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Abstract: Background: Neonatal infections represent one of the six main types of healthcare-
associated infections and have resulted in increasing mortality rates in recent years due to preterm
births or problems arising from childbirth. Although advances in obstetrics and technologies have
minimized the number of deaths related to birth, different challenges have emerged in identifying the
main factors affecting mortality and morbidity. Dataset characterization: We investigated healthcare-
associated infections in a cohort of 1203 patients at the level III Neonatal Intensive Care Unit (ICU) of
the “Federico II” University Hospital in Naples from 2016 to 2020 (60 months). Methods: The present
paper used statistical analyses and logistic regression to identify an association between healthcare-
associated blood stream infection (HABSIs) and the available risk factors in neonates and prevent
their spread. We designed a supervised approach to predict whether a patient suffered from HABSI
using seven different artificial intelligence models. Results: We analyzed a cohort of 1203 patients
and found that birthweight and central line catheterization days were the most important predictors
of suffering from HABSI. Conclusions: Our statistical analyses showed that birthweight and central
line catheterization days were significant predictors of suffering from HABSI. Patients suffering from
HABSI had lower gestational age and birthweight, which led to longer hospitalization and umbilical
and central line catheterization days than non-HABSI neonates. The predictive analysis achieved
the highest Area Under Curve (AUC), accuracy and F1-macro score in the prediction of HABSIs
using Logistic Regression (LR) and Multi-layer Perceptron (MLP) models, which better resolved the
imbalanced dataset (65 infected and 1038 healthy).

Keywords: statistical analysis; predictive analysis; healthcare-associated infection; healthcare

1. Introduction

The European Centre for Disease Prevention and Control (ECDC) recognized neonatal
infections as one of the six main types of healthcare-associated infections (HABSIs) in
2016 [1]. The first few months of neonatal life, especially the first month, are the main
period of risk for child survival [2,3], whose mortality rate has increased approximately 50%
due to preterm births or problems derived from childbirth. Although advances in obstetrics
and technologies have minimized the number of birth-related problems, HABSIs pose
different challenges in identifying the main factors affecting mortality and morbidity, which
represent the main reason for mortality in children with a birth weight less than 1500 g in
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the Neonatal Intensive Care Unit (NICU) [4]. An increase in the incidence of HABSIs in
NICUs was found in [5] due to the relationship between the quantity and invasiveness of
surgical procedures, because these patients are immature from an immunological point of
view [6–8].

The present paper performed a risk assessment using statistical analyses and logistic
regression to reveal the main factors that affect neonates suffering from a healthcare-
associated blood stream infection (HABSI) infection [9,10]. The definition of HABSI pro-
vided by the European Center Disease Control (ECDC) is the same as the CDC in Atlanta
and it is based on clinical (e.g., fever) and/or microbiological (e.g., increased white blood
cells and isolation of germs). The hospital was equipped with a manual that contained all of
the prevention protocols for healthcare-related infections. Each protocol had a monitoring
sheet for correct use, and incidence studies made it possible to measure the effectiveness
of the correct application via the calculation of specific indicators. For example, the inci-
dence rate of pneumonia was associated with assisted ventilation [11], and the incidence of
urinary tract infections was associated with the use of a bladder catheter [12]. We further
provided a predictive analysis of the different features in approximately 1203 neonates,
65 of who were diagnosed as suffering from an HABSI contracted as a healthcare-associated
blood stream infection (HABSI) using seven different artificial intelligence models that
are increasingly applied in the medical field [13–15]. Notably, the main novelties of our
approach concerned the analysis of HABSIs from different points of view (predictive and
statistical analyses) in a cohort of 1203 patients at the level III NICU of the “Federico II”
University Hospital in Naples from 2016 to 2020 (60 months). Despite different efforts
in the literature for predicting the risk of HABSIs and other adverse outcomes in the ICU,
these studies primarily focused on the use of Support Vector Machine (SVM) [16,17] or
divided patients into clusters [18] without considering more recent Artificial Intelligence
approaches (e.g., XGB or Catboost) or the large set of features in our analyses. Notably, our
approach achieved better classification performances in accuracy and Area Under Curve
(AUC) [16,17].

This paper is organized as follows. The results are shown in Section 2, and discussed
in Section 3. Some conclusions and future works are discussed in Section 5.

2. Materials and Methods

This section discusses the characterization of the study population, which was com-
posed of 1203 infants who stayed longer than two days in the level III NICU of the “Fed-
erico II” University Hospital in Naples from 2016 to 2020. These patients were continuously
monitored by healthcare staff in all hospital ICUs and suffered from healthcare associated
blood stream infection (HABSI). In particular, HABSIs were observed in the next two days
after the date of admission at the NICU on the basis of the Disease Control and Prevention
directive for neonatal acute care settings [19]. The data were collected in a prospective
manner by including all patients who were admitted to the NICU from a single data source,
QuaniSDO (used for the computerization of hospital discharge forms). All hospitalized
patients have a risk record from the moment of admission to discharge, in which the epi-
demiologically important data for the study of hospital infections were collected. We did
not consider patients with vertical or other infections due to childbirth in our analysis. In
particular, our study did not consider childbirth-related or vertically transmitted infections
because women who give birth are subjected to vaginal and rectal swabs for the research of
bacteria related to infection, and the search for viruses is performed using blood.

Viral infections may be vertically transmitted from mother to child at different times,
from “in utero” transmission, which occurs during the gestational age, perinatal trans-
mission, which occurs during delivery, and postnatal transmission, which is generally
a consequence of breastfeeding. Mother-to-child transmission, which may occur after
primary, recurrent or chronic maternal infection, is potentially harmful to the fetus or the
newborn because it may result in miscarriage, fetal death, congenital anomalies, intrauter-
ine growth restriction or severe neonatal disease. Some risk factors may affect the rate
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of mother-to-child transmission, such as the presence of other viral infections, maternal
viral load, type of infection (primary versus recurrent), obstetrical procedures (prolonged
rupture of membranes and mode of delivery), socioeconomic conditions and breastfeeding.
For some vertically transmitted viruses, interventions are available to prevent mother-to-
child transmission, such as vaccines, passive immunization, and antiviral drugs. Perinatal
and postnatal infections may be prevented with elective caesarean delivery and avoidance
of breastfeeding [20]. Fetal infection also occurs from the aspiration of infected amniotic
fluid. Some viruses are present in genital secretions or the blood (Herpes Virus Simplex
(HSV), citomegalovirus (CMV), hepatitis B virus (HBV), Hepatitis C Virus (HCV), and Hu-
man Papillomavirus Infection (HPI)). The newborn may be colonized at birth during
passage through the birth canal. The most commonly involved microorganisms are Gram
+ cocci (streptococci and staphylococci), Gram cocci (Neisseria), Gram enteric bacilli (Es-
cherichia coli, Proteus sp., Klebsiella sp., Pseudomonas sp., Salmonella and Shigella), anaerobic
bacteria (Mushrooms), chlamydia (Protozoa) (Trichomonas vaginalis and Toxoplasma gondii),
and mycoplasmas (Viruses). However, the association with neonatal disease was significant
only for Group A and Group B streptococci, Escherichia coli, Neisseria gonorrhoeae, CMV,
HSV type II, Candida albicans, and Chlamydia trachomatis.

We consider different clinical information (e.g., birthweight (in grams), gestational age
(in weeks), sex, length of total hospital stay and invasive device exposure (days of umbilical
and central line catheterization) for each patient. The patients studied were not stratified
by disease severity, but the database used reported the score of American Society of
Anesthesiologists (ASA). We had mortality data for both groups, but they were not included
in the processed dataset. Notably, patients informed consent and local Ethical Committee
authorization were not required, and all of the data came from HAI surveillance, which is
regulated by the Regional Health Authority (https://www.aslsalerno.it/documents/2018
1/147671/PianoRegionaleICA.pdf/67a62ec9-ade9-4552-b389-5b8dabe72e6a, accessed on:
5 January 2022).

The mission and activities of A.O. U of University of Naples Federico II, which consists
of a multiblock building complex, and an organizational model that provides Departments
of Integrated Activity (DAI), ensures the integrated exercise of care, teaching and research
and the unitary management of economic, human and instrumental resources. Twice a year
(November and March), the Federico II University Hospital of Naples participates in the
prevalence study of HAI organized by the ECDC, which allows the comparison of the data
on the European territory and the evaluation of its trend over time to highlight any critical
changes. In high-risk areas, such as NICUs, incidence studies are performed with staff
who collect data in the risk records processed for each patient from admission to discharge.
The data allow the preparation of reports on a quarterly basis subject to clinical audits with
medical and nursing staff working in the affected areas. Training courses are organized at
least three times per year for all health personnel, with compulsory attendance as part of
working hours.

We performed our analysis using the chi-squared test, Fisher’s exact test and Kruskal-
Wallis test, as appropriate, but the relationships between the dependent variable (HABSIs)
and the different risk factors under study (e.g., sex, length of total hospital stay or gesta-
tional age) were investigated using logistic regression. Notably, we considered associations
significant when the p-value was less than the threshold value 0.05. We further provided
a predictive analysis by splitting the cohort of patients in 80% and 20% to train and test
different artificial intelligence models (Support Vector Machine (SVC), CATBOOST, XG-
Boost (XGB), Ranger Forest Classifier (RFC), Multi-Layer Perceptron (MLP), Random Forest
(RF) and Logistic Regression (LR)) in predicting whether a patient suffered from HABSI.
Samples of two classes in the training set were balanced using the data augmentation
method. To optimize the parameters of each model, we divided the training set (the 80%
of patients) into two groups: the former set was used to train the chosen model using a
specific set of parameters, which are described in Table 1; and the latter set validated the
model’s performance.

https://www.aslsalerno.it/documents/20181/147671/PianoRegionaleICA.pdf/67a62ec9-ade9-4552-b389-5b8dabe72e6a
https://www.aslsalerno.it/documents/20181/147671/PianoRegionaleICA.pdf/67a62ec9-ade9-4552-b389-5b8dabe72e6a
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Table 1. Description of the meaning for parameters of Artificial Intelligence models.

Parameters Description

C, alpha Regularization parameter

Gamma Kernel coefficient

Kernel Type of kernel

n_estimators The number of trees in the forest.

learning_rate Learning rate schedule for weight updates.

objective Objective function to optimize the model’s parameter

rule Rule for splitting information

min_node_size Minimum size of each node in the tree

hidden_layer_size Number of neurons in hidden layer

max_iteration Maximum number of iteration

solver Solver for weight optimization

criterion The function to measure the quality of a split.

max_features The number of features to consider when looking for the best split

penalty The norm of the penalty

Finally, the analysis was performed on Google Colab (https://colab.research.google.
com/, accessed on: 5 January 2022), a Platform As A Service (PAAS) platform provided by
Google with one single core hyperthreaded Xeon Processor @2.2 Ghz, 12 GB of RAM and a
Tesla T4 GPU, using Python 3.6 with the scipy (https://scipy.org/, accessed on: 5 January
2022), statsmodels (https://www.statsmodels.org/, accessed on: 5 January 2022), scikit-
learn (https://scikit-learn.org/, accessed on: 5 January 2022), catboost.ai (https://catboost.
ai/, accessed on: 5 January 2022) and skranger (https://pypi.org/project/skranger/,
accessed on: 5 January 2022) libraries.

3. Results
3.1. Statistical Analysis

This section discusses the statistical analyses used to investigate possible correlations
between different risk factors (as independent variables) and the possible occurrence of
HABSI disease (as dependent variable). Notably, the population under study included
all of the neonates who stayed at least two days at the NICU of the Federico II from 2016
to 2020 (60 months) for a total of 1203 neonates, and 65 suffered from HABSI (Table 2).
Neonates affected by HABSI had a shorter gestational age and lower birthweight than
non-HABSI neonates. The total length of hospitalization and umbilical line and central line
catheterization days were longer in HABSI patients.

https://colab.research.google.com/
https://colab.research.google.com/
https://scipy.org/
https://www.statsmodels.org/
https://scikit-learn.org/
https://catboost.ai/
https://catboost.ai/
https://pypi.org/project/skranger/
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Table 2. Analysis of cohort under study characteristics.

HABSIs
N = 65

Non-HABSIs
N = 1138 p-Value

Sex, boys 38 (5.71%) 628 (94.29%) 0.222

Gestational age, weeks
(Median, IQR) 30 (27–33) 34 (32–37) <0.000

Birthweight, gr
(Median, IQR) 1140 (820–1470) 1940 (1442.50–2833.75) <0.000

Length of total hospital stay, days
(Median, IQR) 54 (26–83) 20 (12–33) <0.000

Umbilical line catheterization, days
(Median, IQR) 5 (0–8) 0 (0–6) <0.000

Central line catheterization, days
(Median, IQR) 14 (7–38) 0 (0–4) <0.000

Table 3 provides the multivariate analysis results, which confirmed that the significant
predictors of suffering from HABSI were only birthweight and central line catheteriza-
tion days.

Table 3. Statistical analysis for unveiling main risk factors in HABSIs infection in NICU patients.

OR 95% CI p-Value

Sex, boys 1.031 0.263–3.891 0.510

Gestational age, weeks 1.011 1.048–1.137 0.859

Birthweight, gr 0.999 0.999–1.098 0.038

Length of total hospital stay, days 1.023 0.994–1.098 0.327

Umbilical line catheterization, days 1.072 0.994–1.098 0.934

Central line catheterization, days 1.000 1.008–1.149 0.000

3.2. Predictive Analysis

This section provides a predictive analysis on the basis of different risk factors that
were first normalized and successively processed to predict whether a patient suffered
from HABSI. We evaluated our results in terms of accuracy, AUC, and F1-score, whose
formal definitions are provided in Equations (1)–(3) and Macro-F1 (4). In particular, the
AUC was computed as the probability that a classifier would rank a randomly chosen
positive example higher than a randomly chosen negative example).

Accuracy =
Number of correct predictions

Total number of predictions
(1)

AUC = P(score(x+) > score(x−)) (2)

F1-score = 2 ∗ (precision ∗ recall)
(precision + recall)

(3)

F1-score =
1
N

N

∑
i=0

F1-scorei(i class label and N number of classes). (4)

Different Artificial Intelligence models (Support Vector Machine (SVC), CATBOOST,
XGBoost (XGB), Ranger Forest Classifier (RFC), Multi-Layer Perceptron (MLP), Random
Forest (RF) and Logistic Regression (LR)) were used to predict whether a patient suffered
from HABSI. We analyzed a cohort of 1203 neonates who were divided into 80% and
20% for the training and test sets, respectively, using train_test_split (https://scikit-learn.
org/stable/modules/generated/sklearn.model_selection.train_test_split.html, accessed
on: 5 January 2022) function of scikit-learn; Notably, samples of the two classes in the
training set were balanced using the data augmentation method. The training set was

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
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further divided into two different sets. The first set was used to train our models by varying
their parameters, which were evaluated on the second set to optimize each AI model. We
provided a statistical validation of our results by providing a ten-cross validation on our
dataset that corresponded to jointly varying the training and test sets to show our model
different data for each iteration (ten times) through the cross_validate (https://scikit-learn.
org/stable/modules/generated/sklearn.model_selection.cross_validate.html, accessed on:
5 January 2022) function of scikit-learn. The best parameters for each model were reported
in Table 4 to improve the reproducibility of our analysis.

Table 4. Best parameters for each one of the seven artificial intelligence models obtained by a ten
cross validation.

AI Model Parameters

SVC ‘C’: 1, ‘gamma’: 0.0001, ‘kernel’: ‘rbf’

CATBOOST ‘n_estimators’: 100, ‘learning_rate’: 0.01

XGB ‘learning_rate’: 0.01, ‘n_estimators ’: 100, ‘objective’: ‘binary’

RFC ‘min_node_size’ : 0, ‘rule’ : ‘gini’, ‘n_estimators’ : 100

MLP ‘alpha’: 1e-05, ‘hidden_layer_sizes’: 14, ‘max_iter’: 1000, ‘random_state’: 1,
‘solver’: ‘lbfgs’

RF ‘criterion’: ’entropy’, ‘max_depth’: 4, ‘max_features’: ‘auto’, ‘n_estimators’: 200

LR ‘C’: 1.0, ‘penalty’: ‘l2’

Table 5 shows the results of different AI models on the test set (the 20% of a cohort
of 1203 neonates) to contract a healthcare associated blood stream infection (HABSI).
Notably, the high accuracy performances of LR and MLP may be used for supporting
medical doctors and practitioners in their analysis. According to the statistical analysis, we
found that the features, mostly affecting classification performance, were birth weight and
central line catheterization days. Other most important features are gestational age and
lower birthweight.

Table 5. Prediction results on a dataset composed of a cohort of 1203 patients (divided into 80% for
the training set and 20% for the test set) using 7 different artificial intelligence models.

AI Model
Train Test

Accuracy Accuracy AUC F1-Score F1-Macro

SVC 0.9501 0.9461 0.5357 0.95 0.5527

CATBOOST 0.9438 0.9419 0.5670 0.94 0.5670

XGB 0.9428 0.9378 0.5313 0.94 0.5427

RFC 0.9469 0.9419 0.5335 0.94 0.5474

MLP 0.9511 0.9461 0.6027 0.95 0.6439

RF 0.9511 0.9419 0.5335 0.94 0.5475

LR 0.9490 0.9461 0.6027 0.95 0.6439

4. Discussion

Different surveillance studies were performed to determine how the condition of
the host organism strongly connected to the onset of HAIs, which showed that patients
suffering from infection rates among 6 and 40% have a higher percentage of very low
birth weight neonates (birth weight ≥ 1000 g) requiring surgery [21]. Notably, the most
common infections affecting neonatal patients were septicemia (45–55%), respiratory in-
fections (16–30%) and urinary tract infections (8–18%), but the most common infections
in hospitalized patients were caused by Gram-positive organisms (55.4–75%), as shown
in [22]. A Carrieri et al. [23] performed a multicenter study in a cohort of 2160 newborns

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html
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and revealed that 196 and 136 newborns developed late (3–10 days) and very late (>10 days)
nosocomial sepsis, respectively.

A large amount of data is involved in the healthcare process or service, which were
analyzed using different approaches (e.g., multicriteria decision-making [24–26], regres-
sion analysis [23,27,28] and advanced processing and classification techniques [13,29,30]).
However, the large amount of availability of different features and their correlation pose
different challenges for limiting the susceptibility to infections, which required multi-
disciplinary and multi-strategic methods. Lean Six Sigma achieved promising results in
healthcare [31–33] and the management of infections [34–36].

In this paper, we, designed a supervised approach using different artificial intelligence
models to predict whether a patient would suffer from HABSIs under a binary task. There-
fore, we first optimized each model by varying its parameters evaluated on a subset of
the training set (named validation). We provided a statistical validation of our results by
providing a ten-cross validation on our dataset, which corresponded to jointly varying
the training and test sets to show our model different data for each iteration (ten times),
and the best parameters for each model are shown in Table 4 to improve the reproducibility
of our analysis. The MLP and LR better handled the imbalanced dataset (65 infected and
1038 healthy subjects), and the highest AUC and F1-macro score was observed, but SVC
achieved comparable results with the other two models in accuracy.

We performed statistical analyses on a cohort of 1203 patients (65 who suffered from
HABSI) to investigate risk factors for the activity of the NICU of the University Hospital
“Federico II”. Notably, we emphasized that patients suffering from HABSI had a shorter
gestational age and lower birthweight, which led to longer hospitalization and umbilical
and central line catheterization days than non-HABSI neonates. Statistical analyses showed
that significant predictors of suffering from HABSI were birth weight and central line
catheterization days. In summary, the current analysis supports health practitioners in
improving standards and processes to contain HAIs.

In summary, our analyses showed that birthweight and central line catheterization
days were significant predictors of suffering from HABSI, and the LR and MLP achieved the
highest AUC, accuracy and F1-macro score in the prediction of HABSI. Despite different
efforts in the literature for the predicting the risk of HAIs and other adverse outcomes in
ICU, these studies primarily focused on the use of Support Vector Machine (SVM) [16,17]
or divide patients into clusters [18] without considering more recent artificial intelligence
approaches (e.g., XGB or Catboost) and the large set of features used in our analysis. Our
approach achieved better classification performances in accuracy and AUC w.r.t. [16,17].

Our study had some limitations due to the lack of temporal analysis. However, it did
not consider the temporal features between entry into intensive areas and the first clinical
evidence of infection, as shown in previous studies [23] and other types of infections.

Future works will increase the number of analyzed patients and investigate different
infection types to identify possible corrective actions on the basis of the Lean Six Sigma
method [34] and possible mathematical tools [37] to improve process characterization.

5. Conclusions

The present paper investigated risk factors related to activities in the NICU of the
University Hospital “Federico II” in a cohort of 1203 patients (65 suffering from HABSI).
We performed a risk analysis using logistic regression and statistical analyses to identify
the main factors (birth weight and central line catheterization days) affecting neonates to
contract a healthcare associated blood stream infection (HABSI). We successively designed
a supervised approach using different artificial intelligence models to predict whether
a patient would contracted a HABSI and found that MLP and LR better handled the
imbalanced dataset (65 infected and 1038 healthy subjects), and the highest AUC and
F1-macro score was observed. In summary, our analysis identified the main risk factors
related to NICU activities of the University Hospital “Federico II” to jointly improve patient
care of the NICU of the University Hospital “Federico II” and support practitioners in their
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analysis. The predictive analysis may be used in a decision support system to support
practitioners in predicting and identifying hidden symptoms of healthcare-associated blood
stream infections in the neonatal intensive care unit.
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