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Abstract. Structures with passive energy dissipation systems are characterized by a complex
dynamic behavior due to the hysteretic nature governing the response of the adopted devices.
Mathematically speaking, the hysteretic models currently available to simulate the behavior of
rate-independent devices, such as metallic and friction dampers, are much more complicated
than those developed for rate-dependent devices, such as viscous fluid and viscoelastic solid
dampers. To allow for a straightforward, accurate and efficient modeling of rate-independent
energy dissipation devices in practice, we introduce a novel phenomenological model suitable
for both metallic and friction dampers. Such a model offers the advantage of requiring an
easy calibration procedure since it is based on a set of only four parameters having a clear
mechanical significance. The proposed model is employed to simulate the actual behavior of
some metallic dampers, denominated Shear Links, that have been experimentally tested at the
University of Naples Federico II. In addition, numerical simulations are performed to show the
capability of such devices in protecting structures from earthquake excitations.
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1 INTRODUCTION

Passive energy dissipation represents one of the most effective techniques for the seismic

protection of buildings and bridges [1, 2, 3, 4]. This technique requires the use of special

devices, called dampers, that are characterized by a high energy dissipation capacity and are

generally incorporated in the external frames of a structure thus dissipating energy throughout

its entire height [5].

Dampers typically exhibit a complex hysteretic behavior. In particular, such a behavior is

referred to as rate-independent if the device restoring force depends on the device displacement,

whereas it is defined rate-dependent when the device restoring force is a function of the device

velocity. Clearly, there may exist some dampers showing both types of behavior at the same

time [6].

Examples of rate-independent passive energy dissipation devices, commonly used for seis-

mic protection of structures, are metallic dampers and friction dampers, whereas examples of

rate-dependent devices are viscous fluid dampers and viscoelastic solid dampers.

Several hysteretic models have been proposed in the literature for simulating the complex

behavior occurring in dampers [7]. Typically, rate-independent hysteretic models are much

more complex than the rate-dependent ones from a mathematical point of view [8].

Among existing rate-independent models, the Bouc-Wen model [9, 10] and its modified

versions [7] seem to be the most suitable ones since they allow for an accurate prediction of the

hysteretic response of both metallic and friction dampers by using a relatively small number of

parameters. Unfortunately, these models require parameters with no clear mechanical meaning

thus involving the use of complex and time-consuming identification procedures. In addition,

due to their differential nature, they are not computationally efficient since they require the

numerical solution of a first-order nonlinear ordinary differential equation for the evaluation of

the hysteretic variable at each time step of a nonlinear dynamic analysis.

To foster the use of accurate and efficient rate-independent models in practice, this paper

proposes a novel phenomenological model able to predict the hysteretic behavior generally

displayed by metallic and friction dampers. Compared to the celebrated Bouc-Wen model or

its modified versions, the proposed model, belonging to a more general class formulated in

[11, 12, 13], is based on a set of only four parameters having a clear mechanical significance.

For such a reason, it needs a straightforward calibration procedure and, consequently, it may be

easily adopted in practice.

The paper is organized into three parts. In the first part (Sections 2 and 3), we first derive

the nonlinear equilibrium equations of a typical building frame equipped with energy dissi-

pation devices and subjected to earthquake excitation. Subsequently, we briefly describe, for

the reader’s convenience, the three main categories of dampers with particular emphasis on the

description of their hysteretic behavior.

In the second part (Section 4), we present a preliminary formulation of the proposed hys-

teretic model suitable for rate-independent dampers, such as metallic and friction devices, and

then we illustrate the influence of the four parameters on the hysteresis loop size and/or shape.

Finally, in the third part (Section 5), we adopt the proposed hysteretic model to simulate

the experimental behavior of a particular class of metallic dampers, denominated Shear Links,

and we perform several nonlinear dynamic analyses on a building frame equipped with such

devices to show their capability in reducing both floor relative displacements and absolute ac-

celerations.
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2 NONLINEAR EQUILIBRIUM EQUATIONS

The response of a Multi-Degree-Of-Freedom (MDOF) system is generally governed by the

following system of coupled second-order nonlinear Ordinary Differential Equations (ODEs):

Mü(t) + Cu̇(t) + Ku(t) + fn(t) = p(t), (1)

in which u(t), u̇(t), and ü(t) are the generalized displacement, velocity, and acceleration vec-

tors, respectively, whereas M, C, and K represent the generalized constant mass, damping,

and elastic stiffness matrices, respectively; in addition, fn(t) is the generalized nonlinear force

vector, which may have rate-independent and/or rate-dependent hysteretic nature, whereas p(t)
represents the generalized external force vector depending on time t.

In this work, we specialize such nonlinear equilibrium equations to the structural model of a

typical building frame equipped with energy dissipation devices, each mounted in combination

with two diagonal braces. In particular, we introduce a 3-story two-dimensional (2D) structural

model whose geometry is defined in a global, right-handed Cartesian coordinate system (O, Y ,

Z), as shown in Figure 1.

For simplicity, we assume that: a) frame elements, such as beams, columns, and braces, de-

form within their linear elastic range during the earthquake excitation, whereas the hysteretic

devices exhibit nonlinear behavior; b) columns are axially inextensible; c) beams and braces

are axially inextensible and flexurally rigid. We observe that these assumptions, typically intro-

duced in the literature [14], can be removed without any influence on the proposed results.

Figure 1: 2D structural model of a typical building frame with added dampers.

The above-described structural idealization allows us to write the displacement, velocity, and

acceleration vectors of the 2D structural model, relative to the ground, as follows:

u =

⎧⎨⎩
u(1)

u(2)

u(3)

⎫⎬⎭ , u̇ =

⎧⎨⎩
u̇(1)

u̇(2)

u̇(3)

⎫⎬⎭ , ü =

⎧⎨⎩
ü(1)

ü(2)

ü(3)

⎫⎬⎭ , (2)

where u(i), u̇(i), ü(i) represent, respectively, the displacement, velocity, and acceleration along

the Y -axis of the i-th floor.
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On account of that, the constant mass, damping, and elastic stiffness matrices become:

M =

⎡⎣M (1) 0 0
0 M (2) 0
0 0 M (3)

⎤⎦ , C =

⎡⎣C(1) + C(2) −C(2) 0
−C(2) C(2) + C(3) −C(3)

0 −C(3) C(3)

⎤⎦ ,
K =

⎡⎣K(1) +K(2) −K(2) 0
−K(2) K(2) +K(3) −K(3)

0 −K(3) K(3)

⎤⎦ ,
(3)

where M (i) is the i-th floor mass, C(i) is the i-th floor damping coefficient, whereas K(i) is the

i-th floor elastic stiffness, obtained by summing the elastic stiffnesses of the i-th floor columns.

Finally, the nonlinear force vector and the external force vector are given by:

fn =

⎧⎪⎨⎪⎩
f
(1)
n

f
(2)
n

f
(3)
n

⎫⎪⎬⎪⎭ , p = −
⎡⎣M (1) 0 0

0 M (2) 0
0 0 M (3)

⎤⎦⎧⎨⎩
1
1
1

⎫⎬⎭ üg, (4)

where f
(i)
n represents the nonlinear force of the i-th floor, whereas üg is the ground acceleration

applied along the Y -axis. In particular, if the vector fn is a function of the displacement vector

u, its three components are computed as:

f (1)
n =

3∑
j=1

f
(1)
j (u(1))−

2∑
j=1

f
(2)
j (u(2) − u(1)),

f (2)
n =

2∑
j=1

f
(2)
j (u(2) − u(1))−

2∑
j=1

f
(3)
j (u(3) − u(2)),

f (3)
n =

2∑
j=1

f
(3)
j (u(3) − u(2)),

(5)

where f
(i)
j is the rate-independent hysteretic force exhibited by the j-th damper of the i-th floor.

Conversely, if the vector fn is a function of the velocity vector u̇, the displacement u(i),

appearing in Equation 5, has to be substituted with the velocity u̇(i); in such a case, f
(i)
j would

represent the rate-dependent hysteretic force displayed by the j-th damper of the i-th floor.

3 ENERGY DISSIPATION DEVICES

Several types of passive energy dissipation devices have been adopted worldwide to protect

structures from earthquake excitations. According to the nature of their hysteretic behavior,

such devices may be classified into three categories [7]:

1. rate-independent hysteretic devices: dampers whose restoring force does not depend on

the rate of variation of the displacement (i.e., velocity) but only upon the displacement

amplitude and the sign of the velocity (i.e., direction of the motion). Some examples are

represented by metallic dampers and friction dampers.

2. rate-dependent hysteretic devices: dampers whose restoring force depends, partially or

totally, on the rate of variation of the displacement (i.e., velocity). Examples of such

devices are viscous fluid dampers and viscoelastic solid dampers.

2438
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(a) (b)

Figure 2: Typical hysteresis loop of (a) metallic and (b) friction dampers.

(a) (b)

Figure 3: Typical hysteresis loop of (a) viscous fluid and (b) viscoelastic solid dampers.

3. further devices: dampers which cannot be classified by one of the above-described basic

types. Some examples are friction-spring devices with re-centering capability and fluid

restoring force-damping devices.

Figure 2a (b) illustrates the typical force-displacement hysteresis loop of a metallic (friction)

damper, whereas Figure 3a (b) shows the hysteresis loop which generally characterizes a viscous

fluid (viscoelastic solid) damper.

Clearly, the hysteresis phenomena observed in these devices are induced by different types

of mechanisms. As a matter of fact, in metallic dampers such a nonlinear behavior is associated

with yielding of mild steel, whereas in friction dampers it is due to the sliding friction across

the interface between two solid bodies.

Furthermore, in viscous fluid dampers the energy dissipation is due to the friction between

fluid particles and the piston head, whereas in viscoelastic solid dampers it is related to the

deformation of solid elastomeric pads.

4 PROPOSED HYSTERETIC MODEL

In this Section, we focus on the modeling of rate-independent hysteretic devices which,

differently from the rate-dependent ones, require much more complex hysteretic models.

In particular, we first summarize the formulation of a novel uniaxial phenomenological
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model belonging to a more general class introduced by Vaiana et al. [11, 12, 13, 15]; sub-

sequently, we illustrate the influence of the four model parameters on the size and/or shape of

the restoring force-displacement hysteresis loops.

4.1 Model Formulation

In the Proposed Hysteretic Model (PHM), u (f ) represents the damper axial/transverse dis-

placement (restoring force), whereas u̇ is the damper axial/transverse velocity.

The restoring force, during the generic loading case (u̇ > 0), is evaluated as:

f
(
u, u+

j

)
=

{
c+
(
u, u+

j

)
u ∈ [u+

j − 2u0, u
+
j

]
(6a)

cu (u) u ∈ [u+
j ,∞

)
, (6b)

whereas, during the generic unloading case (u̇ < 0), it is computed as:

f
(
u, u−

j

)
=

{
c−
(
u, u−

j

)
u ∈ [u−

j , u
−
j + 2u0

]
(7a)

cl (u) u ∈ (−∞, u−
j

]
. (7b)

In Equations 6 and 7, c+ and c− represent, respectively, the generic loading and unloading

curves:

c+
(
u, u+

j

)
= kbu+ f0 +

ka − kb
c1

[
+u− u+

j − α1 log

(
c1 + e

+u−u+
j

+2u0−α2

α1

)
+ c2

]
, (8)

c−
(
u, u−

j

)
= kbu− f0 − ka − kb

c1

[
−u+ u−

j − α1 log

(
c1 + e

−u+u−
j

+2u0−α2

α1

)
+ c2

]
, (9)

whereas cu and cl are, respectively, the upper and lower limiting curves:

cu (u) = kbu+ f0, (10)

cl (u) = kbu− f0. (11)

The internal variable u+
j (u−

j ), that represents the displacement value where the generic load-

ing (unloading) curve intersects the upper (lower) limiting curve, is given by:

u+
j = +α1 log

{
c−1
1

[
e
+

uP+c2−c1(ka−kb)
−1(fP−kbuP−f0)

α1 − e
+uP+2u0−α2

α1

]}
, (12)

u−
j = −α1 log

{
c−1
1

[
e
−uP−c2−c1(ka−kb)

−1(fP−kbuP+f0)
α1 − e

−uP+2u0−α2
α1

]}
, (13)

in which uP and fP are the coordinates of a generic point P belonging to c+ or c−.

As regards the internal parameters f0 and u0, they are evaluated as:

f0 =
ka − kb
2c1

(2u0 − c2) , (14)

u0 =
1

2

[
α2 + α1 log

(
ka − kb

δk
− c1

)]
, (15)

where δk is a numerical parameter set equal to 10−20, whereas ka, kb, α1 and α2 represent the

four model parameters to be calibrated from experimental or numerical data, with ka > kb,
ka > 0, α1 > 0, α2 > 0. Finally, c1 and c2 are two constants whose expressions, depending on

the four model parameters and omitted for brevity, will be illustrated in detail in a future work.
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Figure 4: Influence of the PHM parameters variation on the hysteresis loop size and/or shape: (a) ka, (b) kb, (c)

α1, and (d) α2.

4.2 Parameter Sensitivity Analysis

Figure 4 shows how the size and (or) the shape of hysteresis loops, obtained by imposing a

full sinusoidal cycle of displacement having unit amplitude and frequency, change(s) due to the

variation of each PHM parameter, namely ka, kb, α1 and α2.

5 NUMERICAL EXPERIMENTS

This Section illustrates the results of several nonlinear time history analyses performed on

a building frame equipped with energy dissipation devices and subjected to earthquake exci-

tation. In order to demonstrate the effectiveness of the adopted passive control system and its

capability to significantly decrease both floor relative displacements and absolute accelerations,

the numerical results are compared with those obtained by analyzing the same building frame,

having linear elastic behavior, without using the hysteretic devices.

To carry out the nonlinear dynamic analyses, the proposed hysteretic model, described in

Section 4, is employed to simulate the behavior of each damper adopted in the passive con-

trol system. Furthermore, an accurate and computationally efficient explicit time integration

method, described in [8], is adopted to numerically integrate the system of nonlinear equilib-
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Figure 5: Shear Link: (a) typical lateral view and (b) comparison between experimental and analytical hysteresis

loops of device SL 30 3.

rium equations. Due to its explicit nature, such a method offers the advantage of performing

nonlinear dynamic analyses without adopting iterative procedures.

Both the hysteretic model and the numerical method have been implemented in the computer

program MATLAB.

5.1 Structure Properties

Figure 1 shows the 2D structural model of the building frame selected to perform the numer-

ical experiments. In particular, it is a three-story, three-bay reinforced concrete structure whose

beams (columns) have a length of 6.0 m (3.2 m) and are characterized by a rectangular section

with size 0.3 m x 0.4 m (0.5 m x 0.5 m).

The masses of the first, second, and third floor are equal to 85200 Ns2m−1, 57400 Ns2m−1,

and 42600 Ns2m−1, respectively, and are assumed to be lumped in the respective floor mass

center, namely MC1, MC2, and MC3.

As a result of the assumptions made in Section 2, the total number of Degrees-Of-Freedom

(DOFs) is equal to 3, whereas the three natural periods, evaluated without taking into account

dampers and steel braces, are T1 = 0.2220 s, T2 = 0.0916 s, and T3 = 0.0630 s. As typically

done with reinforced concrete structures, it is assumed that each mode has a damping ratio of

5% [14].

The passive control system consists of 7 dampers which are mounted between the steel braces

and the upper beam, as illustrated in Figure 1. The adopted devices, denominated Shear Links,

are metallic dampers, having rate-independent hysteretic behavior, that are manufactured from a

I-shaped laminated steel plate [16, 17]. As shown in Figure 5(a), this type of device is typically

made up of a) vertical stiffeners, that ensure the device stability, b) external flanges, that allow

for the device connection to structural elements, and c) dissipative windows, that are capable

of dissipating energy. Bolted connections are employed to facilitate the installation process; in

particular, slotted holes are used for the upper connection in order to avoid axial forces on the

device.

The Shear Links employed in this paper have been experimentally tested by Nuzzo et al. [18]
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Figure 6: Time histories of the MC3 (a) relative displacement and (b) absolute acceleration obtained with (red

line) and without (blue line) metallic dampers.

at the laboratory of Department of Structures for Engineering and Architecture of the University

of Naples Federico II (Italy). In particular, the device adopted in the numerical simulation,

denominated SL 30 3, exhibits the restoring force-displacement hysteresis loops of Figure 5(b)

when subjected to a displacement time history having increasing amplitude [18].

5.2 Applied earthquake excitation

The analyses are performed by imposing, along the Y -axis, the component SN of the 1994

Northridge motion, and by adopting a ground acceleration record time step of 0.005 s.

5.3 Hysteretic model parameters

The complex behavior of each Shear Link is simulated with the novel phenomenological

model, presented in Section 4, whose 4 parameters have been calibrated on the basis of the

experimental hysteresis loops obtained by Nuzzo et al. [18]. In particular, the values identified

for such parameters are: ka = 2x 108 N/m, kb = 6x 106 N/m, and α1 = α2 = 0.002 m.

Figure 5(b) compares the experimental hysteresis loops of the device SL 30 3 with those

predicted by means of the proposed hysteretic model thus demonstrating a satisfactory agree-

ment between them.

5.4 Numerical results

Figure 6(a) illustrates the time histories of the MC3 displacement, relative to the ground,

obtained with (red line) and without (blue line) metallic dampers; similarly, Figure 6(b) shows

the time histories of the MC3 absolute acceleration obtained with (red line) and without (blue

line) Shear Links. Looking at such comparisons, it is evident that the adopted passive protection

system is capable of limiting potential damages induced by seismic events since it allows for

the reduction of both floor relative displacements and absolute accelerations.
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6 CONCLUSIONS

We have presented a preliminary formulation of a novel uniaxial phenomenological model

that is capable of simulating the complex behavior of both metallic and friction dampers by

employing four parameters having a clear mechanical significance.

The proposed model has been calibrated on the basis of some experimental hysteresis loops

obtained by Nuzzo et al. [18] during an experimental campaign performed on Shear Link

devices. In particular, the accuracy of the model has been verified by comparing the simulated

restoring force-displacement hysteresis loops with those obtained from the experimental tests.

In addition, the proposed model has been employed to analyze a building frame equipped

with Shear Links. The numerical results obtained by applying an earthquake ground acceler-

ation have demonstrated the capability of the adopted dampers in controlling excessive floor

displacements and accelerations.
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