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Abstract: In this study, we aimed to systematically review the current literature on radiomics applied
to cross-sectional adrenal imaging and assess its methodological quality. Scopus, PubMed and Web
of Science were searched to identify original research articles investigating radiomics applications
on cross-sectional adrenal imaging (search end date February 2021). For qualitative synthesis,
details regarding study design, aim, sample size and imaging modality were recorded as well as
those regarding the radiomics pipeline (e.g., segmentation and feature extraction strategy). The
methodological quality of each study was evaluated using the radiomics quality score (RQS). After
duplicate removal and selection criteria application, 25 full-text articles were included and evaluated.
All were retrospective studies, mostly based on CT images (17/25, 68%), with manual (19/25, 76%)
and two-dimensional segmentation (13/25, 52%) being preferred. Machine learning was paired to
radiomics in about half of the studies (12/25, 48%). The median total and percentage RQS scores
were 2 (interquartile range, IQR = −5–8) and 6% (IQR = 0–22%), respectively. The highest and lowest
scores registered were 12/36 (33%) and −5/36 (0%). The most critical issues were the absence of
proper feature selection, the lack of appropriate model validation and poor data openness. The
methodological quality of radiomics studies on adrenal cross-sectional imaging is heterogeneous and
lower than desirable. Efforts toward building higher quality evidence are essential to facilitate the
future translation into clinical practice.

Keywords: radiomics; adrenal imaging; methodological quality; evidence-based medicine

1. Introduction

Adrenal glands can be affected by a great variety of different disorders, including, but
not limited to, acute illnesses, functional abnormalities, infectious diseases, and oncological
processes, with diagnostic imaging playing a relevant role in most cases [1–3]. Radiologists
are currently required to guide the management of incidental adrenal masses, whose char-
acterization and differential diagnosis is complex and often challenging [4,5]. Indeed, while
most adrenal lesions are benign (i.e., adrenal adenomas), there are several less-common
entities that cannot be neglected (e.g., pheochromocytomas, metastases, adrenocortical
carcinoma, lymphoma) [6,7]. Furthermore, adrenal adenomas can occasionally present
atypical features due to the paucity of fat content, making it difficult to qualitatively
differentiate them from malignancies [8,9]. In the effort to overcome the limitations of
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conventional image assessment and further increase the value of diagnostic imaging, a
complex multi-step post-processing approach defined as radiomics has been proposed [10].
The premise behind this rapidly growing field is that medical images can be mined to
extract quantitative data possibly related to the pathophysiology of a biological tissue [11].
These quantitative parameters, known as radiomics features, can then be used either alone
or in combination with clinical information to build machine learning-based decision sup-
port tools and predictive models to aid physicians in the management of patients [12,13].
However, radiomics requires a robust workflow based on standardized, rigorous methods
which are required to ensure the reliability and generalizability of results [14–17]. Using
the radiomics quality score (RQS), a scoring system proposed by Lambin and colleagues
and designed to assess the crucial steps in radiomics pipelines, previous investigations
have found that radiomics studies are heterogeneous in terms of quality [18]. The aim of
this study was to systematically review radiomics studies focused on adrenal disorders
applications and to assess their quality using the RQS.

2. Materials and Methods

The present review was conducted in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-analyses (PRISMA) guidelines [19] and the review proto-
col was registered on the International Prospective Register of Systematic Reviews (PROS-
PERO, registration number = CRD42021248536).

2.1. Search Strategy and Eligibility Criteria

A systematic search of published articles investigating radiomics applications to
adrenal cross-sectional imaging was performed by two investigators on three major digital
databases (PubMed, Scopus and Web of Science), with the end date set to 25 February
2021. The search strategy was based on the following terms and functions: “textural” OR
“radiomics” OR “texture” OR “histogram” AND “adrenal” AND “computed tomography”
OR “CT” OR “magnetic resonance” OR “MRI” OR “MR”. Duplicates were removed prior to
screening titles and abstracts to identify original research dealing with the topic of interest,
published in English and involving human subjects.

2.2. Data Collection and Study Evaluation

For a qualitative synthesis, the main characteristics of included studies were extracted
from the full texts. In particular, first authorship, country and year of publication were
registered. Then, details regarding study design (i.e., retrospective or prospective), general
aim (i.e., differential diagnosis of adrenal masses, detection of adrenal diseases, evaluation
of prognosis or characterization of adrenal disorders), mean goal (i.e., the specific purpose of
the study), sample size (i.e., number of included patients and adrenal lesions) and imaging
modality assessed were recorded. Thirdly, imaging analysis methods such as segmentation
strategy, feature extraction software, extracted feature category and information about
machine learning applications were noted. Finally, it was registered whether the study
reported positive or negative results.

To assess the methodological quality of each radiomics study, two readers with previ-
ous experience in radiomics and the RQS (AS and RC) worked in consensus to evaluate
the papers and thus calculate the score, with a third operator (VR) intervening to solve dis-
agreements. The RQS consists of 16 items that explore crucial steps of a radiomics pipeline,
including but not limited to imaging protocol, features extraction and handling, clinical
relevance, and data openness [18]. Each of these has a different weight and can contribute
positively or negatively in terms of points attributed, with −8 being the minimum and 36
being the maximum score that can be reached. The absolute score is then converted to a
percentage value (with 36 = 100%). More details on each of the RQS items can be found
in Table S1.
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2.3. Statistical Analysis

Categorical data are presented as counts and percentages. The Shapiro-Wilk test was
performed to verify whether the distribution of continuous variables was normal, and these
variables are presented as either mean and standard deviation or median and interquartile
range (IQR) according to the test results, as appropriate. The mode among evaluated
studies was calculated for each RQS item. All analyses were conducted using the “stats”
(v3.6.2) R package (v4.0.5).

3. Results
3.1. Literature Search

The PRISMA flowchart for this study can be found in Figure 1.
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Figure 1. Literature search and study selection flow-chart.

Briefly, 235 records were identified, of which 105 were duplicates. After applying the
selection criteria during the title and abstract screening, an additional 105 were excluded;
therefore, 25 eligible articles were finally included in the present systematic review.

3.2. Qualitative Synthesis of Included Studies

The main characteristics of the included articles are presented in Table 1.
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Table 1. Main characteristics of included articles.

Study ID Year Country Aim Mean Goal Study
Design

Patient
Population
(Number of

Lesions)

Imaging
Modality

Segmentation
Method (Soft-

ware/Algorithm)

Feature
Extraction ML Features

Type

Akai et al.
[20] 2020 Japan Detection

Localization of
primary

aldosteronism
Retrospective 82 (82) Unenhanced

CT
Semi-automatic,

2D (TexRAD) TexRAD; No First-order

Amhed
et al. [21] 2020 USA Characterization

Prediction of
Ki-67

expression in
ACC

Retrospective 53 (53)
Contrast-
enhanced

CT

Manual, 3D
(AMIRA) PyRadiomics No

Shape-based,
first- and

higher-order

Ansquer
et al. [22] 2020 France Characterization

Biological and
genetic

profiling of
pheo

Retrospective 49 (52) 2-[18F]FDG
PET/CT

Automatic, 3D
(STAPLE)

Image
Biomarker

Standardiza-
tion

Initiative

No Higher-
order

Chen
et al. [23] 2018 USA DD Benign vs.

malignant Retrospective 222 (222)

Unenhanced
and contrast-

enhanced
CT

NR NR
Yes

(Bayesian
classifier)

NR

Daye
et al. [24] 2019 USA Prognosis

Local
progression

and survival in
ablated
adrenal

metastasis

Retrospective 21 (21)
Contrast-
enhanced

CT
Manual, 3D (NR) MATLAB

Yes (support
vector

machine)

Higher-
order

Elmohr
et al. [25] 2019 USA DD Adenoma vs.

ACC Retrospective 54 (54)

Unenhanced
and contrast-

enhanced
CT

Manual, 3D
(AMIRA) PyRadiomics Yes (random

forest)

Shape-based,
first- and

higher-order
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Table 1. Cont.

Study ID Year Country Aim Mean Goal Study
Design

Patient
Population
(Number of

Lesions)

Imaging
Modality

Segmentation
Method (Soft-

ware/Algorithm)

Feature
Extraction ML Features

Type

Ho et al.
[26] 2019 USA DD Benign vs.

malignant Retrospective 20 (23)

Unenhanced
and contrast-
enhanced CT
and MRI 3T
or 1,5T T1
IN-OUT

Manual 3D
(Seg3D)

Image
Biomarker

Standardiza-
tion

Initiative

No First- and
higher-order

Koyuncu
et al. [27] 2018 Turkey DD Benign vs.

malignant Retrospective NR (114) *

Unenhanced
and contrast-

enhanced
CT

Semi-automatic,
2D

(AbSeg)
MATLAB Yes (neural

network)
First- and

higher-order

Li et al.
[28] 2017 USA DD Benign vs.

malignant Retrospective 223 (230) Unenhanced
CT Manual, 2D (NR) NR Yes

(Bayesian)
Higher-
order

Li et al.
[29] 2018 USA DD Benign vs.

malignant Retrospective 204 (210)

Unenhanced
and contrast-

enhanced
CT

Manual, 2D (NR) NR Yes
(Bayesian)

Higher-
order

Li et al.
[30] 2020 USA DD Benign vs.

malignant Retrospective 204 (210)

Unenhanced
and contrast-

enhanced
CT

Manual, 2D (NR) NR Yes
(Bayesian)

Higher-
order

Liu et al.
[31] 2020 China DD Adenoma vs.

pheo Retrospective 58 (60)
MRI 3T

T1 IN-OUT,
T2w

Manual, 3D
(Mazda) MaZda

Yes (support
vector

machine)
First-order

Nakajo
et al. [32] 2017 Japan DD Benign vs.

malignant Retrospective 31 (35) 2-[18F]FDG
PET/CT

Semi-automatic,
3D (Advantage

Windows
Workstation)

Python # No First-order
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Table 1. Cont.

Study ID Year Country Aim Mean Goal Study
Design

Patient
Population
(Number of

Lesions)

Imaging
Modality

Segmentation
Method (Soft-

ware/Algorithm)

Feature
Extraction ML Features

Type

Romeo
et al. [33] 2018 Italy DD Adenoma vs.

non-adenoma Retrospective 60 (60)
MRI 3T T1
IN-OUT,

T2w

Manual, 3D (3D
Slicer) 3D Slicer Yes (decision

tree)
First- and

higher-order

Shi et al.
[34] 2019 China DD Benign vs.

malignant Retrospective 225 (265)

Unenhanced
and contrast-

enhanced
CT

Manual, 2D
(TexRAD) TexRAD;

Yes
(support

vector
machine)

First-order

Schieda
et al. [35] 2017 Canada DD

Adenoma vs.
RCC

metastasis
Retrospective 39 (44)

MRI 3T or
1.5T

T1 IN-OUT,
T2w, GRE

T1w pre- and
post-contrast

Manual, 2D
(Image J) Image J No First-order

Shoemaker
et al. [36] 2018 USA DD/Characterization

Benign vs.
malignant;
calcified vs.

non calcified;
functioning vs.

non
functioning

Retrospective 356 (379) Unenhanced
CT NR NR

Yes
(decision

tree)

First- and
higher-order

Tu et al.
[37] 2018 Canada DD

Adenoma vs.
lung cancer
metastasis

Retrospective 61 (76)
Contrast-
enhanced

CT

Manual, 2D
(ImageJ) ImageJ No First-order

Umanodan
et al. [38] 2016 Japan DD Adenoma vs.

pheo Retrospective 47 (52) MRI 3T
ADC

Manual, 2D
(Synapse Vincent)

Synapse
Vincent No First-order

Wang
et al. [39] 2019 China Prognosis

Survival in
primary

adrenal non-
Hodgkin’s
lymphoma

Retrospective 19 (19) § 2-[18F]FDG
PET/CT

Manual, 3D
(LifeX package)

LifeX
package No First- and

higher-order
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Table 1. Cont.

Study ID Year Country Aim Mean Goal Study
Design

Patient
Population
(Number of

Lesions)

Imaging
Modality

Segmentation
Method (Soft-

ware/Algorithm)

Feature
Extraction ML Features

Type

Werner
et al. [40] 2016 Germany Prognosis

Disease
progression

and survival in
ACC

Retrospective 10 (10) 2-[18F]FDG
PET/CT

Manual, 3D
(Interview Fusion

Workstation)

Interview
Fusion

Workstation
No First- and

higher-order

Yi et al.
[41] 2018 China DD Adenoma vs.

pheo Retrospective 108 (110) Unenhanced
CT

Manual, 2D
(MaZda) MaZda

Yes
(logistic

regression)

First- and
higher-order

Yi et al.
[42] 2018 China DD Adenoma vs.

pheo Retrospective 265 (265)

Unenhanced
and contrast-

enhanced
CT

Manual, 2D
(MaZda) MaZda No First- and

higher-order

Yu et al.
[43] 2020 USA DD Benign vs.

malignant Retrospective 125 (125)
Contrast-
enhanced

CT

Manual, 2D
(TexRAD) TexRAD, No First-order

Zhang
et al. [44] 2017 China DD Adenoma vs.

pheo Retrospective 155 (164)

Unenhanced
and contrast-

enhanced
CT

Manual, 2D
(TexRAD) TexRAD, No First-order

* reported number of images. # formulas reported in the article. § patients with adrenal and/or kidney lymphoma included. ACC: adrenocortical carcinoma, DD: differential diagnosis
of adrenal masses, Pheo: pheochromocytoma, NR: not reported.
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The study design was retrospective in all cases. Out of 25, eight studies (32%) included
less than 50 patients. Regarding study aim, most were focused on the differential diagnosis
of adrenal masses (18/25, 72%) while only 3/25 (12%) [24,39,40] and 2/25 (8%) [21,22],
respectively, investigated the role of radiomics in the evaluation of prognosis and character-
ization of adrenal disorders. A single article (4%) was aimed at the detection of adrenal
disease (primary aldosteronism) [20] while one (4%) had multiple aims [36]. The number
of included studies per publication year is illustrated in Figure 2.
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CT was the most represented imaging modality (16/25, 64%), with more than half
CT radiomics studies using contrast-enhanced images (11/16, 69%). A total of 4/25 (16%)
MRI radiomics studies were identified, while a single article (4%) evaluated both MRI
and CT images [26]. Finally, 4/25 (16%) were 2-[18F]FDG PET/CT studies. As for the
segmentation strategy, regions of interest were predominantly annotated manually on
medical images (19/25, 76%), being two-dimensional in most cases (13/25, 52%). Machine
learning approaches to handle radiomics features were embraced in 12 out of 25 studies
(48%). Table S2 illustrates the main characteristics of the machine learning algorithms listed
in Table 1 is provided. Only one study (4%) reported negative results [40].

3.3. RQS Assessment

The results of the RQS assessment performed in this systematic review are reported
in Table 2.

The median total score was 2 (IQR = −5–8), corresponding to a percentage of 6%
(IQR = 0–22%), with the highest and lowest scores registered corresponding respectively to
12/36 (33%) and −5/36 (0%). Figure 3 presents the distribution of RQS percentage scores
in the reviewed papers while Figure 4 shows its median value by year.
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Table 2. Radiomics Quality Score (RQS) assessment for all included articles.

Study ID Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10 Item 11 Item 12 Item 13 Item 14 Item 15 Item 16 Total (%)

Akai et al. [20] 1 0 0 0 3 0 0 1 1 0 0 −5 0 0 0 0 1 3%
Amhed et al. [21] 1 0 0 0 −3 0 0 1 1 0 0 −5 0 0 0 0 −5 0
Ansquer et al. [22] 1 1 0 0 3 1 1 1 2 0 0 2 0 0 0 0 12 33%

Chen et al. [23] 0 0 0 0 3 0 0 0 1 0 0 2 0 0 0 0 6 17%
Daye et al. [24] 1 0 0 0 −3 0 0 0 2 0 0 2 0 0 0 0 2 6%

Elmohr et al. [25] 1 1 0 0 3 0 0 0 2 0 0 2 2 0 0 0 11 31%
Ho et al. [26] 1 0 0 0 3 0 0 0 1 0 0 −5 0 0 0 0 0 0%

Koyuncu et al. [27] 0 0 0 0 3 0 0 0 1 0 0 2 0 0 0 0 6 17%
Li et al. [28] 0 0 0 0 3 0 0 0 1 0 0 2 0 0 0 0 6 17%
Li et al. [29] 1 0 0 0 3 0 0 0 1 0 0 2 0 0 0 0 7 19%
Li et al. [30] 0 0 0 0 3 0 0 0 1 0 0 −5 0 0 0 0 −1 0

Liu et al. [31] 1 1 0 0 3 0 0 1 1 0 0 2 0 0 0 0 9 25%
Nakajo et al. [32] 1 0 0 0 −3 0 0 1 1 0 0 −5 0 0 0 0 −5 0
Romeo et al. [33] 1 0 0 0 3 0 0 0 2 0 0 2 2 0 0 0 10 28%

Shi et al. [34] 1 1 0 0 3 0 0 0 2 0 0 2 0 0 0 0 9 25%
Schieda et al. [35] 1 0 0 0 −3 1 0 0 1 0 0 −5 0 0 0 0 −5 0

Shoemaker et al. [36] 0 0 0 0 3 0 0 0 2 0 0 2 0 0 0 1 8 22%
Tu et al. [37] 1 0 0 0 −3 0 0 1 1 0 0 −5 0 0 0 0 −5 0

Umanodan et al. [38] 1 1 0 0 −3 0 0 1 1 0 0 −5 0 0 0 0 −4 0
Wang et al. [39] 1 0 0 0 3 1 0 1 1 0 0 −5 0 0 0 0 2 6%

Werner et al. [40] 1 0 0 0 −3 1 0 0 1 0 0 −5 0 0 0 0 −5 0
Yi et al. [41] 1 1 0 0 3 0 0 0 1 0 0 −5 0 0 0 0 1 3%
Yi et al. [42] 1 1 0 0 3 0 0 1 1 1 0 2 0 0 0 0 10 28%
Yu et al. [43] 1 0 0 0 −3 0 0 1 1 0 0 −5 0 0 0 0 −5 0

Zhang et al. [44] 1 0 0 0 −3 0 0 1 1 0 0 −5 0 0 0 0 −5 0
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Figure 4. Line plot depicting the median RQS percentage score in relation to publication year.

Swarm plots depicting the distribution of RQS according to radiomics feature type
as well as imaging modality can be found respectively in Figures S1 and S2, while the
mode for each single item can be found in Table S1. Among the evaluated articles, 5/25
(20%) did not provide details regarding the imaging protocol to allow reproducibility.
Most studies (18/25, 72%) did not test radiomics features robustness to segmentation
variabilities. Among the included studies, radiomics features robustness testing for scanner
and temporal variabilities was never performed. Feature reduction or adjustment for
multiple testing was performed in 16/25 (62%) studies. Non-radiomics features were
considered in 4/25 (16%) studies. Validation was missing in more than half of the included
studies (13/25, 52%). Only one study performed calibration statistics (4%) [42]. The formal
assessment of radiomics models’ clinical utility was never presented; similarly, there were
no studies in which a cost-effectiveness analysis was performed. Finally, only one point
was assigned among all studies for item 16 (open science and data) [36].
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4. Discussion

Beyond the growing interest in radiomics and its many promises, the clinical transla-
tion of actual real-life applications must be grounded in methodologically rigorous studies
and high-quality evidence. Unfortunately, previous investigations have found that the
overall quality of radiomics studies is heterogenous and lower than desirable, even when
exclusively focusing on works published on high-ranking scientific journals [15,45]. In
this systematic review, we confirm that radiomics applications on cross-sectional adrenal
imaging do not represent an exception. Indeed, the average and highest RQS scores cannot
be considered satisfactory and indicate a lack in terms of methodological quality. Fur-
thermore, our findings do not reflect a trend of quality increase in time. While “how to”
guides have been published and efforts towards standardization of practice in radiomics
are being carried on, most are relatively recent and therefore it might take some time before
researchers begin aligning more strictly to these recommendations [46–48]. The evidence
gathered in our systematic review suggests that three main issues might be the root cause
for the overall low RQS results, namely the lack of prospectively designed studies, the
absence of proper validation and the poor data openness. Indeed, a hypothetical study
validating a previously published radiomics signature in a prospective setting with data
(i.e., images, segmentations and code) freely available could reach a provisional score
of 15/36 (42%) with just three RQS items (thus without considering additional points
to be assigned). On one hand, this highlights a certain degree of strictness for the RQS
system, since about half of the points are linked to three of the sixteen items. On the other
hand, it should be acknowledged that studies with those characteristics could indeed have
the potential to significantly contribute to advancing the field and may be considered a
requirement prior to clinical translation of these models. Nevertheless, the prospective
validation of previously published models can only be possible if exploratory and pilot
investigations (typically retrospective in design) have been previously carried out. Thus,
the actual value of the papers assessed in this systematic review may go beyond the mere
score, provided that they represent a steppingstone for more robust trials. Our findings
indicate that we could be at a crossroads: research group efforts should either be directed
towards the validation of these preliminary studies or increase the methodological quality
of works proposing new radiomics models. The issue of open data in radiomics studies has
also been highlighted in other settings [49,50]. A possible solution to the problem might
be represented by publicly available datasets, which could increase reproducibility and
transparency but should be subject to rigorous quality controls themselves since it has been
found that they might not be perfect [51,52]. However, generalizability remains one of
the main endpoints and all those strategies increasing repeatability and reproducibility in
radiomics are worthy of consideration [11].

The total number of included studies in this systematic review appears lower when
compared to similar investigations focused on more prevalent and clinically relevant dis-
orders, such as radiomics applications on prostate or pancreatic cancer [53,54]. However,
it is in line with those reported in the evaluation of less frequent diseases (e.g., osteosar-
coma) [55]. This is probably due to the fact that larger imaging datasets are more frequently
available for those abnormalities which require a higher workload for radiology depart-
ments. Furthermore, the efforts of research groups are obviously driven by the perceived
clinical needs to be addressed and their relevance and urgency. Nevertheless, the number
of articles retrieved in each of the last three years is higher compared to the number of
studies published in both 2016 and 2017, suggesting a possible trend in the interest toward
adrenal cross-sectional imaging radiomics that is coherent with the rising enthusiasm on
radiomics in general. However, this trend is not as strong when compared to the field
of radiomics taken as a whole, which has shown a yearly growth rate of over 170% [56].
Unsurprisingly, almost the entirety of studies was focused on oncologic disorders, with a
single exception [20]. Indeed, the vast majority of adrenal imaging exams are requested
to investigate adrenal masses and the main field of application for radiomics is oncologic
imaging [57].
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Nearly half of the included studies used radiomics features to train machine learning
algorithms and build classifiers for the desired task. While artificial intelligence certainly
represents a valid choice to handle massive amounts of data compared with more traditional
approaches (e.g., traditional statistics), it can prove complex and inscrutable when it comes
to gaining clear insights on what processes are behind a certain result [58,59]. If we
also consider that the sample size in the included studies was often limited, it appears
understandable and agreeable that many researchers did not choose to employ artificial
intelligence algorithms in their pipelines. Accordingly, the RQS does not seem to penalize
or favor an approach over the other.

Segmentation remains a challenging and crucial step in radiomics pipeline, mainly
because of reproducibility concerns [11]. Ideally, fast automated segmentation of the whole
volume of interest would represent the optimal solution to extract representative radiomics
data without time-consuming hard manual labor. However, in this systematic review,
we found that two-dimensional image annotations and manual segmentation strategies
were slightly preferred. Studies regarding the potential impact of segmentation strategy in
cross-sectional adrenal imaging could help guide future research and reduce heterogeneity
in the literature.

It is interesting to note that merely one study among those included in this review
presented negative findings [40]. Publishing negative results is of paramount importance,
especially in an emerging field such as radiomics, but it is often difficult and our findings
seem to confirm this well-known issue [56]; scientific rigor should be the main criteria
for publishing, regardless of the outcome, and it could be speculated that we might be
currently missing out on high quality research for a wrong reason [60].

The present study suffers from some limitations that deserve to be discussed. Firstly,
only recognized databases were searched and therefore the grey literature data may be
missing from our evaluation. While this might mean that some possibly relevant studies
were not assessed, it should be considered that there are no standardized methods to
search the grey literature and it is often difficult to verify the reliability of its findings [61].
Therefore, we believe that our search strategy allowed us to balance comprehensiveness
and accuracy, while making it easier to reproduce our results. Another limitation is that the
body of the literature is small and highly heterogeneous; thus, we were not able to offer a
deeper formal insight performing sub-group analyses. Nevertheless, in future endeavors to
update the current systematic review, it can be hypothesized that this issue will be solved.

In conclusion, the methodological quality of radiomics studies on adrenal cross-
sectional imaging is heterogeneous and lower than desirable. Efforts toward building
higher quality evidence are essential to ensure that a valid and robust radiomics pipeline
could in the future be translated into support decision tools to increase the value of adrenal
imaging. The path is still long for research investigating adrenal radiomics applications,
but it might be worth exploring.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12030578/s1, Table S1: Radiomics quality score items
and their respective scores as described by Lambin et al.; Table S2: Basic principles of the most
adopted machine learning algorithms in adrenal imaging; Figure S1. Swarm plot of the RQS distri-
bution according to imaging modality; Figure S2. Swarm plot of the RQS distribution according to
feature type.

Author Contributions: Conceptualization, A.S., S.M. and R.C.; methodology, A.S. and R.G.; software
A.S. and R.C.; validation, A.S., V.R. and R.G.; formal analysis, A.S.; investigation, R.C.; data curation,
V.R. and F.V.; writing—original draft preparation, A.S.; writing—review and editing, A.B. and S.M.;
visualization, F.V. and P.P.M.; supervision, R.C., A.B. and S.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

https://www.mdpi.com/article/10.3390/diagnostics12030578/s1
https://www.mdpi.com/article/10.3390/diagnostics12030578/s1


Diagnostics 2022, 12, 578 13 of 15

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article or supplementary material.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Udare, A.; Agarwal, M.; Siegelman, E.; Schieda, N. CT and MR imaging of acute adrenal disorders. Abdom. Radiol. 2021, 46,

290–302. [CrossRef] [PubMed]
2. Karaosmanoglu, A.D.; Onder, O.; Leblebici, C.B.; Sokmensuer, C.; Akata, D.; Ozmen, M.N.; Karcaaltincaba, M. Cross-sectional

imaging features of unusual adrenal lesions: A radiopathological correlation. Abdom. Radiol. 2021, 46, 3974–3994. [CrossRef]
[PubMed]

3. Alshahrani, M.A.; Bin Saeedan, M.; Alkhunaizan, T.; Aljohani, I.M.; Azzumeea, F.M. Bilateral adrenal abnormalities: Imaging
review of different entities. Abdom. Radiol. 2019, 44, 154–179. [CrossRef] [PubMed]

4. Glazer, D.I.; Mayo-Smith, W.W. Management of incidental adrenal masses: An update. Abdom. Radiol. 2020, 45, 892–900.
[CrossRef] [PubMed]

5. Elsayes, K.M.; Elmohr, M.M.; Javadi, S.; Menias, C.O.; Remer, E.M.; Morani, A.C.; Shaaban, A.M. Mimics, pitfalls, and misdiag-
noses of adrenal masses on CT and MRI. Abdom. Radiol. 2020, 45, 982–1000. [CrossRef]

6. Albano, D.; Agnello, F.; Midiri, F.; Pecoraro, G.; Bruno, A.; Alongi, P.; Toia, P.; Di Buono, G.; Agrusa, A.; Sconfienza, L.M.; et al.
Imaging features of adrenal masses. Insights Imaging 2019, 10, 1. [CrossRef]

7. Hanafy, A.K.; Mujtaba, B.; Roman-Colon, A.M.; Elsayes, K.M.; Harrison, D.; Ramani, N.S.; Waguespack, S.G.; Morani, A.C.
Imaging features of adrenal gland masses in the pediatric population. Abdom. Radiol. 2020, 45, 964–981. [CrossRef]

8. Elbanan, M.G.; Javadi, S.; Ganeshan, D.; Habra, M.A.; Rao Korivi, B.; Faria, S.C.; Elsayes, K.M. Adrenal cortical adenoma: Current
update, imaging features, atypical findings, and mimics. Abdom. Radiol. 2020, 45, 905–916. [CrossRef]

9. Romeo, V.; Maurea, S.; Guarino, S.; Mainenti, P.P.; Liuzzi, R.; Petretta, M.; Cozzolino, I.; Klain, M.; Brunetti, A. The role of dynamic
post-contrast T1-w MRI sequence to characterize lipid-rich and lipid-poor adrenal adenomas in comparison to non-adenoma
lesions: Preliminary results. Abdom. Radiol. 2018, 43, 2119–2129. [CrossRef]

10. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577.
[CrossRef]

11. Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The facts and the challenges of
image analysis. Eur. Radiol. Exp. 2018, 2, 36. [CrossRef] [PubMed]

12. Cuocolo, R.; Caruso, M.; Perillo, T.; Ugga, L.; Petretta, M. Machine Learning in oncology: A clinical appraisal. Cancer Lett. 2020,
481, 55–62. [CrossRef] [PubMed]

13. Stanzione, A.; Cuocolo, R.; Verde, F.; Galatola, R.; Romeo, V.; Mainenti, P.P.; Aprea, G.; Guadagno, E.; Del Basso De Caro, M.;
Maurea, S. Handcrafted MRI radiomics and machine learning: Classification of indeterminate solid adrenal lesions. Magn. Reson.
Imaging 2021, 79, 52–58. [CrossRef] [PubMed]

14. Van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—“How-to” guide and
critical reflection. Insights Imaging 2020, 11, 91. [CrossRef] [PubMed]

15. Park, J.E.; Kim, D.; Kim, H.S.; Park, S.Y.; Kim, J.Y.; Cho, S.J.; Shin, J.H.; Kim, J.H. Quality of science and reporting of radiomics in
oncologic studies: Room for improvement according to radiomics quality score and TRIPOD statement. Eur. Radiol. 2020, 30,
523–536. [CrossRef] [PubMed]

16. Spadarella, G.; Calareso, G.; Garanzini, E.; Ugga, L.; Cuocolo, A.; Cuocolo, R. MRI based radiomics in nasopharyngeal cancer:
Systematic review and perspectives using radiomic quality score (RQS) assessment. Eur. J. Radiol. 2021, 140, 109744. [CrossRef]

17. Ugga, L.; Perillo, T.; Cuocolo, R.; Stanzione, A.; Romeo, V.; Green, R.; Cantoni, V.; Brunetti, A. Meningioma MRI radiomics and
machine learning: Systematic review, quality score assessment, and meta-analysis. Neuroradiology 2021, 63, 1293–1304. [CrossRef]

18. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even,
A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol.
2017, 14, 749–762. [CrossRef]

19. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA
statement. BMJ 2009, 339, b2535. [CrossRef]

20. Akai, H.; Yasaka, K.; Kunimatsu, A.; Ohtomo, K.; Abe, O.; Kiryu, S. Application of CT texture analysis to assess the localization of
primary aldosteronism. Sci. Rep. 2020, 10, 472. [CrossRef]

21. Ahmed, A.A.; Elmohr, M.M.; Fuentes, D.; Habra, M.A.; Fisher, S.B.; Perrier, N.D.; Zhang, M.; Elsayes, K.M. Radiomic mapping
model for prediction of Ki-67 expression in adrenocortical carcinoma. Clin. Radiol. 2020, 75, 479.e17–479.e22. [CrossRef] [PubMed]

22. Ansquer, C.; Drui, D.; Mirallié, E.; Renaudin-Autain, K.; Denis, A.; Gimenez-Roqueplo, A.-P.; Leux, C.; Toulgoat, F.; Kraeber-
Bodéré, F.; Carlier, T. Usefulness of FDG-PET/CT-Based Radiomics for the Characterization and Genetic Orientation of Pheochro-
mocytomas Before Surgery. Cancers 2020, 12, 2424. [CrossRef] [PubMed]

23. Chen, N.; Ng, C.; Hobbs, B.P. Bayesian classifiers of solid lesions with dynamic CT: Integrating enhancement density with
washout density and delay interval. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI
2018), Washington, DC, USA, 4–7 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 236–239.

http://doi.org/10.1007/s00261-020-02580-w
http://www.ncbi.nlm.nih.gov/pubmed/32451675
http://doi.org/10.1007/s00261-021-03041-8
http://www.ncbi.nlm.nih.gov/pubmed/33738556
http://doi.org/10.1007/s00261-018-1670-5
http://www.ncbi.nlm.nih.gov/pubmed/29938331
http://doi.org/10.1007/s00261-019-02149-2
http://www.ncbi.nlm.nih.gov/pubmed/31359097
http://doi.org/10.1007/s00261-019-02082-4
http://doi.org/10.1186/s13244-019-0688-8
http://doi.org/10.1007/s00261-019-02213-x
http://doi.org/10.1007/s00261-019-02215-9
http://doi.org/10.1007/s00261-017-1429-4
http://doi.org/10.1148/radiol.2015151169
http://doi.org/10.1186/s41747-018-0068-z
http://www.ncbi.nlm.nih.gov/pubmed/30426318
http://doi.org/10.1016/j.canlet.2020.03.032
http://www.ncbi.nlm.nih.gov/pubmed/32251707
http://doi.org/10.1016/j.mri.2021.03.009
http://www.ncbi.nlm.nih.gov/pubmed/33727148
http://doi.org/10.1186/s13244-020-00887-2
http://www.ncbi.nlm.nih.gov/pubmed/32785796
http://doi.org/10.1007/s00330-019-06360-z
http://www.ncbi.nlm.nih.gov/pubmed/31350588
http://doi.org/10.1016/j.ejrad.2021.109744
http://doi.org/10.1007/s00234-021-02668-0
http://doi.org/10.1038/nrclinonc.2017.141
http://doi.org/10.1136/bmj.b2535
http://doi.org/10.1038/s41598-020-57427-7
http://doi.org/10.1016/j.crad.2020.01.012
http://www.ncbi.nlm.nih.gov/pubmed/32089260
http://doi.org/10.3390/cancers12092424
http://www.ncbi.nlm.nih.gov/pubmed/32859070


Diagnostics 2022, 12, 578 14 of 15

24. Daye, D.; Staziaki, P.V.; Furtado, V.F.; Tabari, A.; Fintelmann, F.J.; Frenk, N.E.; Shyn, P.; Tuncali, K.; Silverman, S.; Arellano, R.;
et al. CT Texture Analysis and Machine Learning Improve Post-ablation Prognostication in Patients with Adrenal Metastases: A
Proof of Concept. Cardiovasc. Interv. Radiol. 2019, 42, 1771–1776. [CrossRef] [PubMed]

25. Elmohr, M.M.; Fuentes, D.; Habra, M.A.; Bhosale, P.R.; Qayyum, A.A.; Gates, E.; Morshid, A.I.; Hazle, J.D.; Elsayes, K.M. Machine
learning-based texture analysis for differentiation of large adrenal cortical tumours on CT. Clin. Radiol. 2019, 74, 818.e1–818.e7.
[CrossRef] [PubMed]

26. Ho, L.M.; Samei, E.; Mazurowski, M.A.; Zheng, Y.; Allen, B.C.; Nelson, R.C.; Marin, D. Can Texture Analysis Be Used to
Distinguish Benign From Malignant Adrenal Nodules on Unenhanced CT, Contrast-Enhanced CT, or In-Phase and Opposed-
Phase MRI? Am. J. Roentgenol. 2019, 212, 554–561. [CrossRef] [PubMed]

27. Koyuncu, H.; Ceylan, R.; Asoglu, S.; Cebeci, H.; Koplay, M. An extensive study for binary characterisation of adrenal tumours.
Med. Biol. Eng. Comput. 2019, 57, 849–862. [CrossRef] [PubMed]

28. Li, X.; Guindani, M.; Ng, C.S.; Hobbs, B.P. Classification of adrenal lesions through spatial Bayesian modeling of GLCM. In
Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18–21
April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 147–151.

29. Li, X.; Guindani, M.; Ng, C.S.; Hobbs, B.P. Spatial Bayesian modeling of GLCM with application to malignant lesion characteriza-
tion. J. Appl. Stat. 2019, 46, 230–246. [CrossRef]

30. Li, X.; Guindani, M.; Ng, C.S.; Hobbs, B.P. A Bayesian nonparametric model for textural pattern heterogeneity. J. R. Stat. Soc. Ser.
C Appl. Stat. 2021, 70, 459–480. [CrossRef]

31. Liu, J.; Xue, K.; Li, S.; Zhang, Y.; Cheng, J. Combined Diagnosis of Whole-Lesion Histogram Analysis of T1- and T2-Weighted
Imaging for Differentiating Adrenal Adenoma and Pheochromocytoma: A Support Vector Machine-Based Study. Can. Assoc.
Radiol. J. 2021, 72, 452–459. [CrossRef]

32. Nakajo, M.; Jinguji, M.; Nakajo, M.; Shinaji, T.; Nakabeppu, Y.; Fukukura, Y.; Yoshiura, T. Texture analysis of FDG PET/CT for
differentiating between FDG-avid benign and metastatic adrenal tumors: Efficacy of combining SUV and texture parameters.
Abdom. Radiol. 2017, 42, 2882–2889. [CrossRef]

33. Romeo, V.; Maurea, S.; Cuocolo, R.; Petretta, M.; Mainenti, P.P.; Verde, F.; Coppola, M.; Dell’Aversana, S.; Brunetti, A. Characteri-
zation of Adrenal Lesions on Unenhanced MRI Using Texture Analysis: A Machine-Learning Approach. J. Magn. Reson. Imaging
2018, 48, 198–204. [CrossRef] [PubMed]

34. Shi, B.; Zhang, G.-M.-Y.; Xu, M.; Jin, Z.-Y.; Sun, H. Distinguishing metastases from benign adrenal masses: What can CT texture
analysis do? Acta Radiol. 2019, 60, 1553–1561. [CrossRef] [PubMed]

35. Schieda, N.; Krishna, S.; McInnes, M.D.F.; Moosavi, B.; Alrashed, A.; Moreland, R.; Siegelman, E.S. Utility of MRI to Differentiate
Clear Cell Renal Cell Carcinoma Adrenal Metastases From Adrenal Adenomas. Am. J. Roentgenol. 2017, 209, W152–W159.
[CrossRef] [PubMed]

36. Shoemaker, K.; Hobbs, B.P.; Bharath, K.; Ng, C.S.; Baladandayuthapani, V. Tree-based Methods for Characterizing Tumor Density
Heterogeneity. Pac. Symp. Biocomput. 2018, 23, 216–227.

37. Tu, W.; Verma, R.; Krishna, S.; McInnes, M.D.F.; Flood, T.A.; Schieda, N. Can Adrenal Adenomas Be Differentiated From Adrenal
Metastases at Single-Phase Contrast-Enhanced CT? Am. J. Roentgenol. 2018, 211, 1044–1050. [CrossRef]

38. Umanodan, T.; Fukukura, Y.; Kumagae, Y.; Shindo, T.; Nakajo, M.; Takumi, K.; Nakajo, M.; Hakamada, H.; Umanodan, A.;
Yoshiura, T. ADC histogram analysis for adrenal tumor histogram analysis of apparent diffusion coefficient in differentiating
adrenal adenoma from pheochromocytoma. J. Magn. Reson. Imaging 2017, 45, 1195–1203. [CrossRef]

39. Wang, M.; Xu, H.; Xiao, L.; Song, W.; Zhu, S.; Ma, X. Prognostic Value of Functional Parameters of 18 F-FDG-PET Images in
Patients with Primary Renal/Adrenal Lymphoma. Contrast Media Mol. Imaging 2019, 2019, 2641627. [CrossRef]

40. Werner, R.A.; Kroiss, M.; Nakajo, M.; Mügge, D.O.; Hahner, S.; Fassnacht, M.; Schirbel, A.; Bluemel, C.; Higuchi, T.; Papp, L.;
et al. Assessment of tumor heterogeneity in treatment-naïve adrenocortical cancer patients using 18F-FDG positron emission
tomography. Endocrine 2016, 53, 791–800. [CrossRef]

41. Yi, X.; Guan, X.; Chen, C.; Zhang, Y.; Zhang, Z.; Li, M.; Liu, P.; Yu, A.; Long, X.; Liu, L.; et al. Adrenal incidentaloma: Machine
learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal
adenoma. J. Cancer 2018, 9, 3577–3582. [CrossRef]

42. Yi, X.; Guan, X.; Zhang, Y.; Liu, L.; Long, X.; Yin, H.; Wang, Z.; Li, X.; Liao, W.; Chen, B.T.; et al. Radiomics improves efficiency for
differentiating subclinical pheochromocytoma from lipid-poor adenoma: A predictive, preventive and personalized medical
approach in adrenal incidentalomas. EPMA J. 2018, 9, 421–429. [CrossRef]

43. Yu, H.; Parakh, A.; Blake, M.; McDermott, S. Texture Analysis as a Radiomic Marker for Differentiating Benign From Malignant
Adrenal Tumors. J. Comput. Assist. Tomogr. 2020, 44, 766–771. [CrossRef] [PubMed]

44. Zhang, G.-M.-Y.; Shi, B.; Sun, H.; Jin, Z.-Y.; Xue, H.-D. Differentiating pheochromocytoma from lipid-poor adrenocortical adenoma
by CT texture analysis: Feasibility study. Abdom. Radiol. 2017, 42, 2305–2313. [CrossRef] [PubMed]

45. Sanduleanu, S.; Woodruff, H.C.; de Jong, E.E.C.; van Timmeren, J.E.; Jochems, A.; Dubois, L.; Lambin, P. Tracking tumor biology
with radiomics: A systematic review utilizing a radiomics quality score. Radiother. Oncol. 2018, 127, 349–360. [CrossRef] [PubMed]

46. Vallières, M.; Zwanenburg, A.; Badic, B.; Cheze Le Rest, C.; Visvikis, D.; Hatt, M. Responsible Radiomics Research for Faster
Clinical Translation. J. Nucl. Med. 2018, 59, 189–193. [CrossRef]

http://doi.org/10.1007/s00270-019-02336-0
http://www.ncbi.nlm.nih.gov/pubmed/31489473
http://doi.org/10.1016/j.crad.2019.06.021
http://www.ncbi.nlm.nih.gov/pubmed/31362884
http://doi.org/10.2214/AJR.18.20097
http://www.ncbi.nlm.nih.gov/pubmed/30620676
http://doi.org/10.1007/s11517-018-1923-z
http://www.ncbi.nlm.nih.gov/pubmed/30430422
http://doi.org/10.1080/02664763.2018.1473348
http://doi.org/10.1111/rssc.12469
http://doi.org/10.1177/0846537120911736
http://doi.org/10.1007/s00261-017-1207-3
http://doi.org/10.1002/jmri.25954
http://www.ncbi.nlm.nih.gov/pubmed/29341325
http://doi.org/10.1177/0284185119830292
http://www.ncbi.nlm.nih.gov/pubmed/30799636
http://doi.org/10.2214/AJR.16.17649
http://www.ncbi.nlm.nih.gov/pubmed/28742373
http://doi.org/10.2214/AJR.17.19276
http://doi.org/10.1002/jmri.25452
http://doi.org/10.1155/2019/2641627
http://doi.org/10.1007/s12020-016-0970-1
http://doi.org/10.7150/jca.26356
http://doi.org/10.1007/s13167-018-0149-3
http://doi.org/10.1097/RCT.0000000000001051
http://www.ncbi.nlm.nih.gov/pubmed/32842071
http://doi.org/10.1007/s00261-017-1118-3
http://www.ncbi.nlm.nih.gov/pubmed/28357529
http://doi.org/10.1016/j.radonc.2018.03.033
http://www.ncbi.nlm.nih.gov/pubmed/29779918
http://doi.org/10.2967/jnumed.117.200501


Diagnostics 2022, 12, 578 15 of 15

47. Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.;
Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput
Image-based Phenotyping. Radiology 2020, 295, 328–338. [CrossRef] [PubMed]

48. Shur, J.D.; Doran, S.J.; Kumar, S.; Ap Dafydd, D.; Downey, K.; O’Connor, J.P.B.; Papanikolaou, N.; Messiou, C.; Koh, D.-M.; Orton,
M.R. Radiomics in Oncology: A Practical Guide. RadioGraphics 2021, 41, 1717–1732. [CrossRef] [PubMed]

49. Chetan, M.R.; Gleeson, F.V. Radiomics in predicting treatment response in non-small-cell lung cancer: Current status, challenges
and future perspectives. Eur. Radiol. 2021, 31, 1049–1058. [CrossRef]

50. Wakabayashi, T.; Ouhmich, F.; Gonzalez-Cabrera, C.; Felli, E.; Saviano, A.; Agnus, V.; Savadjiev, P.; Baumert, T.F.; Pessaux, P.;
Marescaux, J.; et al. Radiomics in hepatocellular carcinoma: A quantitative review. Hepatol. Int. 2019, 13, 546–559. [CrossRef]

51. Cuocolo, R.; Stanzione, A.; Castaldo, A.; De Lucia, D.R.; Imbriaco, M. Quality control and whole-gland, zonal and lesion
annotations for the PROSTATEx challenge public dataset. Eur. J. Radiol. 2021, 138, 109647. [CrossRef]

52. Oakden-Rayner, L. Exploring Large-scale Public Medical Image Datasets. Acad. Radiol. 2020, 27, 106–112. [CrossRef]
53. Abunahel, B.M.; Pontre, B.; Kumar, H.; Petrov, M.S. Pancreas image mining: A systematic review of radiomics. Eur. Radiol. 2021,

31, 3447–3467. [CrossRef] [PubMed]
54. Stanzione, A.; Gambardella, M.; Cuocolo, R.; Ponsiglione, A.; Romeo, V.; Imbriaco, M. Prostate MRI radiomics: A systematic

review and radiomic quality score assessment. Eur. J. Radiol. 2020, 129, 109095. [CrossRef] [PubMed]
55. Zhong, J.; Hu, Y.; Si, L.; Jia, G.; Xing, Y.; Zhang, H.; Yao, W. A systematic review of radiomics in osteosarcoma: Utilizing radiomics

quality score as a tool promoting clinical translation. Eur. Radiol. 2021, 31, 1526–1535. [CrossRef] [PubMed]
56. Song, J.; Yin, Y.; Wang, H.; Chang, Z.; Liu, Z.; Cui, L. A review of original articles published in the emerging field of radiomics.

Eur. J. Radiol. 2020, 127, 108991. [CrossRef]
57. Scapicchio, C.; Gabelloni, M.; Barucci, A.; Cioni, D.; Saba, L.; Neri, E. A deep look into radiomics. Radiol. Med. 2021, 126,

1296–1311. [CrossRef]
58. Kocak, B.; Durmaz, E.S.; Ates, E.; Kilickesmez, O. Radiomics with artificial intelligence: A practical guide for beginners. Diagn.

Interv. Radiol. 2019, 25, 485–495. [CrossRef]
59. Chartrand, G.; Cheng, P.M.; Vorontsov, E.; Drozdzal, M.; Turcotte, S.; Pal, C.J.; Kadoury, S.; Tang, A. Deep Learning: A Primer for

Radiologists. RadioGraphics 2017, 37, 2113–2131. [CrossRef]
60. Buvat, I.; Orlhac, F. The Dark Side of Radiomics: On the Paramount Importance of Publishing Negative Results. J. Nucl. Med.

2019, 60, 1543–1544. [CrossRef]
61. Adams, J.; Hillier-Brown, F.C.; Moore, H.J.; Lake, A.A.; Araujo-Soares, V.; White, M.; Summerbell, C. Searching and synthesising

‘grey literature’ and ‘grey information’ in public health: Critical reflections on three case studies. Syst. Rev. 2016, 5, 164. [CrossRef]

http://doi.org/10.1148/radiol.2020191145
http://www.ncbi.nlm.nih.gov/pubmed/32154773
http://doi.org/10.1148/rg.2021210037
http://www.ncbi.nlm.nih.gov/pubmed/34597235
http://doi.org/10.1007/s00330-020-07141-9
http://doi.org/10.1007/s12072-019-09973-0
http://doi.org/10.1016/j.ejrad.2021.109647
http://doi.org/10.1016/j.acra.2019.10.006
http://doi.org/10.1007/s00330-020-07376-6
http://www.ncbi.nlm.nih.gov/pubmed/33151391
http://doi.org/10.1016/j.ejrad.2020.109095
http://www.ncbi.nlm.nih.gov/pubmed/32531722
http://doi.org/10.1007/s00330-020-07221-w
http://www.ncbi.nlm.nih.gov/pubmed/32876837
http://doi.org/10.1016/j.ejrad.2020.108991
http://doi.org/10.1007/s11547-021-01389-x
http://doi.org/10.5152/dir.2019.19321
http://doi.org/10.1148/rg.2017170077
http://doi.org/10.2967/jnumed.119.235325
http://doi.org/10.1186/s13643-016-0337-y

	Introduction 
	Materials and Methods 
	Search Strategy and Eligibility Criteria 
	Data Collection and Study Evaluation 
	Statistical Analysis 

	Results 
	Literature Search 
	Qualitative Synthesis of Included Studies 
	RQS Assessment 

	Discussion 
	References

