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Abstract

I analyze sequential auctions with expectations-based loss-averse bidders who

have independent private values and unit demand. Equilibrium bids are history

dependent and subject to a “discouragement effect”: the higher the winning bid

in the current round is, the less aggressive the bids of the remaining bidders in

the next round. Moreover, because they experience a loss in each round in which

they fail to obtain an object, bidders are willing to pay a premium in order to

win sooner rather than later. This desire to win earlier leads prices to decline in

equilibrium. I also show how various disclosure policies regarding the outcome

of earlier auctions affect equilibrium bids, and that sequential and simultaneous

auctions are neither bidder-payoff equivalent nor revenue equivalent.
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“Now that I’ve won a slam, I know something very few people on earth are permitted

to know. A win doesn’t feel as good as a loss feels bad, and the good feeling doesn’t

last long as the bad. Not even close.”

– Andre Kirk Agassi

1 Introduction

There is abundant evidence of overbidding in auctions. While this has often been

attributed to a desire of winning and related concepts like “joy of winning”(Cox et al.,

1992, Goeree et al., 2002 and Cooper and Fang, 2008) and “bidding fever”(Heyman et

al., 2004 and Ehrhart et al., 2015), there is also evidence that bidders may actually be

driven by a fear or frustration of losing, as shown for instance by Delgado et al. (2008)

and Cramton et al. (2012). Such a frustration of losing is consistent with the notion of

loss aversion introduced by Kahneman and Tversky (1979), according to which people

tend to evaluate outcomes relative to a reference point, with losses (relative to this

reference point) looming larger than equal-size gains. In this paper, I therefore explore

the implications of loss aversion for multi-unit auctions when bidders have independent

private values and unit demand.

Following the work of Kőszegi and Rabin (2006, 2007, 2009), I consider expectations-

based reference points, whereby an individual compares his realized material outcomes

to a reference point equal to his expectations about those same outcomes. With this

formulation of the reference point, the higher are a bidder’s value for an item and the

probability with which he expects to obtain it, the bigger the psychological loss if he

fails to do so. In particular, in a sequential auction the bidder updates his subjective

probability of obtaining an item based on the outcome of the previous rounds. This

updating of the reference point introduces an endogenous form of interdependence in

the bidders’payoffs even when values are private and independent. The reason is that

even though a bidder’s value does not depend directly on his competitors’types, these

affect his probability of winning the auction and hence his reference point.

Section 2 introduces the environment and the bidders’preferences. There areK ≥ 2

identical items to be sold one by one using a sequence of sealed-bid auctions. I consider

a standard symmetric environment where bidders have independent private values and

are interested in buying at most one item. At the beginning of the auction sequence, a

bidder forms a subjective probability of obtaining an item in any given round based on
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his private value, his bidding strategy, and his beliefs about his opponents’values and

strategies; then, at the start of each round in which he is still active, the bidder updates

this probability based on the observed history of the game. When he obtains an item,

a bidder’s utility simply equals his material payoff; that is, his intrinsic valuation for

the item minus the price paid to acquire it. In each round in which he fails to obtain an

item, however, the bidder suffers a psychological loss that is proportional to his intrinsic

valuation and to the probability with which, at the beginning of the round, he expected

to obtain the item in that same round.

Section 3 gathers the paper’s main analysis and results. I begin in Subsection 3.1

by analyzing sequential second-price auctions. In the last round, bidders bid their

“loss-adjusted”willingness to pay; that is, their intrinsic value for the item plus the

value of avoiding the psychological loss they would experience if they were to lose the

auction. Since the value of avoiding losses is always positive, loss-averse bidders bid

more aggressively than risk-neutral ones. Such aggressive bidding also arises in earlier

rounds, where a bidder bids his expectation of the next round’s price plus the value of

avoiding the psychological loss from losing in the current round. The reason is that in

equilibrium bidders must be indifferent between winning in the current round or the

next; yet, in order to win in the next round a bidder must endure a loss in the current

one, whereas by winning in the current round he avoids such loss. Hence, loss-averse

bidders are willing to pay a premium above the next round’s expected price in order

to win in the current round, thereby reducing the uncertainty over whether they will

obtain the item. Moreover, because in each round this premium depends on the bid-

der’s updated probability of getting the item, expectations-based loss aversion creates

an informational externality that renders equilibrium bids history dependent, even if

bidders have independent private values. In particular, I identify a “discouragement ef-

fect”: the higher the winning bid in the current round is, the less aggressive the bidding

strategy of the remaining bidders in the next round. Indeed, from the point of view of

a bidder who lost the current round, the higher the type of the winner, the less likely

he is to win in the next round; this, in turn, lowers the reference point of the bidder,

who thus bids less aggressively. This is the frustrating effect of losing, which lowers a

loss-averse bidder’s willingness to pay.

The preference of loss-averse bidders for winning in the current round rather than

the next leads them to bid more aggressively in earlier rounds; this, in turn, implies that

equilibrium prices must follow a declining path. Hence, expectations-based loss aversion

provides a novel explanation for the so-called “declining price anomaly”or “afternoon
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effect”(as later auctions often take place in the afternoon whereas earlier ones are in

the morning) in sequential auctions. Weber (1983) and Milgrom and Weber (2000)

showed that with symmetric, risk-neutral bidders having unit demand and independent

private values, the law of one price should hold and on average prices should be the

same across rounds.1 Intuitively, if they were not, then demand from rounds with a

higher expected price would shift towards those with a lower expected price, due to

arbitrage opportunities. Yet, evidence from both the lab and the field does not seem

to support this prediction as declining prices have been reported across many different

goods and auction formats; see Ashenfelter (1989), Ashenfelter and Genesove (1992),

McAfee and Vincent (1993), Beggs and Graddy (1997), Ginsburgh (1998), Van den Berg

et al. (2001), Lambson and Thurston (2006), Février et al. (2007), and Neugebauer and

Pezanis-Christou (2007). Moreover, while declining prices are more common, increasing

prices have also been documented; see Gandal (1997), and Deltas and Kosmopoulou

(2004).2 Overall, while they do not occur in every auction, declining prices seem to be

an empirically robust feature of sequential auctions.

In Subsection 3.2, I compare sequential auctions to simultaneous ones. With risk-

neutral bidders and independent private values, these auction formats are revenue equiv-

alent for the seller and payoff equivalent for the bidders; however, both these equiva-

lences break down if bidders are expectations-based loss averse. The reason is that in

simultaneous auctions the resolution of uncertainty happens all at once, whereas it is

more gradual in sequential ones. This has two implications. First, as in sequential auc-

tions bidders suffer a psychological loss in every round in which they expected to win

with positive probability but instead lose, they can suffer multiple losses on their way

to eventually obtaining an item; by contrast, in simultaneous auctions a bidder suffers a

loss only if he fails to obtain an item. Second, the loss-aversion premium component of

a bidder’s willingness to pay differs across the two formats: in a simultaneous auction,

it is proportional to the bidder’s ex ante probability of being one of the top K bidders,

whereas in each round of a sequential auction it is proportional to the bidder’s probabil-

ity of winning in that round conditional on having lost the previous one. Indeed, I show

1Technically, with independent private values, the price sequence of any standard auction is a
martingale; i.e., the conditional expectation of the next-round price is equal to the current price.

2Milgrom and Weber (2000) showed that with interdependent values and affi liated signals the
equilibrium price sequence is a submartingale and the expected value of pk+1, conditional on pk, is
higher than pk. Mezzetti (2011) showed that affi liated signals are not necessary for increasing prices:
interdependent values with informational externalities – that is, when a bidder’s value is increasing in
all bidders’private signals – push prices to increase between rounds, even with independent signals.
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that bidders with high (resp. low) values prefer simultaneous (sequential) auctions and

that sequential auctions raise more revenue than simultaneous ones. This is consistent

with experimental evidence from Betz et al. (2017), who find that sequential multi-item

auctions raise more revenue than simultaneous ones. Moreover, it is well known that

sequential auctions are more vulnerable to bidder collusion than simultaneous ones; see,

for instance, Klemperer (2002) and Sherstyuk and Dulatre (2008). As collusion tends

to reduce the seller’s revenue, we would expect sellers to prefer simultaneous auctions

over sequential ones. Yet, loss aversion provides an alternative reason why sellers might

prefer sequential auctions.

When analyzing sequential auctions in Section 3, I assume that the winning bid

in each round is publicly announced by the seller prior to the next round. Section 4

considers two alternative disclosure policies. First, I analyze sequential auctions with

no announcement and I show that the equilibrium strategies are radically different.

If the winning bid from the previous round is not publicly revealed, a losing bidder

must use his own past bid to update his beliefs about how likely he is to win in the

current round. In this case, the discouragement effect takes on a different form that

depends on an individual bidder’s (private) bidding history. Nevertheless, since loss-

averse bidders still prefer to win in the current round rather than the next, equilibrium

prices continue to follow a declining path. Next, I consider sequential second-price

auctions with announcement of the previous round’s price and I argue that in this case

existence of a symmetric equilibrium in increasing strategies is not guaranteed. The

reason is that, just like in the classical model with interdependent values, revealing the

previous round’s price makes the game highly asymmetric as in the next round one of

the remaining bidders would have his exact bid known to the others.

Section 5 discusses the related literature, while Section 6 gathers concluding remarks.

All proofs are relegated to Appendix A.

2 Model

Suppose K ≥ 2 identical items are sold one by one to N ≥ K + 1 bidders via a

series of sealed-bid auctions with no reserve price. Bidders demand one unit and have

independent private values. Each bidder’s value (or type) θi, i = 1, ..., N , is drawn from

the same continuous and strictly increasing distribution F which admits a continuous

and positive density f everywhere on the support [0, 1]. I will consider two canonical
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selling mechanisms: first-price auctions (FPA) and second-price auctions (SPA). In each

round k = 1, ..., K, the highest bidder obtains an item and pays price pk which equals

either his bid or the highest losing bid in that round, depending on the auction format.

The winner leaves the auction and his bid is publicly announced at the beginning of the

next round, where the remaining bidders compete using the same procedure. Let h0

be the empty history at the beginning of the first round and denote by wk the winning

bid in round k. Then, for k ∈ {2, ..., K}, a public history at the beginning of round k
is a sequence of winning bids hk−1 = (w1, ..., wk−1).

A strategy for bidder i is sequence of bidding functions βi =
(
βi,1, ..., βi,k, ...βi,K

)
,

one for each auction, where βi,k
(
θi;h

k−1
)
denotes bidder i’s bid in round k as a function

of his type θi and of the public history of winning bids. A strategy βi is monotone if for

each k = 1, ..., K, βi,k is increasing in θi for any h
k−1. Restricting attention to symmetric

equilibria in pure and monotone strategies, hereafter I will drop the subscript indexing

bidders and, slightly abusing notation, I will use βk to denote a symmetric bidding

function and β to denote a symmetric strategy profile.

Let the random variable Y (n)
k , an order statistic, denote the k-th highest value out

of n. Since strategies are monotone, the winner in round k is the bidder with the k-th

highest value. Hence, the winning bids in previous rounds, e.g., w1, ..., wk−1, can be

mapped back to the realized values of the order statistics, e.g., Y (N)
1 = y1 ≥ ... ≥

yk−1 = Y
(N)
k−1 . Therefore, the bidding function in round k can be written as βk (θ; yk−1)

since at the beginning of round k it is common knowledge that all remaining bidders’

types are lower than yk−1, with y0 ≡ 1.

Bidders are expectations-based loss averse à la Kőszegi and Rabin (2006, 2007,

2009). For K ≥ t ≥ k, let Qt
i,k := Qt (θi; yk−1|β) denote i’s subjective probability at

the start of round k of obtaining the item in round t, conditional on the history of the

winning bids up to round k − 1 and taking as given the strategy profile β. Moreover,

for k = 1, ..., K and i = 1, .., N , let bi,k denote i’s bid in round k. Then, ignoring ties

as these are measure-zero events, i’s realized utility in round k is equal to:

uk (θi, bi,k, pk; yk−1|β) =


θi − pk if bi,k > max

j 6=i
bj,k

−ΛθiQ
k
i,k if bi,k < max

j 6=i
bj,k

(1)

where QK+1
i,k = 0 ∀i, k and Λ ≥ 0. The parameter Λ represents the coeffi cient of loss
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aversion, with Λ = 0 corresponding to the risk-neutral benchmark.3 In words, if a

bidder wins the auction in round k, his utility equals his standard material payoff; if

instead he fails to win the auction, the bidder experiences a psychological loss that is

proportional to his type and to the probability with which, at the beginning of round

k, he expected to obtain the item in that same round. Hence, throughout the auction

sequence, a bidder’s updates his reference point to the probability of winning in the

current round conditional on the outcome of the previous rounds. The timing of events

and payoffs within each round is the following. At the start of round k the seller reveals

the previous round’s winning bid; thereafter, bidder i updates his reference point to

Qk
i,k and submits his bid for the current round. Then, the winner is selected and payoffs

are realized.

Bidders cannot commit to a sequence of bids at the outset. Instead, they make a

state-contingent plan whereby in each round their current bid is consistent with their

future bidding behavior and maximizes their total expected reference-dependent util-

ity going forward. Let Uk (θi, bi,k; yk−1|β) := Ek
[∑K

m=k um (θi, bi,m, pm; ym−1|β)
]
denote

bidder i’s total expected payoff at the start of round k, given a strategy profile β.

If bidder i wins in round k, then bi,k+l = 0 and uk+l (θi, bi,k+l, pk+l; yk+l−1|β) = 0 for

l = 1, ..., K − k. Hence, at the beginning of each round in which he is active, a bidder
updates his subjective probability of obtaining the item based on the history of the

winning bids and then chooses a bid to maximize the expectation of the sum of his

instantaneous reference-dependent payoffs, keeping his reference point fixed and fully

anticipating the losses he might experience in future rounds, with each loss weighted by

the corresponding probability. Fixing his competitors’strategies and the expectations

induced by the strategy profile β, if he follows his plan bidder i bids bi,k := βk (θi; yk−1),

for k ∈ {1, 2, ..., K}. Then, the solution concept is as follows:

Definition 1. A strategy profile β∗ constitutes a sequential personal equilibrium (SPE)
if for all i, for all θi, for all yk−1 and for k = 1, ..., K:

Uk
(
θi, b

∗
i,k; yk−1|β∗

)
≥ Uk

(
θi, b̃i,k; yk−1|β∗

)
3There are two minor differences between expression (1) and the original formulation of Kőszegi

and Rabin (2006, 2007, 2009). First, the bidder experiences psychological (dis-)utility from losses but
not from gains. This is a simple normalization that can be interpreted as capturing a limit case where
bidders weigh losses much more strongly than same-size gains. Second, bidders are loss averse only
with respect to their value for the item, but not with respect to the price they might pay; in other
words, bidders are risk neutral over money. As argued by Kőszegi and Rabin (2009), this assumption
is reasonable if bidders’income is already subject to large background risk; relatedly, Novemsky and
Kahneman (2005) propose that money given up in purchases is not generally subject to loss aversion.
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for any b̃i,k 6= b∗i,k.

In an SPE, a bidder has to think backwards. First, in round K, for each possible

value of yK−1, he chooses a bid that maximizes his utility in the last round; then, in each

previous round, he chooses a bid that maximizes his expected reference-dependent util-

ity given the expectations generated by his strategy and correctly anticipating how he

will bid in later rounds.4 Notice that, by restricting attention to one-round deviations,

Definition 1 also embeds the single-deviation property as part of the solution concept.

This differs from standard game-theoretic solution concepts based on subgame perfec-

tion or sequential rationality, which obtain the single-deviation property as a result. I

include the single-deviation property as part of Definition 1 because non-local devia-

tions, such as planning in round k to deviate at a later round k+l, for l ∈ {1, ..., K − k},
can affect the bidder’s expectations and hence his reference point, making the problem

much more intricate. This additional restriction differentiates SPE from the dynamic

version of PE in Kőszegi and Rabin (2009), according to which a person can affect his

current utility by planning to change his future actions. Moreover, it is worthwhile to

point out that, because a decision maker with expectations-based reference-dependent

preferences is prone to self-fulfilling expectations, the restriction to pure, strictly in-

creasing bidding strategies also implicitly entails an equilibrium selection; in this sense,

ruling out mixed strategies might not be without loss of generality. For the remainder

of the paper, I will refer to an SPE simply as an equilibrium.

3 Analysis

This section gathers the paper’s main results. I begin in Subsection 3.1 by deriving

the bidding strategies in the sequential SPA and showing that equilibrium prices follow

a declining path. In Subsection 3.2, I analyze the uniform-price simultaneous auction

and show that it is not revenue equivalent to the sequential second-price one.

3.1 Sequential Auctions

Suppose K ≥ 2 identical items are sold sequentially via second-price auctions. The

first-round bidding strategy is a function that depends only on the bidder’s type. The

bids in later rounds, however, might depend also on the public history of the winning

4For static problems, SPE reduces to the personal equilibrium (PE) of Kőszegi and Rabin (2006).
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bids. Since we are focusing on a symmetric equilibrium, it is useful to take the point

of view of one of the bidders, say bidder i with type θ, and to consider the order

statistics associated with the types of the other (N − 1) bidders. Hence, let Y (N−1)
k ≡

Yk be the k-th highest of N − 1 values and denote by Fk(·) and fk(·) its CDF and
corresponding PDF, respectively. Moreover, let Fk(·|x) and fk(·|x) respectively denote

its CDF and PDF conditional on Yk−1 = x. Notice that, because the different values are

drawn independently, it follows that Fk (θ|x) = F (θ)N−k
/
F (x)N−k ; hence, Fk (θ|x)

is decreasing in x. The following proposition characterizes the symmetric equilibrium

strategies:

Proposition 1. In the sequential SPA, the symmetric equilibrium bidding strategies

are given by:

βSPAk (θ; yk−1) =
∫ θ

0
βSPAk+1 (yk+1; θ) fk+1 (yk+1|θ) dyk+1 + ΛθFk (θ|yk−1)

for k = 1, ..., K − 1 and

βSPAK (θ; yK−1) = θ + ΛθFK (θ|yK−1) .

For k = 2, ..., K, the complete bidding strategy is to bid βSPAk (θ; yk−1) if θ < yk−1

and βSPAk (yk−1; yk−1) if θ ≥ yk−1.5

To understand the bidding functions in the sequential second-price auction, it is

easier to start from round K, the last one. In this round, a loss-averse bidder with type

θ bids his “loss-adjusted”willingness to pay. This modified willingness to pay takes into

account the bidder’s intrinsic value for the good (i.e., θ), as well as the value of avoiding

the psychological feeling of loss he would experience by failing to win the auction (i.e.,

ΛθFK (θ|yK−1)). Indeed, for Λ = 0, βSPAK (θ; yK−1) reduces to the standard (weakly)

dominant strategy of bidding one’s intrinsic value. Hence, loss aversion induces all types

to overbid compared to the risk-neutral benchmark.6

5The latter event may occur “off path”if a type-θ bidder underbid in round k− 1, thereby causing
a bidder with a lower type to win.

6Such straight overbidding compared to the risk-neutral benchmark is due to assumption of no
loss aversion over money, which reduces the weight over the money dimension relative to the item
dimension in a bidder’s overall utility. In the more general case where bidders are loss averse in both
dimensions, only those with relatively high types will overbid; see Lange and Ratan (2010), Balzer and
Rosato (2021) and von Wangenheim (2021). Yet, a similar notion of “loss-adjusted”willingness to pay
also applies if bidders are loss averse in both dimensions.
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The bidding functions in the earlier rounds are pinned down by the condition that,

in equilibrium, a bidder must be indifferent between winning in the current round

or the next one. Say that bidder i with type θ is pivotal in round k if he has the

same type as the k-th highest of his opponents, and hence he is in a tie with such

opponent as the remaining bidder with the highest type. Then, in round k bidder

i bids his expectation of the next round’s price conditional on being pivotal (i.e.,∫ θ
0 β

SPA
k+1 (yk+1; θ) fk+1 (yk+1|θ) dyk+1) plus the value of avoiding the psychological loss

from losing in round k (i.e., ΛθFk (θ|yk−1)). Hence, compared to the risk-neutral bench-
mark, loss-averse bidders are willing to pay a premium to win earlier rather than later.

Intuitively, by winning in an earlier round a bidder reduces the uncertainty of the

auction and thus experiences fewer psychological losses. Moreover, this premium is

decreasing in the type of the previous round’s winner, implying that the equilibrium

bidding function is decreasing in the previous round’s winning bid, as the following

lemma shows:

Lemma 1. (Discouragement Effect) For k > 1, it holds that ∂βSPAk (θ; yk−1) /∂yk−1 < 0

∀θ.

Lemma 1 says that the higher is the type of the previous-round winner, and hence

his bid, the less aggressively the remaining bidders will bid in the current round. The

rationale for this “discouragement effect” is as follows. From the perspective of a

bidder who lost the previous round, the higher is the type of the winner, the less

likely he is to win in the current round. With expectations-based reference-dependent

preferences, a bidder who thinks that most likely he is not going to win does not feel

a strong attachment to the item and thus bids more conservatively. Hence, revealing

the previous-round winner’s bid creates an informational externality. Yet, notice that

the direction of this informational externality is exactly opposite to that arising with

interdependent (or common) values, where the higher is the type of the previous-round

winner, the higher is the value of the object to all remaining bidders, who in turn

bid more aggressively in the current round. The discouragement effect represents a

testable implication that differentiates my model from those with risk-neutral (Milgrom

and Weber, 2000; Weber, 1983) and risk-averse bidders (McAfee and Vincent, 1993;

Mezzetti, 2011; Hu and Zou, 2015), where previous winning bids have no influence on

the remaining bidders’strategies.

The willingness of loss-averse bidders to pay a premium to win earlier implies that

equilibrium prices follow a declining path, as summarized by the following proposition:
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Proposition 2. (Afternoon Effect) The price sequence in the sequential SPA is a super-
martingale; that is, for k ∈ {1, .., K − 1} , the expected price in round k+ 1 conditional

on the price in round k is lower than the price in round k. Hence, the afternoon effect

arises in equilibrium.

The intuition behind Proposition 2 is that in equilibrium bidders must be indifferent

between winning in the current round or the next. In the risk-neutral benchmark, this

implies that equilibrium prices are constant in expectation; i.e., the price sequence is

a martingale. Yet, if the expected prices were constant across two rounds, loss-averse

bidders would strictly prefer to win in the earlier one; hence, in the current round

they are willing to pay a premium above the next round’s price. But why wouldn’t

a bidder deviate and lose in the current round in order to wait for the price to drop

in the next round? The reason is that, when winning in round k, the premium that

a bidder expects to pay is equal to the psychological loss of his strongest remaining

opponent, the price setter; in equilibrium, however, this premium is smaller than the

psychological loss the bidder himself would suffer from losing in round k. Thus, while

in equilibrium the next round’s expected price is indeed lower than the current one’s,

a bidder cannot profitably deviate by lowering his bid in the current round. Moreover,

notice that while the decline in equilibrium prices is due to the preference of loss-averse

bidders to win earlier in order to reduce the uncertainty and avoid additional losses,

the magnitude of the decline varies with the informational externality; i.e., the stronger

the discouragement effect, the steeper the decline in price.

I conclude this section with a brief discussion of the sequential FPA. Continuing to

assume the winning bids are publicly disclosed, the following proposition characterizes

its symmetric equilibrium strategies:7

Proposition 3. In the sequential FPA, the symmetric equilibrium bidding strategies

are given by:

βFPAk (θ; yk−1) =
∫ θ

0

[
βFPAk+1 (x;x) + ΛxFk (x|yk−1)

]
fk (x|θ) dx

for k = 1, ..., K − 1 and

βFPAK (θ; yK−1) =
∫ θ

0
[x+ ΛxFK (x|yK−1)] fK (x|θ) dx.

7The proof of Proposition 3 follows similar steps to the one of Proposition 1, and is hence omitted.
Details are available from the author upon request.
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For k = 2, ..., K, the complete bidding strategy is to bid βFPAk (θ; yk−1) if θ < yk−1

and βFPAk (yk−1; yk−1) if θ ≥ yk−1.

In round K, a bidder with type θ bids his expectation of the “loss-adjusted”will-

ingness to pay of his closest opponent, conditional on himself having the highest type

among all remaining bidders. In earlier rounds, the bidding functions are again pinned

down by the condition that, in equilibrium, a bidder must be indifferent between win-

ning in the current round or the next one. To see the intuition, suppose bidder i wins

in round k if he bids as his type; that is, suppose Yk ≤ θi. Bidder i also has the option

to bid as low as to lose in round k and discover the value of Yk; then, he can win for

sure in the next round by bidding as if his type were Yk. Hence, in round k bidder i

bids the expectation of the next round’s price as though he was tied with his closest

competitor (i.e., βFPAk+1 (Yk;Yk)) plus the value for his closest competitor of avoiding the

psychological loss from losing in round k (i.e., ΛYkFk (Yk|yk−1)), conditional on himself
having the highest type among all remaining bidders. Therefore, as in the SPA, loss-

averse bidders are willing to pay a premium in order to win sooner rather than later.

Furthermore, it is easy to verify that also in the FPA equilibrium bids are subject

to the discouragement effect: the higher is the previous round’s winning bid, the less

aggressively the remaining bidders will bid in the current round.

Finally, as shown by Lange and Ratan (2010) and Balzer and Rosato (2021), the

FPA and SPA are revenue equivalent if bidders are not loss averse over money. The

reason is that, in this case, the psychological losses depend only on the probability with

which a bidder expects to win the auction and, with symmetric strategies, this is the

same in both formats. Thus, in each round the seller’s expected revenue from the FPA

is the same as that from the SPA, and the afternoon effect arises in equilibrium.

3.2 Sequential vs. Simultaneous Auctions

In this section, I analyze simultaneous auctions; that is, auctions in which all items

are allocated after only one round of bidding. In particular, I derive the equilibrium

bidding strategy in a uniform-price auction, where bidders submit sealed bids, the K

highest bidders each receive one item and pay a price equal to the (K + 1)-th high-

est bid. This procedure generalizes the single-item SPA.8 The following proposition

8An alternative procedure is the discriminatory (or “pay-your-bid”) auction, where bidders submit
sealed bids, the K highest bidders each receive one item and pay their own bid. This procedure
generalizes the single-item FPA.
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characterizes the symmetric equilibrium strategies:

Proposition 4. In the uniform-price auction, the symmetric equilibrium bidding strate-
gies are given by:

βUPA (θ) = θ + ΛθFK (θ) .

In the classical model without reference dependence, analogously to the single-item

SPA, it is weakly dominant for bidders to bid their intrinsic values. By contrast, a loss-

averse bidder bids his “loss-adjusted”willingness to pay which consists of his intrinsic

value for an item (i.e., θ), as well as the value of avoiding the psychological loss he

would experience by failing to win the auction (i.e., ΛθFK (θ)).9 Notice that this value

depends on the bidder’s probability of being among the top K bidders, as it is not

necessary for the bidder to submit the highest bid in order to obtain an item; it is

enough to outbid his K-th highest competitor.

Next, I compare the bidders’equilibrium utility and the seller’s expected revenue

in simultaneous and sequential auctions.10 Under risk neutrality, simultaneous and

sequential formats are payoff-equivalent for the bidders and revenue-equivalent for the

seller. Indeed, in both formats a bidder wins an item with the same probability (i.e., if

his type is higher than that of his K-th highest opponent) and, in expectation, pays the

same price (i.e., the value of his K-th highest opponent). With expectations-based loss

aversion, however, both equivalences break down since bidders’expected payments as

well as their expected psychological losses differ across the two formats. The following

proposition characterizes the difference in the expected payments:

Proposition 5. (Revenue non-Equivalence) For K ≥ 2, let PUPA
K (θ) and P SPA

K (θ)

denote a type-θ equilibrium expected payment in (simultaneous) uniform-price and (se-

quential) second-price auctions, respectively. Then, PUPA
K (θ) ≤ P SPA

K (θ) ∀θ.

In either a simultaneous or sequential auction, a bidder of type θ expects to pay a

price equal to the “loss-adjusted”willingness to pay of his marginal opponent; i.e., the

one with the K-th highest value (among N − 1). Yet, despite the marginal opponent

having the same intrinsic value, his “loss-adjusted”willingness to pay is not the same in

the two auction formats. In a simultaneous auction, the willingness to pay depends on

9Similarly, it is easy to verify that the symmetric equilibrium strategy in a discriminatory auction
is βDPA (θ) =

∫ θ
0

[x+ ΛxFK (x)] fK (x|θ) dx.
10I do the comparison for uniform-price and sequential second-price auctions, but the same results

apply to discriminatory and sequential first-price auctions by revenue equivalence.
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the ex-ante probability with which the bidder expects to obtain an item; in a sequential

auction, instead, the willingness to pay of the marginal bidder depends on his updated

probability of winning in the last round based on the outcome of the previous rounds.

Furthermore, recall that in each round of a sequential auction loss-averse bidders are ac-

tually paying a premium over the next round’s expected price; therefore, their expected

payments are higher in sequential auctions than in simultaneous ones. Moreover, an

immediate implication of Proposition 5 is that the seller’s revenue is higher in sequential

auctions compared to simultaneous ones. This is in line with the experimental results

of Betz et al. (2017) who find that sequential multi-item auctions raise more revenue

than simultaneous ones, with the source of this difference being fiercer competition on

the item(s) auctioned first.

Based on Proposition 5, revenue equivalence between sequential and simultaneous

auctions no longer holds if bidders are expectations-based loss averse, and a revenue-

maximizing auctioneer should always favor the former. However, this does not neces-

sarily imply that loss-averse bidders prefer simultaneous auctions over sequential ones,

as the two formats provide bidder with different information about their likelihood of

winning. In a simultaneous auction, a bidder only learns whether he is among the

top K bidders, so that there is just one opportunity for disappointment; by contrast,

in a sequential auction a bidder will experience a psychological loss in each round in

which he learns that he is not the highest remaining bidder. Indeed, as the following

proposition shows, bidders’expected psychological losses may differ across formats:

Proposition 6. (Bidder-losses non-Equivalence) For K ≥ 2, let LUPAK (θ) and LSPAK (θ)

denote a type-θ equilibrium expected psychological losses in (simultaneous) uniform-price

and (sequential) second-price auctions, respectively. Then, LSPAK (0)− LUPAK (0) = 0 =

LSPAK (1) − LUPAK (1). Moreover, for θ ∈ (0, 1) there exists a cutoff type θ∗K such that

LSPAK (θ) ≥ LUPAK (θ) if and only if θ ≥ θ∗K.

The proof of Proposition 6 in Appendix A provides formal definitions for LUPAK (θ)

and LSPAK (θ); here, I will describe these terms intuitively. Since the uniform-price

auction is a static format, a type-θ expected psychological loss in equilibrium depends

only on his ex ante probability of obtaining one of the items; i.e., FK (θ). By contrast,

at the start of a K-round sequential second-price auction, a type-θ bidder expects to

experience a psychological loss in each round in which he might not win, with each loss

weighted by the corresponding probability; i.e., F1 (θ), F2 (θ|y1), etc... Notice that a
bidder with the lowest (resp. highest) type expects to lose (resp. win) for sure in either a
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sequential auction or a simultaneous one; and, as the realized outcome exactly matches

his expectations, his psychological losses are equal to zero in both formats. Yet, bidders

with interior types are ex ante uncertain about their outcomes; hence, for these bidders

it makes a difference whether uncertainty is resolved sequentially or all at once. In

particular, high-type bidders are unlikely to experience a psychological loss but, if they

do, they suffer a rather large one; in contrast, low-type bidders are likely to suffer losses,

but these are relatively small. This trade-off between the likelihood and the magnitude

of psychological losses is what drives a loss-averse bidder’s preference between the two

auction formats. Consider first a bidder with a relatively high type; e.g., higher than

θ∗K . Such a bidder has a high chance to obtain an item and is therefore unlikely to suffer

a loss in a simultaneous auction. In a sequential auction, however, the bidder could still

suffer a (partial) loss even conditional on obtaining an item; e.g., if he loses in the first

round but wins in the second. Hence, for high-type bidders the expected disutility from

losses is smaller in simultaneous auctions than in sequential ones. Conversely, consider

a bidder with a relatively low type; e.g., lower than θ∗K . Such a bidder is unlikely to

obtain an item in either format; hence, he expects to suffer psychological losses in both

auction formats. Yet, while a sequential auction exposes the bidder to the possibility

of experiencing multiple psychological losses, it also allows him to adjust his reference

point downwards in between rounds so that successive losses become smaller and hurt

less. Thus, high-value bidders are more concerned with reducing the probability of

experiencing psychological losses altogether; low-value bidders, on the other hand, are

more concerned with reducing the magnitude of their losses.

By Proposition 5 and Proposition 6, for bidder types with θ ≥ θ∗K the uniform-price

auction entails both a lower expected payment and lower expected psychological losses

than the sequential second-price auction; hence, they prefer the uniform-price auction:

Corollary 1. (Bidder-payoff non-Equivalence) For K ≥ 2, let V UPA
K (θ) and V SPA

K (θ)

denote a type-θ equilibrium total expected payoff in (simultaneous) uniform-price and

(sequential) second-price auctions, respectively. Furthermore, let θ∗K be defined as in

Proposition 6. Then, V UPA
K (θ) > V SPA

K (θ) for θ ≥ θ∗K.

Low-type bidders, however, might prefer sequential auctions to simultaneous ones

if the higher expected psychological losses in the latter more than outweigh the higher

expect payment in the former.
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4 Alternative Disclosure Policies

A delicate issue in sequential auctions is what information should the auctioneer

reveal between rounds. Following the literature (McAfee and Vincent, 1993; Mezzetti,

2011; Hu and Zou, 2015), I assumed the seller publicly discloses each round’s winning

bid; yet, other disclosure policies are possible. Milgrom and Weber (2000) showed

that with risk-neutral bidders having independent private values, the seller’s disclosure

policy is inconsequential and equilibrium bids are the same no matter what information

(if any) the seller discloses in between rounds. In this section, I show that different

disclosure policies result in different equilibrium bids when bidders are loss averse.

4.1 Sequential Auctions with no Announcement

With expectations-based reference-dependent preferences, the bidding strategy de-

pends on the (public) history of the winning bids. Hence, some questions naturally

arise: Is the bidding strategy different if the seller commits not to reveal the history

of winning bids? Does the rationale for declining prices rely on the history of winning

bids being publicly available? I answer these questions in the context of sequential

second-price auctions and, for simplicity, I restrict attention to K = 2.

Because the seller does not reveal the first-round winning bid, in the second round

a bidder will have to use his own past bid to infer where he stands in the ranking of

the remaining bidders’values and update his reference point accordingly. Consider, for

instance, a bidder with type θ who in the first round bid as if his type were θ̃1 6= θ and

lost. Then, in the second round, if he bids according to his true type, he expects to win

with probability F2
(
θ|Y1 > θ̃1

)
:= (N − 1)

[
1− F

(
θ̃1
)]
F (θ)N−2

/[
1− F

(
θ̃1
)N−1]

.

The following proposition characterizes the symmetric equilibrium strategies:

Proposition 7. In the two-round sequential SPA without announcement of the winning
bid, the symmetric equilibrium bidding strategies are given by:

β
SPA−w/o
1 (θ) =

∫ θ

0
β
SPA−w/o
2 (x;x) f2 (x|θ) dx+ ΛθF1 (θ)

and

β
SPA−w/o
2

(
θ; θ̃1

)
= θ + ΛθF2

(
θ|Y1 > θ̃1

)
.

Comparing the bidding functions in Proposition 7 with those in Proposition 1,

it’s easy to see some similarities. Namely, in the first round a bidder with type
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θ bids his expectation of the second-round price conditional on being pivotal (i.e.,∫ θ
0 β

SPA−w/o
2 (x;x) f2 (x|θ) dx) plus the value of avoiding the psychological loss from

failing to win in the first round (i.e., ΛθF1 (θ)). Hence, like in the case with announce-

ment of the winning bid, loss-averse bidders are willing to pay a premium to win sooner

rather than later. Moreover, in the second round a loss-averse bidder with type θ

bids his “loss-adjusted”willingness to pay. This modified willingness to pay takes into

account the bidder’s intrinsic value for the good (i.e., θ), as well as the value of avoid-

ing the psychological feeling of loss he would experience by losing the auction (i.e.,

ΛθF2
(
θ|Y1 > θ̃1

)
). Yet, now the feeling of loss does not depend on the public history

of the game, but rather on the individual bidder’s private history; that is, the bidding

function in the second round depends on θ̃1 – the type the bidder mimicked in the

previous auction. Hence, a different form of discouragement effect arises:

Lemma 2. (Discouragement Effect II) The second-round bidding function is decreasing
in the type that a bidder mimicked in the first round; that is, ∂βSPA−w/o2

(
θ; θ̃1

)/
∂θ̃1 < 0

∀θ.

When the winning bid from the first round is not publicly revealed, a bidder can

only use his own first-round bid to assess how likely he is to win in the second one.

The higher the type he pretended to be in the first auction, the less likely he is to win

in the second one since not winning the first auction, given that he pretended to have

a high type, is bad news about how fierce competition is. This, in turn, implies that

the higher is the type a bidder mimicked in the first auction, the less he will bid in the

second one. Comparing the second-round equilibrium strategies with and without bid

announcement yields the following result:

Lemma 3. (Effect of information I) Equilibrium bidding in the second round is more

aggressive when the seller does not reveal the first-round winning bid if and only if

F
(
θ̃1
)N−1

+ (N − 1)
[
1− F

(
θ̃1
)]
F (y1)

N−2 > 1. (2)

Notice that condition (2) can hold only if y1 > θ̃1. In a sequential auction with-

out revelation of the winning bid, when losing the first round a bidder only learns

that that the first-round winner’s type is above θ̃1. By contrast, if the winning bid is

announced, the bidder learns that all remaining bidders’types are below y1. Hence,

with no bid announcement, bidders are asymmetrically informed about the intensity

of competition in the second round whereas with bid announcement they all have the
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same information. Therefore, whether second-round bidding is more aggressive with

or without announcement of the first-round winning bid depends on how discouraged

a bidder is in each format. Of course, on the equilibrium path, a bidder will behave

according to his true type in the first round, so that condition (2) must be evaluated

at θ̃1 = θ. The following lemma compares the first-round equilibrium strategies with

and without bid announcement:

Lemma 4. (Effect of information II) There exists a threshold type θ̂ ∈ (0, 1) such that

equilibrium bidding in the first round is more aggressive when the seller commits not to

reveal the winning bid prior to the second round if and only if θ ≥ θ̂.

Hence, high-type bidders bid more in the first-round of a sequential SPA without

winning bid announcement, whereas low-type bidders do the opposite. To see the

intuition, recall that in the first round a bidder bids his expectation of the second-round

price conditional on being pivotal; hence, when anticipating that the winning bid will

be announced, a bidder effectively bids as if his own first-round bid will determine the

intensity of the discouragement effect for all remaining bidders in the second round.

Consider then a bidder with a relatively high value. Such a bidder anticipates that

his strongest remaining opponent in the second round (i.e., the second-round price

setter) will be more discouraged when the first-round winning bid is announced than

when it is not. This, in turn, implies that his expectation of the second-round price

is higher without bid announcement. Conversely, a bidder with a relatively low value

knows that in the event he is pivotal, in the second round his first-round bid will not

generate a strong discouragement effect for his remaining opponents, who will then bid

rather aggressively; therefore, such a bidder expects a higher second-round price when

the first-round winning bid is revealed. In essence, if the first-round winning bid is

publicly disclosed, a bidder accounts for how his first-round bid, in the event of being

pivotal, will affect the reference point of his opponents in the second round; this effect

of information revelation tends to benefit high-value bidders more than low-value ones.

Lemmas 3 and 4 show that the bidding strategies of loss-averse bidders depend on

the seller’s disclosure policy. Yet, as the following proposition shows, even without

announcement of the winning bid, equilibrium prices are still declining:

Proposition 8. (Afternoon Effect II) The price sequence in a two-round sequential
second-price auction without announcement of the winning bid is a supermartingale;

that is, the expected price in the second round conditional on the first-round price is

lower than the price in the first round. Hence, the afternoon effect arises in equilibrium.
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The intuition for the above result is the same as the one behind Proposition 2: even

though there is no informational externality between rounds – as the prior winning

bid is not publicly disclosed – loss-averse bidders are still willing to pay a premium

above the next round’s expected price in order to avoid the loss they would feel by

losing in the current round. Therefore, it is the direct effect of loss aversion on the

bidding function, even without revelation of the prior winning bids, that causes prices

to decline in equilibrium.

4.2 Revealing the Winning Price in the Sequential SPA

Unlike the sequential FPA, announcing the winning price in a sequential SPA entails

revealing the bid of a bidder who will be present in the next round. In the classical model

with private values, this is inconsequential since strategies are history independent.

Hence, in the last round it is still a (weakly) dominant strategy for all remaining

bidders to bid their value and bids in earlier rounds are determined recursively via the

usual indifference condition. For loss-averse bidders, however, the history of the game

matters and bidding one’s value in the last round is not a dominant strategy. Therefore,

existence of a symmetric equilibrium in monotone strategies is not warranted.

Suppose such an equilibrium existed and consider a bidder who knows that he will

likely be the price setter in round k and then win in round k + 1. Such a bidder has

an incentive to raise his bid in round k in order to discourage his opponents in round

k + 1 and win at a lower price. Indeed, as shown by De Frutos and Rosenthal (1998)

and Mezzetti (2011), a similar issue applies to risk-neutral bidders with interdependent

values. However, the incentives to deviate for loss-averse bidders with private values

are exactly opposite to those of risk-neutral bidders with interdependent values. In the

latter case, bidders with relatively low types have an incentive to deviate by decreasing

their bid in the current round in order to pay a lower price in the next one in the

unlikely (but germane) event that they were to be the price setter. Conversely, with

private values and loss aversion, the bidders with relatively high types have an incentive

to bid more in the current round in order to discourage their opponents in the next one

in the unlikely (but germane) event that they were to be the price setter.
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5 Related Literature

This paper contributes to two strands of literature. The first is a recent literature

on how expectations-based loss aversion affects bidding and revenue in auctions. Lange

and Ratan (2010) analyze the FPA and SPA with independent private values using

the solution concept of “choice-acclimating personal equilibrium” (CPE) introduced

in Kőszegi and Rabin (2007), and show that the FPA raises (weakly) more revenue

than the SPA. Using the same equilibrium concept, Eisenhuth (2019) shows that with

independent private values the all-pay auction raises the most revenue among all sealed-

bid formats. Balzer and Rosato (2021) analyze the FPA and SPA with interdependent

values under both PE and CPE, showing that these two formats are revenue equivalent

under the former equilibrium concept but not under the latter; moreover, they show that

the ex ante uncertainty in their valuations leads loss-averse bidders to overbid, thereby

exposing them to the “winner’s curse”in equilibrium. All the papers mentioned thus

far restrict attention to static auctions. Two recent papers compare static and dynamic

auctions with loss-averse bidders: Balzer et al. (2021) show that the Dutch auction

raises more revenue than the FPA, while von Wangenheim (2021) shows that with

independent private values the SPA raises more revenue than the English auction.

Different from these previous contributions, my paper is the first to study the role of

loss aversion in multi-unit auctions.

The second strand of literature to which this paper contributes is the one on the

afternoon effect. Ashenfelter (1989) hypothesized risk aversion as a plausible expla-

nation for declining prices. Yet, McAfee and Vincent (1993) show that equilibrium

prices decline only if bidders display increasing absolute risk aversion; under the more

plausible assumption of decreasing absolute risk aversion, a monotone pure-strategy

equilibrium fails to exist and prices need not decline. Eyster (2002) models the behav-

ior of an agent who has a taste for rationalizing past actions by taking current actions

for which those past actions were optimal, and shows that this taste for consistency

rationalizes declining prices in sequential auctions. Mezzetti (2011) introduces a special

case of risk aversion, called “aversion to price risk”, according to which a bidder prefers

to win an object at a certain price rather than at a random one with the same expected

value; under this different notion of risk aversion, a monotone pure-strategy equilibrium

always exists in sequential auctions and prices decline.11 Although both his model and

11Hu and Zou (2015) generalize the analysis in Mezzetti (2011) by considering bidders who are
heterogeneous in exposure to background risk.
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mine can explain the afternoon effect, the intuition behind the result is quite differ-

ent. In Mezzetti (2011), the afternoon effect arises because bidders dislike risk in their

payment; in my model, instead, the afternoon effect arises because bidders dislike risk

over whether they get the good. Finally, another recent paper that explains declining

prices by appealing to preferences outside the standard EUT framework is Ghosh and

Liu (2021), who analyze sequential auctions with ambiguity-averse bidders.12

6 Conclusions

Sequential auctions are often used by auction houses and internet retailers to sell

identical or similar goods. In this paper, I have explored the implications of expectations-

based loss aversion for these auctions. Loss-averse bidders update their probability of

obtaining a good as the auction progresses and suffer a psychological loss in each round

in which they expect to obtain the good but fail to do so; the desire to avoid such

losses then leads them to bid more aggressively in earlier rounds. Hence, loss aversion

provides an explanation for the declining prices often observed in sequential auctions.

Moreover, expectations-based loss aversion creates an informational externality, the dis-

couragement effect, that renders equilibrium strategies history dependent: the higher

the winning bid in the current round, the less aggressively the remaining bidders will

bid in the next one. Such discouragement effect can be used to empirically test the

implications of loss aversion against those of the standard model with either private or

common values.

In addition to rationalizing declining prices, loss aversion delivers new implications

for the design of multi-unit auctions that are of independent interest for theorists and

practitioners alike. For example, if bidders are loss averse, sequential auctions raise

more revenue than simultaneous ones. Furthermore, depending on the distribution

of bidders’ values, in sequential auctions a seller may achieve a higher revenue by

concealing winning bids from earlier rounds.

12Other authors have proposed non preference-based explanations for declining prices, such as de-
mand complementarities (Menezes and Monteiro, 2003), supply uncertainty (Jeitschko, 1999), hetero-
geneous objects (Bernhardt and Scoones, 1994; Gale and Stegeman, 2001), order-of-sale effects (Gale
and Hausch,1994; Chakraborty et al., 2006) and budget constraints (Ghosh and Liu, 2019).
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A Proofs

Preliminary Observations: For most of the proofs in this appendix, it will prove
helpful to re-write i’s total expected payoff in round k as the sum of his current-round

expected payoff plus his expected payoff in later rounds. For k ∈ {1, ..., K}, using the
definition of Uk (θi, bi,k; yk−1|β) in Section 2, we have

Uk (θi, bi,k; yk−1|β) = Ek
[

K∑
m=k

um (θi, bi,m, pm; ym−1|β)

]

= Ek [uk (θi, bi,k, pk; yk−1|β)] + Ek

 K∑
m=k+1

um (θi, bi,m, pm; ym−1|β)


= Pr

[
bi,k > max

j 6=i
bj,k

∣∣∣∣max
j 6=i

bj,k−1 = βk−1 (yk−1; yk−2)
] (
θi − E

[
pk

∣∣∣∣bi,k > max
j 6=i

bj,k

])
−Pr

[
bi,k < max

j 6=i
bj,k

∣∣∣∣max
j 6=i

bj,k−1 = βk−1 (yk−1; yk−2)
]

ΛθiQ
k
i,k

+ Pr
[
bi,k < max

j 6=i
bj,k

∣∣∣∣max
j 6=i

bj,k−1 = βk−1 (yk−1; yk−2)
]
Ek

 K∑
m=k+1

um (θi, bi,m, pm; ym−1|β)


= Pr

[
bi,k > max

j 6=i
bj,k

∣∣∣∣max
j 6=i

bj,k−1 = βk−1 (yk−1; yk−2)
] (
θi − E

[
pk

∣∣∣∣bi,k > max
j 6=i

bj,k

])
−Pr

[
bi,k < max

j 6=i
bj,k

∣∣∣∣max
j 6=i

bj,k−1 = βk−1 (yk−1; yk−2)
]

ΛθiQ
k
i,k

+ Pr
[
bi,k < max

j 6=i
bj,k

∣∣∣∣max
j 6=i

bj,k−1 = βk−1 (yk−1; yk−2)
]
Ek [Uk+1 (θi, bi,k+1; yk|β)] .

Moreover, with symmetric strategies and winning-bid announcements, it holds that

Qk
i,k = Pr

[
bi,k > max

j 6=i
bj,k

∣∣∣∣max
j 6=i

bj,k−1 = βk−1 (yk−1; yk−2)
]

= Pr
[
Y
(N−1)
k ≤ θi|Y (N−1)

k−1 = yk−1
]

= Fk (θi|yk−1) .

In the proofs, in order to simplify the notation, I am going to suppress the depen-

dence of the bidder’s payoff on the bid and strategy profile; hence, slightly abusing

notation, I will denote a type-θ equilibrium expected utility in round k by U∗k (θ; yk−1),

and the utility associated with a deviation in round k by Uk
(
θ, θ̃; yk−1

)
.

Proof of Proposition 1: Let βSPAk (θ; yk−1) be the round-k posited equilibrium bid-

ding function and denote by U∗k (θ; yk−1) the expected utility of a type-θ bidder in the

continuation equilibrium at the beginning of round k, conditional on having lost all
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previous k − 1 auctions and on the history of the winning bids. Suppose all the other

bidders follow their equilibrium strategies, while bidder i is considering deviating in

round k (only). Then, the payoff of bidder i with type θ if he bids as if he had type θ̃ is

Uk
(
θ, θ̃; yk−1

)
=

∫ θ̃

0

[
θ − βSPAk (yk; yk−1)

]
fk (yk|yk−1) dyk − Λ

∫ yk−1

θ̃
θFk (θ|yk−1) fk (yk|yk−1) dyk

+
∫ yk−1

θ̃
U∗k+1 (θ; yk) fk (yk|yk−1) dyk (3)

where

U∗k+1 (θ; yk) =



∫ θ
0

[
θ − βSPAk+1 (yk+1; yk)

]
fk+1 (yk+1|yk) dyk+1 − Λ

∫ yk
θ θFk+1 (θ|yk) fk+1 (yk+1|yk) dyk+1

+
∫ yk
θ U∗k+2 (θ; yk+1) fk+1 (yk+1|yk) dyk+1

if θ < yk

θ −
∫ yk
0 βSPAk+1 (yk+1; yk) fk+1 (yk+1|yk) dyk+1 if θ ≥ yk

for k ∈ {1, ..., K − 1}, as he wins for sure in round k + 1 if θ ≥ yk, and U∗k+1 (θ; yk) = 0

for k = K. Differentiating (3) with respect to θ̃ yields

∂Uk
(
θ, θ̃; yk−1

)
∂θ̃

=
[
θ − βSPAk

(
θ̃; yk−1

)]
fk
(
θ̃|yk−1

)
+ΛθFk (θ|yk−1) fk

(
θ̃|yk−1

)
−U∗k+1

(
θ; θ̃

)
fk
(
θ̃|yk−1

)
.

The first-order condition requires that
∂Uk(θ,̃θ;yk−1)

∂θ̃

∣∣∣∣̃
θ=θ

= 0; hence, we obtain the

following necessary condition:

{
θ − βSPAk (θ; yk−1) + ΛθFk (θ|yk−1)− U∗k+1 (θ; θ)

}
fk (θ|yk−1) = 0. (4)

Substituting for U∗k+1 (θ; θ) into condition (4) and re-arranging it yields:

βSPAk (θ; yk−1) =
∫ θ

0
βSPAk+1 (yk+1; θ) fk+1 (yk+1|θ) dyk+1 + ΛθFk (θ|yk−1)

for k ∈ {1, ..., K − 1} and

βSPAK (θ; yK−1) = θ + ΛθFK (θ|yK−1)

for k = K. Moreover, it is easy to verify that the bidding functions are increasing

in θ. Hence, for k = 2, ..., K, the bidder is guaranteed to win in round k by bidding

βSPAk (yk−1; yk−1) ≤ βSPAk (θ; yk−1) if yk−1 ≤ θ.

Hence, it only remains to show that the first-order conditions are suffi cient for
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equilibrium. First, let k = K. Using condition (4) to substitute for βSPAK

(
θ̃; yK−1

)
into

the expression for ∂UK
(
θ, θ̃; yK−1

)
/∂θ̃ yields

∂UK
(
θ, θ̃; yK−1

)
∂θ̃

=
{
θ − θ̃ + Λ

[
θFK (θ|yK−1)− θ̃FK

(
θ̃|yK−1

)]}
fK

(
θ̃|yK−1

)
.

Hence, ∂UK
(
θ, θ̃; yK−1

)
/∂θ̃ has the same sign as

(
θ − θ̃

)
; thus, θ̃ = θ is optimal.

Next, let k ∈ {1, ..., K − 1}. Using condition (4) to substitute for βSPAk

(
θ̃; yk−1

)
into the expression for ∂Uk

(
θ, θ̃; yk−1

)
/∂θ̃ yields

∂Uk
(
θ, θ̃; yk−1

)
∂θ̃

=
{
θ − θ̃ + Λ

[
θFk (θ|yk−1)− θ̃Fk

(
θ̃|yk−1

)]
+ U∗k+1

(
θ̃; θ̃

)
− U∗k+1

(
θ; θ̃

)}
fk
(
θ̃|yk−1

)
.

Take first the case θ̃ ≤ θ. In this case,

U∗k+1
(
θ; θ̃

)
= θ −

∫ θ̃

0
βSPAk+1

(
yk+1; θ̃

)
fk+1

(
yk+1|θ̃

)
dyk+1

and therefore

U∗k+1
(
θ̃; θ̃

)
− U∗k+1

(
θ; θ̃

)
= θ̃ − θ.

Hence, ∂Uk
(
θ, θ̃; yk−1

)
/∂θ̃ ≥ 0 for θ̃ ≤ θ. Next, consider the case θ̃ > θ. In this

case,

U∗k+1
(
θ̃; θ̃

)
− U∗k+1

(
θ; θ̃

)
= θ̃ −

∫ θ

0
θfk+1

(
yk+1|θ̃

)
dyk+1 −

∫ θ̃

θ
βSPAk+1

(
yk+1; θ̃

)
fk+1

(
yk+1|θ̃

)
dyk+1

+Λ
∫ θ̃

θ
θFk+1

(
θ|θ̃
)
fk+1

(
yk+1|θ̃

)
dyk+1 −

∫ θ̃

θ
U∗k+2 (θ; yk+1) fk+1

(
yk+1|θ̃

)
dyk+1.

Hence, substituting and re-arranging, we have

∂Uk
(
θ, θ̃; yk−1

)
∂θ̃

=

{∫ θ̃

θ
θfk+1

(
yk+1|θ̃

)
dyk+1 −

∫ θ̃

θ
βSPAk+1

(
yk+1; θ̃

)
fk+1

(
yk+1|θ̃

)
dyk+1

}
fk
(
θ̃|yk−1

)

+

{
Λ
∫ θ̃

θ
θFk+1

(
θ|θ̃
)
fk+1

(
yk+1|θ̃

)
dyk+1 −

∫ θ̃

θ
U∗k+2 (θ; yk+1) fk+1

(
yk+1|θ̃

)
dyk+1

}
fk
(
θ̃|yk−1

)
+Λ

[
θFk (θ|yk−1)− θ̃Fk

(
θ̃|yk−1

)]
fk
(
θ̃|yk−1

)
.
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Moreover, notice that

βSPAk+1

(
yk+1; θ̃

)
= yk+1 + Λyk+1Fk+1

(
yk+1|θ̃

)
− U∗k+2 (yk+1; yk+1)

≥ θ + ΛθFk+1
(
θ|θ̃
)
− U∗k+2 (θ; yk+1)

where the equality follows from (4) while the inequality follows from the fact that

yk+1 ∈
[
θ, θ̃

]
. Hence, ∂Uk

(
θ, θ̃; yk−1

)
/∂θ̃ < 0 for θ̃ > θ. Therefore, ∂Uk

(
θ, θ̃; yk−1

)
/∂θ̃

has the same sign as
(
θ − θ̃

)
; thus, θ̃ = θ is optimal. �

Proof of Lemma 1: The result follows since Fk (θ|yk−1) is decreasing in yk−1. �
Proof of Proposition 2: In order to compute prices and expected prices in each

round, we need to take the point of view of the seller. Hence, we will use Y (N)
k to

denote the k-th highest order statistic among N (i.e., when taking the point of view

of the seller) and Y (N−1)
k to denote the k-th highest order statistic among N − 1 (i.e.,

when taking the point of view of a bidder). We will use a similar notation for the CDFs

and PDFs of Y (N)
k and Y (N−1)

k , respectively. In a symmetric equilibrium, the winner in

round k is the bidder with the k-th highest type and the price setter is the bidder with

the next highest type. Hence, we have

pk = βSPAk

(
Y
(N)
k+1 = yk+1;Y

(N)
k−1 = yk−1

)
=

∫ yk+1

0
βSPAk+1 (θ; yk+1) f

(N−1)
k+1 (θ|yk+1) dθ + Λyk+1F

(N−1)
k (yk+1|yk−1)

>
∫ yk+1

0
βSPAk+1 (θ; yk) f

(N)
k+2 (θ|yk+1) dθ

= E
[
pk+1|pk = βSPAk (yk+1; yk−1)

]
where the inequality follows since f (N−1)k+1 (·|yk+1) = f

(N)
k+2 (·|yk+1), βSPAk+1 (θ; yk+1) > βSPAk+1 (θ; yk)

by Lemma 1 and Λyk+1F
(N−1)
k (yk+1|yk−1) > 0. �

Proof of Proposition 4: Let βUPA (θ) be the posited equilibrium bidding function

and suppose that all other bidders follow their equilibrium strategies, while bidder i

considers deviating. The payoff of bidder i with type θ if he bids as if he had type θ̃ is

U
(
θ, θ̃

)
=
∫ θ̃

0

[
θ − βUPA (yK)

]
fK (yK) dyK − Λθ

∫ 1

θ̃
FK (θ) fK (yK) dyK . (5)
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Differentiating (5) with respect to θ̃ yields the first-order condition:

[
θ − βUPA

(
θ̃
)]
fK

(
θ̃
)

+ ΛθFK (θ) fK
(
θ̃
)

= 0.

In equilibrium, θ̃ = θ must hold; hence, we obtain the following necessary condition:

[
θ − βUPA (θ) + ΛθFK (θ)

]
fK (θ) = 0. (6)

Simplifying and re-arranging the above condition yields

βUPA (θ) = θ + ΛθFK (θ) .

It is easy to verify that the bidding functions are increasing in θ. Hence, it only

remains to show that the first-order conditions are suffi cient for equilibrium. Using

condition (6) to substitute for βUPA
(
θ̃
)
into the expression for ∂U

(
θ, θ̃

)
/∂θ̃ yields

∂U
(
θ, θ̃

)
∂θ̃

=
[
θ − θ̃ − Λθ̃FK

(
θ̃
)]
fK

(
θ̃
)

+ ΛθFK (θ) fK
(
θ̃
)

=
{
θ − θ̃ + Λ

[
θFK (θ)− θ̃FK

(
θ̃
)]}

fK
(
θ̃
)
.

Hence, ∂U
(
θ, θ̃

)
/∂θ̃ is the same sign as

(
θ − θ̃

)
; thus, θ̃ = θ is optimal. �

Proof of Proposition 5: We prove the result by induction on K.

Base case: K = 2. We show that P SPA
2 (θ) ≥ PUPA

2 (θ) for all θ ∈ [0, 1]. In

equilibrium, the expected payment of a type-θ bidder in a two-round sequential SPA is

P SPA
2 (θ) =

∫ θ

0
βSPA1 (y1) f1 (y1) dy1 +

∫ 1

θ

∫ θ

0
βSPA2 (y2; y1) f2 (y2|y1) dy2f1 (y1) dy1

=
∫ θ

0

[∫ y1

0
βSPA2 (y2; y1) f2 (y2|y1) dy2 + Λy1F1 (y1)

]
f1 (y1) dy1

+
∫ 1

θ

[∫ θ

0
[y2 + Λy2F2 (y2|y1)] f2 (y2|y1) dy2

]
f1 (y1) dy1

=
∫ θ

0
Λy1F1 (y1) f1 (y1) dy1 +

∫ θ

0

[∫ y1

0
[y2 + Λy2F2 (y2|y1)] f2 (y2|y1) dy2

]
f1 (y1) dy1

+
∫ 1

θ

[∫ θ

0
[y2 + Λy2F2 (y2|y1)] f2 (y2|y1) dy2

]
f1 (y1) dy1.
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Similarly, the expected payment of a type-θ bidder in a uniform-price auction is

PUPA
2 (θ) =

∫ θ

0
βUPA (y2) f2 (y2) dy2

=
∫ θ

0
[y2 + Λy2F2 (y2)] f2 (y2) dy2.

Let φ2 (θ,N) := P SPA
2 (θ)− PUPA

2 (θ). Since

∫ θ

0

∫ y1

0
y2f2 (y2|y1) dy2f1 (y1) dy1 +

∫ 1

θ

∫ θ

0
y2f2 (y2|y1) dy2f1 (y1) dy1 =

∫ θ

0
y2f2 (y2) dy2,

it follows that

φ2 (θ,N) =
∫ θ

0

∫ y1

0
Λy2F2 (y2|y1) f2 (y2|y1) dy2f1 (y1) dy1 +

∫ 1

θ

∫ θ

0
Λy2F2 (y2|y1) f2 (y2|y1) dy2f1 (y1) dy1

+
∫ θ

0
Λy1F1 (y1) f1 (y1) dy1 −

∫ θ

0
Λy2F2 (y2) f2 (y2) dy2.

Furthermore, notice that φ2 (θ,N)|θ=0 = 0, while

φ2 (θ,N)|θ=1 =
∫ 1

0

∫ y1

0
Λy2F2 (y2|y1) f2 (y2|y1) dy2f1 (y1) dy1

+
∫ 1

0
Λy1F1 (y1) f1 (y1) dy1 −

∫ 1

0
Λy2F2 (y2) f2 (y2) dy2

=
∫ 1

0

∫ y1

0
Λy2F2 (y2|y1) f2 (y2|y1) dy2f1 (y1) dy1 +

1

2

∫ 1

0
Λ
[
F2 (x)2 − F1 (x)2

]
dx > 0

where the second equality follows since, using integration by parts,
∫ 1
0 y1F1 (y1) f1 (y1) dy1 =

1−
∫ 1
0
F1(y1)

2dy1

2
and

∫ 1
0 y2F2 (y2) f2 (y2) dy2 =

1−
∫ 1
0
F2(y2)

2dy2

2
.

Hence, a suffi cient condition for φ2 (θ,N) ≥ 0 to hold for all θ ∈ [0, 1] is that
∂φ2(θ,N)

∂θ
≥ 0. We have

∂φ2 (θ,N)

∂θ
=

∫ 1

θ
ΛθF2 (θ|y1) f2 (θ|y1) f1 (y1) dy1 + ΛθF1 (θ) f1 (θ)− ΛθF2 (θ) f2 (θ)

= Λθ (N − 1) (N − 2)F (θ)2N−5 f (θ)
∫ 1

θ

f (y1)

F (y1)
N−2dy1 + ΛθF (θ)N−1 (N − 1)F (θ)N−2 f (θ)

−Λθ
[
F (θ)N−1 + (N − 1) [1− F (θ)]F (θ)N−2

]
(N − 1) [1− F (θ)] (N − 2)F (θ)N−3 f (θ) .
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Next, notice that

∫ f (x)

F (x)N−2
dx =

 lnF (x) if N = 3
F (x)3−N

3−N . if N ≥ 4
.

Hence,

∂φ2 (θ,N)

∂θ
= Λθ2F (θ) f (θ)

{
F (θ)2 − lnF (θ)− [1− F (θ)] [2− F (θ)]

}
for N = 3

and

∂φ2 (θ,N)

∂θ
=
F (θ)N−1 + N−2

N−3

{
1− F (θ)N−3 − (N − 3) [1− F (θ)]F (θ)N−3 [N − 1− (N − 2)F (θ)]

}
[
Λθ (N − 1)F (θ)N−2 f (θ)

]−1 for N ≥ 4.

Consider first the case N = 3. Notice that ∂φ2(θ,3)
∂θ

∣∣∣
θ=0

= 0 and ∂φ2(θ,3)
∂θ

∣∣∣
θ=1

=

2Λf (1) > 0. Moreover, for θ ∈ (0, 1), the sign of ∂φ2(θ,3)
∂θ

is equal to the sign of

F (θ)2− lnF (θ)− [1− F (θ)] [2− F (θ)]; this expression is minimized for F (θ) = 1
3
and

F (θ)2 − lnF (θ)− [1− F (θ)] [2− F (θ)]
∣∣∣
θ=F−1( 13)

= ln 3− 1 > 0. Hence, ∂φ2(θ,3)
∂θ

≥ 0.

Next, consider the case N ≥ 4. Notice that ∂φ2(θ,N)
∂θ

∣∣∣
θ=0

= 0 and ∂φ2(θ,N)
∂θ

∣∣∣
θ=1

=

Λ (N − 1) f (1) > 0. Moreover, for θ ∈ (0, 1), the sign of ∂φ2(θ,N)
∂θ

is equal to the sign of

F (θ)N−1 +
N − 2

N − 3

{
1− F (θ)N−3 − (N − 3) [1− F (θ)]F (θ)N−3 [N − 1− (N − 2)F (θ)]

}
. (7)

Expression (7) is minimized for F (θ) =
20N−11N2+2N3−12−

√
(5N−6)(N−2)3

2(N−1)2(N−3) and it can be

verified numerically or with a plot that for θ = F−1
(
20N−11N2+2N3−12−

√
(5N−6)(N−2)3

2(N−1)2(N−3)

)
,

expression (7) is strictly positive for any N ≥ 4.

Therefore, forN ≥ 3 it holds that ∂φ2(θ,N)
∂θ

≥ 0, which in turn implies that φ2 (θ,N) :=

P SPA
2 (θ)− PUPA

2 (θ) ≥ 0 for all θ ∈ [0, 1].

Induction step: for K > 2, we show that if P SPA
K (θ) ≥ PUPA

K (θ) for all θ ∈ [0, 1],

then P SPA
K+1 (θ) ≥ PUPA

K+1 (θ) for all θ ∈ [0, 1]. Begin by noticing that the expected

payment of a type-θ bidder in a uniform-price auction with K units is

PUPA
K (θ) =

∫ θ

0
βUPA (yK) fK (yK) dyK

=
∫ θ

0
[yK + ΛyKFK (yK)] fK (yK) dyK .
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The expression for the expected payment of a type-θ bidder in a K-round sequential

SPA is rather cumbersome, so I will briefly describe it in words first. From the point of

view of a bidder with type θ, his marginal opponent – the bidder that he must outbid

in order to win an item – is the one with the K-th highest value (among N − 1).

Hence, in each round k ∈ {1, ..., K} in which he is active, a type-θ expects to pay a
price equal to the expected value, conditional on the information available in round

k, of the loss-adjusted willingness to pay of the marginal opponent. There are K such

terms. Moreover, as he prefers to win sooner rather than later, in each round the bidder

also expects to pay a premium equal to the future avoided losses. For example, in the

first round the bidder expects to pay a premium, if he wins, equal to the avoided losses

in rounds 1 through K. Similarly, in the second round the bidder expects to pay a

premium equal to the avoided losses in rounds 2 through K; and so on. Hence, the

number of premia per round decreases throughout the auction and there are K(K−1)
2

such terms in total. Therefore, the expected expected payment of a type-θ bidder in a

K-round sequential SPA consists of K(K+1)
2

terms and can be written as

P SPA
K (θ) =

∫ θ

0
βSPA1 (y1) f1 (y1) dy1 +

∫ 1

θ

∫ θ

0
βSPA2 (y2; y1) f2 (y2|y1) dy2f1 (y1) dy1

+ . . .︸︷︷︸
Expected payments in rounds 3 through K−1

+
∫ 1

θ
...
∫ θ

0
βSPAK (yK ; yK−1) fK (yK |yK−1) dyK ...f1 (y1) dy1

=
∫ θ

0
Λy1F1 (y1) f1 (y1) dy1 +

∫ θ

0

∫ y1

0
Λy2F2 (y2|y1) f2 (y2|y1) dy2f1 (y1) dy1

+
∫ 1

θ

∫ θ

0
Λy2F2 (y2|y1) f2 (y2|y1) dy2f1 (y1) dy1 + ...︸︷︷︸

Expected losses avoided in rounds 3 through K−1

+
∫ θ

0

∫ y1

0
. . .
∫ yK−1

0
[yK + ΛyKFK (yK |yK−1)] fK (yK |yK−1) dyK ...f2 (y2|y1) dy2f1 (y1) dy1

+ . . .︸︷︷︸
Expectations of the “loss-adjusted” type of the marginal opponent in rounds 2 through K−1

+
∫ 1

θ

∫ y1

θ
...
∫ θ

0
[yK + ΛyKFK (yK |yK−1)] fK (yK |yK−1) dyK ...f2 (y2|y1) dy2f1 (y1) dy1.

Since

∫ θ

0
yKfK (yK) dyK =

∫ θ

0

∫ y1

0
. . .
∫ yK−1

0
yKfK (yK |yK−1) dyK ...f2 (y2|y1) dy2f1 (y1) dy1

+...+
∫ 1

θ

∫ y1

θ
...
∫ θ

0
yKfK (yK |yK−1) dyK ...f2 (y2|y1) dy2f1 (y1) dy1,

it follows that the sign of P SPA
K (θ) − PUPA

K (θ) depends only on the terms multiplied
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by Λ. Then, by the induction hypothesis, we have that

P SPA
K (θ)− PUPA

K (θ) ≥ 0⇔∫ θ

0
Λy1F1 (y1) f1 (y1) dy1 +

∫ θ

0

∫ y1

0
Λy2F2 (y2|y1) f2 (y2|y1) dy2f1 (y1) dy1

+
∫ 1

θ

∫ θ

0
Λy2F2 (y2|y1) f2 (y2|y1) dy2f1 (y1) dy1 + ...︸︷︷︸

Expected losses avoided in rounds 3 through K−1

+
∫ θ

0

∫ y1

0
. . .
∫ yK−1

0
ΛyKFK (yK |yK−1) fK (yK |yK−1) dyK ...f2 (y2|y1) dy2f1 (y1) dy1 + ...

...+
∫ 1

θ

∫ y1

θ
...
∫ θ

0
ΛyKFK (yK |yK−1) fK (yK |yK−1) dyK ...f2 (y2|y1) dy2f1 (y1) dy1

≥
∫ θ

0
ΛyKFK (yK) fK (yK) dyK . (8)

Next, we have that

PUPA
K+1 (θ) =

∫ θ

0
[yK+1 + ΛyK+1FK+1 (yK+1)] fK+1 (yK+1) dyK+1.

and

P SPA
K+1 (θ) =

∫ θ

0
Λy1F1 (y1) f1 (y1) dy1 +

∫ θ

0

∫ y1

0
Λy2F2 (y2|y1) f2 (y2|y1) dy2f1 (y1) dy1

+
∫ 1

θ

∫ θ

0
Λy2F2 (y2|y1) f2 (y2|y1) dy2f1 (y1) dy1 + ...︸︷︷︸

Expected losses avoided in rounds 3 through K

+
∫ θ

0

∫ y1

0
. . .
∫ yK

0
[yK+1 + ΛyK+1FK+1 (yK+1|yK)] fK+1 (yK+1|yK) dyK+1...f2 (y2|y1) dy2f1 (y1) dy1

+ . . .︸︷︷︸
Expectations of the “loss-adjusted” type of the marginal opponent in rounds 2 through K

+
∫ 1

θ

∫ y1

θ
...
∫ θ

0
[yK+1 + ΛyK+1FK+1 (yK+1|yK)] fK+1 (yK+1|yK) dyK+1...f2 (y2|y1) dy2f1 (y1) dy1.
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Hence,

P SPA
K+1 (θ)− PUPA

K+1 (θ) ≥ 0⇔∫ θ

0
Λy1F1 (y1) f1 (y1) dy1 +

∫ θ

0

∫ y1

0
Λy2F2 (y2|y1) f2 (y2|y1) dy2f1 (y1) dy1

+
∫ 1

θ

∫ θ

0
Λy2F2 (y2|y1) f2 (y2|y1) dy2f1 (y1) dy1 + ...︸︷︷︸

Expected losses avoided in rounds 3 through K

+
∫ θ

0

∫ y1

0
. . .
∫ yK

0
ΛyK+1FK+1 (yK+1|yK) fK+1 (yK+1|yK) dyK+1...f2 (y2|y1) dy2f1 (y1) dy1 + ...

...+
∫ 1

θ

∫ y1

θ
...
∫ θ

0
ΛyK+1FK+1 (yK+1|yK) fK+1 (yK+1|yK) dyK+1...f2 (y2|y1) dy2f1 (y1) dy1

≥
∫ θ

0
ΛyK+1FK+1 (yK+1) fK+1 (yK+1) dyK+1. (9)

Notice that the first (K+1)K
2

terms on the left-hand side of (9) are exactly the same

as the terms on the left-hand side of (8). Hence, by the induction hypothesis, the

following is a suffi cient condition for (9) to hold

∫ θ

0

∫ y1

0
. . .
∫ yK

0
ΛyK+1FK+1 (yK+1|yK) fK+1 (yK+1|yK) dyK+1...f2 (y2|y1) dy2f1 (y1) dy1 + ...

...+
∫ 1

θ

∫ y1

θ
...
∫ θ

0
ΛyK+1FK+1 (yK+1|yK) fK+1 (yK+1|yK) dyK+1...f2 (y2|y1) dy2f1 (y1) dy1

≥
∫ θ

0
ΛyK+1FK+1 (yK+1) fK+1 (yK+1) dyK+1 −

∫ θ

0
ΛyKFK (yK) fK (yK) dyK .

Let

φK+1 (θ,N) : =
∫ θ

0

∫ y1

0
. . .
∫ yK

0
ΛyK+1FK+1 (yK+1|yK) fK+1 (yK+1|yK) dyK+1...f2 (y2|y1) dy2f1 (y1) dy1 + ...

...+
∫ 1

θ

∫ y1

θ
...
∫ θ

0
ΛyK+1FK+1 (yK+1|yK) fK+1 (yK+1|yK) dyK+1...f2 (y2|y1) dy2f1 (y1) dy1

−
∫ θ

0
ΛyK+1FK+1 (yK+1) fK+1 (yK+1) dyK+1 +

∫ θ

0
ΛyKFK (yK) fK (yK) dyK .
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It is easy to verify that φK+1 (θ,N)
∣∣∣
θ=0

= 0. Moreover, we have that

φK+1 (θ,N)
∣∣∣
θ=1

=
∫ 1

0

∫ y1

0
. . .
∫ yK

0
ΛyK+1FK+1 (yK+1|yK) fK+1 (yK+1|yK) dyK+1...f2 (y2|y1) dy2f1 (y1) dy1

−
∫ 1

0
ΛyK+1FK+1 (yK+1) fK+1 (yK+1) dyK+1 +

∫ 1

0
ΛyKFK (yK) fK (yK) dyK .

=
∫ 1

0

∫ y1

0
. . .
∫ yK

0
ΛyK+1FK+1 (yK+1|yK) fK+1 (yK+1|yK) dyK+1...f2 (y2|y1) dy2f1 (y1) dy1

+
1

2

∫ 1

0
Λ
[
FK+1 (x)2 − FK (x)2

]
dx

> 0

where the second equality follows by using integration by parts. Next, differentiating

φK (θ,N) with respect to θ yields

∂φK+1 (θ,N)

∂θ
=

∫ 1

θ

∫ y1

θ
...
∫ yK−1

0
ΛθFK+1 (θ|yK) fK+1 (θ|yK) fK (yK |yK−1) dyK ...f2 (y2|y1) dy2f1 (y1) dy1

−ΛθFK+1 (θ) fK+1 (θ) + ΛθFK (θ) fK (θ) .

Notice that ∂φK+1(θ,N)

∂θ

∣∣∣
θ=0

= 0 =
∂φK+1(θ,N)

∂θ

∣∣∣
θ=1

. Moreover, since ΛθFK (θ) fK (θ)−
ΛθFK+1 (θ) fK+1 (θ) crosses zero only once for θ ∈ (0, 1) and from above, ∂φK+1(θ,N)

∂θ
can

change sign at most once, from positive to negative. Therefore, given that φK+1 (θ,N)
∣∣∣
θ=1

>

0 and ∂φK+1(θ,N)

∂θ

∣∣∣
θ=1

= 0, it follows that P SPA
K+1 (θ)− PUPA

K+1 (θ) ≥ 0 for all θ ∈ [0, 1]. �
Proof of Proposition 6: We show that for K ≥ 2 there exists a θ∗K ∈ (0, 1) such that

LSPAK (θ) ≥ LUPAK (θ) if and only if θ ≥ θ∗K . In equilibrium, the expected psychological

loss of a type-θ bidder in a K-round sequential SPA is

LSPAK (θ) = Λθ
∫ 1

θ
F1 (θ) f1 (y1) dy1 + Λθ

∫ 1

θ

∫ y1

θ
F2 (θ|y1) f2 (y2|y1) dy2f1 (y1) dy1

+ . . .︸︷︷︸
Expected losses in rounds 3 through K−1

+ Λθ
∫ 1

θ
...
∫ yK−1

θ
FK (θ|yK−1) fK (yK |yK−1) dyK ...f1 (y1) dy1.

Similarly, the expected psychological loss of a type-θ bidder in a uniform-price is

LUPAK (θ) = ΛθFK (θ) [1− FK (θ)] .

It is easy to verify that LSPAK (0)− LUPAK (0) = 0 = LSPAK (1)− LUPAK (1). Moreover,

simplifying and re-arranging the terms in LSPAK (θ), the difference LSPAK (θ)− LUPAK (θ)
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can be re-written as

Λθ

{
F1 (θ) [1− F1 (θ)] +

K∑
k=2

[Fk (θ)− Fk−1 (θ)]− FK (θ) [1− FK (θ)]

}

−Λθ
{∫ 1

θ
F2 (θ|y1)2 f1 (y1) dy1 + ...+

∫ 1

θ
...
∫ yK−2

θ
FK (θ|yK−1)2 fK−1 (yK−1|yK−2) dyK−1...f1 (y1) dy1

}
= Λθ {F1 (θ) [1− F1 (θ)] + FK (θ)− F1 (θ)− FK (θ) [1− FK (θ)]}

−Λθ
{∫ 1

θ
F2 (θ|y1)2 f1 (y1) dy1 + ...+

∫ 1

θ
...
∫ yK−2

θ
FK (θ|yK−1)2 fK−1 (yK−1|yK−2) dyK−1...f1 (y1) dy1

}
= Λθ

{
FK (θ)2 − F1 (θ)2

}
−Λθ

{∫ 1

θ
F2 (θ|y1)2 f1 (y1) dy1 + ...+

∫ 1

θ
...
∫ yK−2

θ
FK (θ|yK−1)2 fK−1 (yK−1|yK−2) dyK−1...f1 (y1) dy1

}
.

Hence, for θ ∈ (0, 1), the sign of LSPAK (θ) − LUPAK (θ) is equal to the sign of the

following expression

FK (θ)2 − F1 (θ)2 −
∫ 1

θ
F2 (θ|y1)2 f1 (y1) dy1 − ...−

∫ 1

θ
...
∫ yK−2

θ
FK (θ|yK−1)2 fK−1 (yK−1|yK−2) dyK−1...f1 (y1) dy1︸ ︷︷ ︸

ϕK(θ,N)

.

Notice that limθ↘0 ϕK (θ,N) < 0; hence, at θ = 0 the function LSPAK (θ)− LUPAK (θ)

approaches 0 from below. Moreover, we have that

∂ϕK (θ,N)

∂θ
= 2FK (θ) fK (θ)− 2F1 (θ) f1 (θ) +

K−1∑
k=1

fk (θ)−
∫ 1

θ
2F2 (θ|y1) f2 (θ|y1) f1 (y1) dy1 − ...

...−
∫ 1

θ
...
∫ yK−2

θ
2FK (θ|yK−1) fK (θ|yK−1) fK−1 (yK−1|yK−2) ...f1 (y1) dy1.

Evaluating the above at θ = 1 yields

∂ϕK (θ,N)

∂θ

∣∣∣∣∣
θ=1

= 2fK (1)− 2f1 (1) +
K−1∑
k=1

fk (1)

= −f1 (1)

< 0

Hence, at θ = 1 the function LSPAK (θ)− LUPAK (θ) approaches 0 from above. There-

fore, LSPAK (θ) − LUPAK (θ) must cross zero from below at least once for θ ∈ (0, 1). To

show that this is the only crossing point, we argue that once ϕK (θ,N) becomes positive,
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it never changes sign again. Indeed, we have

ϕK (θ,N) = FK (θ)2 − F1 (θ)2 −
∫ 1

θ
F2 (θ|y1)2 f1 (y1) dy1 − ...

...−
∫ 1

θ
...
∫ yK−2

θ
FK (θ|yK−1)2 fK−1 (yK−1|yK−2) dyK−1...f1 (y1) dy1

> FK (θ)2 − F1 (θ)2 −
∫ 1

θ
F2 (θ|y1) f1 (y1) dy1 − ...

...−
∫ 1

θ
...
∫ yK−2

θ
FK (θ|yK−1) fK−1 (yK−1|yK−2) dyK−1...f1 (y1) dy1

= FK (θ)2 − F1 (θ)2 −
K∑
k=2

[Fk (θ)− Fk−1 (θ)]

= FK (θ)2 − F1 (θ)2 − [FK (θ)− F1 (θ)]

= [FK (θ)− F1 (θ)] [FK (θ) + F1 (θ)− 1] .

Since [FK (θ)− F1 (θ)] [FK (θ) + F1 (θ)− 1] switches sign only once for θ ∈ (0, 1),

so does ϕK (θ,N). Therefore, there exists a unique θ∗K ∈ (0, 1) such that LSPAK (θ) ≥
LUPAK (θ) if and only if θ ≥ θ∗K . �
Proof of Proposition 7: The proof proceeds as follows. First, we will derive the
second-round symmetric equilibrium bidding function for a type-θ bidder taking as

given what the bidder bid in the first round; then, we are going to derive the first-round

symmetric equilibrium bidding function for a type-θ bidder who correctly anticipates

how he will bid in the second round. Recall that the joint distribution of the highest

and second-highest order statistics (among N − 1) is given by

f1,2 (y1, y2) = (N − 1) (N − 2) f (y1) f (y2)F (y2)
N−3 . (10)

Using (10), we can easily derive an expression for the CDF of Y2 conditional on Y1
being bigger than y :

F2 (z|Y1 > y) =

∫ 1
y

∫ z
0 f1,2 (y1, y2) dy2dy1∫ 1

y

∫ y1
0 f1,2 (y1, y2) dy2dy1

=
(N − 1) [1− F (y)]F (z)N−2

1− F (y)N−1
.

Similarly, the PDF of Y2 conditional on Y1 = y is equal to

f2 (z|Y1 = y) =
f1,2 (y, z)

f1 (y)
=

(N − 2) f (z)F (z)N−3

F (y)N−2
.
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Let βSPA−w/o2

(
θ; θ̃1

)
be the second-round equilibrium bidding function, where θ̃1

denotes the type that the bidder mimicked in the first round. Suppose that all the

other bidders follow their equilibrium strategies, while bidder i is considering deviating

in round 2. The payoff of bidder i with type θ when he bids as if he had type θ̃2 is

U2
(
θ, θ̃2; θ̃1

)
=

∫ 1

θ̃1

∫ θ̃2

0

[
θ − βSPA−w/o2

(
y2; θ̃1

)]
f2 (y2|y1) dy2f1

(
y1|y1 > θ̃1

)
dy1

−Λ
∫ 1

θ̃1

∫ y1

θ̃2
θF2

(
θ|Y1 > θ̃1

)
f2 (y2|y1) dy2f1

(
y1|y1 > θ̃1

)
dy1 (11)

where f1
(
y1|y1 > θ̃1

)
:= f1(y1)

1−F(θ̃1)
N−1 . Differentiating (11) with respect to θ̃2 yields the

first-order condition:

0 =
∫ 1

θ̃1

[
θ − βSPA−w/o2

(
θ̃2; θ̃1

)]
f2
(
θ̃2|y1

)
f1
(
y1|y1 > θ̃1

)
dy1+Λ

∫ 1

θ̃1
θF2

(
θ|Y1 > θ̃1

)
f2
(
θ̃2|y1

)
f1
(
y1|y1 > θ̃1

)
dy1.

In equilibrium, θ̃2 = θ must hold; hence, we obtain the following necessary condition:

∫ 1

θ̃1

[
θ − βSPA−w/o2

(
θ; θ̃1

)
+ ΛθF2

(
θ|Y1 > θ̃1

)]
f2 (θ|y1) f1

(
y1|y1 > θ̃1

)
dy1 = 0. (12)

Simplifying and re-arranging the above condition yields

β
SPA−w/o
2

(
θ; θ̃1

)
= θ + ΛθF2

(
θ|Y1 > θ̃1

)
.

Using condition (12) to substitute for βSPA−w/o2

(
θ̃2; θ̃1

)
into the expression for

∂U2
(
θ, θ̃2; θ̃1

)
/∂θ̃2 yields

∂U2
(
θ, θ̃2; θ̃1

)
∂θ̃2

=
∫ 1

θ̃1

{
θ − θ̃2 + Λ

[
θF2

(
θ|Y1 > θ̃1

)
− θ̃2F2

(
θ̃2|Y1 > θ̃1

)]}
f2
(
θ̃2|y1

)
f1
(
y1|y1 > θ̃1

)
dy1.

Thus, ∂U2
(
θ, θ̃2; θ̃1

)
/∂θ̃2 has the same sign as

(
θ − θ̃2

)
; hence, θ̃2 = θ is optimal.

Next, let βSPA−w/o1 (θ) be the first-round equilibrium bidding function. Suppose all

other bidders follow their equilibrium strategies, while bidder i considers deviating in
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the first round only. The payoff of bidder i with type θ if he bids as if he had type θ̃1 is

U1
(
θ, θ̃1

)
=

∫ θ̃1

0

[
θ − βSPA−w/o1 (y1)

]
f1 (y1) dy1 − Λ

∫ 1

θ̃1
θF1 (θ) f1 (y1) dy1

+
∫ 1

θ̃1

∫ θ

0

[
θ − βSPA−w/o2 (y2; y2)

]
f2 (y2|y1) dy2f1 (y1) dy1 − Λ

∫ 1

θ̃1

∫ y1

θ
θF2 (θ|Y1 > θ) f2 (y2|y1) dy2f1 (y1) dy1. (13)

Differentiating (13) with respect to θ̃1 yields the first-order condition:

0 =
[
θ − βSPA−w/o1

(
θ̃1
)]
f1
(
θ̃1
)

+ ΛθF1 (θ) f1
(
θ̃1
)
−
∫ θ

0

[
θ − βSPA−w/o2 (y2; y2)

]
f2
(
y2|θ̃1

)
dy2f1

(
θ̃1
)

+Λ
∫ θ̃1

θ
θF2 (θ|Y1 > θ) f2

(
y2|θ̃1

)
dy2f1

(
θ̃1
)
.

In equilibrium, θ̃1 = θ must hold; hence, we obtain the following necessary condition:{
θ − βSPA−w/o1 (θ) + ΛθF1 (θ)−

∫ θ

0

[
θ − βSPA−w/o2 (y2; y2)

]
f2 (y2|θ) dy2

}
f1 (θ) = 0. (14)

Simplifying and re-arranging the above condition yields

β
SPA−w/o
1 (θ) =

∫ θ

0
β
SPA−w/o
2 (y2; y2) f2 (y2|θ) dy2 + ΛθF1 (θ) .

Finally, to show that the first-order condition is also suffi cient, we substitute for

β
SPA−w/o
1

(
θ̃1
)
, using condition (14), into the expression for ∂U1

(
θ, θ̃1

)
/∂θ̃1 and obtain

∂U1
(
θ, θ̃1

)
∂θ̃1

=

[
θ −

∫ θ̃1

0
β
SPA−w/o
2 (y2; y2) f2

(
y2|θ̃1

)
dy2 − Λθ̃1F1

(
θ̃1
)]
f1
(
θ̃1
)

+ ΛθF1 (θ) f1
(
θ̃1
)

−
∫ θ

0

[
θ − βSPA−w/o2 (y2; y2)

]
f2
(
y2|θ̃1

)
dy2f1

(
θ̃1
)

+ Λ
∫ θ̃1

θ
θF2 (θ|Y1 > θ) f2

(
y2|θ̃1

)
dy2f1

(
θ̃1
)

=
∫ θ̃1

θ
θf2

(
y2|θ̃1

)
dy2f1

(
θ̃1
)

+ Λ
[
θF1 (θ)− θ̃1F1

(
θ̃1
)]
f1
(
θ̃1
)

+
∫ θ

θ̃1
β
SPA−w/o
2 (y2; y2) f2

(
y2|θ̃1

)
dy2f1

(
θ̃1
)

+ Λ
∫ θ̃1

θ
θF2 (θ|Y1 > θ) f2

(
y2|θ̃1

)
dy2f1

(
θ̃1
)
.
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Since in equilibrium β
SPA−w/o
2 (y2; y2) = y2 + Λy2F2 (y2|Y1 > y2), it follows that

∂U1
(
θ, θ̃1

)
∂θ̃1

=
∫ θ̃1

θ
(θ − y2) f2

(
y2|θ̃1

)
dy2f1

(
θ̃1
)

+ Λ
[
θF1 (θ)− θ̃1F1

(
θ̃1
)]
f1
(
θ̃1
)

+Λ
∫ θ̃1

θ
[θF2 (θ|Y1 > θ)− y2F2 (y2|Y1 > y2)] f2

(
y2|θ̃1

)
dy2f1

(
θ̃1
)
.

Hence, ∂U1
(
θ, θ̃1

)
/∂θ̃1 has the sign same as

(
θ − θ̃1

)
; thus, θ̃1 = θ is optimal. �

Proof of Lemma 2: The result follows since F2
(
θ|Y1 > θ̃1

)
is decreasing in θ̃1. �

Proof of Lemma 3: We have

β
SPA−w/o
2

(
θ; θ̃1

)
− βSPA2 (θ; y1) = ΛθF2

(
θ|Y1 > θ̃1

)
− ΛθF2 (θ|y1)

= Λ


(N − 1)

[
1− F

(
θ̃1
)]
F (θ)N−2

1− F
(
θ̃1
)N−1 − F (θ)N−2

F (y1)
N−2

 .

Hence, βSPA−w/o2

(
θ; θ̃1

)
− βSPA2 (θ; y1) > 0 if and only if

(N − 1)
[
1− F

(
θ̃1
)]
F (θ)N−2

1− F
(
θ̃1
)N−1 >

F (θ)N−2

F (y1)
N−2 .

Re-arranging the above inequality yields the condition provided in the text. �
Proof of Lemma 4: We have

β
SPA−w/o
1 (θ)− βSPA1 (θ) =

∫ θ

0

[
β
SPA−w/o
2 (y2; y2)− βSPA2 (y2; θ)

]
f2 (y2|θ) dy2

= Λ
∫ θ

0
y2


(N − 1) [1− F (y2)]F (y2)

N−2

1− F (y2)
N−1︸ ︷︷ ︸

F2(y2|Y1>y2)

− F (y2)
N−2

F (θ)N−2︸ ︷︷ ︸
F2(y2|θ)


f2 (y2|θ) dy2.

Next, notice that

lim
θ↘0

(
β
SPA−w/o
1 (θ)− βSPA1 (θ)

)
< 0 <

(
β
SPA−w/o
1 (θ)− βSPA1 (θ)

)∣∣∣
θ=1

.

By Lemma 3, F2 (y2|Y1 > y2)−F2 (y2|θ) crosses zero at most once for any θ ∈ (0, 1);

hence, βSPA−w/o1 (θ)−βSPA1 (θ) changes sign from negative to positive only once. Thus,
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there exists a θ̂ ∈ (0, 1) such that βSPA−w/o1 (θ)− βSPA1 (θ) ≥ 0 if and only if θ ≥ θ̂. �
Proof of Proposition 8: Let Y (N)

k denote the k-th highest order statistic among N

(i.e., when taking the point of view of the seller) and Y (N−1)
k denote the k-th highest

order statistic among N − 1 (i.e., when taking the point of view of a bidder). We will

use a similar notation for the CDFs and PDFs of Y (N)
k and Y (N−1)

k , respectively. In a

symmetric equilibrium, the winner in the first round is the bidder with the highest type

and the price setter is the bidder with the next highest type. Hence, we have

p1 = β
SPA−w/o
1

(
Y
(N)
2 = y2

)
=

∫ y2

0
β
SPA−w/o
2 (θ; θ) f

(N−1)
2 (θ|y2) dθ + Λy2F

(N−1)
1 (y2)

>
∫ y2

0
β
SPA−w/o
2 (θ; θ) f

(N)
3 (θ|y2) dθ

= E
[
p2|p1 = β

SPA−w/o
1 (y2)

]
where the inequality follows since f (N−1)2 (·|y2) = f

(N)
3 (·|y2) and Λy2F

(N−1)
1 (y2) > 0. �
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