a single computer.

– This parameter allows the user to choose what percentage of available
CPUs to engage when the script sends sequences to Rosetta for scoring.

• Random seed value

– Random sequence generation and the Rosetta docking simulation both use
random number generators.

– This parameter allows the user to recreate the same results from a previous
run of the script.
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2.9.3 Machine Learning Parameters

Next, the user will specify additional parameters in a .csv file for the entire ML exper-

iment prior to running the DAPTEV Model. These parameters and their descriptions

are as follows:

1. The desired number of runs to perform.

• Each “run” performs a specified number of generations (see below) for a
particular experiment, but with a unique random state.

• The purpose behind the “run” parameter is to run the same parameter set
(experiment) repeatedly for statistical purposes.

2. The desired number of generations to perform.

• A “generation” in this context is referring to the number of times the ML
algorithm will carry forward previous predictions and produce new data
for the same parameter set.

• The purpose behind the “generations” parameter is to simulate generations
in evolution. See “Deep Learning and Evolutionary Computation” for more
information on this.

3. The desired population size.

• While the user can upload any amount of data, this parameter specifies
how many sample sequences the ML algorithm will return per generation
and upon completion.

• This parameter also specifies the number of sequences on which each sub-
sequent generation will be operating.

• Setting the population size too small will reduce the total diversity of each
generation, resulting in a quick convergence of the data to a local minimum.
See “Deep Learning and Evolutionary Computation” for more information
on this.

• Conversely, setting the population size too large drastically increases com-
putation time.

4. Parameters specific to the VAE:

• The epochs.

– An epoch is a unit of iteration in which the ML model has seen the
entire training dataset once. Usually, ML algorithms train for many
epochs. This means the ML algorithm will see the same dataset mul-
tiple times in an attempt to learn patterns within the data.
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– This DAPTEV Model trains the VAE multiple times each generation.
Thus, a parameter was required for the number of epochs in the first
generation, called “pre-epochs”, and another was required for all sub-
sequent generations, called “post-epochs”, thereafter.

• The batch size.

– This parameter represents how much of the total data the VAE will
see at one time. Where an epoch depicts the VAE seeing the total
data one time, the batch size represents the proportion of total data
the VAE will see in any given epoch.

• The score threshold amount.

– This DAPTEV Model utilizes a BCE function when performing re-
gression in the additional regularization model, converting all scores
above the chosen threshold to 0, and setting all scores equal to or less
than the chosen threshold to 1. The regularization model views scores
of 1 as positive cases (the target), and scores of 0 as negative cases
(results to avoid).

– Thus, this parameter represents the score value the user deems as
acceptable for the given task.

– However, the user cannot simply choose to set this value to some de-
sired score value. While there is a range of acceptable score threshold
values, the chosen value largely depends on the initial dataset. More
information on this can be found in “Deep Learning and Evolutionary
Computation”.

• The starting learning rate value.

– Most ML models implement a “learning rate” in the algorithm. This
learning rate is a numerical value the model will use to make incre-
ments on previous predictions in an attempt to optimize the model’s
prediction accuracy. It can be thought of as the model making logical
leaps when trying to understand new concepts. However, static learn-
ing rates suffer from the possibility of stepping over the goal/proceed-
ing past it. This is why learning rate annealing has been implemented
in this DAPTEV Model model (see “Fitness Landscape” for more on
this).

– This parameter specifies the starting value for the learning rate an-
nealing process.

• The ending learning rate value.

– Similar to “starting learning rate”, this parameter tells the VAE at
what learning rate value to end.

• The starting KL weight value.

– The loss function for the encoder model in the VAE is known as the
KL [45, 47]. See “Deep Learning and Evolutionary Computation” for
more information on this.
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– This parameter specifies how much impact the KL loss has on the total
loss function (the formula that represents the VAE’s ability to learn).

– In a similar manner to the learning rate, the KL loss weight changes per
epoch in the first generation and is a static value thereafter. However,
unlike the learning rate, the KL weight starts small and grows linearly
to a maximum amount.

• The ending KL weight value.

– This parameter is the upper limit value for the KL loss weight.

– After the KL weight reaches this point at the end of the first gener-
ation, all future generations will have their starting KL weight set to
this value.

• The vocabulary combination amount.

– The RNN encoding and decoding models of a VAE cannot learn pos-
sible combinations of anything without a starting vocabulary.

– “Vocabulary combination” represents all possible combinations of the
four RNA base characters with respect to the maximum sequence
length. For example A, C, G, U, AA, AC, AG, AU, CA, CC, etc.

– Adding too many combinations could drastically increase the com-
putation time as each increase in combination length (1 character, 2
characters, 3 characters, etc.) essentially equates to 4x possible com-
binations. Here, the 4 represents the four base characters and the x
represents the maximum character combination length.

– The vocabulary combination amount parameter is the user’s selection
for x, choosing the maximum length of the character combinations.

5. Evolutionary operation parameters:

• The tournament selection K amount.

– After the VAE is trained in each generation, the DAPTEV Model
then performs a “tournament selection” process in which K sequences
from the training set are randomly chosen, then the sequence with the
lowest score value among those chosen sequences is selected to proceed
as a “parent”.

– This parameter indicates how many contestants are randomly chosen
to compete as a parent for the next round of predictions.

• The selection probability value.

– Immediately after the process of selecting K sequences for the tour-
nament, each sequence still has a chance of being chosen, even if they
are not the best individual. This is implemented to further constrain
selection pressure, the tendency to only select the best-performing
sequences. This is because a high selection pressure prevents the ex-
ploration of temporarily “poor options” in the chance this exploration
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may lead to a better outcome. In practice, this would be akin to an
individual deciding they do not want to be a parent, despite being a
strong candidate.

– The probability of an individual being selected as the victor for each
individual in the K contestants is calculated as P ∗ (1 − P )i where
the variable P represents the user-entered selection probability value
parameter and the variable i is the position of the individual assuming
the contestants have been sorted from best to worst and that the
position count starts at 0.

• The elitism value.

– This parameter represents the percentage of best-performing sequences
in a given generation’s population pool, with a minimum of 1 chosen,
that automatically proceed into the parent pool for the next genera-
tion.

– Technically speaking, with GAs, elitism is supposed to represent the
individuals who are guaranteed a place in the next generation’s pop-
ulation (current generation’s produced children), while these same in-
dividuals can still act as parents based on random selection. However,
due to the sort and trim behaviour of the DAPTEV Model, this hap-
pens automatically. It is preferable, though, to guarantee that the
elite among the population are used when obtaining samples from the
VAE. Thus, the implementation of elitism in this DAPTEV Model is
slightly different.

• The crossover rate value.

– After all parent sequences have been selected from the tournament
process, they must then go through the process of making children.
To do this, similar to how children inherit the genes of both parents
in biological terms, the children sequences inherit characteristics from
the parent sequences. This is done by selecting two parents at a time
and building two new child sequences from parts of the parents in a
process known as “crossover”. However, there is a chance that the
crossover process will not occur. In this event, the children are simply
clones of their parents.

– The crossover rate value parameter represents the probability that the
crossover operation will be performed.

• The Mutation rate value.

– After child sequences have been created, they are then subjected to a
mutation process. The implementation of this process depends on the
problem space it is being applied to. An example of mutation might
be the replacing of some or all of the child’s data with some random
value(s) that can realistically occur given the situation.

– Similar to the crossover operation, the mutation operation also has
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a chance of not being performed. However, this chance of failure is
usually much greater than crossover.

– The mutation rate value parameter represents the probability that the
mutation operation will be performed.

• For a deeper explanation of these evolutionary operation concepts and
how they affect the ML system, see “Deep Learning and Evolutionary
Computation”.

6. The minimum and maximum lengths of the RNA sequences.

• It is possible that the VAE can produce duplicates in its predictions as a
result of learning too well how to reconstruct the latent space (see “Deep
Learning and Evolutionary Computation” for more on this). When this
occurs, the governing DAPTEV Model will remove these duplicates and
replace them with new random sequences (see “The Data”).

• These newly produced sequences are subjected to a minimum and max-
imum length of characters to keep Rosetta score calculation times mini-
mized.

• These parameters specify the minimum and maximum lengths (inclusive)
for the newly created replacement sequences.

7. The approximate percentage of GC for new sequences.

• Prior to the replacement sequences being generated, the system must also
know the approximate amount of GC content to build into the new RNAs.
For more information on why this is required, see “Random Sequence Gen-
eration”.

• This parameter specifies the percentage of GC content in newly produced
random RNA sequences.

• This parameter does not affect the predicted RNAs from the VAE.

8. The percentage of available CPUs to use.

• The current implementation of this DAPTEV Model utilizes multiprocess-
ing (parallel computing) to run many instances of Rosetta at once when
scoring sequences.

• This parameter allows the user to choose what percentage of available
CPUs to engage when the DAPTEVModel must send sequences to Rosetta
for scoring.

9. Random seed value

• There are many influences of randomness in this DAPTEV Model. This
parameter allows the user to recreate the same results from a previous run.
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• Note: the seed for the Rosetta docking process is always set to the same
value, regardless of the user’s chosen random seed. This was done to
keep the Rosetta prediction variables the same while only changing the
sequence information, and to ensure the user knows what seed to use when
attempting to recreate the same Rosetta docking result. However, the
user still has control over this seed value if they set it from the top of the
“run all.py” script (which controls and runs the entire DAPTEV Model
model). It just will not change during the DAPTEV Model’s iteration.

Lastly, the user must specify the starting dataset by supplying the DAPTEV

Model with the path to the file (including the file name) within the code. See “The

Data” for more information.



Chapter 3

Experiments

The experiment of the DAPTEV Model is accompanied by two additional compar-

ison models. This thesis has outlined the DAPTEV Model thoroughly. It was also

mentioned that a GA, which follows the same process as the DAPTEV Model but

does not employ a VAE, is included as a benchmark. The process for the GA can

be seen in Figure 2.2. The third benchmark experiment included is a simple random

sequence “hill climber” algorithm.

The hill climber algorithm generates random sequences using the dataset creation

script with the same chosen parameters as the DAPTEV Model. As such, this process

is repeated for the same number of generations and runs as the DAPTEV Model, and

produces the same number of sequences as the DAPTEV Model’s “population size”

parameter per generation. The best performing sequences are carried forward into

the next generation and all other sequences up to the chosen population size are

discarded. This is known as a “hill climber” because this algorithm employs the

simple heuristic of “always take the best” without any actual “learning”. At first

glance, this may seem like an ideal algorithm to use, but it has a serious issue.

If one considers the problem search space discussed in “Deep Learning and Evo-

lutionary Computation” and shown in Figure 2.3, one hill was taller than the rest.

While score reduction is the optimization task of this research, for the sake of this

explanation, let us consider this hill as the goal. A “hill climber” is an algorithm that

will search until it encounters a hill, which could be the tallest (the global maximum),

but likely is not as the terrain can be chaotic. The algorithm will then climb that hill

(improve its solution to the given problem) and will stop at the top because any other

direction would be a reduction in elevation/fitness. Hence the name “hill climber”.

However, as the goal is to optimize the docking scores, the opposite scenario of stag-

nating in a local minimum is more likely. If the valley is not the global minimum (the

54
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goal for score optimization) but instead a local minima, the algorithm will essentially

stagnate. As this algorithm solely performs random searching, it will have to rely on

chance alone to discover a better solution. Thus, it is expected that this algorithm

will compare poorly in relation to the DAPTEV Model and the GA, but is included

as a benchmark to determine if the DAPTEV Model performs better than a random

search.

3.1 Chosen Model Parameters

The following subsections describe the parameters chosen for this DAPTEV Model.

The rationale behind the parameter choices will be explained in the same subsections.

Note that, when the user enters parameters related to percentage or rates, the values

must be represented as decimals. For example, the GC percentage parameter of 50%

should be entered into the DAPTEV Model as 0.05. Additionally, to see additional

Rosetta file parameters set for every model, as described in section “Parameters”

subsection “Rosetta Parameters”, see appendix “Rosetta File Settings”.

3.1.1 Constraint Function Parameters

Table 3.1: The constraint parameters for both models.

Constraint

Type

Protein

Atom

Protein

Residue

RNA

Atom

RNA

Residue

Penalty

Function

AtomPair CA 201A C5 ### FLAT HARMONIC

Table 3.2: The flat harmonic function parameters for both models.

Ideal Distance (x0) Std Dev (sd) Tolerance (tol)

0 0.125 1

As seen in Table 3.1, the chosen constraint type implemented in these experiments

is the “AtomPair”. This was chosen due to its ease of understanding, usage, and

inclusion in the code. The following parameters pertaining to the AtomPair are easy

to discern or calculate. The CA atom was found in the protein PDB file next to the

associated protein residue chosen within the RBD. The chosen RBD residue, after

removing unnecessary residues and renumbering the PDB file, was residue “201A”.
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Rosetta allows the user to specify the residue for the protein in multiple ways.

For the implementation in these experiments, the residue number followed by the

associated chain of the protein is used. “201” is the residue number, and “A” means

the residue resides on chain A. Figure 3.1 shows a visual of the chosen residue.

Figure 3.1: Location of the chosen residue (dark blue) on the renumbered SARS-
CoV-2 Spike protein RBD as specified in the constraint function parameters. Note:
the full spike protein shown (left) is for reference but the protein file utilized in the
DAPTEV Model is cropped.

As previously mentioned in section “Score Functions” subsection “Implementation

and Considerations”, the atom “C5” can be found in every nucleic acid base [55].

This was the reason behind choosing “C5” as the RNA atom parameter. Doing so

required no additional calculations to be performed and was simple to implement.

For each experiment, the parameters outlined in Tables 3.1 and 3.2 are static and

do not change during iteration. The only parameter that changes during iteration

is the RNA residue number, hence the “###” in Table 3.1 under “RNA Residue”.

This is due to the models generating new RNA sequences of variable lengths. As the

middle of each RNA sequence is the chosen residue and this middle number must be

added to the last residue number of the protein PDB file, this parameter will change

frequently. Note that there can be fewer or more than 3 digits for this parameter. It
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all depends on the conditions of the protein sequence and the RNA residue chosen.

The “Flat Harmonic” penalty function was chosen to accompany the Atom-

Pair constraint type. An AtomPair constraint in combination with a Flat Harmonic

penalty function allows the RNA to attempt different conformations and orientations

within an allowable range. Thus, the pair of atoms need not be physically interacting

at all times.

Table 3.2 shows the parameters chosen for the “Flat Harmonic” penalty func-

tion. A value of 0 Å was entered as the “ideal distance” between the target RBD

residue and the calculated RNA residue. While this may seem as though the target

residue and the RNA residue are touching, a standard deviation of 0.125 and a range

of +/- 1 Å is allowed. This tight range was specified as it was observed during some

empirical testing that many RNAs were docking either deep in-between the three

RBD areas or underneath the edited protein.

Docking in-between the RBD areas seems implausible in real binding scenarios

as an already-folded RNA would have to somehow fit its potentially larger structure

through the small gap in the SARS-CoV-2 protein RBD conditions. Should the RNA

dock in this area, the returned Rosetta score and penalty will be very good and could

influence the ML model to prioritize this sort of unrealistic result. Thus, this should

be discouraged during the docking procedure. Unfortunately, it is difficult to prevent

this occurrence of unfolded structures, but it is also possible for an unfolded RNA to

bind in this area during in vitro/in vitro applications. Therefore, this scenario was

allowed in the model. See the side and top views of Figure 3.1 for a visual of the

RBD “small gap”, and the “worst” classified docking attempt in Figure 3.12c for an

example of docking in-between the RBD area.

Docking underneath the edited protein is also an issue because the actual SARS-

CoV-2 spike protein is larger than what was provided to the DAPTEV Model. The

protein used in these experiments is just the SARS-CoV-2 RBD region some neigh-

bouring residues. The remainder, including the lower portion of the spike protein, has

been cropped out to accelerate computation time. Thus, the RNA would not be able

to bind under this cropped area in real binding applications and should, therefore,

not be allowed during the docking process.

The parameters in Table 3.2 were chosen for these reasons. To discourage the

RNA from docking in-between the RBD area or docking under the cropped protein

file. This tight range allows the RNA to still attempt different conformations and

orientations while heavily penalizing folded RNAs if they attempt to dock too low on

the protein or too deep in-between the protein RBD areas.



CHAPTER 3. EXPERIMENTS 58

3.1.2 Dataset Preparation Script Parameters

Table 3.3: The parameters chosen to generate the initial dataset.

Min Seq

Length

Max Seq

Length
GC %

Allow

Unfolded
Data Size Train % % of CPUs

20 40 50 False 12,000 100 50

Table 3.3 provides the parameters chosen during the dataset creation process. After

obtaining 849 unique, known, aptamer sequences [10, 50, 51] (some of which had to

be converted from DNA to RNA), only 390 met the condition of being between the

minimum (20) and maximum (40) sequence lengths. Of those 390 aptamers, 344

contained at least one connection (base pairing) in their secondary structures. 44 se-

quences were too small, 417 sequences were too large and an additional 44 sequences

were unfolded (based on the returned Arnie secondary structure predictions). As

12,000 data points were required, an additional 11,656 random sequences were gener-

ated and scored. These sequences were restricted to having lengths between 20 and

40 nt, an approximate GC percentage of 50%, and containing at least one secondary

structure connection (affected by the “Allow Unfolded” parameter). This acted as

the starting dataset. Every sequence in the dataset was classified as “training” data

(“Train %” parameter) and the script used 50% of the computer’s available CPUs to

perform the docking procedures.

A dataset size of 12,000 was chosen to provide enough data for the DL system. For

more information in this, see section “Deep Learning and Evolutionary Computation”.

A training classification amount of 100% was chosen to provide the ML model with

as much unique training data as possible. Additionally, as the goal is to produce new

sequences, there is no real way to compare an input test set against the VAE output.

Thus, it did not make sense to have a testing set.

Sequence lengths between 20 to 40 nt were chosen for two reasons. The first

reason is that aptamers are known as short single-stranded oligonucleotides [15,

42, 43, 44, 88], which typically means less than 100 nt in length. Secondly, as the

docking molecule grows in length, the computation time increases non-linearly as well.

However, too small of a sequence length may not produce large enough aptamers to

successfully inhibit the SARS-CoV-2 spike protein from binding to the ACE2 cell

receptors. The range of 20 to 40 nt seemed to be a comfortable middle ground.

The CPU percentage amount of 50 was chosen solely to allow for others using the

computer at the same time. For the rationale behind the sequence GC percentage,



CHAPTER 3. EXPERIMENTS 59

see section “Random Sequence Generation”. For the rationale behind the disallowing

of unfolded RNA secondary structures, see “Additional Considerations” and “Native

Rosetta Score Function”.

3.1.3 DAPTEV Model Parameters

Table 3.4: The starting parameters for the DAPTEV Model.

Runs Generations Pop Size

3 10 800

Table 3.5: The parameters for the Rosetta-related aspects of the DAPTEV Model.

Min Seq Len Max Seq Len GC % % of CPU Allow Unfolded

20 40 50 50 False

Table 3.6: The parameters affecting only the VAE.

Pre

Epochs

Post

Epochs
Batch

Score

Thresh

Start

LR

End

LR

Start KL

Weight

End KL

Weight

Vocab

Size

45 10 32 3,500 0.003 0.0003 0.001 0.5 3

Table 3.7: The parameters affecting the DAPTEV Model’s evolutionary operations.

Tournament K Selection Rate Elitism % Crossover Rate Mutation Rate

2 95 1 90 1

Tables 3.4, 3.5, 3.6, and 3.7 show the parameter choices for these experiments as

they relate to the DAPTEV Model’s starting parameters, Rosetta-related parameters,

VAE-specific parameters, and the parameters affecting the evolutionary operations

respectively. For the starting parameters, 3 runs, 10 generations, and a population

size of 800 were chosen based on the remaining available time and to still produce a

sufficiently comprehensive experiment. As section “Multiprocessing” explains, 1 run

with these parameters takes the DAPTEV Model 5.6 days to compute. For 3 runs,

this yields roughly 16.8 days. Then the comparison GA must also be run, taking

another 16.8 days. This is over 1 month just to accumulate 3 runs of data per model.

The Rosetta-related parameters follow the same rationale as the dataset creation

parameters for the most part. However, they are included here as well because the

DAPTEV Model must also perform very similar actions as the dataset creation script
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does. This involves random sequence generation to remove duplicate sequences, sec-

ondary structure prediction of all newly produced sequences, and scoring new se-

quences per generation. As such, the same parameters as the dataset creation script

were used.

All of the parameters chosen for the VAE were determined empirically. It was

observed that training on the initial dataset for 30 epochs yielded an undertrained

VAE which did not return adequate results. However, 60 epochs seemed to overtrain

the system. 45 epochs yielded acceptable results. As the population size was only

800, having the VAE train on this data the same number of times could potentially

also cause overfitting. Thus, it was determined that 10 “post-epochs” produced a

satisfactory performance. 32 is a typical batch size for ML models, allowing models

to train quickly. A score threshold of 3500 was obtained when upon the observation

that too high of a threshold (5000) yielded under-performing, but many folded, RNAs

and too low of a threshold (2000) produced well-scoring but many unfolded RNAs.

The starting and ending learning rates and KL weights went through many iterations

before finding a strong combination. The vocabulary size (maximum length of nt

known to the VAE) was set to 3 to further reduce computation time. As vocabulary

is essentially all combinations of the four nt bases, this essentially equates to 4x where

x is the size of the vocabulary. If this value was not limited, the number of calculations

could quickly exceed the millions when considering the number of epochs, generations,

and runs. For a discussion of the VAE performance and to view related plots, see

section “Results”.

With regard to the parameters related to evolutionary operations, a tournament K

value of 2 was chosen to keep selection pressure low, allowing some poor and average-

performing sequences to proceed as parents for the next generation. A selection rate

of 0.95 was chosen to allow some of the better-performing sequences to opt out of

the tournament, but not too many. An elitism amount of 1% guarantees the top

performers of the entire generation will proceed into the next generation. However,

more exploration over exploitation was preferred, so this value was kept relatively

low. A crossover rate of 90% reflects the likelihood that a crossover will occur. This

value was set relatively high (high exploration), but also allows for some reutilization

of data (some exploitation). Lastly, the mutation rate was set to 1% to avoid random

searching, but still have some element of an external random influence.



CHAPTER 3. EXPERIMENTS 61

3.2 Results

The following subsections outline figures and tables that illustrate the performance

for different aspects of the DAPTEV Model and comparison experiments. The first

discussion point will explore the performance of the DAPTEV Model’s VAE based

on the parameters provided above. Following the performance of the VAE will be

the overall performance of the experiments on the docking scores and the produced

secondary structures.

3.2.1 VAE Performance
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Figure 3.2: The KL loss values per epoch for each generation plotted over a linear
scale (top) and a logarithmic scale (bottom).

Figure 3.2 shows how the VAE’s encoder model performed per epoch and over each

generation (plotted separately on the same graph). Note that the epochs and gen-
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erations start from zero rather than starting from one. Thus, 10 generations and 10

epochs are still being calculated and reported. The upper graph is plotted over a

linear scale, while the lower graph uses a logarithmic scale with a base of 10. In the

linear graph, one can see the first generation is significantly larger than the remaining

generations. It is for this reason that a logarithmically scaled graph was provided to

see the performance of the other generations. The first generation also continues for

more than 10 epochs as shown in the parameters from Table 3.6. In the first genera-

tion (generation zero), the VAE is trained on the entire dataset of 12,000 sequences.

It takes the encoder model between two to three epochs to learn the key features of

the training data. This is the reason for the large jump. Then the encoder model

begins rapidly learning these features. Each subsequent generation shows the encoder

model continues to improve on this and approaches a zero loss value.
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Figure 3.3: The regularization BCE loss values per epoch for each generation plotted
over a linear scale (top) and a logarithmic scale (bottom).
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The regularization model is subject to the same training scenario as the encoder

model and, thus, performs similarly. However, as the DAPTEV Model implements

a score threshold, the regularization model employs a BCE loss function. In Figure

3.3, it can be seen that the model is further refining its performance. In fact, as

the logarithmic graph shows, the model learned to perfectly classify the data halfway

through generation five. All generations after generation five are not shown on the

graph for this reason.
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Figure 3.4: The reconstruction loss values per epoch for each generation plotted over
a linear scale (top) and a logarithmic scale (bottom).

Figure 3.4 shows very little need for a logarithmic graph, but it still helps to see

the slight differences in the decoder’s performance per generation. Here, it is obvious

that, after the first generation, the decoder is learning how to reproduce the encoded

latent vectors very well. As both the encoder and the decoder are performing so well,

this leads to duplicate sequences being produced in later generations.
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Figure 3.5: The total loss values per epoch for each generation plotted over a linear
scale (top) and a logarithmic scale (bottom). Note: total loss values include the KL
weight factor over time.

Figure 3.5 shows the total loss of the VAE per epoch per generation. As each

model effectively reduced its loss values, it stands to reason that the total loss would

reflect this performance. It is important to mention that the total loss is not simply

an addition of all three loss values. The KL loss is also multiplied by the KL weight

increments over time as specified by the parameters in Table 3.6.

For anyone reading this thesis who does not know how to read graphs in a logarith-

mic scale, each tick (horizontal lines corresponding to the numbers on the y-axis) is

an increment in the order of magnitude and each minor tick (in-between the numbers

on the y-axis) is one proportion of that magnitude change. For example going from

100 = 1 to 101 = 10 is one order of magnitude more and each minor tick in-between

would equal +1 to the result of 100 (2, 3, 4, etc.).
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3.2.2 Score Comparisons

Table 3.8: The score performance in the first and last generation for each experiment.

DAPTEV GA Hill Climber

First

Gen

Best Score 128.304 128.304 18,248.3

Mean Score 1,046.470 1,016.521 23,628.530

Median Score 1,071.148 1,040.083 21,956.050

Worst Score 1,470.417 1,438.765 60,677.880

Last

Gen

Best Score 98.205 3.811 128.304

Mean Score 618.682 336.658 1,098.340

Median Score 646.670 351.440 1,122.182

Worst Score 857.166 459.842 1,530.179

Table 3.8 provides the before and after details of each model, illustrating overall

docking scores optimization performance. Here, it can be seen that both the DAPTEV

Model and the GA improved significantly from their worst scores to their best scores,

with the GA outperforming the DAPTEV Model. However, in comparison to the hill

climber model, both the GA and the DAPTEV Model have performed significantly

better.

Notice here that the worst score in the original dataset (and the hill climber) was

60,677 and the best score was 128. Thus, the original dataset of 12,000 sequences

already performed a lot of the random searching, leaving little room to grow. As such,

observing just the best scores does not provide enough evidence of performance.

Figure 3.6 shows the best and the worst performing docking scores produced by

each experiment per generation. The provided graphs are scaled logarithmically as

the hill climber (“Random” in the legend) experiment performed significantly worse

than the DAPTEV Model (“VAE” in the legend) and the GA. The linear graphs,

therefore, do not properly illustrate the performance of the other two experiments.

For a graph of the linear performance for just the DAPTEV Model and the GA, see

Figure 3.7.

Upon observing Figure 3.7, it is clear that the GA produced better results than the

DAPTEVModel. The lowest (best) score produced by the DAPTEVModel was 98.21

in generation three, whereas the GA obtained its lowest score of 3.81 in generation

nine. Until Generation nine, it seems that the DAPTEV Model was exceeding the

performance of the GA. It is possible that the GA simply encountered some luck in its
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Figure 3.6: The three experiment’s scores plotted per generation on the same loga-
rithmically scaled graph. The top graph shows the best score per generation while
the bottom graph shows the worst score.
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Figure 3.7: The DAPTEV Model and the GA experiment’s scores plotted per gen-
eration on the same linearly scaled graph. The left graph shows the best score per
generation while the right graph shows the worst score.
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random search. However, the remaining graphs should be studied before concluding

this.

When considering the worst score, again it can be seen that the GA outperformed

the DAPTEV Model. The DAPTEV Model’s worst scores fell from 1,470.417 to

857.166. The GA’s worst score fell from 1,438.765 to 459.842. Based on these results,

it seems that the GA may be more suited to score optimization than the DAPTEV

Model. To confirm, additional metrics and figures are provided.
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Figure 3.8: The three experiment’s scores plotted per generation on the same loga-
rithmically scaled graph. The top graph shows the mean score per generation while
the bottom graph shows the median score.

In Figures 3.8 and 3.9, the means and medians of the scores plotted per generation

can be seen. Both the means and medians seem to follow a fairly similar trend and

are comparable in score output. Again, it seems that the GA is outperforming the

DAPTEVModel. The hill climber method continues to perform poorly in comparison.
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Figure 3.9: The DAPTEV Model and the GA experiment’s scores plotted per gen-
eration on the same linearly scaled graph. The left graph shows the mean score per
generation while the right graph shows the median score.

It also seemed prudent to consider the best five and worst five mean scores for

each experiment. The absolute best and worst can send an extreme message and may

not convey the true performance of each experiment. This is because the absolute

best and worst do not include neighbouring sequence performance. If these models

are indeed performing well, then one would expect to see the sequences near the best

and worst improving overall. Note, however, median values were not provided as the

best and worst five is already a fairly small sample size. Thus, providing a median

calculation does not yield much information. Figures 3.10 and 3.11 depict the best

and worst five score means per generation.
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Figure 3.10: The DAPTEV Model and the GA experiment’s scores plotted per gen-
eration on the same linearly scaled graph. The left graph shows the mean score for
the 5 best performing sequences per generation while the right graph shows the mean
score for the 5 worst performing sequences.

Here, one can see that the GA is indeed performing better than the DAPTEV

Model. However, these graphs indicates that the GA and the DAPTEV Model are

performing similarly. This observation is further strengthened when comparing the

two models to the hill climber. It is starting to seem like the DAPTEV Model and
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the GA would converge to similar scores if they were allowed to continue for more

generations as not a single graph has displayed convergence yet.

Lastly, two additional metrics were calculated to assess model performance. These

metrics, expressed as ratios, include Novelty and Diversity . Novelty is calculated

as the number of generated sequences that do not exist in the initial training data

versus the total number of generated sequences in a generation (the “population

size”). Diversity is calculated as the number of generated unique sequences versus the

total number of generated sequences in a generation. The novelty values calculated for

the DAPTEV Model and the GA’s last generation was 0.8475 and 0.9962 respectively.

Similarly, the diversity values were 0.8487 and 0.9937 respectively.
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Figure 3.11: The three experiment’s scores plotted per generation on the same log-
arithmically scaled graph. The top graph shows the mean score for the 5 best per-
forming sequences per generation while the bottom graph shows the mean score for
the 5 worst performing sequences.
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3.2.3 Secondary Goal

Thus far, it has seemed as though the GA is the best suited model for this application.

However, there are two goals for this experiment. While the first goal is to optimize the

docking scores, the second goal is to produce sequences with at least one connection

or nt pairing in the secondary structure. In other words, these models were also

supposed to learn the key features of well-performing structural motifs applied to the

SARS-CoV-2 Spike protein RBD.

Table 3.9: Information relating to the folded RNAs in each model out of 800 total
produced sequences. Note: all best, mean, median, and worst values relate only to
the folded RNAs in the last generation, not the entire last generation’s output.

Scores Base Pairs

Folded

RNAs

Rate

(%)
Best Mean Med. Worst Min. Mean Med. Max.

VAE 310 39 128 694 671 875 1 2.4 2 5

GA 65 8 128 392 374 459 1 2.2 2 4

Hill 800 100 128 1,122 1,098 1,530 1 2.6 3 7

Table 3.9 provides further details on the produced folded sequences. Clearly, the

GA performed rather poorly in this task, only producing 65 folded structures out

of 800 total sequences, achieving an 8% fold rate. Conversely, the DAPTEV Model

produced 310 folded structures out of 800 total sequences, achieving a 39% fold rate.

It is important to note that the hill climber algorithm is entirely constructed of

folded RNAs as the dataset creation script does not allow for unfolded structures in

its random search. Thus, some of the metrics in the table seem significantly better.

For a visual of the best, median, and worst RNAs docked to the SARS-CoV-

2 RBD, see Figure 3.12. Figure 3.12a shows renderings of these docked structures

as produced by the DAPTEV Model (the VAE). Figure 3.12b shows the structures

produced by the GA. Figure 3.12c shows the structures produced by the hill climber.

Figure 3.12d shows the best scoring RNA that contains at least one nt connection in

its secondary structure docked to the RBD.

In Figure 3.12a, the best and worst complexes have unfolded RNAs. However, the

median complex has a folded RNA with four base parings in its secondary structure.

Figure 3.12b is similar, except its median complex has an unfolded RNA and, instead,

its worst complex has the folded RNA with three base pairings. Every complex in

Figure 3.12c has folded RNAs due to the nature of the dataset creation script. Every

model produced the same best performing folded RNA as seen in Figure 3.12d.
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(a) Best, median, and worst docked RNAs produced by the VAE model.

(b) Best, median, and worst docked RNAs produced by the GA.

(c) Best, median, and worst Randomly-produced, folded, docked RNAs.

(d) Global best folded complex.

Figure 3.12: Best, median, and worst RNAs docked to the SARS-CoV-2 RBD based
on Rosetta-returned scores. Figure 3.12d shows the best folded RNA produced by
every model that has been docked to the spike protein.
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3.2.4 Statistical Analysis

Table 3.10: Statistical Analysis of the Last Generation Scores for Each Model.

P-Values

Tests VAE GA Random

Shapiro-Wilk 4.445250083e-16 1.87673511408e-15 1.43088210551e-12

Kruskal-Wallis 0

Group 1 Group 2 Group 3

VAE, GA VAE, Rand GA, Rand

Mann-Whitney U 3.078407570e-182 1.694538918e-186 3.657219807e-255

Note: The p-value for the Kruskal-Wallis test was too small to display.

Table 3.10 shows the results of statistical testing performed on the yielded scores

from each experiment. The ANOVA test and t-test are used to determine if samples

are statistically different from one another. The ANOVA test is used on three or

more samples. If the returned p-value from the ANOVA test is less than a specified

confidence interval (usually 0.05), it means one can be 95% confident that at least

one of the samples are statistically different. Then, the t-test pairs these samples

and determines which one or if all samples are statistically divergent, again within

a confidence interval. However, the ANOVA and t-test assumes the data is from a

normal distribution, using the means of the data when performing the test.

The Shapiro-Wilk test is used to check if the data is not from a normal distribu-

tion, typically with a 95% certainty. Thus, the “null hypothesis” of the Shapiro-Wilk

test is that the sample comes from a normal distribution, and the goal is to reject this

hypothesis. Note that the Shapiro-Wilk test does not prove the normality of the data.

Samples that return p-values greater than 0.05, failing to reject the null hypothesis,

only allows one to say that there is no significant deviation from normality. In other

words, the Shapiro-Wilk test allows one to confidently say a sample does not come

from a normal distribution, but it does not prove normality.

As the returned p-values from the Shapiro-Wilk test were all under 0.05, each

experiment rejected the null hypothesis that their sample originated from a normal

distribution. Thus, it is safe to assume the data is not normally distributed and

the medians of the scores should be tested rather than the means. This finding is

supported by the three histograms seen in Figure 3.13, each exhibiting a right skew

in the results.
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The next step is to determine if the median scores from each test are significantly

similar or different. This can be determined in one Kruskal-Wallis test, similar to

the ANOVA test, which checks to see if any provided sample sets are statistically

different from each other. If the returned p-value is less than 0.05, then at least one

sample set is considered to be different from the other sample sets in the test. In the

test above, the returned p-value was so small that the computer could not represent

it and simply returned a 0. This indicates that at least one of the sets are indeed

statistically different from the other two.
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(a) VAE performance histogram.
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(b) GA performance histogram.
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(c) Hill climber performance histogram.

Figure 3.13: Histograms of the VAE, the GA, and the hill climber score results for
the last generation.
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(c) Random box plot.
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(d) All box plots on the same scale.

Figure 3.14: Box plots of the VAE, the GA, and the random (hill climber) score
results for the last generation.
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To determine which sample set’s median deviates from the others, pairs will have

to be tested individually. The Mann-Whitney U test achieves exactly this. The

median of the VAE’s last score set was tested against the GA’s median and returned

a p-value below 0.05. While this shows that these medians are statistically divergent,

it does not provide any information regarding which set is different from the others,

nor does it yield any insight with regard to the random hill climber set’s median. It

is possible that the hill climber set’s median could be similar to either the VAE or the

GA’s median. Thus, the VAE and the GA were also tested against the random set.

In all three cases, each returned p-value was less than 0.05. This indicates that each

set’s median is statistically unique. To determine a ranking, box plots displaying

outliers, minimums and maximums, lower and upper quartiles, and medians have

been provided in Figure 3.14. From these figures, it can be seen that the hill climber

set performed the worst, followed by the VAE and the GA as each median line is

outside of the other set’s quartile ranges. However, the VAE is much closer to the

GA than it is to the random set.



Chapter 4

Discussion

4.1 Observations

While it may seem like the GA performed the best, this is not actually the case.

As previously mentioned in “Additional Considerations” and “Native Rosetta Score

Function”, the docking score can be artificially improved by producing an unfolded

RNA secondary structure which, in turn, will incur fewer penalties during the RNA

tertiary structure prediction and the docking simulation. If a model prioritizes only

unconnected structures, it stands to reason that it would seem to perform better when

only considering score output. However, the goal of this research was three-fold.

Firstly, the scores had to be optimized. This was indeed accomplished best by

the GA as substantiated by the returned scores, statistical analysis, and box plots in

“Results”. That being said, the graphs in “Score Comparisons” do not suggest that

a convergence has occurred for any model. It is suspected that the DAPTEV Model

could have further reduced its scores if it was allowed to continue iterating for more

generations (perhaps 30 or more).

Secondly, some learning of well-performing structural motifs in the provided RNA

secondary structures was required. Producing unfolded RNAs is not overly helpful

when attempting to develop aptamer-based drugs. Even if this is a desirable trait,

industry professionals should have the ability to produce more complex structures

from ML models and not be forced to sacrifice these features.

Based on the percentage of folded structures in the last generation, it is clear that

the DAPTEV Model performs significantly better than the GA. This points to the

conclusion that the GA solely prioritized the optimization of scores to the detriment

of structural complexity. The GA likely only obtained 65 folded structures due to

these structural features not yet being filtered out. If the GA were allowed to iterate

76
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for more generations, there is a very good chance that the resulting output would

be entirely unfolded RNAs. These results also indicate that the DAPTEV Model is

indeed able to learn structural motif patterns from the training data. The percentage

of folded RNAs could likely be increased even further by performing some additional

modifications to the VAE parameters. For example, an increase in the vocabulary

size would allow the VAE to learn more detailed motif information.

Thirdly, the DL model had to possess the ability to be queried for new, well-

performing, structurally connected RNAs to explore aptamer-based drug develop-

ment. This third point implies the persistence of a trained model and a way to

request new data. Unfortunately, a GA must be trained every time new sequences

are required. This would mean, if the computation is performed on just one system

that is similar to the operating environment used in these experiments (Linux, 18

CPUs, a top-of-the-line NVIDIA graphics card), that researchers and industry pro-

fessionals would have to wait for at least 5.5 days before obtaining new sequences.

A VAE, conversely, is a DL system that can have its current state of learning saved

and reloaded near immediately. Furthermore, researchers and industry professionals

could obtain new sequences with a simple click of a button. The process of obtaining

new sequences would take less than a couple seconds.

As a reminder, the results from this experiment with the VAE were obtained using

previous generations of training data. The data from these previous generations are

sent through the encoder and decoder models of the VAE to produce output sequences.

The final sequences returned, in this case, are the ones produced in the last generation

of the DAPTEV Model. This final generation occurs after the encoder and decoder

models have learned how to distil and recreate the training material to an almost

exact match as indicated by the VAE graphs in “VAE Performance”. As such, the

sequences produced in the final generation are heavily influenced by previous learning

and are, thus, subject to duplication. Hence the need to replace these sequences. The

same is not true, however, for producing new sequences. The user simply has to

give the VAE’s decoder model a new latent vector (a sample) based on a random

normal distribution (or any other kind of distribution). The VAE will then produce a

unique sequence that should still dock well to the specified target and be structurally

complex (assuming proper training has taken place).

With everything mentioned above, one could posit that the DAPTEV Model

performs admirably in all three requirements. It was able to achieve relatively low

docking scores, especially when weighed against its starting generation’s worst score

and the worst score in the initial dataset. Additionally, every score produced in
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the last generation of the DAPTEV Model was below the score threshold of 3,500,

which was the docking score limit set initially to tell the VAE that a sequence was

performing well. The DAPTEV Model was able to learn structural features and

other characteristics that make RNA perform well when docking to a specific target.

Finally, the model can be saved and queried for new sequences that should perform

well at docking to a specific target’s RBD while also maintaining some structural

complexity. In contrast, the GA and the hill climber algorithm must both be retrained

every time, the GA prioritized score optimization at the cost of motif preservation,

and the hill climber is likely to yield poor results due to premature convergence at a

local minimum.

4.2 Limitations

There are some noteworthy limitations of this research. Firstly, the DAPTEV Model

did not have enough starting aptamer data in the initial dataset. As previously men-

tioned in Dataset Preparation Script Parameters, only 849 unique, known, aptamer

sequences were found during the literature review stage, but that was narrowed down

further to only 344 out of 12,000 due to parameter and computation time constraints.

Ideally, at least 30% of the data should have been existing aptamer data. Iwano

et al.’s dataset could have helped significantly, being roughly 110,000 sequences [38].

However, the sequences are a minimum of 89 nt in length. This means every sequence

would have been filtered out due to the parameter choices of 20 to 40 nt chosen to

keep the computation time within an acceptable range. Moreover, these sequences

seem to be paired with other target sequences, meaning there could be repetitions

among the sequence entries, and this dataset only provides DNA sequences.

Secondly, the DAPTEV Model does not work with DNA unless the user converts

DNA to RNA, via a base change of all thymine to uracil, due to the limitations of

utilized software. While this research was mainly focused on RNA, plenty of other

research has shown that DNA can be implemented. It would have been preferable to

include DNA in the capabilities of this model without having to perform a conversion.

Right now, the randomly generated sequences must have at least one connection.

However, more control over the secondary structure could have been desirable. Given

enough time, the specification of connection amounts or a range of acceptable con-

nections could have been implemented. To this end, perhaps the custom parabolic

penalty function should have been implemented in the random sequence generator to

penalized sequences for having too many or too few connections.
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Currently, the DAPTEV Model assumes that the latent space follows a Gaussian

distribution. This distribution may not be robust enough to capture the complexity

of the task. Testing different distributions could have yielded further insight into the

VAE’s ability to operate in this problem space.

Additionally, there is no real way to validate or test this system as the DAPTEV

Model is producing new sequences. How would one measure the accuracy for predicted

sequences outside of the KL divergence and reconstruction values? What would that

comparison look like? Would one measure the percentage of sequence similarity, per-

haps utilizing sequence alignment? What if one small change in the RNA drastically

affects the secondary and tertiary structures? Does one compare their similarities

too? How would one compare a tertiary structure’s similarity? Perhaps given more

time, different assessment methods could be further explored and implemented.

Lastly, for anyone downloading the DAPTEV Model code, they may notice that

the data class only allows for a vocab size of 3 maximum. This was chosen due to

the simplicity of implementation and because this number was not going to increase

for the duration of the research. However, it would be very simple to implement

additional vocabulary amounts.



Chapter 5

Conclusion

The goal of this research was to see if a deep generative model (DGM) would be effi-

cient at accelerating the ribonucleic acid (RNA) aptamer drug development process.

While this research was applied to the SARS-CoV-2 spike protein, careful considera-

tion was placed into the universal design of nearly any protein target. To prove the

DGM’s efficacy, the model had to display three things. The first was strong docking

scores to the SARS-CoV-2 spike protein’s receptor-binding domain (RBD), suggesting

a strong target affinity. The second was structurally complex sequences, suggesting

a strong target specificity. The third was the ability of the model to produce new se-

quences immediately rather than having to retrain every time. Furthermore, it would

be ideal if the training for all this could be achieved in a reasonable amount of time.

To test these capabilities, two other comparison models were included. One of which

is a GA, and the other being a random sequence generator.

With regard to target affinity, one could conclude that both the DAPTEV Model

and the GA performed well at this task. While the GA did outperform the DAPTEV

Model in this regard, the difference between these two models was not very large when

considering worst score values to best score values. For example, a docking score of

98 (DAPTEV Model) compared to 4 (GA) seems insignificant when compared to the

worst value of 60,678 in the starting dataset. Especially when one considers that the

score threshold was set to 3,500, meaning the DAPTEV Model considered 3,500 as

a “good” docking score and was still able to produce scores significantly lower than

that.

Regarding target specificity, the DAPTEV Model certainly shows some promising

results. This is especially true when compared to the GA. The DAPTEV Model had

an output with 39% of its produced sequences containing at least one connection in

the secondary structure. This number could have been even higher if more vocabu-
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lary combinations had been implemented and some additional parameter tests were

run. Also, only a one base-pair rule was enforced for randomly generated RNA. If

additional customization options for the RNA structures were added, it is suspected

that both the fold rate and fold complexity would increase. Conversely, the GA only

produced an 8% fold rate. This indicates that the VAE was indeed able to learn

some structural features of the data and the multilayer perceptron (MLP) regularizer

model performed well at its task.

The last goal did not require testing. By its very nature, a variational autoencoder

(VAE) can have its state saved and reloaded. This means the model can be trained,

saved, and then loaded up again to produce new sequences. It can even be trained

further should new information or more aptamer data be released/discovered. To

obtain new sequences from a trained model, all one has to do is generate random

samples from a normal distribution and provide these samples to the VAE. The VAE

will then reconstruct the random samples based on its previous training. The returned

sequence would then be something that could exist within a similar output space.

Furthermore, the computation time was reduced significantly. The original com-

putation time estimate was 4+ years. This was due to both the size of the SARS-

CoV-2 spike protein, and performing calculations sequentially. After reducing the

size of the protein file by removing unnecessary residues and distributing the docking

simulations over multiple CPUs, the time was reduced to just 16.5 days for three runs

of one experiment. This would equate to 5.5 days to train the model. This time can

be further reduced if the user has access to a cluster.

In summary, one could say this DAPTEV Model would indeed be useful in the

aptamer drug development sector. All three conditions of producing sequences with

high target affinity, producing sequences with high target specificity, and model

reusability were met to some significant extent. Furthermore, the model can be

trained in as little as 5.5 days or even less depending on the resources available to

the user. At the moment, the model may require some fine-tuning, but it already

shows a tremendous amount of promise. The code for this model can be obtained at

https://github.com/candress/DAPTEV_Model.

5.1 Future Work

Several additional feature and considerations could improve this research. One such

consideration, as previously mentioned in “Limitations”, is the fact that there was

not enough starting aptamer data. It would have been preferable to add more to

https://github.com/candress/DAPTEV_Model
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the starting data set. Unfortunately, at the time of searching, it seemed most of the

aptamer datasets and databases were taken down. For every paper found referencing

an aptamer dataset/database, the data was no longer accessible. The aptamers found

was provided in papers or found on the PDB website [10, 50, 51]. Perhaps a larger

sequence length range than 20 to 40 nts could have been used to reduce the amount

of data filtering. This way, far more of the 849 known aptamers (minus 44 for the

unconnected structures) could have been utilized rather than just the 344. But even

if the full list was used, it would still only equate to 849 out of 12,000 sequences.

Currently, this model only accepts RNA data. However, DNA aptamers are far

more common. It would be beneficial to include the capability to work with DNA

data. However, this would require either the conversion of DNA data to RNA data

via base changing (which can be easily accomplished in a dataset preprocessing step)

so the data can still work through Rosetta, or the integration of an additional system.

The second option may be more or less accurate, which could affect the model’s ability

to learn due to inconsistencies.

Now that the research has come to an end, it is clear that allowing the user

to perform tertiary structure prediction separately, or allowing the user to provide

pre-calculated tertiary structure could be beneficial. While performing an additional

tertiary structure prediction would almost double the computation time, it would

allow the user to select more structurally complex RNAs. This would also allow the

DAPTEV Model to optimize the RNA tertiary conformation score separately from

the docking score, removing any influence from the lack of penalties during structure

prediction.

Perhaps statically choosing the protein atom of CA and the RNA atom of C5 was

negatively affecting the performance as there is no determination of which atoms are

more likely to interact. Instead, each atom present in the protein residue and the

possible RNA bases could have been noted. Then the DAPTEV Model could update

these values during iteration depending on pre-calculated atom interactions.

It would be beneficial to increase the vocabulary combination amount. This

DAPTEV Model only allows for combinations up to three characters long to reduce

computation time. However, 43 = 64 combinations and calculations only take the

ML process a few minutes to perform per generation, whereas the scoring procedure

per generation takes 800 minutes for a population size of 800. Moreover, vocabulary

lengths of size three impede the model’s ability to learn more complex structural mo-

tifs. This combination length could easily be increased to 6 (46 = 4, 096 calculations),

likely increasing computation time, but still far below 800 minutes, thus allowing the
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model to capture more information pertaining to these motifs.

The sequence generator could be updated to create a sequence with a specific

GC percentage and length, while also yielding sequences with a specified range of

connections rather than having to keep producing random sequences until one with

a connection is discovered. For example, a palindrome system could be implemented

to encourage the likelihood of hairpin loops [1]. This would allow the user to have

better control over the quality of the produced RNA.

The VAE assumes the data comes from a normal distribution. Perhaps this dis-

tribution is not robust enough to represent the problem space. As such, the ability

for the user to choose a default distribution could be implemented.

Some additional considerations and implementations could be the following: a

learnable KL/reconstruction loss balancing component could be implemented so the

model regulates the weights of the KL and the reconstruction loss [2]. A Trans-

former is another DL system that relies entirely on self-attention and is well-suited

for Seq2Seq tasks [80]. It would be interesting to switch out the VAE with a Trans-

former to see how the results are affected. The addition of a molecular dynamic

calculation/simulation capability would likely aid in assessing the quality of structure

prediction and docking. Residue selection could be performed for the constraint file

after performing tertiary structure prediction, but before docking, to get a better idea

of what residue(s) to constrain.

Lastly, it is difficult to make conclusive observations at this moment due to the

few number of experiments run. Ideally, at least 30 runs per experiment per model

should be performed. However, this would take an inordinate amount of time to

complete given the current computing restrictions for this thesis. The only way this

would be feasible at this juncture is if one had access to a cluster to distribute the

workload over.
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Bernauer. Protein-rna complexes and efficient automatic docking: Expanding

rosettadock possibilities. PLOS ONE, 9(9):e108928, September 2014.

[28] Michiaki Hamada. In silico approaches to rna aptamer design. Biochimie, 145:8–

14, February 2018.

[29] Jiahua He, Jun Wang, Huanyu Tao, Yi Xiao, and Sheng-You Huang. Hnadock: a

nucleic acid docking server for modeling rna/dna–rna/dna 3d complex structures.

Nucleic Acids Research, 47(W1):W35–W42, July 2019.

[30] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.

arXiv:1703.06870 [cs], January 2018.

[31] Frances L. Heredia, Abiel Roche-Lima, and Elsie I. Parés-Matos. A novel artificial

intelligence-based approach for identification of deoxynucleotide aptamers. PLOS

Computational Biology, 17(8):e1009247, August 2021.

[32] Yangyu Huang, Haotian Li, and Yi Xiao. Using 3drpc for rna–protein complex

structure prediction. Biophysics Reports, 2(5):95–99, 2016.

[33] Yangyu Huang, Haotian Li, and Yi Xiao. 3drpc: a web server for 3d rna–protein

structure prediction. Bioinformatics, 34(7):1238–1240, April 2018.

[34] Yangyu Huang, Shiyong Liu, Dachuan Guo, Lin Li, and Yi Xiao. A novel protocol

for three-dimensional structure prediction of rna-protein complexes. Scientific

Reports, 3(1):1887, May 2013. Number: 1 Publisher: Nature Publishing Group.

[35] Ian Fare, Eva Liu, Maggie Hou, Judy Chen, Siddharth Reed, and Biren Dave.

Team:mcmasteru/genetic - 2017.igem.org.

[36] Jinho Im, Byungkyu Park, and Kyungsook Han. A generative model for

constructing nucleic acid sequences binding to a protein. BMC Genomics,

20(13):967, December 2019.



BIBLIOGRAPHY 88

[37] Junichi Iwakiri, Michiaki Hamada, Kiyoshi Asai, and Tomoshi Kameda. Im-

proved accuracy in rna–protein rigid body docking by incorporating force field

for molecular dynamics simulation into the scoring function. Journal of Chemical

Theory and Computation, 12(9):4688–4697, September 2016.

[38] Natsuki Iwano, Tatsuoc Adachi, Kazuteru Aoki, Yoshikazuc Nakamura, and

Michiaki Hamada. Raptgen: A variational autoencoder with profile hidden

markov model for generative aptamer discovery. Technical report, February 2021.

[39] Myeongjun Jang, Seungwan Seo, and Pilsung Kang. Recurrent neural

network-based semantic variational autoencoder for sequence-to-sequence learn-

ing. arXiv:1802.03238 [cs], June 2018.

[40] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,

Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek,
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E. Fox, and R. Garnett, editors, Advances in Neural Information Processing

Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[64] Shubham Patel. All you need to know about variational autoencoder, June 2019.



BIBLIOGRAPHY 91

[65] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014 Conference on Empir-

ical Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha,

Qatar, 2014. Association for Computational Linguistics.

[66] Stanley Plotkin, James M. Robinson, Gerard Cunningham, Robyn Iqbal, and

Shannon Larsen. The complexity and cost of vaccine manufacturing – an

overview. Vaccine, 35(33):4064–4071, July 2017.

[67] Lakshmanane Premkumar, Bruno Segovia-Chumbez, Ramesh Jadi, David R.

Martinez, Rajendra Raut, Alena Markmann, Caleb Cornaby, Luther Bartelt,

Susan Weiss, Yara Park, Caitlin E. Edwards, Eric Weimer, Erin M. Scherer,

Nadine Rouphael, Srilatha Edupuganti, Daniela Weiskopf, Longping V. Tse,

Yixuan J. Hou, David Margolis, Alessandro Sette, Matthew H. Collins, John

Schmitz, Ralph S. Baric, and Aravinda M. de Silva. The receptor binding domain

of the viral spike protein is an immunodominant and highly specific target of

antibodies in sars-cov-2 patients. Science Immunology, 5(48):eabc8413, June

2020.

[68] Tyler J. Ripperger, Jennifer L. Uhrlaub, Makiko Watanabe, Rachel Wong,

Yvonne Castaneda, Hannah A. Pizzato, Mallory R. Thompson, Christine Brad-

shaw, Craig C. Weinkauf, Christian Bime, Heidi L. Erickson, Kenneth Knox,

Billie Bixby, Sairam Parthasarathy, Sachin Chaudhary, Bhupinder Natt, Elaine

Cristan, Tammer El Aini, Franz Rischard, Janet Campion, Madhav Chopra,

Michael Insel, Afshin Sam, James L. Knepler, Andrew P. Capaldi, Catherine M.

Spier, Michael D. Dake, Taylor Edwards, Matthew E. Kaplan, Serena Jain Scott,

Cameron Hypes, Jarrod Mosier, David T. Harris, Bonnie J. LaFleur, Ryan
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Appendix A

Installation

The following outlines system requirements and build instructions. Note: Before

installing, make sure you can see hidden files and folders on your system and that

you have admin privileges. You will need to access and modify your “.bashrc” file

and perform other installation actions which require admin access. your system will

need:

1. Nvidia graphics card (to fully utilize PyTorch)

2. Python 2.7 to run the Rosetta version

3. Python 3.8.10 should be your system default. I.e. When you type “python”

in the terminal, python 3.8.10 should load up. Otherwise, you should run the

code from Visual Studios Code editor with python 3.8.10 as your interpreter.

4. Packages for python3:

(a) Numpy

(b) Pandas

(c) tqdm

(d) Pytorch - no instructions for this yet

5. Cmake version 2.8.8 or greater (https://cmake.org/download/) and Ninja

build (https://github.com/martine/ninja.git) to compile Rosetta.

6. Rosetta version 3.12

(a) Go to the Rosetta Commons website and follow the instructions to obtain

an academic licence (https://www.rosettacommons.org/software)
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(b) Complete the licence process, then download Rosetta version 3.12 (the

“Rosetta 3.12 source + binaries for Linux” option)

(c) Exact the Rosetta folder from the zip file.

(d) Rename the extracted folder to “Rosetta”, then move it to your desired

location (I chose “/home/user1/”)

(e) In your “/home/user1/” directory (where “user1” is your computer user

name), open your “.bashrc” file and enter the following:

export ROSETTA=/home/user1/Rosetta/

export ROSETTA_TOOLS=/home/user1/Rosetta/main/tools

export RNA_TOOLS=$ROSETTA/tools/rna_tools/

export PATH=$RNA_TOOLS/bin/:$PATH

export PYTHONPATH=$PYTHONPATH:$RNA_TOOLS/bin/

(f) Then save and close the “.bashrc” file.

(g) Open a terminal in “/Rosetta/main/source” and run the following

command:

python2 ninja_build.py r -remake

(h) Once compilation finishes, close that terminal. Then open a new terminal

in “Rosetta/tools/rna_tools/”.

(i) Run this command:

python $RNA_TOOLS/sym_link.py

(j) Verify everything has been done correctly up to this point by running the

following in your terminal:

rna_helix.py -h

You should see a printout of usage instructions for “rna_helix.py”. If

you do not see this, either a mistake was made in the previous steps (e.g. a

spelling error), or you do not have the prerequisite items mentioned above.

(k) Now, go into your “Rosetta/tools/rna_tools/bin/” directory and

confirm there is an “rna_denovo” symlink there. If it is not present, you

have to create it yourself:

i. Go into the “/Rosetta/main/source/bin/” directory and find the

“rna_denovo” symlink.
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ii. Copy and paste the “rna_denovo” symlink from

“/Rosetta/main/source/bin/” into

“Rosetta/tools/rna_tools/bin/”.

(l) To confirm the required command (rna_denovo) is working correctly,

navigate to “/Rosetta/demos/public/rnp_structure_prediction/”,

open the “flags” file, add the following line to the bottom of the file:

-bps_moves false

Then save and close the flags file. Open a terminal in this directory and

run the following command:

rna_denovo @flags | tee terminal_output.txt

You should see a lot of text output to the terminal, with a table showing

scores near the end (once the command finishes). A text file named “term

inal_output” will also be saved to this folder location which will contain

the same information that was printed to the terminal. This file is created

so you can obtain the scores associated with each docking attempt.

• Note: This version of Rosetta does not seem to write its scores to the

“out” file when running the “rna_denovo” command (even though

the documentation says it does). Thus, you must save the terminal

output while running the “rna_denovo” command and then perform

a “grep” command on the terminal output file.

(m) You can then, in the same terminal, run:

extract_lowscore_decoys.py 2qux_fold_and_dock.out 5

To get the 5 pdb files for the docked RNA-Protein complexes. Notice

that the number 5 here corresponds with the number 5 in the flags file,

indicating 5 structures are to be predicted.

• Note: you will have to use something like PyMol

(https://pymol.org/2/) to view/render the pdb files.

7. Eternafold and Arnie for secondary structure prediction

(a) You can go to https://github.com/DasLab/arnie and follow the in-

structions in the “ReadMe” file to install Arnie and Eternafold. However,

the instructions on this page assume you already well versed, and know

how to do certain things, in a Linux environment. If you are new to Linux,

you can follow my steps as outlined below.

https://pymol.org/2/
https://github.com/DasLab/arnie
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(b) Install Eternafold (more accurate thermodynamic predictions) first:

i. Request a licence and Download EternaFold from

https://eternagame.org/software

ii. Extract the zip file, rename the extracted folder to “EternaFold”, then

move the EternaFold folder to your desired destination. I chose “/hom

e/user1” as my desired location.

• The Arnie github will tell you to simply download the package,

then check your build by running a certain command (see below).

This may return an error. If so, open a terminal in the “Eterna

Fold/src” folder and type “make” (without quotes).

iii. Once the “make” command is finished, confirm the EternaFold build

is working: within the terminal you typed “make”, change directory to

the EternaFold directory (type “cd ..” without the quotation marks).

If you did not need to run the “make” command, open a terminal in

the EternaFold directory. Then type:

./src/contrafold predict test.seq

--params parameters/EternaFoldParams.v1

(the command should be all on one line with a space between “.seq”

and the first hyphen). You should see this as your output:

iv. Now, you can close this terminal

(c) Then install Arnie

i. First, ensure that you have a tmp folder in your “/home/user1”

directory, where “user1” is your computer username. If you do not

have this directory, go ahead and create one.

ii. Download Arnie from Github. I just downloaded the code as a zip

file, unzipped it, renamed the folder to “Arnie”, then moved the Arnie

folder to my “/home/user1/” directory. I do not think the EternaFold

and Arnie folders need to be in the same parent directory. I just chose

to do this in an effort to reduce potential complications.

iii. Go into your Arnie folder and create a file called “arnie.txt”.

https://eternagame.org/software
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iv. Open this file and enter the following:

eternafold: /home/user1/EternaFold/src

TMP: /home/user1/tmp

• This will point the Arnie program to EternaFold and the temp

folder.

v. Open your “.bashrc” file and add these lines to the very bottom of the

document:

export PYTHONPATH=$PYTHONPATH:/home/user1

export PYTHONPATH=$PYTHONPATH:/home/user1/arnie

export ARNIEFILE=/home/user1/arnie/arnie.txt

vi. Save your “.bashrc” document and close it.

vii. You should now be able to confirm if Arnie is set up correctly. Open

up a terminal (where you open the terminal should not matter). Type

the following:

python

>>> from arnie.mfe import mfe

>>> sequence = "CGCUGUCUGUACUUGUAUCAGUACACUGACGAGUCCCU

AAAGGACGAAACAGCG"

>>> mfe_structure = mfe(sequence,package='eternafold')

>>> print(mfe_structure)

(the sequence should all be on one line)

viii. Your output should look like this:

(((((((((((((......))))))..)....((((.....))))...))))))

ix. If you received an error, then you may have made a mistake in one of

the previous steps or something is misspelled (the python commands,

the folder names, the arnie.txt file name, the lines inside the arnie.txt

file, etc.)
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Rosetta File Settings

Flag File

-fasta fasta.txt
-secstruct_file secstruct.txt
-constraints:cst_file constraint.cst
-6vxx_rbd.pdb
-nstruct 5
-cycles 1000
-docking_move_size 1.0
-out:file:silent /dev/null
-new_fold_tree_initializer true
-minimize_rna false
-rna:denovo:lores_scorefxn rna/denovo/rna_lores_with_rnp_aug.wts
-rna_protein_docking true
-ignore_zero_occupancy false
-convert_protein_CEN false
-FA_low_res_rnp_scoring true
-ramp_rnp_vdw true
-mute protocols.moves.RigidBodyMover
-no_filters
-bps_moves false
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Fasta File

>6vxx_ABC_covid_align5.pdb A:1-266 B:267-557 C:558-828

LPFNDGVIFGTTLDSKTQSLLIIKVCEFNCTFEYVFKNIDGYFKIYLVDLPIGINITRFESIVRFPNITNCPF

GEVFNATRFASVYAWNRKRISCVADYSVLYNSASFSTFKCYGVSPTKLNDLFTVYADSFVIRGDEVRQIAPGQ

TGKIADYNYKLPDDFTCVIAWNSNNLDSKGNYNYLYRKPFERDIYFPLQSYGFQPTNVGYQPYRVVVLSFELL

PATVCGPKKSTNLNNFNGLTPQRDPQTLEEAISDILSRLDPPEAEVQKDLPFNDGVYWIFGTTLDSKTQSLLI

VVIKVCEFQNCTFEYSFVFKNIDGYFKIYSPLVDLPIGINITRFGYLQESIVRFPNITNLCPFGEVFNATRFA

SVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADY

NYKLPDDFTGCVIAWNSNNLDSKGNYNYLYRKPFERDIYFPLQSYGFQPTNVGYQPYRVVVLSFELLHAPATV

CGPKKSTNLVNNFNGLTGPFQRDPQTLEEAINDILSRLDPPEAEVQKPFNDGVIFGTTLDSKTQSLLIVIKVC

EFQNCTFEYVSVFKNIDGYFKIYSPLVDLPIGINITRFGLSVRFPNITNLCPFGEVFNATRFASVYAWNRKRI

SNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTKIADYNYKLPDDFTGC

VIAWNSNNLDSKGNYNYLYRKPFERDIYFPLQSYGFQPTNVGYQPYRVVVLSFELLHAPATVCGPKKSTNNNG

LPQTTEAISNDILSRLDPPEAEVQI
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Secondary Structure File

.........................................................................

.........................................................................

.........................................................................

.........................................................................

.........................................................................

.........................................................................

.........................................................................

.........................................................................

.........................................................................

.........................................................................

.........................................................................

.........................

LPFNDGVIFGTTLDSKTQSLLIIKVCEFNCTFEYVFKNIDGYFKIYLVDLPIGINITRFESIVRFPNITNCPF

GEVFNATRFASVYAWNRKRISCVADYSVLYNSASFSTFKCYGVSPTKLNDLFTVYADSFVIRGDEVRQIAPGQ

TGKIADYNYKLPDDFTCVIAWNSNNLDSKGNYNYLYRKPFERDIYFPLQSYGFQPTNVGYQPYRVVVLSFELL

PATVCGPKKSTNLNNFNGLTPQRDPQTLEEAISDILSRLDPPEAEVQKDLPFNDGVYWIFGTTLDSKTQSLLI

VVIKVCEFQNCTFEYSFVFKNIDGYFKIYSPLVDLPIGINITRFGYLQESIVRFPNITNLCPFGEVFNATRFA

SVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADY

NYKLPDDFTGCVIAWNSNNLDSKGNYNYLYRKPFERDIYFPLQSYGFQPTNVGYQPYRVVVLSFELLHAPATV

CGPKKSTNLVNNFNGLTGPFQRDPQTLEEAINDILSRLDPPEAEVQKPFNDGVIFGTTLDSKTQSLLIVIKVC

EFQNCTFEYVSVFKNIDGYFKIYSPLVDLPIGINITRFGLSVRFPNITNLCPFGEVFNATRFASVYAWNRKRI

SNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTKIADYNYKLPDDFTGC

VIAWNSNNLDSKGNYNYLYRKPFERDIYFPLQSYGFQPTNVGYQPYRVVVLSFELLHAPATVCGPKKSTNNNG

LPQTTEAISNDILSRLDPPEAEVQI
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Constraint File

AtomPair CA 201A C5 xxx FLAT_HARMONIC 0 0.125 1

Note: the “xxx” represents some residue number of your chosen RNA plus the max

residue number of the chosen protein. There can be fewer or more than 3 digits. It

all depends on the conditions of your protein sequence and the RNA residue chosen.
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Additional Experimental Analysis

Run 2 Results
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Figure C.1: The KL loss values per epoch for each generation plotted over a linear
scale (left) and a logarithmic scale (right).
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Figure C.2: The regularization BCE loss values per epoch for each generation plotted
over a linear scale (left) and a logarithmic scale (right).
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Figure C.3: The reconstruction loss values per epoch for each generation plotted over
a linear scale (left) and a logarithmic scale (right).
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Figure C.4: The total loss values per epoch for each generation plotted over a linear
scale (left) and a logarithmic scale (right). Note: total loss values include the KL
weight factor over time.

Table C.1: The score performance in the first and last generation for each experiment.

DAPTEV GA

First

Gen

Best Score 98.205 128.304

Mean Score 605.057 1023.306

Median Score 635.575 1047.007

Worst Score 836.791 1447.986

Last

Gen

Best Score 27.941 61.949

Mean Score 510.197 327.772

Median Score 534.332 337.751

Worst Score 687.297 439.602
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Figure C.5: The DAPTEV Model and the GA experiment’s scores plotted per gen-
eration on the same linearly scaled graph (top) and logarithmically scaled graph
(bottom). The left graphs show the best score per generation while the right graphs
show the worst score.
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Figure C.6: The DAPTEV Model and the GA experiment’s scores plotted per gen-
eration on the same linearly scaled graph (top) and logarithmically scaled graph
(bottom). The left graphs show the mean score per generation while the right graphs
show the median score.
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Figure C.7: The DAPTEV Model and the GA experiment’s scores plotted per gen-
eration on the same linearly scaled graph (top) and logarithmically scaled graph
(bottom). The left graphs show the mean score for the 5 best performing sequences
per generation while the right graphs show the mean score for the 5 worst performing
sequences.

The novelty values calculated for the DAPTEV Model and the GA’s last generation

was 0.9013 and 0.9987 respectively. Similarly, the diversity values were 0.71 and 0.98

respectively.

Table C.2: Information relating to the folded RNAs in the VAE and the GA models
out of 800 total produced sequences. Note: all best, mean, median, and worst values
relate only to the folded RNAs in the last generation, not the entire last generation’s
output.

Scores Base Pairs

Folded

RNAs

Rate

(%)
Best Mean Med. Worst Min. Mean Med. Max.

VAE 225 28 128 551 583 687 1 2.2 2 5

GA 58 7 62 342 343 440 1 2 2 3
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Table C.3: Statistical Analysis of the Last Generation Scores for the VAE and the
GA Models.

P-Values
Tests VAE GA

Shapiro-Wilk 1.3796984876472367e-18 6.985057199532588e-15
Kruskal-Wallis 1.6920869583651724e-141

VAE, GA
Mann-Whitney U 8.472054368705904e-142
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(a) VAE performance histogram.
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(b) GA performance histogram.

Figure C.8: Histograms of the VAE and the GA score results for the last generation.
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Figure C.9: Box plots of the VAE and the GA score results for the last generation on
the same scale.

Run 3 Results
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Figure C.10: The KL loss values per epoch for each generation plotted over a linear
scale (left) and a logarithmic scale (right).
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Figure C.11: The regularization BCE loss values per epoch for each generation plotted
over a linear scale (left) and a logarithmic scale (right).
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Figure C.12: The reconstruction loss values per epoch for each generation plotted
over a linear scale (left) and a logarithmic scale (right).
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Figure C.13: The total loss values per epoch for each generation plotted over a linear
scale (left) and a logarithmic scale (right). Note: total loss values include the KL
weight factor over time.

Table C.4: The score performance in the first and last generation for each experiment.

DAPTEV GA

First

Gen

Best Score 128.304 42.334

Mean Score 1,039.674 304.662

Median Score 1,067.072 317.001

Worst Score 1,461.798 406.574

Last

Gen

Best Score 89.413 30.383

Mean Score 606.588 210.427

Median Score 624.657 221.048

Worst Score 843.746 269.184
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Figure C.14: The DAPTEV Model and the GA experiment’s scores plotted per gen-
eration on the same linearly scaled graph (top) and logarithmically scaled graph
(bottom). The left graphs show the best score per generation while the right graphs
show the worst score.
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Figure C.15: The DAPTEV Model and the GA experiment’s scores plotted per gen-
eration on the same linearly scaled graph (top) and logarithmically scaled graph
(bottom). The left graphs show the mean score per generation while the right graphs
show the median score.
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Figure C.16: The DAPTEV Model and the GA experiment’s scores plotted per gen-
eration on the same linearly scaled graph (top) and logarithmically scaled graph
(bottom). The left graphs show the mean score for the 5 best performing sequences
per generation while the right graphs show the mean score for the 5 worst performing
sequences.

The novelty values calculated for the DAPTEV Model and the GA’s last generation

was 0.83 and 0.9987 respectively. Similarly, the diversity values were 0.8225 and

0.9887 respectively.

Table C.5: Information relating to the folded RNAs in the VAE and the GA models
out of 800 total produced sequences. Note: all best, mean, median, and worst values
relate only to the folded RNAs in the last generation, not the entire last generation’s
output.

Scores Base Pairs

Folded

RNAs

Rate

(%)
Best Mean Med. Worst Min. Mean Med. Max.

VAE 280 35 128 674 713 844 1 2.4 2 5

GA 18 2 128 229 237 264 1 2.2 2 4
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Table C.6: Statistical Analysis of the Last Generation Scores for the VAE and the
GA Models.

P-Values
Tests VAE GA

Shapiro-Wilk 3.488029499563658e-14 3.983942552538331e-20
Kruskal-Wallis 8.669714305334742e-251

VAE, GA
Mann-Whitney U 4.34280509441259e-251
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(a) VAE performance histogram.
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(b) GA performance histogram.

Figure C.17: Histograms of the VAE and the GA score results for the last generation.
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Figure C.18: Box plots of the VAE and the GA score results for the last generation
on the same scale.


	Acronyms
	Definitions
	Introduction
	Problem Statement
	Contributions
	Related Work
	Similar Research
	Tangentially Related Research
	Deviations from Past Research


	System Design
	Deep Learning and Evolutionary Computation
	Fitness Landscape
	Variational Auto-Encoder
	Evolutionary Operations
	Genetic Algorithm

	The Data
	Data Preparation
	Data Format and Amalgamation
	Additional Considerations
	Modification Summary

	Random Sequence Generation
	RNA Secondary Structure Prediction
	Tertiary Structure & Docking Prediction
	Score Functions
	Native Rosetta Score Function
	Constraint Score Function
	Implementation and Considerations

	Multiprocessing
	Development and Acknowledgments
	Parameters
	Rosetta Parameters
	Dataset Preparation Parameters
	Machine Learning Parameters


	Experiments
	Chosen Model Parameters
	Constraint Function Parameters
	Dataset Preparation Script Parameters
	DAPTEV Model Parameters

	Results
	VAE Performance
	Score Comparisons
	Secondary Goal
	Statistical Analysis


	Discussion
	Observations
	Limitations

	Conclusion
	Future Work

	Bibliography
	Appendices
	Installation
	Rosetta File Settings
	Additional Experimental Analysis

