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Abstract. Automatic recognition of pollen bearing bees can provide im-
portant information both for pollination monitoring and for assessing the
health and strength of bee colonies, with the consequent impact on peo-
ple’s lives, due to the role of bees in the pollination of many plant species.
In this paper, we analyse some of the Convolutional Neural Networks
(CNN) methods for detection of pollen bearing bees in images obtained
at hive entrance. In order to show the influence of colour we preprocessed
the dataset images. Studying the results of nine state-of-the-art CNNs,
we provide a baseline for pollen bearing bees recognition based in deep
learning. For some CNNs the best results were achieved with the origi-
nal images. However, our experiments showed evidence that DarkNet53
and VGG16 have superior performance against the other CNNs tested,
with unsharp masking preprocessed images, achieving accuracy results
of 99.1% and 98.6%, respectively.

Keywords: Pollen bearing bees · Convolutional neural network · Deep
learning.

1 Introduction

Honey bees and other insect pollinators are an essential component of ecosys-
tems, being necessary for the successful reproduction of a wide variety of flower-
ing plants, including agricultural crops [8]. The recognition of bee foraging be-
haviour brings an important input to identify the colony balance and health [4].

The scientific observation of honey bees activities within and outside their
colonies began nearly a century ago [7]. In this seminal work, Lundie referred to
the extreme difficulty to obtain accurate records by counts made at the entrance
of the hive. Therefore, he claimed the use of some mechanical means to automat-
ically register the exit and return of the bees over long periods of time. Despite
his visionary proposals, the traditional technique still remains the human ob-
servation and manual annotation, as it is the only approach that enables the
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extraction of a wide range of behaviours available to bee specialists [1]. As such,
developing image and video acquisition at the entrance of the hive, and recogniz-
ing bees bearing pollen, enables automatizing bee foraging behaviour analysis,
which is of great interest for ecological and ethological studies [2,10,13].

Pattern recognition from images has a long and successful history. In recent
years, deep learning, and in particular Convolutional Neural Networks (CNNs),
has become the dominant machine learning approach in the field of computer
vision and, to be specific, in image classification and recognition. While still
being a classification based on a combination of key image features, this new
approach involves a model determining and extracting the features itself, rather
than these being predefined by human analysts. Since the number of labelled
pollen bearing bees images in the publicly available datasets is too small to
train a CNN from scratch, transfer learning can be employed.

This paper analyzes the performance of 9 state-of-the-art deep learning CNNs
(VGG16, VGG19, ResNet50, ResNet101, InceptionV3, Inception-ResNetV2, Xcep-
tion, DenseNet201 and DarkNet53) in classifying images of pollen bearing and
non-bearing bees. As colour is a priori a relevant feature for the presence of
pollen, CNNs were trained and tested using different colour image preprocessing
techniques. Besides original images, grayscale images were used, as well as Con-
trast Limit Adaptive Histogram Equalization and Unsharp Masking techniques.

The rest of the paper is organized as follows: in the next section, related
work is presented; Section 3 provides an overview of the CNNs used; Section 4
describes the proposed approach and the experimental setup; this is followed by
the results analysis in Section 5, and conclusions and future work in Section 6.

2 Related Works

In this section, we review some papers that provide pollen bearing bees recog-
nition systems and define computer vision techniques as baselines.

Babic [2] used background subtraction, colour segmentation and morphology
methods for honey bees segmentation. Classification of pollen bearing bees and
bees that do not have pollen load is done using a nearest mean classifier, with
a simple descriptor consisting of colour variance and eccentricity features. This
achieved a correct classification rate of 88.7% with 50 training images per class.

Stojnić [14] proposed an approach that starts by segmenting honey bees
from images using two segmentation methods based on colour descriptors. Then,
Support Vector Machines (SVM) are trained on few variations of VLAD and
SIFT descriptors to classify the images into two classes (with or without pollen).
Finally, the classification results are evaluated using Area Under a Curve (AUC),
obtaining a score of 91.5% for a dataset of 1000 images.

Rodriguez [10] proposed a colour vision system for detecting pollen-bearing
bees, using a Convolutional Neural Network (CNN) for detecting pollen on bees
entering the hive. To highlight most of the pollen balls in the dataset, the colour
information is filtered using a Gaussian model. Using three models of supervised
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classification (KNN, Naive Bayes and SVM), and three deep CNN architectures
(VGG16, VGG19 and ResNet50), accuracy varies from 50% to 96%.

Sledevic [13] presented the classification of images with pollen bearing bees
using a simple scratched CNN with a sufficient configuration required for fu-
ture implementation on a low-cost FPGA. The three hidden layer CNN was
selected as a trade-off between performance and number of required arithmetic
operations, yielding an accuracy of 94%.

Yang and Collins [17] applied deep learning techniques to pollen sac detection
and measurement on honeybee monitoring video. The pollen sac detection model
is built using a faster RCNN architecture with VGG16 core network. This pollen
detection model is then combined with a bee tracking model, so that each flying
bee tracked on successive video frames is identified as bearing pollen or not. The
classification score obtained was 93%.

3 Convolutional Neural Networks Architectures

Convolutional Neural Networks (CNN) is a type of deep learning model for pro-
cessing data with a grid pattern (e.g., images), inspired by the organization of
animal visual cortex and designed to automatically and adaptively learn spa-
tial hierarchies of features through back-propagation by using multiple building
blocks, like convolution layers, pooling layers, and fully connected layers from
low to high level patterns. It is especially suited for image processing as it uses
2D hidden layers to convolve the features with the input data. The main strength
of CNN is that it suppresses the need for feature extraction by automatically
extracting the more discriminant features of a set of training images.

Next, we provides an overview of the main features of the CNNs used in this
study. We choose nine popular architectures due to their performance on several
classification tasks as well as on ImageNet dataset [11].

VGG16 and VGG19 architectures [12] are 16 and 19 layers deep networks,
respectively, on 224 × 224 RGB images input. They use 3 × 3 kernels in every
convolution layer. They have five convolutional blocks where the first two blocks
have two convolution layers and one max-pooling layer in each block. The re-
maining three blocks of the network have three fully-connected layers equipped
with the rectification (ReLU) non-linearity and the final softmax layer. The main
difference between VGG16 and VGG19 is the number of convolutional layers.

ResNet50 and ResNet101 [5] also apply to 224 × 224 RGB image inputs,
and have some design similarities with the VGG architectures with convolutional
layers with 3× 3 filters with convolution stride of one pixel, except the first con-
volutional block, whose filter is 7 × 7 with convolution stride of two pixels. The
batch normalization is adopted right after each convolution layer and before ac-
tivation. These architectures introduce the residual block whose aim is to address
the degradation problem observed while training the networks. In the residual
block the identity mapping is performed, adding the output from the previous
layer to the non-linear layer ahead. The network finishes with a global average
pooling layer and a fully-connected layer with the softmax function.
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In Inception-V3 [16], the first three convolutional layers have 3 × 3 filters
with convolution strides, respectively, of two, one, and one pixel. These convo-
lutional layers are followed by max-pooling and other three convolutional layers
with 3× 3 filters. This network has three inception modules where the resulting
output of each module is the concatenation of the outputs of three convolutional
filters with different sizes. The goal of these modules is to capture different visual
patterns of different sizes and approximate the optimal sparse structure. Finally,
before the final softmax layer, an auxiliary classifier acts as a regularization layer.

Inception-ResNet-V2 [15] combines residual connections and the Incep-
tion architecture. Since Inception networks tend to be very deep, they are hard
to train because of the notorious vanishing gradient problem - as the gradient is
back-propagated to earlier layers, repeated multiplication may make the gradi-
ent indefinitely small, so Inception-ResNet-V2 replaced the filter concatenation
stage of the Inception architecture with residual connections as in ResNet.

The Xception architecture [3] has an initial convolutional layer with 3 × 3
filters with a convolution stride of 2 pixels on 299 × 229 RGB image input. The
architecture has three blocks in a sequence where are carried out convolution,
batch normalization, ReLU, and max pooling operations. Besides, at the output
of each block, residual connections are made as in ResNet50.

DenseNet201 [6] is built from dense blocks and pooling operations, where
each dense block is an iterative concatenation from all previous layers. Within
those blocks, the layers are densely connected together: each layer gets the input
from all preceding layers and passes on its own feature maps to all subsequent
layers. This extreme reuse of residuals creates deep supervision because every
layer receives more supervision from the previous layer and thus the loss function
will react accordingly which makes it a more powerful network. Like on ResNet,
the first block has 7×7 filters with a convolution stride of two pixels on 224×224
RGB images input; however, max-pooling in this convolutional block is carried
out over a 3 × 3 pixel window.

Darknet53 [9] has 53 layers deep and acts as a backbone for the YOLOv3
object detection approach for a 256×256 image input. This network uses succes-
sive 3 × 3 and 1 × 1 convolutional layers with shortcut connections (introduced
by ResNet to help the activations propagate through deeper layers without gra-
dient vanishing) to improve the learning ability. Batch Normalization is used to
stabilize training, speed up convergence, and regularize the model batch.

3.1 Transfer Learning

Constraints of practical problems, such as the limited size of training data, refrain
the performance of deep CNNs, trained from scratch, to be satisfactory. Since
there is so much work that has already been done on image recognition and
classification, we can use transfer learning technique to solve the problem. With
transfer learning, instead of starting the learning process from scratch, we can
start from patterns that have been learned when solving a similar problem.

In deep learning, transfer learning is a technique whereby a CNN model is first
trained on a large image dataset with a similar goal to the problem that is being
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solved. One or more layers from the trained model are then used in a new CNN,
trained with sampled images for the current task. This way, the learned features
in re-used layers may be the starting point for the training process and adapted
to predict new classes of objects. Transfer learning has the benefit of decreasing
the training time for a CNN model and can result in lower generalization error
due to the small number of images used in the training process.

The weights in re-used layers may be used as a starting point for the training
process and adapted in response to the new problem. This usage treats transfer
learning as a type of weight initialization scheme. This may be useful when the
first related problem has a lot more labelled data than the problem of interest
and the similarity in the structure of the problem may be useful in both contexts.

4 Pollen Bearing Bees Dataset

The PollenDataset1 [10] used in this work was created in 2018 for classifying
pollen bearing honeybees obtained at hive entrance. This dataset features high
resolution images (180 × 300) (as illustrated in Figure 1) of segmented honey
bees with a total of 714 labelled images (369 Pollen and 345 Non-Pollen bearing).

Fig. 1. PollenDataset samples: bees with (1st row) and without (2nd row) pollen bag.

As described in [10], the images were extracted and manually annotated
from videos using a protocol defined to avoid near-duplicate samples, remove

1 https://github.com/piperod/PollenDataset
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misaligned samples and ensure a balanced and representative dataset. The ori-
entation of the bees was compensated to ensure in all image samples that the
bee is facing upwards. The authors did not preprocessed the images.

5 Experimental Setup

The nine CNN architectures adopted were set up to use the fine-tuning strategy
as well as the stochastic gradient descent with momentum optimizer at their de-
fault values; also, dropout rate was set at 0.5, early-stopping was used to prevent
over-fitting, and the learning rate was established at 0.0001. Additionally, the
CNNs batch size was configured to be 12 and they were trained with 30 epochs.
This specific batch size was chosen to consume less memory and train the CNNs
faster since it allows to update the network weights more often. During training,
all images go through a heavy data augmentation which includes horizontal and
vertical flipping, 360o random rotation, rescaling factor between 70% and 130%,
and horizontal and vertical translations between −20 and +20 pixels. All CNNs
were trained using the MatConvNet MATLAB toolbox in a virtual machine with
a pair of NVIDIA RTX 2080 Ti GPUs attached, hosted at the CeDRI cluster.

We adopted 5-Fold Cross-Validation on the dataset, such that in each fold
the dataset was split on 70% (499 images) for training and 30% (215 images) for
test, allowing the CNN models to be iteratively trained and tested on different
sets. Since the testing set is composed of images not seen by the model during the
training step, this allows to anticipate the CNN behaviour against new images.

5.1 Colour preprocessing techniques

As colour is a priori a relevant feature for the presence of pollen, we used different
colour image preprocessing techniques, as exemplified in Fig. 2. Grayscale images
where used to remove the colour information. Contrast limit adaptive histogram
equalization (CLAHE) improved the low contrast issue, without producing noise,
by changing the slope of the function that is relating input image intensity
value to desired resultant image intensities. Unsharp masking is a linear image
processing technique which sharpens the image. The sharp details are identified
as a difference between an original image and its blurred version.

6 Results and Discussion

This section shows the performance of the deep learning networks trained on
individual bee images. Each network was applied for pollen bearing bee detection
on the 215 images validation set (111 pollen bee images and 104 non-pollen bee
images). To study the influence of colour features in the recognition process,
besides using the original images, CNNs were also trained and tested with the
results produced by different colour image preprocessing techniques applied on
those images: grayscale images, local contrast enhancing and unsharp masking.
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(a) (b) (c) (d)

Fig. 2. Colour image preprocessing. (a) Original version. (b) Grayscale version. (c)
After contrast limit adaptive histogram equalization. (d) After unsharp masking.

The training step produces a network model for pollen bearing bee detection
images. The network is applied for pollen detection on the validation images pro-
ducing correct classification (true positive or true negative) results and incorrect
classification (false positive or false negative) results, as shown in Fig. 3.

(a) (b) (c) (d)

Fig. 3. Example of pollen recognition results. (a) A true positive result. (b) A true
negative result. (c) A false positive result. (d) A false negative result.

An interesting observation is that the false negative samples have smaller
pollen bags than the true positive samples, which confirms the intuition that the
reduced size of pollen bags increases the difficulty of the classification.

The classification results for Precision, Recall, F1-score and Accuracy for the
nine state-of-the-art CNN architectures considered, with different colour pre-
processing techniques, are presented in Table 1. The numbers exhibited in bold
indicate the best F1-score and Accuracy results obtained for each architecture.

The highest F1-score and Accuracy, both of 99.1%, were achieved by the
DarkNet53 architecture with the unsharp masking preprocessing technique, show-
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Table 1. Classification results (in percentage) through 5-Fold Cross-Validation on the
test set for different CNNs and preprocessing techniques considered.

CNN Original Segmented Seg. Equal. Seg. CLAHE

VGG16 94.8 99.1 96.9 96.7

VGG19 98.2 98.2 98.2 98.1

ResNet50 86.6 99.1 92.4 91.6

ResNet101 94.7 96.4 95.5 95.4

Inception V2 92.0 93.7 92.9 92.6

Inception V3 98.0 87.4 92.4 92.6

Xception 86.0 82.9 84.4 84.2

DenseNet201 95.6 97.3 96.4 96.3

DarkNet53 99.1 96.4 97.7 97.7

ing that the rates of true positives, true negatives, false positives and false neg-
atives did not present large distortions. On the opposite extreme, the Xception
model achieved the lowest results of all CNNs, in all the experiments.

The generality of the CNNs used in this study considerably improve the
results presented in [10] for the same dataset. In that work, researchers obtained
the best results with an accuracy of 96%. However, they removed several images
from the dataset without given any motives or information on that removal.

The validation score obtained with the DarkNet53 network for the images in
the test dataset has a mean value of 96.7% with a variance of 1.2% for non-pollen
images, and a mean of 98.8% with a variance of 0.4% for pollen images. This
network produces only one false positive and one false negative with scores of
96.3% for the false positive and 68.7% for the false negative.

The grayscale preprocessing technique produced the worst evaluation results
in all networks due to its lack of colour information, achieving the best result
with ResNet101 with an Accuracy of 94.4%.

The CLAHE approach achieved good results, but its increasing of brightness
enhanced the yellow regions of the bees body, which can be confused with pollen
bags, thus biasing the training process.

As the unsharp masking technique enhances image details, this may help the
training process, allowing the learning of different image characteristics. Thus,
this technique achieved the best results for most of the networks, and good results
even when the networks produced the best results for the original images.
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Although the number of images in the dataset is still low, we foresee increas-
ing the classification capacity of the tested approaches by expanding the number
of images available via data augmentation with rotation, translation and scaling.

Also, the high values for the four evaluation metrics in all CNNs show that
the number of correctly identified images is high when compared to the number
of tested images. We believe that a 99.1% value for all the four evaluation metrics
is enough to build an automatic classification system of pollen bearing bees, since
the visual classification of that bees performed by humans is a hard task.

7 Conclusion

In this paper, an automated pollen bearing bee recognition approach is proposed.
To promote research in the automation of pollen bearing bees classification,
we report performance for nine pre-trained CNN topologies, applied in four
different colour preprocessing techniques. We identify evidence that DarkNet53
has superior performance against other CNNs tested, specially with unsharp
masking preprocessing technique, achieving an F1-score and Accuracy of 99.1%.
VGG network produces the best evaluation results for original images with an
Accuracy of 98.2% against the 97.7% of DarkNet53. This study proves that using
the CNN architecture defined for the PollenDataset image collection, allows good
classification results when used in a transfer learning approach. In the future,
we plan to combine different CNNs in order to further improve the performance.
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13. Sledevič, T.: The application of convolutional neural network for pollen bearing bee
classification. In: 2018 IEEE 6th Workshop on Advances in Information, Electronic
and Electrical Engineering (AIEEE). pp. 1–4 (2018)
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