
Value-Focused Investigation into Programming
Languages Affinity
Alvaro Costa Neto !

Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Barretos, Brazil

Cristiana Araújo !Ï

Centro ALGORITMI, Departamento de Informática,
University of Minho, Campus Gualtar – Braga, Portugal

Maria João Varanda Pereira ! Ï

Research Centre in Digitalization and Intelligent Robotics,
Polythechnic Insitute of Bragança, Portugal

Pedro Rangel Henriques !Ï

Centro ALGORITMI, Departamento de Informática,
University of Minho, Campus Gualtar – Braga, Portugal

Abstract
The search for better techniques to teach computer programming is paramount in order to improve
the students’ learning experiences. Several approaches have been proposed throughout the years,
usually through technical solutions such as evaluation systems, digital classrooms, interactive lessons
and so on. Personal factors, such as affinity, have been largely unexplored due to their qualitative
and abstract nature. The results of a preliminary survey on how and why affinity is created between
programmers and their favorite languages, conducted on a master’s degree class at Universidade
do Minho, showed unexpected results as to which languages became favorites and the possible
reasons for the students’ choices. Aiming at further exploration on this topic and continuation of
this research, the Value-Focused Thinking method was applied in order to construct a more complex,
in-depth survey. This value-oriented method kept focus under control and even raised a handful of
opportunities to improve the research as a whole. This paper describes the Value-Focused Thinking
method and how it was applied to construct a new and deeper computer programming education
survey to understand affinity with languages.

2012 ACM Subject Classification Social and professional topics → Computing education; Software
and its engineering → General programming languages

Keywords and phrases Computer Programming, Programming Languages, Affinity, Education,
Learning, Value-Focused Thinking

Digital Object Identifier 10.4230/OASIcs.ICPEC.2022.1

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/05757/2020 and UIDB/00319/2020.

1 Introduction

Being an inherently intricate process, learning computer programming is widely accepted as
being a complex and difficult task. Technical approaches applied to research on how to teach
and learn computer programming date many decades ago [6, 1, 2], and has kept high interest
in the academic field [7, 18, 14, 3, 9, 10] ever since. Personal and contextual factors also play
important roles in learning and should be considered when teaching computer programming.
Pedagogical research has shown for more than a century that these personal factors are
influential to the teaching-learning process [12, 17, 8, 4] and should be taken into account at
all times.

© Alvaro Costa Neto, Cristiana Araújo, Maria João Varanda Pereira, and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY 4.0

Third International Computer Programming Education Conference (ICPEC 2022).
Editors: Alberto Simões and João Carlos Silva; Article No. 1; pp. 1:1–1:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alvaro@ifsp.edu.br
https://orcid.org/0000-0003-1861-3545
mailto:decristianaaraujo@hotmail.com
https://epl.di.uminho.pt/~cristiana.araujo/
https://orcid.org/0000-0002-9656-3304
mailto:mjoao@ipb.pt
http://www.ipb.pt/~mjoao/
https://orcid.org/0000-0001-6323-0071
mailto:prh@di.uminho.pt
https://www.di.uminho.pt/~prh/
https://orcid.org/0000-0002-3208-0207
https://doi.org/10.4230/OASIcs.ICPEC.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


1:2 Value-Focused Investigation into Programming Languages Affinity

Affinity to programming languages, as a personal factor, may play an important role
in the teaching-learning process, as indicated in a previous survey conducted in 2021 with
a class of master’s degree students [13]. Those preliminary results showed that affinity is
more complex than previously assumed and that a deeper, more structured study should be
conducted. A value-focused approach was used in order to better organize the construction
of the survey for this new study, yelding a strongly focused questionnaire.

This paper starts with a brief presentation of a former preliminary study on affinity to
programming languages, but focuses on the construction of a new survey through the Value-
Focused Thinking method. The new survey will be used in the near future, aiming to further
understand how affinity to a programming language is created. The overall structure of this
article is composed of six sections: the introduction discusses which factors may influence the
learning process and how they may be categorized. The second section presents the initial
investigation, including a preliminary study about affinity to programming languages and
a small previous survey that showed interesting results. The third section gives a general
explanation of Value-Focused Thinking (VFT), a decision making method used to structure
the new survey. Section four explains how Value-Focused Thinking was directly applied to
the construction of the new survey. Section five lists the final structure of the new survey
and the expected results. The final section concludes this paper and lists the next steps that
shall be taken to apply the new survey on affinity to programming languages.

2 Background and Previous Work

Assuming that personal factors are relevant to students – as previously stated – and focusing on
the affinity that is commonly observed among programmers (both students and professionals)
towards specific programming languages, it would be reasonable to investigate how it
is established and which role it plays on the learning process. In order to initiate this
investigation, a preliminary study was conducted.

2.1 Lecture and Preliminary Study
In order to better understand what role affinity takes in the learning process and how it is
constructed, a preliminary study was conducted with twenty three students of a Masters’
degree class in Computer Engineering at Universidade do Minho [13]. The study consisted
of a lecture about teaching and learning computer programming, a quick survey during the
lecture, and a small questionnaire with a few questions about programming languages, their
learning experiences, and which languages they prefered.

The lecture presented and discussed which factors might be relevant to the learning
process and how these factors could be applied to improve the students’ experiences. During
the lecture, a quick survey was conducted, based on snippets of source code that printed
a few numbers of the Fibonacci sequence. These snippets were written in seven different
languages – BASIC, Lisp, C, Java, Python, Ruby, and Swift – and were shown sequentially
at first, and then simultaneously for comparison purposes.

Since it would be impractical – and probably confusing – to show all possible combinations,
only a few comparisons were made. Each combination tried to explicate either differences
or similarities in their programming languages, encouraging students to consider unusual
characteristics that could influence their affinity to one of the languages. As an example,
when comparing two different versions of Lisp code, the goal was to highlight the impact
caused by the use of the natural coding style for a certain language. This would allow the
students to consider nuances beyond the plain syntax definition of a language.



A. Costa Neto, C. Araújo, M. J. V. Pereira, and P. R. Henriques 1:3

Students were then promptly asked to vocalize their preferred languages and the answers
showed C, Java and Haskell1 as the three highest ranked choices. This question was proposed
and read during the lecture, and students answered directly without any kind of written form.

After the lecture, the students were then asked to answer a small questionnaire containing
three questions:

1. In a range of very low to very high, how important is the language choice for learning
computer programming? Justify your answer;

2. Which factors – presented in the lecture – are most relevant and influential to learning
computer programming?

3. Which languages would you choose to teach computer programming: BASIC, Lisp, C,
Java, Python, Ruby, Swift, or some other language? Justify your answer.

The answers to the first question were interesting, albeit inconclusive. While almost every
student agreed that it is crucial to wisely choose an initial programming language, pretty
much all of them differed on the justification. Opinions ranged from technical – mainly based
on the availability of certain syntax constructs and data structures – to pedagogical – the
initial language should have an easy learning curve in order to avoid discouraging students.
Other justifications cited documentation availability, prospective employability, and in one
case, indifference for the language choice per se.

Answers to the second question focused on the obstacles that the initial programming
language could impose. Technical aspects of the language were preeminent among the answers,
but affinity was also considered an important factor. Other personal factors included: the
relationship stablished with the teachers and the motivation that is cultivated during the
first contact with computer programming.

The last question allowed multiple choices and its main goal was to compare the results
of the lecture’s question (the one where C, Java and Haskell were three favorite languages),
with the selection of languages they would choose to pass on, possibly influencing the affinity
other students would develop. This would either support their initial choices – their preferred
languages were chosen to continue the learning cycle – or contradict it – their preferred
languages and their choices to pass on programming knowledge were different. The final
goal for this question was to test for external influences, such as popularity and market
share. Being currently a popular programming language [16, 15], with many applications in
high demand, such as artificial intelligence, data science and numerical computing, Python
was expected to be preferred. Nonetheless, C and Java were the highest ranked in the
questionnaire, while Haskell also had a perceptive presence in the results and tied the fourth
place with BASIC (figure 1). These results become clearer if the students’ affinity to these
languages was actually constructed as a consequence of their learning experiences, since they
had been formally taught Haskell, C and Java as their initial programming languages.

These results implied that more conclusions would arise from a new survey for a deeper
investigation on how students learn computer programming and their prefered languages.
The complex nature of personal factors that influence this process creates opportunities
for continued investigation on affinity with programming languages and its relation to the
learning process.

1 Haskell is the first programming language for students of Universidade do Minho.

ICPEC 2022



1:4 Value-Focused Investigation into Programming Languages Affinity

0 2 4 6 8 10 12 14 16 18 20

BASIC

Lisp
C

Java

Python

Ruby
Swift

Haskell

3

1

15

12

6

0

0

3

Figure 1 Languages chosen by students when asked which one they would use to teach computer
programming. These answers were gathered through a small survey after the lecture. This figure
was originaly published in [13].

3 Value-Focused Thinking

Value-Focused Thinking (VFT) is a decision making process proposed by Ralph Kenney [11]
and it was chosen as the formal method to plan and guide the construction of the new survey.
It is based on the fact that planning alternatives and practical details in the first place tends
to diverge the solution from what should be its main focus, concentrating efforts on features
that might be discarded, and missing other opportunities that could emerge. In order to
avoid this kind of recurrent and short sighted behavior, Kenney proposed a method that
would force the definition of the main values and their derived objectives first, driving the
whole decision making process with focus. In the author’s words:

Alternative-focused thinking is designed to solve decision problems. Value-focused
thinking is designed to identify desirable decision opportunities and create alternatives
[11, p. 538].

The method stablishes a well-founded process, based on the premise that the main
values, central to the decisions being made, should always be enforced and guarded when
thinking about objectives and alternatives. The whole VFT process follows three main stages:
definition of values, gathering of objectives and construction of alternatives.

3.1 Definition of Values
The first stage in a Value-Focused Thinking process is to define the values and contextualize
the problem to be solved. This step takes into account the desired results, what are the
expectations – both for success and failure – and what kind of experience has been observed
in the same context and on similar problems. While it is not the most operational part of
the process, information gathered at this point is crucial to gather realistic objectives in the
next step and to keep the whole decision making process focused.

3.2 Gathering of Objectives
In the second stage of the process, the objectives are gathered, sorted and classified. This
stage is crucial for grounded and efficient construction of alternatives – the main goal of
the Value-Focused Thinking process. The first to be defined is the strategic objective which
states the main abstract goal of the decision being made. Other objectives are listed and
roughly classified into fundamental or means:



A. Costa Neto, C. Araújo, M. J. V. Pereira, and P. R. Henriques 1:5

Fundamental objectives stablish the main reasons for the decision making in the first
place, and are usually directly related to the strategic objective;
Means objectives define what is necessary to achieve other objectives.

In order to determine if an objective should be considered fundamental or means, Kenney
proposed the question “why is this objective important in the decision context?”. If the
answer is “because it is one of the essential reasons for interest in the situation” then the
objective should be considered fundamental. On the other side, if the answer resembles
“because of its implications for achieving some other objective”, it is a means objective [11].

When the first version of the objectives list is concluded, revisions should be made in
order to simplify – by aggregating redundant objectives – and reclassify the list – by applying
the question above. There is no definition as to when this revision cycle should end. In
summary, as soon as all important objectives are listed and classified, and the revisions no
longer change the list, this part of the process is done.

3.3 Construction of Alternatives

The final stage concludes the process by creating alternatives while also identifying opportun-
ities. The alternatives represent the courses of action to be taken and need to directly relate
to the previously listed objectives (usually means objectives, but not exclusively). The most
obvious alternatives usually come from previous experiences and commonly are the first ones
to be thought of. Once these have been considered, deep thought about the problem should
be carried on, in order to pursue hidden and more unexpected alternatives, always keeping
in mind the values defined as per the Subsection 3.1.

Since each alternative should be related to at least one objective, the most straightforward
way to undertake this stage is to list the objectives and propose one alternative for each.
Once all objectives are evaluated, the construction stage restarts considering two objectives
at a time, then three, and so on until all objectives are grouped together to create one
alternative. This final state may not be reachable depending on the problem being tackled,
but the construction stage should go as far as possible in this direction. Once all alternatives
are listed, a review process should try to eliminate redundancies, which usually occurs with
the first entries of the list.

Opportunities arise when trying to create alternatives. In some situations, an alternative
presents some kind of limitation or necessity that must be fulfilled. Instead of considering it
a failed attempt, one should identify these obstacles as opportunities to be further explored,
possibly starting entirely new decision making processes.

4 Application of Value-Focused Thinking

The application of Value-Focused Thinking into the development of the survey was based on
the fact that, for all intended purposes, deciding which questions to ask and how to ask them
is a decision making situation. The choice of VFT among other methods was also motivated
by its lean and straighforward mechanism that generates highly focused outcomes, and by
previous positive experiences using it on similar projects.

The process of constructing the survey through VFT followed the standard course of
action for the method: definition of the main values and context, gathering of the objectives,
and construction of the alternatives2.

2 A read-only copy of the VFT document may be found in the following address: https://bit.ly/3LrVV2D.

ICPEC 2022

https://bit.ly/3LrVV2D


1:6 Value-Focused Investigation into Programming Languages Affinity

4.1 Values and Context
The initial part of the VFT method is essential for focusing the rest of the process (as
previously mentioned in Subsection 3.1) and it is usually a relatively straightforward part.
In this case, though, the method was not being applied to a conventional situation – business
related decision making, such as which parts to buy, who to buy them from or which bonds
to sell – but to aid in the construction of a research survey. This peculiarity posed an
interesting view on the whole process, since the decision being made did not apply directly
to the research conducted through the survey, but to the survey itself. Being a means to
an end – finding out which characteristics are related to programming language affinity –
the survey is still part of the research as a whole, but the VFT was applied specifically to
support the construction of the survey and its values represented that intent.

The chosen values were:
1. High comprehensability;
2. Focus on the main topics being researched;
3. Maximum coverage of different personal profiles;
4. Easy publishing and completion;
5. Gathering of valid and trustworthy answers.

The list of values clearly states the focus of the survey: to be efficient (values 1, 3 and 4)
and reliable (values 2 and 5). Obvious as it might seem, it is crucial to list – and later abide
to – these values. When thinking only on the objectives, as an example, one could easily lose
focus and plan too many questions. By clearly stating the values, this unintentional mistake
would be immediately identified violating “Easy [...] completion” and properly fixed.

The following step in this part was to list the perfect, average and terrible scenarios
that could happen, to serve as guidelines. The perfect scenario pointed to a totally efficient
questionnaire, with as many answers as possible, from multiple and varied sources, leading to
a clear and encompassing conclusion. The average scenario presented high efficiency to the
questionnaire with many answers from many sources, leading to an important and relevant
conclusion. The terrible scenario represented an ineficient questionnaire with almost no
answers, leading to no conclusion at all.

The final step for the contextualization listed previous experiences in similar endeavours
that influenced the results of previous surveys and could possibly happen again. The main
occurrences were:

Low quantity of answers, which diminished the representativeness of the conclusions;
Discarded answers that pointed to some kind of misunderstanding of what was asked;
Unexpected and interesting results from open ended questions;
Direct questions that seemed to be answered randomly (in contrast with other answers).

These experiences, being good or bad, were important warnings of caution to take into
consideration for the next part of the VFT method: gathering and listing the objectives.

4.2 Objectives
Based on the values and the context previously stablished, the objectives were listed and
categorized. The strategic objective, as explained in Subsection 3.2, represented the main
goal of the survey: to construct and conduct a capable, valid and trustworthy survey to
evaluate which factors influence the affinity stablished between programmers – of any level or
context – to computer programming languages.

While the strategic objective was an abstract take on the main values, the following
fundamental objectives were a further step into its concretization:



A. Costa Neto, C. Araújo, M. J. V. Pereira, and P. R. Henriques 1:7

1. To select as wide a range of respondents as possible, including those without prior
knowledge of computer programming;

2. To ask questions that allow finding correlations between respondents and their favorite
languages;

3. To faithfully characterize both personal aspects of the respondents and technical aspects
of the programming languages.

The next step was to stablish the means objectives. They were constructed to support
the fundamental objectives, creating the basic ideas of a real survey. Albeit being the most
practical step of the gathering of objectives, these should not include implementation details,
as these would follow in the construction of alternatives. The mean objectives listed practical
needs (an on-line survey system that allows the construction of the intended questionnaire),
publishing strategies (educational institutions, social media and professional hubs), which
kind of information to gather (personal data, educational history, which languages are known
etc.) and interesting results to be obtained (influence of peers on the choices of favorite
languages, favorite technical aspects of the programming languages, popularity etc.). These
objectives were then directly mapped to an implementation proposal of the survey in the
last part of the VFT method: the construction of alternatives.

4.3 Alternatives
The last part of the VFT method created the alternatives for the undergoing decision-making
process. In a general sense, the alternatives presented different possibilities to achieve the
intended goals. In this specific case, alternatives stablished different ways of constructing the
questionnaire, always keeping objectives and values in mind3.

Each element of the survey definition – which on-line survey tool to use, possible publishing
methods, valid and robust user agreement, questions, and desired results – was directly
related to the means objectives gathered in the previous part. This meant that the whole
survey construction was indirectly guided by all of its values through its previsouly listed
objectives.

As an example, one of the means objectives specified that it would be important to
gather if the respondent has got a competitive or cooperative nature, in order to later verify
a possible correlation between this kind of personal characteristic and his or her favorite
languages. This objective resulted directly in the following question definition:

Subject: competitive or cooperative profile;
Alternatives:

1. Indirect observation by asking the number of participations in competitive or cooper-
ative activities;

2. Direct question of personal preference – competitive or cooperative.

As can be seen, the question itself was not written in this stage, only its specifications
were listed. This precaution was taken in order to avoid prematurely fixing the survey
before it could be reviewed as a whole. As for the alternatives, they presented themselves as
different ways of constructing the questions and which kind of answers would be allowed.
The resulting structure of the survey is described in Section 5 with all question definitions
that were proposed at this moment.

3 It is important to realize that the term alternatives should be understood as defined in the VFT method,
not necessarily options for answering a question. As an example, a compilation of available on-line
survey tools could be considered alternatives.

ICPEC 2022



1:8 Value-Focused Investigation into Programming Languages Affinity

During the definition of the questions, desired statistical results – listed in Subsection 5.4
– were also specified. These served as checkpoints for the questions themselves, revealing
possible “blind spots” in the survey through the absence of questions that would be necessary
to obtain certain results.

The final step in the creation of alternatives was to list the opportunities that have been
identified so far. In total, three opportunities were listed:
1. Since the range of desired results and questions is very wide, it would be possible to

create more than one survey, dividing and better focusing the research in specific areas,
such as personal factors, technical characteristics of the languages etc.

2. Available free survey tools seem to be incapable of constructing more complex surveys, so
it would be beneficial to create a new system;

3. Instead of using real languages to verify the influence of technical characteristics on
affinity, it would be better to create a pseudo-language flexible enough to be used in all
situations.

It is important to emphasize that these opportunities were not mandatory courses of
action, but presented different decision-making possibilities that emerged during the process
of the survey construction. They may not have been detected if the alternatives (the questions
of the survey, in this case) were the first elements to be thought of and, ultimately, this is
one of the main advantages of the Value-Focused Thinking method.

5 Structure of the Survey

After applying all the steps of the VFT method, the structure of the survey was completed
albeit not implemented. The implementation – i.e. to add the sections, questions and
commentary to an on-line tool for publication and participation – is a direct consequence of
the planning process, much like in computer programming, and should not be considered
a requirement for conclusion of the VFT method. Based on the constructed alternatives,
a general structure for the survey has been reached and it was divided into three sections:
personal data; background and projections in computer programming; affinity to different
programming language characteristics.

5.1 Personal Data
This first section of the survey deals with personal background and is composed of nine direct
questions:

1. Age;
2. Gender;
3. Country of residence;
4. Native language;
5. English language level according to the Common European Framework of Reference [5];
6. Formal education level, from “Uneducated” to “Doctorate or beyond”;
7. Learning style, with choices for both easiest and hardest to learn: “Mathematical and

numerical problems”, “Logic exercises”, “Memory based questions” and “Practical applic-
ations”;

8. Household income per capita;
9. Current occupation.

The answers to these questions will be correlated to the programming language affinity
choices in the third section of the survey (5.3).



A. Costa Neto, C. Araújo, M. J. V. Pereira, and P. R. Henriques 1:9

5.2 Background and Projections in Computer Programming
This section deals with previous experiences and future goals specifically about computer
programming. It is composed of seven questions:
1. Time spent studying computer programming, in years;
2. Time spent working at computer programming, in years;
3. Time spent teaching computer programming, in years;
4. Learning methodologies during studying computer programming;
5. Learning methodologies applied to teach computer programming;
6. Competitive or cooperative preference for group working, measured through number of

participations in activities of each kind;
7. List of effectively known programming languages, multiple choices allowed;
8. Which programming language first had contact with;
9. Intended position for future jobs in computer programming.

The answers to these questions in this section will help on drawing a picture of experience
with computer programming and its languages. The answers will be compared to choices
made in the third section of the survey, in order to procure possible correlations of affinity to
the respondents’ backgroung with computer programming – meaning that affinity is a result
of learning or working with a particular language – and personal foresight – meaning that
factors such as popularity and market influence are relevant to affinity.

5.3 Affinity to Different Programming Language Characteristics
The last section of the survey deals directly with affinity, collecting data about which
languages lead to affinity and why. It is composed of five questions:
1. Comparisons of source code snippets, written specifically to test common syntax and

semantic differences in current programming languages. This question was divided into
subquestions which are detailed below;

2. Affinity level to programming languages, measured from “No affinity at all” to “Favorite”;
3. Change in affinity to programming languages, which ones lost affinity, which ones gained

affinity thoughout the years and what was the perceived cause to the change;
4. Influence of peers in affinity, as a personal observation;
5. Main motivation for affinity to the favorite languages, also as a personal observation.

A list of programming languages has been selected to compose the questions 2 and 3
of this section. This list included both current and former popular languages, aiming also
at gathering as varied characteristics as possible, such as syntax, semantics, market share,
popularity, paradigm etc.

The snippets of source code shown in question 1 were written carefuly to contrast only
one syntactical or semantical characteristic at a time. This question is essential for obtaining
insight into which practical characteristics of the programming languages are influential to
affinity growth. Also, it represented the most practical and applied questioning of the survey.
The following characteristics are queried:

Variable declaration syntax;
String representation and basic operation;
Type inference and conversion;
Block delimitation;
Conditional structures;
Repetition structures;

ICPEC 2022



1:10 Value-Focused Investigation into Programming Languages Affinity

Function or method calling convention;
Presence and use of jumps (as in goto);
End-of-statement syntax;
General paradigm;
Default data structures;
Verbosity.

This list covers most technical characteristics of programming languages that might have
some effect on affinity. In order to avoid blurring the respondents’ answers by other personal
factors, the snippets were written in a neutral algorithmic language that was informally
defined4.

Answers in this section are paramount for any conclusions about affinity, since most of
them will be used as the counterpart to the correlation with answers in the previous sections.
In the end of the process, since this question would have too many subquestions, it was
decided to create another section of the survey dedicated to it.

5.4 Expected Statistical Results

Expected results form an important part of any survey construction. These results were
identified during the application of the VFT method:

Correlation between time spent formally studying, working and teaching computer
programming and the languages with most affinity;
Correlation between the most common technical characteristics of the languages and the
affinity level;
Preferred structural, syntatic and semantic programming languages characteristics;
Correlation of personal background and affinity;
Changes in favorite languages and the reasons for the new choice;
Languages that most frequently lost or gained affinity after a change;
Frequency at which the first learnt language presents high level of affinity;
Correlation between career prospection and affinity to the languages with higher market
share;
Correlation between learning style and language affinity;
Correlation between popularity and language affinity.

With this part done, the Value-Focused Thinking method successfuly helped the con-
struction of a Beta version for the desired survey, that aimed at gathering feedback for
improvements and validation. This version implemented the result of the VFT method
almost entirely without changes, with the exception of characteristics that proved to be
unbalanced in practice, such as the number of sections that raised from three to four in order
to better separate the types of questions. Finally, feedback questions were added to the end
of each section to gather opinions about the questionnaire per se. This proved to be of great
value for assessing the questionnaire’s main values and validate the process of Value-Focused
Thinking.

4 This decision was taken based on an opportunity, as explained in Subsection 4.3, and it might even be
relevant in subsequent studies.



A. Costa Neto, C. Araújo, M. J. V. Pereira, and P. R. Henriques 1:11

5.5 Feedback and Validation

The Beta version5 of the survey was applied to three different groups of students from
Universidade do Minho and Instituto Politécnico de Bragança, in order to test and validate
the current implementation. Feedback from the respondents pointed towards a few notes:

The question about household income were considered too intrusive by a few respondents;
Some respondents had trouble understanding a few english terms in the questions, which
in turn, made the survey harder to answer;
The grid of possible answers to the questions about syntactic and semantic characeristics
confused a few respondents. Some students initially considered that affinity choices were
mutually exclusive, allowing only one answer of either “I don’t like it”, “I like it”, or “I
prefer it” for each snippet of code. In actuality, each answer could be selected for more
than one snippet;
Although the feedback was essentially positive, both in comprehension and duration of
the survey, some notes stating that there were too many questions were collected. This
was one of the main concerns about the survey and its values.

With this feedback in mind, the final version of the survey was prepared and will be
published for open access in the near future. The changes that will be applied will not
be translated back to the Value-Focused Thinking document, since it will be considered
a snapshot of the planning process before the first round of feedback. If, otherwise, it is
intended to be a live document, changes to the survey should be transcribed back.

6 Conclusion

Strategies to support computer programming education are numerous but still face several and
interesting challenges. While many and diverse characteristics have been shown as influential
to the teaching-learning process, affinity to a programming language as an influential factor
is largely unexplored and might have a positive – or even negative – influence on the whole
process.

In order to further understand this topic, a new survey has been constructed, concentrating
its focus into realizing which characteristics (personal, technical, contextual etc.) influence
affinity between programmers of any level and programming languages. Being a complex and
in-depth approach to the continuation of this research, this survey was prepared in a formal
manner, using the Value-Focused Thinking method to guide the whole process. This method
lead to the definition of the survey’s elements based on core values and its derived objectives,
creating a highly focused Beta version. The final version of the new survey is now finished –
taking into account feedback already gathered – and it is currently open for answers6. That
version of the survey will be disseminated, in the near future, as much as possible to a broad
community of students, teachers and practitioners of programming in order to collect a huge
amount of answers; then the collected data will be statistically analyzed and the results will
be published.

5 A copy may be found in the following address: https://bit.ly/3DDJFtv.
6 The survey may be found and fulfilled at the following address: https://bit.ly/3MdDgIH.

ICPEC 2022

https://bit.ly/3DDJFtv
https://bit.ly/3MdDgIH


1:12 Value-Focused Investigation into Programming Languages Affinity

References
1 M. V. P. Almeida, L. M. Alves, M. J. V. Pereira, and G. A. R. Barbosa. EasyCoding -

Methodology to Support Programming Learning. In Ricardo Queirós, Filipe Portela, Mário
Pinto, and Alberto Simões, editors, First International Computer Programming Education
Conference (ICPEC 2020), volume 81 of OpenAccess Series in Informatics (OASIcs), pages
1:1–1:8, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:
10.4230/OASIcs.ICPEC.2020.1.

2 M.V.P. Almeida. Easycoding: Methodology to support programming learning. Master’s thesis,
Instituto Politécnico de Bragança, 2020.

3 A.G. Applin. Second language acquisition and cs1. SIGCSE Bull., 33(1):174–178, February
2001. doi:10.1145/366413.364579.

4 D.R. Barbosa. Adequacy Analysis of Learning Resources in Adult Education. Master’s thesis,
Minho University, Braga, Portugal, October 2021.

5 Council of Europe. Common European Framework of Reference for Languages: Learning,
teaching, assessment – Companion volume. Council of Europe Publishing, Strasbourg, France,
2020. URL: https://www.coe.int/lang-cefr.

6 R.R. Fenichel, J. Weizenbaum, and J.C. Yochelson. A program to teach programming.
Communications of the ACM, 13(3):141–146, March 1970. doi:10.1145/362052.362053.

7 J. Figueiredo and F.J. García-Peñalvo. Building skills in introductory programming. In
Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing
Multiculturality, TEEM’18, pages 46–50, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3284179.3284190.

8 P. Freire. Pedagogia da Autonomia: Saberes necessários à prática educativa. Paz e Terra, 2011.
9 A. Gomes and A.J. Mendes. Learning to program: difficulties and solutions. In Proceedings of

the 2007 ICEE International Conference on Engineering and Education, ICEE ’07. International
Network on Engineering Education and Research, 2007.

10 P.J. Guo. Non-native english speakers learning computer programming: Barriers, desires,
and design opportunities. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, CHI ’18, pages 1–14, New York, NY, USA, 2018. Association for
Computing Machinery.

11 Ralph L. Keeney. Value-focused thinking: Identifying decision opportunities and creating
alternatives. European Journal of Operational Research, 92(3):537–549, 1996. doi:10.1016/
0377-2217(96)00004-5.

12 J. Piaget, M. Piercy, and D.E. Berlyne. The Psychology of Intelligence. Routledge classics.
Routledge, 2001.

13 Redacted. Redacted for blind review purposes. In Redacted for blind review purposes, Redacted.
14 S.A. Robertson and M.P. Lee. The application of second natural language acquisition pedagogy

to the teaching of programming languages—a research agenda. SIGCSE Bulletin, 27(4):9–12,
December 1995. doi:10.1145/216511.216517.

15 Stack Overflow. Stack overflow developer survey, 2021. URL: https://insights.
stackoverflow.com/survey/2021.

16 StatisticsTimes.com. Top computer languages, 2020. URL: http://statisticstimes.com/
tech/top-computer-languages.php.

17 L.S. Vygotsky, E. Hanfmann, G. Vakar, and A. Kozulin. Thought and Language. The MIT
Press. MIT Press, 2012.

18 B.C. Wilson and S. Shrock. Contributing to success in an introductory computer science
course: A study of twelve factors. In Proceedings of the Thirty-Second SIGCSE Technical
Symposium on Computer Science Education, SIGCSE ’01, pages 184–188, New York, NY,
USA, 2001. Association for Computing Machinery. doi:10.1145/364447.364581.

https://doi.org/10.4230/OASIcs.ICPEC.2020.1
https://doi.org/10.4230/OASIcs.ICPEC.2020.1
https://doi.org/10.1145/366413.364579
https://www.coe.int/lang-cefr
https://doi.org/10.1145/362052.362053
https://doi.org/10.1145/3284179.3284190
https://doi.org/10.1016/0377-2217(96)00004-5
https://doi.org/10.1016/0377-2217(96)00004-5
https://doi.org/10.1145/216511.216517
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
http://statisticstimes.com/tech/top-computer-languages.php
http://statisticstimes.com/tech/top-computer-languages.php
https://doi.org/10.1145/364447.364581

	1 Introduction
	2 Background and Previous Work
	2.1 Lecture and Preliminary Study

	3 Value-Focused Thinking
	3.1 Definition of Values
	3.2 Gathering of Objectives
	3.3 Construction of Alternatives

	4 Application of Value-Focused Thinking
	4.1 Values and Context
	4.2 Objectives
	4.3 Alternatives

	5 Structure of the Survey
	5.1 Personal Data
	5.2 Background and Projections in Computer Programming
	5.3 Affinity to Different Programming Language Characteristics
	5.4 Expected Statistical Results
	5.5 Feedback and Validation

	6 Conclusion

