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Abstract: A theoretical framework to implement multi-sensor data fusion methods for kinematic
quantities is proposed. All methods defined through the framework allow the combination of signals
obtained from position, velocity and acceleration sensors addressing the same target, and improve-
ment in the observation of the kinematics of the target. Differently from several alternative methods,
the considered ones need no dynamic and/or error models to operate and can be implemented with
low computational burden. In fact, they gain measurements by summing filtered versions of the
heterogeneous kinematic quantities. In particular, in the case of position measurement, the use of
filters with finite impulse responses, all characterized by finite gain throughout the bandwidth, in
place of straightforward time-integrative operators, prevents the drift that is typically produced by the
offset and low-frequency noise affecting velocity and acceleration data. A simulated scenario shows
that the adopted method keeps the error in a position measurement, obtained indirectly from an
accelerometer affected by an offset equal to 1 ppm on the full scale, within a few ppm of the full-scale
position. If the digital output of the accelerometer undergoes a second-order time integration, instead,
the measurement error would theoretically rise up to 1

2 n(n + 1) ppm in the full scale at the n-th
discrete time instant. The class of methods offered by the proposed framework is therefore interesting
in those applications in which the direct position measurements are characterized by poor accuracy
and one has also to look at the velocity and acceleration data to improve the tracking of a target.

Keywords: sensor data fusion; multi-channel systems; digital signal processing

1. Introduction

Position, velocity, and acceleration represent critical parameters in applications that
address infrastructure monitoring, mobile equipment localization and tracking, aided and
autonomous navigation, as well as the monitoring and control of movable elements in a
myriad of mechanical systems: automated industrial equipment, robotic arms, humanoids,
and vehicle springs, to provide just a few examples [1–4].

According to the specific application, different technologies are utilized for kinematic
measurements: localization and tracking systems rely on the global navigation satellite
system (GNSS); automotive and railway systems use doppler RADARs; robotics and
assisted/autonomous driving are supported by cameras and LIDARs; vibration analysis
relies on LASERs; custom-grade motion tracking systems are enabled by micro-electro-
mechanical systems (MEMS) [5,6].

The performance of each technology can be affected by different influencing factors.
Relevant factors for GNSS systems are the weather conditions, number and position of
visible satellites, errors due to the signal propagation path, and limits of the adopted
electronics [7,8]. The track conditions influence the RADAR in automotive and railway sys-
tems [9], and the environmental lighting and the surrounding electromagnetic environment
impact camera, LIDAR, and LASER operation [10]. MEMS suffer specific drawbacks that
are due to the very miniaturization process [11–14]. Semiconductor fabrication processes, in
fact, allow limited control of the parameters of the devices and, in turn, limited possibilities
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to reduce background noise and avoid offset and drift errors [15–17]. The latter (offset and
drift) are difficult to compensate and seriously limit the performance of MEMS [18,19].

Despite the aforementioned drawbacks, MEMS keep their attractiveness and are
largely utilized in custom-grade applications, since they allow the development of low-
cost, compact, lightweight, and unobtrusive solutions, which are deployed in smartphones,
smartwatches, and bracelets for fitness. Actually, they can have a chance also in professional
navigation systems, as an alternative to the expensive optical and mechanical solutions,
provided that multi-sensor fusion approaches and/or redundancy, which combine the
output of more sensors probing the same target, are exploited for performance improvement
and error or artifact removal [20].

Multi-sensor fusion utilizes several heterogeneous and/or homogenous sensors to
provide more accurate and/or reliable information, which would not be available from an
individual sensor [21,22].

Many approaches based on the use of heterogeneous sensors consider a set of pri-
mary sensors complemented with aiding sensors that allow compensation for the artifacts
affecting the former. For systems addressed to kinematic quantities, the aiding sensors
can be radio-frequency ranging systems, echo-sounders, or other ultrasonic sensors, and
even imaging systems based on LIDAR or visible and/or infrared cameras [23,24]. For
instance, the most recent integrated navigation packages aimed at controlling the altitude,
velocity, and position of unmanned aircrafts or vehicles adopt, as primary sensors, three
linear accelerometers and three angular velocity sensors (gyros), typically hosted in inertial
measurement units (IMUs), and complement them with a GNSS tracking system [25–29].
The GNSS system has much less bias and allows the correction, at a given update rate, of the
position measurement spoiled by drift, which is obtained by processing the output of the
accelerometers. Unfortunately, GNSS cannot be used as a primary sensor because it cannot
ensure the continuity of operation. In particular, any time the satellite signal is missed,
as typically occurs for systems in cars that travel through galleries or subways, the GNSS
update rate is fictitiously kept constant with presumed (calculated) readings. This impacts
both the accuracy of the measurement result and the reliability of the assisted/autonomous
driving system, which are diminished, as shown in [30].

Inertial navigation systems used in marine platforms below the sea surface also adopt
IMUs to measure linear acceleration and angular velocity, which in turn are integrated
to obtain the navigation state and keep track of the ego-motion. As no reliable position
information is available, high-level redundancy is exploited to prevent the navigation
solution from drifting in time. For instance, an architecture made up of 192 inertial sensors,
grouped into 32 IMUs, is presented in [31], where suitable empirical expressions that
correlate the number of IMUs and expected performance are given.

An extensive discussion should be developed about the processing technique adopted
to perform data fusion in multi-sensor systems. Many techniques require the availability of
a model of the dynamics of the vehicle and/or a statistical model of the error. The majority
are based on Kalman filtering (KF) and a number of variants, such as extended KF (EKF),
unscented KF (UKF), and so on, as means to implement strong tracking filters and improve
the navigation performance [32–35]. Interesting alternatives propose a variety of artificial
intelligence techniques, which rely on a thoroughly trained neural network, to maximize
the benefits from data fusion [36–38].

Hereinafter, a general framework to combine position, velocity, and/or acceleration
signals is presented. The framework is built upon the classical generalized sampling
expansion [39], which is the basis of a variety of calibration techniques for multi-channel
digital signal acquisition systems. In detail, the available sensors are considered as the front-
end of a multi-channel system, where the output of each sensor is digitized and processed
by means of a dedicated finite impulse response (FIR) digital filter, and provides a tributary
to the measurement of a selected kinematic quantity, which can be either position, velocity,
or acceleration. Differently from several alternative approaches, it needs neither a model
of the dynamics of the target nor of the error caused by the influence factors. Moreover, its
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run-time operation is characterized by a low computational burden, since it only requires
the filtering of each sensor output with an FIR filter.

As a general framework, it is not addressed to a selected application, but it aims
at providing the reader with the conceptual tools to define custom methods and cope
with specific applications. Nonetheless, a simulated study was carried out to highlight
some features of the custom-defined methods built upon it. Noticeably, the methods built
by means of the proposed framework can gain redundant position measurements from
velocity and acceleration signals, by counteracting the offset and low-frequency noise that
typically jeopardize the accuracy of the result, as they develop into noisy drifts. They are
therefore suitable to process those sets of data that include direct position, velocity, and
acceleration measurements, where the former is unfortunately characterized by poor accu-
racy and the latter under the risk of drifting. In this case, the direct position measurement
cannot be trusted to perform an effective compensation of the drift in the indirect position
measurements, gained from velocity and acceleration signals; as a result, one can have at
one’s disposal redundant observations, but all characterized by poor accuracy. In these
scenarios, the proposed methods can be utilized to implement data fusion schemes that
permit one to overcome the drift issue and limiting accuracy losses.

The article provides the theoretical background of the proposed framework in Section 2,
and analyzes its performance with simulations in Section 3.

2. Proposed Data Fusion Method
2.1. Problem Statement

The kinematics of a target is fully described in terms of position, velocity, and accelera-
tion signals, which can be measured in a direct way by means of three dedicated sensors,
or, in theory, by means of a single sensor and time derivative or integrative operations.

Moreover, if the three kinematic quantities are measured directly, one can process
the results to make comparisons and/or averages. For instance, if one sensor measures
the actual position of the target, a second its velocity, and a third one its acceleration, an
improved measurement for the velocity can, in theory, be gained by averaging it with the
time derivative of the position and the time integral of the acceleration, using for the latter
the knowledge of the initial value of the velocity.

More generally, the position, velocity, and acceleration of a target can be measured
by combining the output of more sensors, namely yl(t), l = 1, . . . , M, where redundant
observations of the kinematic quantities are also present.

For digital data fusion, it is convenient to step from the analog to the digital domain,
since digital data fusion techniques can be more easily implemented using digital repre-
sentations of the output of the sensors, namely yl(n), l = 1, . . . , M, where n is the discrete
time variable referring to a common time base. These signals can directly be gained by
the sensors that are already capable of returning a digital output, or by deploying external
digital-to-analog converters to digitize the analog output of the sensor.

The discrete signals of position, p(n), velocity, v(n), and acceleration, a(n), in the
proposed data fusion approach, are obtained by filtering the available digital signals, yl(n),
with filters with impulse response ql(n), and linearly combining the outputs, wl(n). The
filters are dependent on the addressed kinematic quantity, such that, for instance, one
should write for the position measurement:

p(n) =
M

∑
l=1

clw
p
l (n) =

M

∑
l=1

cl

∞

∑
m=−∞

yl(m)qp
l [(m− n)] (1)

where the coefficients cl adopted in the weighted average have to satisfy the constraint:

M

∑
l=1

cl = 1 (2)
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and can be assigned taking into account the reliability and accuracy performance of the
correspondent sensor. Improved velocity and acceleration signals can be obtained in a
straightforward way from the position signal by taking the first-order and second-order
discrete time derivative, respectively, or through a more expensive processing that adopts
the same model in Equation (1) with some dedicated filters, referred to as qv

l (n) and qa
l (n).

2.2. System Architecture

In the considered context, the kinematic quantities of the target are measured with a
multi-channel system, where each channel includes a sensor capable of producing a digital
output and a supplemental digital filter.

Each sensor is characterized in terms of its frequency response, Sl( f ), l = 1, . . . , M,
which is different in practice from that of the other sensors, even if they address the same
kinematic quantity. The frequency responses of all sensors are measured at the calibration
stage, and their knowledge is required for the design of the data fusion approach.

In order to effectively illustrate the proposed data fusion approach and, in particular,
the identification of the supplemental digital filters, it is convenient to introduce a reference
architecture, which is an abstraction of the real one, where signals are analog throughout.
This is possible if the analog-to-digital conversion is described as an analog sampling
followed by the addition of additive noise (i.e., quantization noise). Analog sampling is
in turn described as a multiplication of the analog input with an ideal pulse train. In this
architecture, the sampled signals are filtered with analog filters, characterized by impulse
responses that are the analog versions of the digital filters required for the data fusion. The
signals are combined by means of a summing device, which reconstructs the input signal
from the samples available on the channels.

According to the adopted abstraction, the same input, describing one of the kinematic
quantities, is applied to all channels. The operation of channels that host sensors addressing
kinematic quantities that are different from the input one is therefore described by inserting
time-integral or time-derivative operators at the front-end of the sensor.

Figure 1 shows the block diagram of a four-channel system, where the input quantity
is a position signal, and there are a velocity sensor and two acceleration sensors. The system
is described using a frequency-domain representation, such that the well-known algebraic
representations of the first-order and second-order time derivative operators (i.e., j2π f and
−4π2 f 2) are adopted. The frequency responses of the sensors and analog processing filters
are Sl( f ) and Ql( f ), l = 1, . . . , M, respectively, and the common input is X( f ). For each
channel, a frequency response Hl( f ) can be defined, joining the frequency response of the
operator with that of the serially connected sensor. The signals in input to the sampler can
thus be described as Hl( f )X( f ), l = 1, . . . , M.

It is worth noticing that if the input signal is velocity or acceleration, one has to consider
different block diagrams. In particular, if the velocity signal is chosen as the common input
X( f ), then the position sensor will appear in the diagram after the algebraic operator 1

j2π f
and the acceleration sensors after j2π f ; if X( f ) represents instead the acceleration signal,
then the position sensor will appear after − 1

4π2 f 2 , and the velocity sensor after 1
j2π f .

2.3. Filter Identification

The proposed data fusion approach requires the identification of the frequency re-
sponse of the filters, Ql( f ), and the implementation of the corresponding discrete-time
impulse responses, ql(n), which can be obtained by taking the inverse discrete Fourier
transform of the 2L-length sequence, Ql(k). The identification goal can be accomplished by
exploiting the generalized sampling expansion theorem, according to which a band-limited
signal x(t), with single-sided bandwidth B, can be acquired by means of a linear multi-
channel system with M independent channels operating at a rate not less than fs = 2B

M .
Acquiring the signals means that a digital representation of the input characterized by a
sample rate at least M fs = 2B can be gained, without any loss of information, by combining
the data streams from the independent channels.
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Figure 1. Diagram of a multi-channel system with 4 sensors. The input quantity is a position
signal, and there are a velocity sensor and 2 acceleration sensors, characterized in terms of their
frequency responses Sl( f ). The operators j2π f and −4π2 f 2 stand at the front-end of the velocity
and acceleration sensors to transform the position input into velocity and acceleration signals. The
common input is X( f ) and represents the spectrum of a position signal; each channel is described
in terms of a frequency response Hl( f ). The outputs of the sensors are sampled and degraded
by (quantization) noise before entering the filters Ql( f ) required to combine the outputs of the
individual channels.

It is worth noticing that the generalized sampling expansion allows the combination
of the digital outputs of the individual sensors even when they, taken separately, operate
below the Nyquist rate, provided that the overall number of samples per time unit from all
the available sensors is not less than this. Thus, the individual sensors of the multi-channel
architecture are allowed longer measurement time between one sample and the subsequent
one, which can be exploited to improve the reading accuracy. Clearly, combining the output
of all sensors provides a digital representation of the addressed kinematic quantity, which
is characterized by a sample rate greater than or equal to the corresponding Nyquist rate.
In detail, if a frequency-domain representation is adopted, one can state the identity:

X( f ) =
M
fs

M

∑
l=1

∞

∑
k=−∞

Hl

(
f − k

fs

M

)
X
(

f − k
fs

M

)
Ql( f ) (3)

where X( f ) is the input signal; Hl( f ) and Ql( f ) with l = 1, . . . , M are the frequency
responses of the channels and filters, respectively. Notice that sampling the output of the
sensors Hl( f )X( f ) at a rate fs

M produces replication in the frequency domain at a pace fs
M ,

as described by the infinite sum upon the index k.
This identity can be refined since the filters in (3) must have zero gain outside the

bandwidth (−B, B), because of the band-limitedness of the signal on the left side of the
equation. This allows the inner sum to be limited to the terms picked by k ranging from
−M + 1 up to M− 1.

Furthermore, due to the periodic structure of the argument of the sum, characterized
by period fs

M , the set of the 2M− 1 terms can be further divided into subsets that provide
equation systems for the reconstruction filters that are valid on different portions of the



Energies 2022, 15, 2916 6 of 17

interval (−B, B). Specifically, if the interval (−B, B) is partitioned into the M adjacent
intervals

(
−B + p fs

M ,−B + (p + 1) fs
M

)
obtained for p = 0, . . . , M− 1, and the characteristic

function of each, namely πp( f ) = π(−B+p fs
M ,−B+(p+1) fs

M

)( f ), which equals one in the

subscript interval and zero outside, is used as a multiplying operator in Equation (3),
one obtains:

X( f )πp( f ) =
M
fs

p

∑
k=p−(M−1)

M

∑
l=1

Hl

(
f − k

fs

M

)
Qlp( f )X

(
f − k

fs

M

)
(4)

where the function Qlp( f ) provides the representation of the reconstruction filter Ql( f )
valid in the p-th interval.

Equation (4) implies that, for any fixed p, and with k ranging from p− (M− 1) up
to p,

M

∑
l=1

Hl

(
f − k

fs

M

)
Qlp( f ) =

M
fs

πp( f )δ(k) (5)

where δ(k) is the Kronecher delta function, equal to one for k = 0 and zero for k 6= 0.
Equation (5) defines the functions Qlp( f ), as solutions of the system:

H1( f − (p− (M− 1)) fs
M ) . . . HM( f − (p− (M− 1)) fs

M )
...

. . .
...

H1( f − p fs
M ) . . . HM( f − p fs

M )


Q1p( f )

...
QMp( f )

 =
M
fs

πp( f )δδδM−p (6)

where δδδM−p is a zero vector except in the (M− p)-th component equal to 1.
The system can be represented in a compact form as:

Hp Qp = δδδM−p (7)

where the bold character is used for the vector Qp = (Q1p( f ), . . . , QMp( f ))T , and the
blackboard bold character for the matrix, redefined as:

Hp = πp( f )
fs

M


H1( f − (p− (M− 1)) fs

M ) . . . HM( f − (p− (M− 1)) fs
M )

...
. . .

...
H1( f − p fs

M ) . . . HM( f − p fs
M )

 (8)

In order to determine Qp, the determinant of the matrix in system (7) must be different

from zero everywhere in the interval (−B + p fs
M ,−B + (p + 1) fs

M ). (It is so clarified in
which sense the channels must be independent from each other as stated by the hypothesis
of the theorem.)

Named Gp, the inverse matrix of Hp, i.e., Gp = H−1
p , the vector of the reconstruction

filters for the p-th interval can be represented as:

Qp = Gp δδδM−p (9)

It is worth highlighting that the frequency-domain functions in matrix Hp are right-
ward shifted by fs upon any increment in p, namely Hp = Tp fs [H0], where Tp fs represents
the translation operator by p fs. Since translation and matrix inversion commute between
each other, it also holds that Gp = Tp fs [G0]. Thus, the vector of the reconstruction filters
valid throughout the interval (−B, B) can finally be gained by computing the elements of
vector Q as:

Q =
M−1

∑
p=0
Tp fS [G0] δδδM−p (10)



Energies 2022, 15, 2916 7 of 17

Hence, the time-domain representation of the signal, x(t), can be gained by first
filtering the sampled signals from each channel with the functions ql(t), corresponding to
the inverse Fourier transformation of Ql( f ), to obtain the signals wl(t), and then linearly
combining all of them, in formulas:{

wl(t) = ∑+∞
n=−∞ yl(nTs)ql(t− nTs)

x(t) = cl ∑M
l=1 wl(t)

(11)

where, for instance, if all sensors are judged equally reliable and accurate, it can be chosen
cl =

1
M , l = 1, . . . , M.

2.4. Filter Synthesis

The implementation of the proposed method requires the knowledge of the frequency
responses of the sensors. From a practical point of view, the identification of each sensor is
obtained in a laboratory through calibration tests that imply measuring the gain and phase
delay characterizing the sensor at different frequencies. Specifically, a uniform grid with L
frequencies, including the zero frequency and extending up to the bandwidth of the sensor,
is considered. The measured gain and phase delay are then represented with a complex
number with modulo equal to the gain and a negative angle equal to the phase delay. This
sequence is prolonged by mirroring the measured sequence with complex conjugate values
to form a 2L-length sequence that satisfies Hermitian symmetry with respect to the L-th
point. The 2L-length sequence is finally interpreted as the discrete double-sided frequency
response of the sensor. This sequence represents the input data required by the proposed
method, i.e., the values Hl(νk fc), l = 1, . . . , M, where νk =

k
2L , k = 0, 1, . . . , 2L− 1, and fc is

the sample rate selected for the output result.
Using the values obtained through the identification procedure in the system of

Equation (9), and solving the algebraic systems obtained for each frequency value νk fc,
k = 0, 1, . . . , L allows us to determine the values of the double-sided frequency responses
of the filters at the same frequencies, i.e., Ql(νk fc). Taking the inverse discrete Fourier
transform of the latter returns the coefficients of the finite impulse responses filters, ql(n),
n = 0, 1, . . . , 2L, needed to perform the data fusion upon the output of the sensors, accord-
ing to Equation (1).

The proposed method requires that sensors are synchronously clocked at the same
sample rate fs, which has to be no lower than fc

M . If the adopted sample rate is fs = fc
K ,

with K ≤ M, the data streams from the individual sensors are first upsampled by K by
interleaving K− 1 zeros between any couples of subsequent samples and then filtered.

Concerning the choice of the filter length, some degrees of freedom are possible, taking
into account that longer filters offer higher accuracy but longer transients.

3. Simulations
3.1. Performance Assessment

The proposed framework allows for the implementation of several methods, where
the corresponding architectures can be differently configured in terms of number and type
of adopted channels, redundancy level for each kinematic quantity, and length of the digital
filters for the data fusion. Clearly, each method and corresponding architecture requires a
dedicated analysis to assess the performance.

Here, one example related to a particular choice is discussed with the intent of high-
lighting how the main configuration parameters generally impact the performance. In
detail, a four-channel architecture made up of one position sensor, one velocity sensor, and
two redundant acceleration sensors is configured to accurately measure a position signal,
as shown in Figure 1.

All sensors are characterized by a low-pass behavior, but their cut-off frequencies
and in-band flatness are different from each other, as shown in Figure 2 and detailed in
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the corresponding caption. Frequency values are expressed in units normalized to the
bandwidth of the system, and range from 0 up to 1.

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Frequency [normalized units]

0.85

0.9

0.95

1
G

a
in

Frequency response of sensors

   S1

   S2

   S3

   S4

Figure 2. Amplitude frequency response of the adopted sensors; the values of the frequency are ex-
pressed in units normalized to the bandwidth of the system, and range from 0 up to 1. All responses are
characterized by 3 dB cut-off normalized frequencies that fall in the interval (0.93–0.97) with a 95% con-
fidence level; all frequency responses grant flatness within 0.18 dB up to 0.625 normalized frequency.

Coherently with the schematic in Figure 1, each channel is described in terms of a
frequency response that includes the operator, inherent in the very nature of the sensor.
Since, in the presence of redundant sensors, the independence of the channels could be not
verified, the sampling operation of the channels, which are driven by clocks locked at the
same frequency, is time-interleaved. The frequency responses of the simulated channels are
given in Figure 3; the first- and second-order time derivatives are simulated by means of
the first- and second-order finite forward differences.

The simulations assume that the frequency response of each channel can be determined
on a uniform frequency grid, starting from the DC up to the nominal bandwidth of the
channel, and that the collected data are affected by uncertainty on both magnitude and
phase. The number of points forming the grid and the uncertainty affecting the values play
an important role, because these data are the inputs needed for identifying the digital filters
for the data fusion. In the simulated system, the values of the frequency response of any
channels are characterized by 0.1% standard uncertainty for both magnitude and phase.

The set of digital filters needed to perform the data fusion is designed as illustrated
in the theoretical framework presented in Section 2. The filters should ensure, for the
whole system, a unitary gain, but a slight deviation between the actual gain and the target
unitary value can hold due to the finite length of the adopted digital filters. This deviation
is less significant for the frequency values corresponding to the points on the considered
grid, where it is due to the sole uncertainty that characterizes the data collected at the
identification stage, rather than for the frequency values that are amid these points.

The four digital filters adopted by the simulations have 2L = 16 coefficients, and are
designed taking into account the frequency response data obtained for eight equally spaced
frequency points within the bandwidth of the channels; the frequency responses of the
digital filters synthesized according to the proposed approach are shown in Figure 4.
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The simulations have considered 200 sinusoidal inputs characterized by equally spaced
values in the bandwidth of the system. For each sinusoidal input, 1000 realizations affected
by broadband noise with a signal-to-noise ratio set at 20 dB are analyzed.

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Frequency [normalized units]

0

0.5

1

1.5

2

2.5

3

3.5

G
a

in

Frequency response of channels

   H1

   H2

   H3

   H4

Figure 3. The amplitude frequency response of the 4 channels highlights the behavior of the channel
hosting the position sensor (blue), the velocity sensor (red), and the acceleration sensors (yellow and
magenta) within the input bandwidth. The diamond markers highlight the points considered at the
identification stage.

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Frequency [normalized units]

0

1

2

3

4

5

6

G
a

in

Frequency response of digital filters

   Q1

   Q2

   Q3

   Q4

Figure 4. Frequency responses of the 4 digital filters that are used to perform the data fusion. All
filters are characterized by 2L = 16 coefficients.
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The accuracy of the system is evaluated using as a key performance index (KPI) the
ratio between the mean square value of the input and the mean square value of the signal,
obtained by taking the difference between the applied input and the output of the system.

Figure 5 shows the mean value of the KPI, expressed in dB units, at the test frequencies.
The obtained values are interpolated to have a continuous trace, in order to infer the accu-
racy of the system at frequencies that have not been directly measured. The accuracy of the
position measurement provided by the data fusion approach is maximum, as expected, at
the normalized frequency values corresponding to the points measured at the identification
stage, which are characterized by the normalized frequency values 0.125k, with k = 0, . . . , 7.
For such frequencies, the typical values of the KPI are greater than 45 dB, and are likely
limited by the only measurement uncertainty of the data used at the filter design stage.
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Figure 5. Accuracy is expressed in terms of a KPI defined as the mean value of the ratio, given in dB
unit, between the mean square value of the input and the mean square value of the signal, obtained
by taking the difference between the applied input and the output of the system. The values are
interpolated to have a continuous trace, in order to infer the accuracy of the system at frequencies
that have not been directly measured.

More details are given in Figure 6, where the results obtained for the KPI at a subset of
the analyzed frequencies are summarized by means of boxplots, rather than compacted
in a mean value as in Figure 5. In a boxplot, the central mark is the median, the edges of
the box are the 25-th and 75-th percentiles, and the whiskers extend to the most extreme
values considered to be not outliers. The frequencies are selected in order to show the
results related to a couple of exemplars for the low performance (accuracy 30 dB), a couple
for the intermediate performance (accuracy 35 dB), and a couple for the high performance
(accuracy 45 dB). Low accuracy comes with less dispersion, while high accuracy comes
with much dispersion. These effects are justified by the prevailing systematic error at
frequencies far from the measured ones, and the rising relevance of the noise superimposed
to the input as approaching high performance levels.

In the presence of non-sinusoidal test signals, such as pseudo-random trajectories,
which have spectral contents uniformly spread throughout the bandwidth of the sensors,
the typical accuracy offered by the method stands within the interval (33.9–36.2) dB with
a mean at 35.0 dB; the evaluation has been carried out through Monte Carlo simulations
based on 1000 pseudo-random trajectories. If the tests are repeated using the three-channel
system obtained by excluding one of the acceleration sensors, the KPI estimates fall within
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the interval (31.6–33.8) dB and exhibit a mean value equal to 32.6 dB: the redundancy
featuring the four-channel system allows an increment of 2.4 dB for the KPI.
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Figure 6. Boxplots for the KPI utilized to evaluate the accuracy of the proposed data fusion method.
The values are related to a selection of the test frequencies to highlight how the dispersion of the KPI
changes at different performance levels.

Intuitively, a finer knowledge of the frequency response of the channels, in terms of the
number of measured values and related accuracy, allows the design of digital filters with
more coefficients, which can grant higher accuracy. For instance, Figure 7 shows the boxplot
(1000 realizations) for the accuracy at a subset of uniformly spaced frequencies, for a system
that employs digital filters with 400 coefficients, the design of which has considered a set of
200 measurements characterized by 0.1% uncertainty for magnitude and phase: the results
show that the accuracy generally improves throughout the bandwidth. Nevertheless, one
has to take into account that a filter with L coefficients introduces a response delay equal to
LTc seconds in the system, where Tc is the sample period. The response delay limits the
capability of the system in control applications, where the measurement of the kinematic
quantities of a target must be obtained in a short time to correct the dynamic trajectory and
minimize the fluctuation effects.

3.2. Comparison with a Benchmark

The proposed method for elaborating the output of the four sensors has been compared
to a benchmark system that uses the same sensors. In the benchmark system, each sensor is
complemented with a dedicated digital filter that assures a calibrated acquisition channel.
Each digital filter is designed imposing a unitary gain at all measured frequency points,
but, differently from the proposed method, the choice of its coefficients is independent of
that of the other sensors in the same architecture.

It is assumed that at the identification stage, the frequency response of the sensors can
be measured with the same uncertainty level used to evaluate the proposed system, i.e.,
0.1% for both magnitude and phase. For an equal comparison, the length of the digital filters
of the benchmark system is chosen equal to 2L = 16, namely that chosen for the proposed
system. Notice, however, that the digital filters aimed at the calibration (i.e., equalization)
of the individual channels are evidently different from those used by the proposed method,
even if they are designed using the same input data, as shown in Figure 8.

The outputs of the channels of the benchmark system are further elaborated in the
case of velocity and acceleration signals to obtain position signals. To this end, velocity
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and acceleration signals are digitally integrated once and twice, respectively; the digital
integration is obtained through the cumulative sum. The four position signals are combined
to obtain a single representative position signal, which is compared to that offered by the
proposed system.
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Figure 7. Boxplots for the KPI evaluated at normalized frequencies uniformly spaced by 0.05 units
when the digital filters are characterized by length 2L = 400.
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Figure 8. Frequency response of the digital filters adopted by the benchmark system to perform the
equalization of the sensors. The frequency responses are evidently different from those used by the
proposed method given in Figure 4.

Pseudo-random trajectories that have spectral contents uniformly spread throughout
the bandwidth of the sensors are used as test signals. Figure 9 shows the accuracy informa-
tion for the proposed method and the considered benchmark, both summarized by means
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of boxplots evaluated on 1000 pseudo-random trajectories. As stated, the accuracy of the
proposed method is within the interval (33.9–36.2) dB and typically sets at 35.0 dB, whereas
that of the benchmark is within the interval (38.1–39.1) dB and typically sets at 38.6 dB.
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Figure 9. Accuracy offered by the proposed system (33.9–36.2) dB and the considered benchmark,
both in ideal conditions (38.1–39.1) dB and in the presence of a constant offset equal to 1 ppm (relative
to the output range of the accelerometer). The results are summarized by means of boxplots evaluated
on 1000 tests performed on pseudo-random trajectories.

The benchmark system provides a theoretical limit, which is difficult, if not impossible,
to achieve when stepping from simulation, where several effects can be easily controlled
and neutralized, to practice.

The benchmark, as well as all the systems that have to evaluate the integral of a signal,
have a weak point, which consists in the use of algorithms, such as the cumulative sum,
that act as unstable auto-regressive filters. These algorithms typically produce divergent
outputs in the presence of offsets at the input stage.

Steady or wandering offsets are very common and difficult to compensate for in
kinematic sensors. At the calibration stage, it is very difficult to directly measure weak
offsets that can be smaller than the resolution of the adopted meter. However, in a digital
system that uses a cumulative sum, for a run that considers N consecutive samples, the
offset produces a drift that reaches a peak value equal to N times the offset amount (linear
drift), and a peak value equal to 1

2 N(N + 1) (quadratic drift) for the same run if the
cumulative sum is repeated twice.

To provide evidence of the issue, Figure 10 shows the position of a target that oscillates
with respect to a rest position, as measured both by a dedicated displacement sensor and
by integrating twice the output of an acceleration sensor affected by an offset equal to
1 ppm the output range of the sensor. A red trace shows the parabolic drift due to the offset,
which makes the latter position measurement progressively deviate from that offered by
the dedicated sensor.

The offset can be estimated by dividing the peak deviation between the signal and the
reference by the aforementioned quadratic factor. Unfortunately, static compensation is
never perfect and offset residuals can show up, especially if the offset is not constant in
time. The effect of a residual or unstable offset still becomes manifest as linear drift in the
case of velocity sensors, and parabolic drift in the case of acceleration sensors.
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Figure 10. Displacement of a target around its rest position. The oscillations are simulated with a
multi-frequency signal that is characterized by a peak value equal to 0.9 m, and 3 components at
normalized frequencies equal to 0.0071, 0.0272, and 0.0146. The blue trace represents the output of
the displacement sensor; the black trace is obtained by integrating the output of the acceleration
sensor affected by an offset equal to 1 ppm (relative to the output range of the sensor); the red trace
highlights the quadratic drift corresponding to the difference between the signals.

As discussed in the Introduction, drifts can be counteracted dynamically, if one can
rely on a reliable and accurate position sensor, which does not undergo any drift. Dynamic
compensation is performed seamlessly during the operation of the system, and it is repeated
at a given cadence to indicate that the performance of the multi-sensor system degrades
beneath an acceptance level. The choice of the duration of the time interval between the
compensation actions is bounded by a trade-off: short intervals allow frequent but less
effective compensation; long intervals are the basis for accurate estimations, but expose the
system to poor tracking capabilities, giving the drift more time to exert its effect.

To evaluate the impact of the offset on the accuracy of both multi-sensor systems,
namely the proposed one and the benchmark, the results of further simulations performed
in the presence of an offset at the output of the acceleration sensors are discussed. In
particular, a steady offset equal to 1 ppm (relative to the output range of the acceleration
sensor) is simulated. The dynamic compensation is performed any N = 100 samples
(i.e., any 10 ms for a 10 kHz sample rate) such that the quadratic drift can reach at most a
deviation equal to 0.5% the output range of the sensor, which is just detectable since it is at
the level of the typical output noise. In this case, the accuracy of the benchmark degrades
to values in the interval (32.8–33.8) dB, as reported in Figure 9.

It is worth noticing that, conversely, the proposed system adopts an inherent solution
to extract position information from velocity and acceleration signals without using cu-
mulative sums. More specifically, it uses finite impulse response filters, which are stable
filters that confer finite gain to zero and low frequencies (see the frequency responses of the
digital filters in Figure 4), where the spectral contents of the offset reside. The impact on
the accuracy of an offset equal to 1 ppm in the output range of the sensor is therefore not
appreciable on the proposed system, which confirms the results shown in Figure 9.
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4. Conclusions

A class of multi-sensor data fusion methods for kinematic quantities has been pro-
posed. All the methods are based on the same general framework and can be distinguished
between each other according to the number and types of available kinematic sensors.
The methods enable the exploitation of the redundancy of homogeneous kinematic sen-
sors and, more generally, of the combination of the outputs offered by heterogeneous
kinematic sensors.

The study has analyzed the possibilities of one of these methods in its basic imple-
mentation, and has carried out a fair comparison with the most immediate competing
method that one can consider to perform data fusion. In particular, it has been highlighted
that, for both the proposed method and the benchmark, there are plenty of possibilities for
performance improvements—for example, by exploiting the optimization techniques for
advanced digital filter design. However, it should be underlined that optimization was
beyond the scope of this study, which focused on defining a general framework, rather
than a specific method and corresponding implementation. The considered four-channel
architecture, as stated in Section 3, has been used only with the intent of highlighting how
the main configuration parameters generally impact the performance of a method born
from the proposed framework.

The most interesting feature of the methods consists in their robustness with respect
to the undesired effects due to offsets and/or flicker and random walk noise. The offset
error that affects the majority of the systems entirely based on micro-machined electro-
mechanical systems is, in fact, avoided by using FIR filters, characterized by a finite gain
at low frequency. Differently, the solutions that exploit (explicitly or implicitly) the time-
integration processing to obtain position measurements from velocity and/or acceleration
signals are at risk of poor accuracy even in the presence of a high level of redundancy, since
even weak offsets can produce relevant errors due to their cumulative effects.

It can be concluded that the class of methods generated by the proposed framework
proficiently combine direct position, velocity, and acceleration measurements. In particular,
this is effective any time the position signal is characterized by coarse precision, and the
velocity and acceleration signals are affected by issues due to offset, flicker, or random walk
noise. In these scenarios, the methods of the considered class allow one to benefit from
the presence of the heterogeneous sensors, which enable the position measurement with
drift-free tributaries.
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