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Abstract
Adrenal incidentalomas constitute a common clinical problem with an overall prevalence of around 2–3%, but are more
common with advancing age being present in 10% of those aged 70 years. The majority of these lesions are benign
adrenocortical adenomas (80%), characterized in 10–40% of the cases by autonomous cortisol hypersecretion, and in 1–10%
by aldosterone hypersecretion. Several observational studies have shown that autonomous cortisol and aldosterone
hypersecretion are more prevalent than expected in patients with osteopenia and osteoporosis: these patients have accelerated
bone loss and an increased incidence of vertebral fractures. In contrast to glucocorticoid action, the effects of aldosterone on
bone are less well understood. Recent data, demonstrating a concomitant co-secretion of glucocorticoid metabolites in
patients with primary aldosteronism, could explain some of the metabolic abnormalities seen in patients with aldosterone
hypersecretion. In clinical practice, patients with unexplained osteoporosis, particularly when associated with other features
such as impaired glucose tolerance or hypertension, should be investigated for the possible presence of autonomous cortisol
or aldosterone secretion due to an adrenal adenoma. Randomized intervention studies are needed, however, to investigate the
optimum interventions for osteoporosis and other co-morbidities in these patients.
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Introduction

The term adrenal incidentaloma refers to any clinically
unsuspected adrenal lesion that is detected incidentally
during imaging for other indications [1, 2]. With wide-
spread use of imaging techniques, adrenocortical inci-
dentalomas constitute a common clinical problem with a
prevalence of more than 10% in people 70 years or more
[1–6]. Adrenal incidentalomas can be benign or malignant,
functioning or non-functioning, unilateral or bilateral. The
vast majority are benign adrenocortical adenomas (ACA,
80%) [1, 2] with the most frequent endocrine dysfunction
being “autonomous cortisol hypersecretion”, previously
termed “subclinical Cushing’s syndrome” [1, 2, 7–10],
while primary aldosteronism (PA) seems to be the most
frequent hormonal secretion in Korean population with
adrenal incidentaloma [11]. Depending on definitions used,
the prevalence of excess cortisol secretion among these
adrenocortical lesions ranges from 10 to 40%. In contrast,
the frequency of aldosterone hypersecretion varies from 1%
to 10% according to various tests used [1, 2, 6, 12, 13].
Recent data, however, indicate that excess cortisol secretion
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is also seen in PA, and that this may account for some of the
metabolic abnormalities seen in these patients [14]. Fur-
thermore, the cut-off used to define whether an adrenocor-
tical incidentaloma is “functioning” or “non-functioning” is
important, since patients with apparently non-
nonfunctioning adrenal incidentalomas, as defined by a
serum cortisol post dexamethasone of <1.8 μg/dL, still have
excess risk of what may be reasonably considered to be
cortisol-dependent co-morbidities [15].

The estimated cost of fragility fracture in the UK was
£2.3 billion in 2011, but with this rising to a predicted cost
of £6 billion by 2036, mostly due to the cost of hip fracture
[16]. Bone loss and osteoporosis are well-established
complications of glucocorticoid excess, be it from endo-
genous Cushing’s syndrome or exogenous sources [17].
Given the wide prevalence of adrenal incidentaloma with
low-grade cortisol-excess (1–4% of the aging population), it
is important to understand what effect there may be on bone
health, as this may have a very significant impact at the
population level. In light of this, many studies over the past
two decades have sought to investigate the effect of sub-
clinical hypercortisolism on bone health in patients with
adrenal incidentalomas.

The aim of this article is to outline the known effects of
cortisol and aldosterone on bone and summarize the main
studies that have assessed bone health in patients with
adrenal incidentalomas.

Methods

A literature search was conducted in PubMed in English
language, in order to identify publications on adrenal
incidentalomas and bone until the end of June 2018. We
collected, analyzed, and qualitatively resynthesized data
regarding the effects cortisol and aldosterone on bone
metabolism, as well as studies that have assessed bone
health in patients with adrenal incidentalomas. We pre-
sent in turn updated information regarding the mechan-
isms of action of cortisol and aldosterone on bone and
clinical evidence from patients with adrenal incidentalo-
mas with autonomous cortisol hypersecretion or hyper-
aldosteronism or both. We also discuss clinical
implications and provide recommendations on appro-
priate management.

Fig. 1 Direct effects of cortisol excess on bone metabolism. Endo-
genous glucocorticoid excess negatively affect osteoblast, osteocytes,
and osteoclast, which expressed glucocorticoid receptors (GRs). These
actions include an upregulation of peroxisome proliferator-activated
receptor (PPAR)-γ [23] and an inhibition of the wingless (wnt)/β-
catenin signaling pathway [24–26], leading to mesenchymal pro-
genitor cells differentiating preferentially into adipocyte that results in
a decreased number of osteoblasts and in an increasing of osteoblast

apoptosis and a consequent reduction of bone formation [28]. This
mechanism is also stimulated by sclerostin produced by osteocytes
[30]. Another key mechanism is the increase of the receptor activator
for NF-κB ligand (RANKL)/osteoprotegerin (OPG) ratio produced by
osteoblasts and osteocytes [32–34] that, together with the increased
macrophage colony-stimulating factor (M-CSF) [36], stimulates
osteoclastogenesis and bone resorption
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Cortisol hypersecretion and bone

Effects of cortisol on bone metabolism: mechanisms
of action

Glucocorticoids are important for bone development by
affecting osteoblast differentiation [18, 19], but excessive
quantities seem to have a negative impact on bone health
[20] and this impact will be analyzed here. In patients with
adrenal incidentalomas with increased secretion of gluco-
corticoid to levels insufficient to cause classic Cushing’s
syndrome, the “sub-clinical” levels may still be sufficient to
increase the risk of vertebral fractures due to a decrease of
bone mineral density (BMD) and bone quality [20, 21].

Evidence showing the effect of glucocorticoid on bone
deriving primarily from in vitro and in vivo models of
mouse treated with glucocorticoid. Osteoporosis induced
by glucocorticoid excess is due mainly to a direct effect
on cells involved in bone remodeling (osteoblast, osteo-
cytes, osteoclast, and their precursors) [20], which express
the glucocorticoid receptors (GRs) that mediated the main
action of cortisol [22]. The principal effect of the cortisol
excess is a reduction of bone formation through a sup-
pression of osteoblast activity mediated by an upregula-
tion of peroxisome proliferator-activated receptor
(PPAR)-γ [23] and an inhibition of the wingless (wnt)/β-
catenin signaling pathway (Fig. 1) [24–26]. These
mechanisms favor the differentiation of mesenchymal
progenitors to adipocytes instead of osteoblasts, resulting
in a decreased number of osteoblasts and in an increasing
of osteoblast apoptosis [27, 28]. Cortisol excess stimu-
lates the expression in osteocytes of sclerostin which
seems to be a key role in the inhibition of the wnt pathway
in osteoblast (Fig. 1) [29, 30]. In mouse models of
glucocorticoid-induced osteoporosis, it has been showed
that the treatment with anti-sclerostin antibody prevented
the reduction of bone mass and strength in comparison to
placebo [30]. Moreover, the treatment with these anti-
bodies prevented osteocytes from apoptosis in rodents
[31]. The suppression of osteoblasts differentiation asso-
ciated with an increased osteoblasts and osteocytes
apoptosis causes a reduction of bone formation (Fig. 1).

Cortisol excess favors also bone resorption through an
alteration of the receptor activator for NF-κB ligand
(RANKL)/osteoprotegerin (OPG) ratio produced by osteo-
blasts and osteocytes (Fig. 1) [32–34]. RANKL is a reg-
ulator of recruitment, activation, and survival of osteoclasts,
whereas OPG acts as a decoy receptor for RANKL pre-
venting its interaction with RANK and causing the inhibi-
tion of osteoclastogenesis [35]. An in vivo mouse model
demonstrated that glucocorticoids treatment decreased
secretion of OPG rather than elevating RANKL expression
in osteocyte cells [34]. The modified RANKL/OPG ratio by

cortisol increases the RANKL activity and promotes the
bone resorption (Fig. 1) [32–34]. Moreover, glucocorticoids
stimulate the production of the macrophage colony-
stimulating factor that stimulates osteoclastogenesis toge-
ther with RANKL [36]. However, this effect of bone
resorption is only transient and usually decreases over time
due to a suppression of osteoblasts and osteocytes activity
[37]. Therefore, the decrease in bone formation rather than
increase in bone resorption plays a key role in osteoporosis
induced by cortisol excess [19, 28].

It should be noted that the severity of the skeletal effect
of hypercortisolism could due to individual sensitivity to
cortisol that may modify the overall phenotype observed.
Some of the variability in sensitivity in different tissues in
the same individual may be mediated by the repertoire of
co-activators and co-repressors that are present in a given
tissue. Moreover, evidence suggests that at least some of the
variable sensitivity to glucocorticoids in bone is conferred
by polymorphisms of the GR [38]. Moreover, local regen-
eration of cortisol by 11-beta hydroxysteroid dehy-
drogenase type 1 (11βHSD1) may contribute further to
these effects [39].

Hypercortisolism influences mineral and bone metabo-
lism also through indirect effects mediated by calcium (Ca2
+) and parathyroid hormone (PTH) [20]. Cortisol reduces
intestinal Ca2+ absorption and increases renal Ca2+ excre-
tion, with a final Ca2+ negative balance that may deteriorate
bone mineralization. Opposing dates are reported regarding
PTH levels, a marker of bone resorption, in patients with
adrenal incidentaloma and two studies by the group of
Chiodini showed that in female patients with adrenal inci-
dentaloma autonomous cortisol hypersecretion and auton-
omous cortisol hypersecretion had higher PTH levels in
comparison to patients with inactive adrenal masses [40,
41]. Higher levels of PTH in these patients were not shown
by studies from other groups [42, 43]. However, regardless
of an increase plasma levels, PTH correlated inversely with
femoral BMD [40, 42, 43]. More consistently observed are
lower blood osteocalcin levels, a marker of bone formation,
in patients with autonomous cortisol hypersecretion in
comparison to patients with inactive adrenal incidentaloma
or healthy controls [40–42, 44]. The decrease of osteocalcin
levels is due to the inhibition of osteoblastic activity and
increase of osteoblastic apoptosis caused by cortisol excess
[20]. However, this finding was not confirmed by other
studies [43, 45]. It is important to note that the discordance
observed between studies on PTH and osteocalcin levels is
likely due to the small sample size of the studies and the
different criteria used for the definition of autonomous
cortisol hypersecretion [21].

Taken together, it is clear that the overall level of cortisol
secretion needed to have deleterious effects differs by tissue
and by individual, but that over time even subtle increases
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of endogenous cortisol secretion has a net effect favoring
bone loss.

Clinical evidence from patients with adrenal
incidentaloma and autonomous cortisol
hypersecretion

Evidence for the effect of cortisol hypersecretion on bone
health also comes from clinical studies too. Although glu-
cocorticoids impair bone turnover with inhibition of
osteoblastic activity [40, 42, 46], in patients with adrenal
incidentalomas initial BMD studies did not find significant
differences between those deemed to have autonomous
cortisol secretion and controls [40, 47, 48]. Two studies
assessing more homogeneous populations with adrenal
incidentalomas, one including eugonadal males [45] and
one including post-menopausal women [43], demonstrated
significantly decreased BMD in patients with autonomous
cortisol hypersecretion compared to those without. This
decrease was, however, mainly within the limits of osteo-
penia and not sufficient to be classed as osteoporosis [43].

Several observational studies from one Italian center
provide data that autonomous cortisol hypersecretion in
patients with ACA is associated not only with accelerated
bone loss but also with increased incidence of vertebral
fractures [49–51]. Chiodini et al. included only women (70
patients and 84 controls) to avoid gender-related effects on
bone and divided participants according to premenopausal
and postmenopausal status. Subclinical hypercortisolism
was associated with higher prevalence of fractures and
reduced volumetric bone mass at the lumbar spine, inde-
pendent of gonadal status. BMD, however, was mainly
affected by menopausal status [49]. Another retrospective
study, including 287 patients with adrenal incidentalomas
and 194 controls, showed that BMD was significantly lower
in lumbar spine and femoral neck in patients with autono-
mous cortisol hypersecretion than non-functioning adenoma
and controls. Fracture prevalence and spinal deformity index
were also significantly higher in those with subclinical
hypercortisolism regardless of age, gender, menopausal
status, and BMD [50]. In a prospective study by the same
group, 103 consecutive patients with adrenal incidentalomas
were followed-up in order to evaluate the fracture risk over
time. It was shown that the group of patients with autono-
mous cortisol hypersecretion had a higher rate of vertebral
fractures (82%) compared to baseline (56%), regardless of
age, gender, body mass index (BMI), BMD, and menopause,
and this incidence was higher than that seen in patients with
non-functioning adrenal incidentalomas [51]. It is likely that
the fractures reported in these studies are being disclosed by
very sensitive methodologies, since in routine clinical
practice such a high rate of clinically significant fractures is
not usually seen.

Interestingly, fracture risk was not directly predicted by
BMD, as 40% of fractures occurred in patients with normal
or only slightly reduced BMD [50, 51]. Therefore, it is
possible that both bone mass and bone quality may be
disordered. In further study from the same group, bone
microarchitecture was assessed by measurement of the tra-
becular bone score (TBS) in patients with adrenal inci-
dentalomas and concluded that bone quality in autonomous
cortisol hypersecretion is altered [52]. Furthermore, it was
shown that a combination of low TBS and low BMD was
highly predictive for fractures, while the converse was true
for those with a normal TBS plus high BMD, in whom a
lower rate of fractures was observed [52]. A very recent
study provided evidence that patients with mild autonomous
cortisol secretion presented significantly decreased TBS, but
not BMD when compared with patients with non-secreting
incidentalomas [53]. TBS may be proved as a promising,
non-invasive, inexpensive tool for the routine assessment of
these patients in clinical practice.

A meta-analysis including six relevant studies has shown
that patients with bilateral ACA had a higher prevalence of
autonomous cortisol hypersecretion compared to patients
with unilateral incidentalomas of the same size as the largest
of the bilateral adenomas [54]. Only one study from this
analysis investigated bone parameters in patients with uni-
lateral vs. bilateral adrenal incidentalomas and reported a
higher prevalence of fractures in those patients with bilateral
adenomas. Interestingly, this higher prevalence remained
significant even after adjusting for subclinical hypercorti-
solism, BMI, age, and lumbar spine BMD [55].

When managing patients with adrenal incidentaloma in
clinical practice, it would be very useful to know which
biochemical parameter of cortisol hypersecretion is the most
reliable for predicting increased fracture risk. However, this
is difficult as the diagnosis of autonomous cortisol secretion
itself is still a matter of debate [56]. It is worth noting that
the Italian group with the most studies on the topic is based
on the presence of two out of the following three alterations
for the diagnosis of subclinical hypercortisolism: (1)
increased urinary free cortisol (UFC) levels (>193.1 nmol/
24 h); (2) unsuppressed serum cortisol levels after 1-mg
overnight dexamethasone (Dex) suppression test (serum
cortisol after Dex >82.8 nmol/L); and (3) low adrenocorti-
cotropic hormone (ACTH) levels (<2.2 pmol/L) [43, 45,
49–52].

A recent study from Italy found that serum cortisol levels
after 1 mg dexamethasone-suppression test greater than
2.0 mg/dL (55 nmol/L) are independently associated with
both prevalent and incident of vertebral fracture as well as
with an increased risk of new vertebral fractures at diag-
nosis and during follow-up [57]. This association between
the degree of biochemical cortisol hypersecretion and the
risk for vertebral fracture was expected and is in accordance
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with previous studies, most of which come from a single
Italian group [43, 45, 49–52]. Interestingly, this association
was independent of BMD and supports the notion that
reduced bone quality is the most significant parameter
leading to skeletal fractures as a consequence of cortisol
excess [52]. 24-h UFC and plasma ACTH levels were
shown to be not statistically associated with fracture risk. A
potential explanation for plasma ACTH not being a useful
marker is the differing sensitivity of various tissues to
glucocorticoids: bone tissue may be affected even before
suppression of hypothalamic–pituitary–adrenal axis is evi-
dent [57].

Surgical treatment of ACA in small groups of patients
with autonomous cortisol hypersecretion has been asso-
ciated with improvement of various parameters, including
weight, blood pressure, glucose, and lipid metabolism [58,
59]. However, here the data are still too limited, and some
studies report no benefit. The European guidelines on the
management of adrenal incidentaloma recommend adrena-
lectomy only in the minority of cases, and based on careful
individualized treatment decisions. Recent data showed a
30% reduction of vertebral fracture risk after adrenalectomy

in selected patients [60]; this finding is potentially important
and underlines the pathophysiological association between
cortisol hypersecretion, reduced bone quality, and fractures
in patients with ACA. However, it is important to note that
the majority of studies on bone in patients with adrenal
incidentaloma come from one group [45, 49–51, 55, 57, 58]
and before making wide-ranging treatment recommenda-
tions it is crucial to have larger studies in various
populations.

PA and bone

Effects of aldosterone on bone metabolism:
mechanisms of action

Contrary to the well-studied mechanisms, which underline
the link between autonomous cortisol secretion and bone,
less is known regarding the link between hyperaldosteron-
ism and osteoporosis.

Over the last two decades, several small studies have
demonstrated that aldosterone excess is likely to affect bone

Fig. 2 Mechanisms of action of aldosterone on bone metabolism.
Aldosterone excess could affect bone turnover directly by binding
mineralcorticoid receptors (MRs) expressed in osteoclasts, osteocytes,
and osteoblasts [67]. Furthermore, aldosterone regulate PTH synthesis
and secretion through the MRs expressed in cells of parathyroid glands
[69, 70]. Indirectly, aldosterone excess regulates bone metabolism
through parathyroid hormone (PTH) and oxidative stress. Hyper-
aldosteronism expands the extravascular fluid volume that causes a
marked increase of urinary excretion of calcium (Ca2+) and magne-
sium (Mg2+) in the distal tubule of the nephron, with a progressive

reduction of serum Ca2+ and Mg2+ levels. The resulting hypocalcemia
and hypomagnesemia stimulate the secretion of PTH, with a con-
sequent secondary hyperparathyroidism, which induces bone resorp-
tion and a reduction of the bone mineral density (BMD) [61].
Moreover, aldosterone excess reduces plasma α1-antiprotease activity
and increases lymphocyte hydrogen peroxide production, promoting a
condition of oxidative stress resulting in increased osteoblast and
osteocyte apoptosis, and reduction of bone formation [61, 81]
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turnover through a direct effect on bone cells and through
indirect mechanisms via PTH and oxidative stress [61–66]
(Fig. 2).

The direct effect of aldosterone on bone metabolism is
still poorly understood. Mineralocorticoid receptors (MRs)
are expressed in human and rat osteoclasts, osteocytes, and
osteoblasts [67, 68], suggesting a direct effect of aldoster-
one on bone turnover. MRs are present also in normal and
adenomatous parathyroid tissue [69, 70]. Furthermore, a
positive association between the aldosterone/renin ratio and
serum PTH concentration has been demonstrated in normal
individuals [71], suggesting that aldosterone may directly
regulate PTH synthesis and secretion (Fig. 2). Moreover,
in vivo and observational human studies suggest that MR
antagonists (MRA) have a beneficial effect on bone meta-
bolism. In rat models, treated with aldosterone and salt for
4–6 weeks, bone loss was attenuated after administration of
the MRA spironolactone [61, 72, 73]. Similarly, patients
with PA treated with spironolactone showed decreased
urinary calcium loss and improved BMD [74–76]. How-
ever, a recent single-center, double-blind, randomized,
placebo-controlled trial demonstrated no effects of epler-
enone on bone turnover markers in patients with primary
hyperparathyroidism, suggesting that MR antagonism may
not be relevant in primary hyperparathyroidism, but could
have efficacy in condition of hyperparathyroidism second-
ary to hyperaldosteronism [77].

The interaction between MR and bone has been further
examined in animal models. In rats treated with aldosterone
and salt, there was a significant increase in urinary and fecal
excretion of Ca2+ and magnesium (Mg2+), with a con-
sequent progressive reduction of plasma ionized Ca2+ and
Mg2+ levels [61]. Urinary losses of Ca2+ and Mg2+ were
the result of expanded extravascular fluid volume resulting
in decreased resorption of sodium (Na+), Ca2+, and Mg2+ in
the proximal tubule of the nephron with a consequent
increase of their excretion in the distal tubule. Because
aldosterone stimulates Na+ resorption, but not that of Ca2+

and Mg2+ at the distal tubule, this causes a marked increase
of Ca2+ and Mg2+ excretion [78, 79], with the lowering of
Ca2+ and Mg2+ leading to secondary hyperparathyroidism,
stimulating bone resorption and a significant reduction of
BMD and cortical bone strength (Fig. 2) [61, 80].

In the same rat model, a significant reduction of plasma
α1-antiprotease activity and an increase of lymphocyte
hydrogen peroxide production was reported after
aldosterone-sodium treatment for 1–6 weeks in comparison
to the control group [61, 80, 81]. The authors hypothesized
that aldosterone promotes a systemic condition of oxidative
stress and inflammation that could result in increased
osteoblast and osteocyte apoptosis, and reduced bone for-
mation (Fig. 2) [82, 83].

In conclusion, hyperaldosteronism affects bone turnover
through several direct and indirect mechanisms, most of
which act through an increase of serum PTH levels.

Clinical evidence from patients with adrenal
incidentaloma and hyperaldosteronism

Evidence regarding the link between hyperaldosteronism
and bone metabolism is also derived from several obser-
vational studies. Aldosterone hypersecretion can be detec-
ted in 1–10% of patients with adrenal incidentalomas [1, 2].
Together with bilateral adrenal hyperplasia (BAH), the
aldosterone-producing adenomas (APA, also termed “Conn
adenoma”) represent more than 90% of cases of PA; the
remaining cases of PA are due to unilateral adrenal hyper-
plasia and aldosterone-producing carcinoma [84]. Several
observational studies showed significantly higher PTH
levels, lower serum Ca2+ levels, and higher urinary Ca2+

excretion in patients with PA in comparison to those with
essential hypertension (EH) [63, 64, 74, 85–87], and a
higher prevalence of osteoporosis [63–66, 74, 88].

Salcuni et al. [63] reported the first association between
hyperaldosteronism and osteoporosis in patients with APA.
In 11 patients with APA there was decreased BMD at the
lumbar spine, total and femoral neck (13%, 8% and 11%,
respectively), an increased prevalence of osteoporosis (73%
vs. 20%) and a higher incidence of vertebral fractures (46%
vs. 13%), in comparison to 15 patients with non-functioning
incidentalomas. Moreover, the increased urinary Ca2+

excretion and elevated PTH levels found in APA patients
were reversed after adrenalectomy or spironolactone treat-
ment [63].

The reversibility of secondary hyperparathyroidism in
PA patients after surgical or medical treatment was sup-
ported by two other observational studies [85, 86]. Ceccoli
et al. [85] compared PA patients (46 with APA and 70 with
BAH) with 110 EH patients, finding significant increases in
PTH levels and urinary Ca2+ excretion, and decreased
serum Ca2+ levels (with comparable vitamin D concentra-
tions). Interesting, PTH levels were higher in patients with
APA than in those with BAH [85]. Similarly Pilz et al. [86]
showed higher PTH levels in a small group of patients with
PA (5 APA and 5 BAH) compared to 182 with EH;
moreover, they observed that the normalization of PTH
levels was more pronounced in patients operated for APA
than those treated with MRA for BAH. It is important to
note that in both studies the PA group had significantly
higher blood pressure than the EH group, and that arterial
hypertension itself can increase urinary Ca2+ excretion with
consequent secondary hyperparathyroidism [89]. Never-
theless, a larger observational study demonstrated higher
urinary Ca2+ excretion, lower serum Ca2+ levels, and higher
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PTH levels in 73 patients with PA in comparison to 73
patients with EH and 40 healthy controls [64], without
differences in blood pressure between PA and EH groups,
suggesting that aldosterone itself may be involved in the
stimulation of PTH secretion in PA. No differences were
seen in anthropometric and biochemical characteristics
between patients with APA and BAH [64].

Another observational study comparing 105 con-
secutive patients with hypertension, of whom 44 with
APA and 61 with EH, showed that in the APA group
there were significantly higher plasma PTH levels com-
pared to the EH group (P < 0.001), despite similar urinary
Ca2+ excretion and vitamin D levels [87]. Similar to
previous studies, PTH levels were normalized in patients
with APA after adrenalectomy. Moreover, the authors
demonstrated the expression of the PTH receptor, at
mRNA and protein levels, in APA tissues and speculated
that PTH, by acting on these receptors, may contribute to
hyperaldosteronism despite the suppression of the
angiotensin–renin system [87].

Very recently, Salcuni et al. observed a higher pre-
valence of PA in a group of 322 consecutive subjects
screened for osteoporosis who were not taking drugs
affecting bone and mineral metabolism and who had no
prior diagnosis of secondary osteoporosis, compared to a
non-osteoporotic control group (5.2% vs 0.9%, P= 0.066).
The prevalence of PA was higher still in those who also had
osteoporosis and hypertension (13.9%), fracture and
hypertension (14.8%), fracture and hypercalciuria (11.1%),
and osteoporosis, hypertension, and hypercalciuria (26.1%),
emphasizing the potential interplay between PA and bone
[88]. In this study, osteoporosis was associated with PA
(OR= 10.42; 95% CI 1.21–90.91), as well as age (OR=
1.06; 95% CI 1.03–1.09) and BMI (OR= 1.11; 95% CI
1.05–1.17), but not with EH (OR= 1.23; 95% CI 0.72–2.1)
[88].

Another recent study including 56 PA patients, 16 of
whom had APA, and 56 matched healthy controls identified
PA as a risk factor for vertebral fractures independently of
blood pressure, glycated hemoglobin, and lipid levels [65].
There were no differences in the vertebral fracture rate in
patients with APA in comparison to those with BAH,
despite higher aldosterone plasma levels in patients with
APA. Contrary to previous observational studies [63, 64,
88], there were no significant differences in PTH levels and
BMD in PA patients compared to controls [65]. This dis-
crepancy could be due to the design of the study, which
focused on vertebral and not cortical bone [65]. A large
population-based study suggested that PA was associated
with higher risk of bone fracture; however, a reduced risk of
fracture in women with both APA or BAH after MRA
treatment was not observed, a result which might reflect the
duration of disease [66].

However, similar to what is observed in autonomous
cortisol secretion, the majority of data regarding PA and
bone metabolism came from observational studies of a
small cohort of patients evaluated in a single center. Mul-
ticenter observational studies and randomized interventional
studies, which investigate the efficacy of MRA or adrena-
lectomy for the prevention of osteoporosis, are urgently
needed.

Very recent data suggest the potential role of co-secretion
of mild glucocorticoid excess in the development of co-
morbidities in patients with PA. Using mass spectrometry-
based analysis of the 24-h urinary steroid metabolic pro-
filing a concomitant presence of mild glucocorticoid meta-
bolite excess was demonstrated in a large proportion of
patients with PA (provocatively termed by the authors as
“Connshing’s” syndrome) [14]. Interesting, in the group of
patients with co-secretion of aldosterone and cortisol,
metabolic parameters such as increased BMI, insulin
resistance, diastolic blood pressure, waist circumference,
and high-density lipoprotein were associated with cortisol
levels and not with aldosterone levels [14]. Arlt et al. [14,
90] suggested that the co-secretion of cortisol in patients
with PA may contribute in the pathogenesis of co-
morbidities observed in these patients, including osteo-
porosis. However, prospective randomized studies are
needed to confirm this result, and to assess whether those
patients with PA identified as having the glucocorticoid-rich
metabolic profile but who do not undergo surgery, need
glucocorticoid antagonist in addition to MRA to counteract
the adverse metabolic risk [14].

Conclusion and implications for
management

Adrenocortical incidentalomas constitute a common clinical
problem with a prevalence of up to 10% in elderly [1–4],
mostly being represented by benign ACA and often being
associated with corticosteroid excess [1, 2, 7–9].

Several observational studies have shown that ACA with
autonomous cortisol hypersecretion is more prevalent than
expected in patients with osteopenia and osteoporosis and
that the autonomous cortisol hypersecretion is associated
with accelerated bone loss and increased incidence of ver-
tebral fractures [49–51]. Similarly, hyperaldosteronism is
associated with a higher prevalence of osteoporosis [63–66,
74, 88]. Contrary to what is known about glucocorticoid
action, the effects of aldosterone on bone metabolism are
less well understood and seem mostly due to an indirect
effect through the increase of urinary Ca2+ excretion,
leading to compensatory secondary hyperparathyroidism
[61, 63, 64, 85]. However, recent data using urinary steroid
metabolic profiling have shown a mild cortisol co-secretion
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in a subgroup of patients with APA and that it may account
for some of the metabolic abnormalities seen in these
patients, including osteoporosis [14, 90].

The recent European Society of Endocrinology (ESE)/
European Network for the Study of Adrenal Tumors
(ENSAT) guidelines suggest screening of patients with
ACA and autonomous cortisol secretion for vertebral frac-
tures at least once at the time of diagnosis (by re-evaluation
of CT images or by X-ray), while no consensus was reached
by the experts concerning the assessment of BMD with
dual-energy X-ray absorptiometry (DXA) [1]. The data
summarized above suggest that BMD may not be accurate
for fracture risk assessment in patients with ACA and
autonomous cortisol secretion, and that TBS may be more
useful, or at the very least used in combination.

In everyday clinical practice, patients with unexplained
osteoporosis, particularly when associated with other
metabolic symptoms (impaired glucose tolerance, hyper-
tension, or hypercalciuria), should be investigated for the
possible presence of adrenal incidentaloma associated with
autonomous cortisol secretion or aldosterone hypersecre-
tion. Thus, patients with ACA and osteopenia, osteoporosis
or vertebral fractures might benefit from therapeutic adre-
nalectomy or when it is not possible from specific medical
treatment, such as glucocorticoid antagonist therapy or
MRA, to mitigate against the co-morbidities due to hor-
mone excess [1, 12, 14]. Furthermore, it is possible that
patients with PA, who do not undergo surgery, might need
also glucocorticoid antagonist in addition to MRA if they
have a glucocorticoid metabolite profile [14]. All these
suggestions are derived from observational studies; more
data, especially from prospective, randomized, controlled
intervention trials, are needed to investigate further the
optimum surgical or medical interventions to ameliorate
osteoporosis and other co-morbidities due to ACA asso-
ciated with autonomous cortisol secretion or
hyperaldosteronism.
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