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1. INTRODUCTION

Dynamical models consisting of a systems of ”reaction” differential equations are com-

monly used in chemistry, there the differential equations are called reaction equations.

In chemistry reaction differential equations are induced by chemical reactions networks

via reaction kinetic principles, such as mass action kinetics [1]–[2]. In [3]–[4] the au-

thor focuses his attention on growth functions (models) formulated as solutions to

differential equations or systems of differential equation. For some modifications and

extensions, see [5]–[11]. In the field of epidemiology [12]–[13], several mathematical

approaches aiming to describe the infectious disease spread have been employed. The

classic Kermack–McKendrick [14]–[16] SIR (Susceptible–Infectious–Recovered) model

can be formulated as a chemical reaction network by [17]:

S + I
k1
K

−→ 2I

I
k2
−→ R.

(1)

The reaction network (1) induces the following differential system:






















ds

dt
= −

k1
K
s(t)i(t)

di

dt
= k1

K
s(t)i(t) − k2i(t)

dr

dt
= k2i(t)

(2)

where s(t) - number of individuals susceptible but not yet to infected with an infectious

disease at time t; i(t) - number of infected individuals at time t and can spread the

infectious disease to susceptible individuals; r(t) - number of recovered (or deceased)

individuals at time t and assumed to be immune for life; k1 - transmission rate through

the exposure of the infectious disease; k2 - rate of recovering from the infectious disease

and 1
k2

is the mean period during which an infected individual can pass it on. In the

SIR model, the determination of the basic reproduction number

R̃ =
k1

k2
(3)

is a challenging task for COVID-19 infectious disease. In [18] the authors discussed the

following SIR model with ”intervention factor”:






















ds

dt
= −

(1−ρ)k1
K

s(t)i(t)

di

dt
= (1−ρ)k1

K
s(t)i(t)− k2i(t)

dr

dt
= k2i(t)

(4)
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where ρ ∈ [0, 1] is ”intervention parameter”. For some models, see [19]–[23].

In this paper we consider a new modification of the SIR model with ”intervention

polynomial factor”. A new reproduction number is introduced. If desired, this new

model can be assigned to the ”class of dynamic models” for the analysis of epidemio-

logical diseases. A similar modification is proposed for the classic SEIR and general-

ized G-SEIR models. Numerical examples, illustrating our results are given using CAS

Mathematica.

2. MAIN RESULTS

2.1. A NEW MODIFICATION OF THE SIR MODEL WITH

”INTERVENTION POLYNOMIAL FACTOR” (SIR-IPF)

We consider the following reaction network:

S + I
f(t)
K

−→ 2I

I
g(t)
−→ R.

(5)

The reaction network (5) induces the following differential system:



























ds(t)

dt
= −

f(t)
K

s(t)i(t)

di(t)

dt
= f(t)

K
s(t)i(t)− g(t)i(t)

dr(t)

dt
= g(t)i(t)

(6)

where

f(t) =

m
∑

i=1

k2i−1t
i−1; g(t) =

m
∑

i=1

k2it
i−1.

From the relation

lim
t→∞

f(t)

g(t)
=

k2m−1

k2m
(7)

we see, that the new reproduction number has the form:

R̃new =
k2m−1

k2m
. (8)

Evidently, for m = 1, we get the classic Kermack–McKendrick SIR model (2).

Our main goal was to offer to the attention of specialists and other tools for possible

simulation and playback of scenarios in the analysis of infectious disease spread using
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Figure 1: K = 1000; k1 = 0.2; k2 = 0.071; s0 = s(0) = 995; i0 = i(0) = 5;

r0 = r(0) = 0 [18].

a new technique - ”intervention polynomial factor” and the resulting ”reproduction

numbers”.

2.2. SIMULATIONS USING (SIR-IPF) MODEL

The new SIR model with ”intervention polynomial factor” (SIR-IPF) can be used

successfully to model and play different scenarios for the distribution of COVID-19. For

the analysis of COVID-19 cases in India, in [18] the authors solved system of differential

equations (2) for K = 1000; k1 = 0.2; k2 = 0.071; s0 = s(0) = 995; i0 = i(0) = 5;

r0 = r(0) = 0 (see, Fig. 1).

Consider the model (SIR–IFP) for fixed m = 3 and K = 1000; k1 = 0.2; k3 = 0.05;

k5 = 0.005; k2 = 0.071; k4 = 0.005; k6 = 0.002; s0 = s(0) = 995; i0 = i(0) = 5;

r0 = r(0) = 0. The solutions are visualized on Fig. 2 in the interval (0, 200). For fixed

m = 2 and K = 1000; k1 = 0.2; k3 = 0.01; k2 = 0.071; k4 = 0.01; s0 = s(0) = 995;

i0 = i(0) = 5; r0 = r(0) = 0 see, Fig. 3.

If desired, this new model can be assigned to the ”class of dynamic models” for the

analysis of epidemiological diseases.
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Figure 2: The model (SIR–IFP) for fixed m = 3 and K = 1000; k1 = 0.2;

k3 = 0.05; k5 = 0.005; k2 = 0.071; k4 = 0.005; k6 = 0.002; s0 = s(0) = 995;

i0 = i(0) = 5; r0 = r(0) = 0.

Figure 3: The model (SIR–IFP) for fixed m = 2 and K = 1000; k1 = 0.2;

k3 = 0.01; k2 = 0.071; k4 = 0.01; s0 = s(0) = 995; i0 = i(0) = 5; r0 = r(0) = 0.
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2.3. A NEW MODIFICATION OF THE SEIR MODEL WITH

”INTERVENTION POLYNOMIAL FACTOR” (SEIR-IPF)

Other mathematical models can be used to investigate the spread of diseases, such as

SEIR. MSEIR, SEIRS and MSEIRS [19]–[23]. For the SEIR (Susceptible–Exposed–

Infectious–Recovered) model, the corresponding system of differential equations is:







































ds(t)

dt
= −

f(t)
K

s(t)i(t)

de(t)

dt
= f(t)

K
s(t)i(t)− σe(t)

di(t)

dt
= σe(t)− g(t)i(t)

dr(t)

dt
= g(t)i(t).

(9)

Here the term f(t)
K

i(t) expresses the rate at which new individuals (as a proportion

of the total population size) are infected by the already infectious i(t) individuals; f(t)

is called transmission rate of the infection; g(t) is the removal rate. For some details, see

[20]. In [20] the authors developed a novel SEIR spline model for analysis of coronavirus

infection. Here we will consider a modification of the model (9) with a special choice of

the functions f(t) and g(t). More precisely, f(t) and g(t) are polynomials of the form:

f(t) =

m
∑

i=1

k2i−1t
i−1; g(t) =

m
∑

i=1

k2it
i−1.

We will call the new modification SEIR model with ”intervention polynomial factor” –

(SEIR-IPF). Different scenarios for parameter variation and fixed degree of polynomials

f and g – (m = 2) using the (SEIR-IPF) model are given in Fig. 4.

2.4. A LOOK AT THE GENERALIZED SEIR MODEL PROPOSED BY

PENG, YANG ET AL. [?]

A generalized SEIR model is proposed by Peng, Yang et al. in [25] (see, Fig. 5). In the

considered system of differential equations, the functions λ(t) and k(t) are respectively

increasing and decreasing in the fixed time interval. A modification of the SEIR model

with a special choice of decreasing function is considered by Anguelov et al. in [24].

Here we will consider a modification of the model with a special choice of the

functions λ(t) and k(t). More precisely, λ(t) and k(t) are polynomials of the form:

λ(t) =

m
∑

i=1

k2i−1t
i−1; k(t) =

m
∑

i=1

k2it
i−1.



A NEW MODIFICATIONS OF THE SIR/SEIR MODELS... 21

Figure 4: Different scenarios for parameter variation and fixed degree of poly-

nomials f and g - (m = 2) using the (SEIR-IPF) model.

We will call the new modification G-SEIR model with ”intervention polynomial factor”

– (G-SEIR-IPF).

We will explicitly note that in this new formulation the model has many degrees of

freedom (the coefficients of the polynomials λ(t) and k(t) ), and this makes it attractive

in the study and simulation of such dynamic models.

For fixed m = 3 and K = 1000; k1 = 100; k3 = 1; k5 = 0.1; k2 = 100; k4 = −0.12;

k6 = −0.008; s0 = 800; e0 = 40, i0 = 80; q0 = 20, r0 = 20, d0 = 20, p0 = 20, β = 0.1,

α = 0.15, γ = 0.08, δ = 0.1 the simulation is depicted on Fig. 6.

For fixed m = 3 and K = 800; k1 = 100; k3 = 0.2; k5 = 0.1; k2 = 120; k4 =

0.1; k6 = −0.005; s0 = 500; e0 = 80; i0 = 20; q0 = 30; r0 = 100; d0 = 20; p0 = 50; β =

0.2; α = 0.3; γ = 0.1; δ = 0.15 the simulation is depicted on Fig. 7.
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Figure 5: The generalized SEIR model by Peng, Yang et al. [25].

Figure 6: The simulation using (G-SEIR-IPF) model.
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Figure 7: The simulation using (G-SEIR-IPF) model.

2.5. A LOOK AT THE SEIRDP (SUSCEPTIBLE-EXPOSED-

INFECTED-RECOVERED-DEATH-INSUSCEPTIBLE (P)) MODEL

[?]

The SEIRDP (Susceptible, Exposed, Infected, Recovered, Death, Insusceptible (P))

model can be described by [26] (see, Fig. 8):






































































ds(t)

dt
= −

β
K
s(t)i(t)− αs(t)

de(t)

dt
= β

K
s(t)i(t)− γe(t)

di(t)

dt
= γe(t)− λ(t)i(t) − k(t)i(t)

dr(t)

dt
= λ(t)i(t)

dd(t)

dt
= k(t)i(t)

dp(t)

dt
= αs(t)

(10)

where

- S(t): Susceptible population;

- E(t): Population who are exposed to the virus, but not yet infectious in latent

period;

- I(t): Population who get laboratory positive confirmation and with infectious

capacity;

- R(t): Recovery cases;

- D(t): Death number;
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Figure 8: The generalized SEIRDP model by Lounis and Azevedo [26].

- P (t): Insusceptible cases;

- α : Protection rate (include people exposed to the infectious patients and people

exposed to the asymptomatic patients);

- β : Infection rate;

- γ−1 : Average latent time;

- λ(t): Coefficient used in the time-dependent cure rate;

- k(t): Coefficient used in the time-dependent mortality rate.

In [26], the authors consider the functions (see, Fig. 9):

λ(t) = λ0

1+e−λ1(t−λ2)

k(t) = k0e
−k1t

(11)

2.6. A NEW MODIFICATION OF THE SEIRDP MODEL WITH

”INTERVENTION POLYNOMIAL FACTOR” (SEIRDP-IPF)

From methodological aspects, here we will consider a modification of the model with a

special choice of the functions λ(t) and k(t).



A NEW MODIFICATIONS OF THE SIR/SEIR MODELS... 25

Figure 9: Plot of recovery and mortality rates [26].

Figure 10: Plot of recovery and mortality rates (the new functions λ∗(t) and

k∗(t)) .
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More precisely, λ∗(t) and k∗(t) are polynomials of the form:

λ∗(t) =
m
∑

i=1

k2i−1t
i−1

k∗(t) =

m
∑

i=1

k2it
i−1.

(12)

We will call the new modification SEIRDP model with ”intervention polynomial factor”

– (SEIRDP-IPF).

For example, let

λ∗(t) = 0.05 + 0.006t − 0.00015t2 − 0.0000001t3

k∗(t) = 0.5 − 0.024t − 0.0008t2 + 0.00004t3

(see, Fig. 10.).

For fixed K = 1, λ∗(t) and k∗(t) and

β = 0.1; α = 0.15; γ = 0.08; s0 = 0.6; e0 = 0.2; i0 = 0.1;

r0 = 0.05; d0 = 0.05; p0 = 0

the simulation is depicted on Fig. 11.

For fixed K = 1, λ∗(t) and k∗(t) and

β = 0.1; α = 0.15; γ = 0.08; s0 = 0.9; e0 = 0.06; i0 = 0.01;

r0 = 0.01; d0 = 0.01; p0 = 0.01

the simulation is depicted on Fig. 12.

3. CONCLUSION.

In the last 2 years several thousand publications have appeared, incl. and these arti-

cles in arXiv.org on SIR/SEIR/GSEIR models. Of course, the SIR-IPF/SEIR-IPF/G-

SEIR-IPF/SEIRDP-IPF models are very sensitive with respect to the coefficients ki of

the polynomials. One of the good hits in our development is that in some private cases

we get some classic and newer SIR/SEIR/GSEIR models. For example, we develop

a novel modification of the classic Kermack–McKendrick SIR (Susceptible–Infectious–

Recovered) model with new reproduction numbers ρ0, ρ1, . . . ρl in appropriate intervals
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Figure 11: The simulation using (GSEIRDP-IPF) model.

Figure 12: The simulation using (GSEIRDP-IPF) model.
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(t0, t1), (t1, t2), . . . (tl, tl+1). The new (SIR-IPF) can be used successfully to model and

play different scenarios for the infectious disease spread. Our research is a natural

continuation of previous results in approximating specific data of a strictly exponential

nature (e.g., COVID-19 Bulgaria, Cuba, China, South Korea, etc.) using modified

logistics and other models in which the typical reaction constants were replaced by

”polynomial variable transfer” and showed good results in performing the regression

analysis. We note that the choice of ”input functions”, especially for the GSEIR model,

is quite specific and is almost subject to the requirement for these functions to be in-

creasing and decreasing respectively in a fixed time interval. Only in the already cited

article [20] the classic technique is used - spline functions! Our article opens up pos-

sibilities for generating a number of ”reproduction numbers” for characteristic time

intervals and simulating and playing different scenarios. We will explicitly note that

the article contains the explorations only of a model nature and much more complex

issues related to the resistance and stability of the solution of such stratified systems

differential equations (especially for the GSEIR model) can be considered as open, un-

til specialists working in the field of ”reaction kinetics mechanisms and models” decide

that there is reason to use our modest explorations. It is planned to upgrade the Dis-

tributed Platform for e-Learning - DisPeL [27]–[28], including a specialized module for

simulation of chemical kinetics, module for solving nonlinear differential equations and

verifying the mass action balance and module for simulation by the introduced new

reproduction number.
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