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Abstract—Visual inspection and maintenance of industrial
pipes using robots represent an emerging application in
Oil & Gas and refinery facilities. In this domain, we present a
pose tracking system based on a single camera sensor to localize
an unmanned aerial vehicle operating over a pipe-rack to carry
out inspection activities. We propose a unified framework based
on the Lie group SE(3) which allows the simultaneous estimation
of the pose of the UAV along with some parameters of the
pipe-rack model. Numerical simulations have been performed
to demonstrate the effectiveness of the proposed approach.

SUPPLEMENTARY MATERIAL

Video is available at: https://youtu.be/abeBFLKDW78. Code
can be found at: https://github.com/prisma-lab/vs-pipe-rack.

I. INTRODUCTION

Pipelines carrying fluids like liquid chemicals, steam, heat-
ing water/oil, and similar are generally laid between different
units in any petrochemical, power, or chemical processing
plants. Typically, they are grouped in a steel-framed structure
called pipe-racks. To enable easy access for maintenance
and preserve ground space, pipe-racks are placed on elevated
structures. Pipeline damages can emerge as a weakening of
the external covering, as well as in leaks of heat energy, in
addition to pipe breaks and losses of the transported medium.
At the same time, dangerous situations (like explosions or
chemical incidents) can be caused by wear on the thickness
of piping through internal corrosion during the transport of
aggressive liquids or mechanical stressing in the case of the
transport of non-homogeneous materials with solid particles.
To avoid risky situations arising from piping defects, pipelines
must be regularly inspected through complex and risky op-
erations. Considering that pipe-racks often extend for miles
and are located at several meters in height, visually checking
all the sections of the pipes is a highly demanding task.
Alternatively, built-in measuring systems like pressure or flow
meters should be used but, such tools are too expensive and
unreliable because even they cannot cover every high-risk area.
In this domain, thermographic pipeline inspection represents
an advanced technique to detect pipe damages. Since the
temperature of the material transported by pipe differs from
that of the surrounding environment, thermal cameras can play
an important role in the inspection and maintenance tasks.
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The use of autonomous robots, like Unmanned Aerial Vehicles
(UAVs), equipped with vision and thermal sensors represent a
reliable and low-cost solution for inspection tasks ([1] [2]). An
aerial vehicle can fly above the whole surface of a pipe rack
while transferring relevant information to ground operators.
To automatize such an inspection task, different challenges
must be tackled. First, the drone should be able to stabilize
during the flight autonomously. In this context, GPS sensors
could be unreliable due to the vicinity of tall iron structures.
Then, measured data should be localized with respect to a local
reference frame with sufficient accuracy and repeatability to
perform continuous monitoring and trending.

To face these problems, in this paper, we propose a new
robust visual tracking algorithm, which allows a UAV to
automatically stabilize its position and orientation over a pipe
rack and simultaneously localize its motion with respect to a
local reference frame fixed with a pipe rack. In the proposed
approach, we assume that the UAV is equipped with a standard
camera used to track the motion of the vehicle with respect to
a local arbitrary reference frame. This frame will be used to
assign the desired inspection paths on a pipe rack. Initially, we
assume that the geometry of the pipe-rack is precisely known
and the diameter of the pipes. This assumption is reasonable
since the shape of the pipelines is standard regulated. However,
we extend the proposed approach to the case of structures with
uncertain knowledge parameters.

blue In our setup, the geometric model of the scene is
exploited to perform the loop closure between the motion of
the UAV and its new estimated pose. In particular, the data
get by the camera sensor of the UAV are matched with the
scene model. The motion is calculated estimating the distance
between the detected scene and the projection of the modeled
one.

blue The main contribution of this work regards the ap-
plication of Lie groups and their algebras to a localization
problem in the specific domain of inspection of pipe racks in
oil and gas facilities. This approach differs from the classical
SLAM solutions since the environment is assumed to be
already known. At the same time, it differs from sample-
based localization techniques like the well-known Monte Carlo
Localization since, thanks to the integration of the Lie algebra,
image data are exploited to reconstruct the relative pose of the
camera, i.e. the drone, with respect to the observed object, i.e.
the pipe-rack in our case, based on the provided scene model.
Our work takes inspiration from the similar works in which the
lie groups and their algebra has been used to perform visual
servoing tasks, [3] and [4], in which a position based visual
servoing technique has been proposed and demonstrated to



achieve high accuracy.

Finally, to assess the effectiveness of the proposed ap-
proach, experiments have been in a MATLAB simulation
environment consisting of a pipe-rack and a dynamic modeled
UAV equipped with a downward camera. During these tests,
different operative conditions have been considered.

II. MOTIVATION AND RELATED WORKS

UAVs are versatile systems that can be used in several
inspection applications like water flow and crop monitoring,
farm animal detection and counting and many more. All these
applications require a precise localization of the UAV during
the flight that typically is achieved by exploiting GPS sensors.
However, this level of localization may not be present in GPS-
denied or GPS-spoofed environments where the GPS signal is
not reliable (like the case considered in this paper, due to the
vicinity of iron structures). A solution could be to use costly
GPS devices, like the differential GPS, which improves UAV
localization using a second GPS ground station. However, this
approach requires modifying the environment and the use of
expensive infrastructure that is not always possible. In this
context, visual odometry with specific hardware or SLAM
techniques can be adopted [5] [6]. On the other hand, these
methods need additional hardware like depth sensors or event-
based cameras. blueAdditional equipment on the UAV could
decrease its overall operating autonomy due to the increase
of its payload and the computational effort needed to stream
and elaborate sensor data. For these reasons, it is important to
extract only small amounts of meaningful information in real-
time video streams at the camera frame rate [7]. The use of
dense two-dimensional image processing involves a high com-
putational cost, while feature-based tracing is limited to finding
strong image features such as contours [8]. Contours represent
useful features to track for visual servoing applications for
several reasons: ¢) contours can be tracked reliably against
cluttered environments [9], iz) the large number of mea-
surements that can be made by integrating normal velocities
around the contour allows for accurate measurement of image
motion [10], 4¢7) a planar contour can be easily constrained to
undergo affine or projective deformations [11] [3].

Several successful systems have been based on tracking
the image contours of a known model. The problem of
determining the camera motion from apparent contours or
silhouettes of a priori unknown curved 3D surfaces has been
considered in [12]. A sequence of images shows how to use
the generalized epipolar constraints on apparent contours. An
accurate algorithm for computing the motion is presented
based on a maximum likelihood estimate. A framework for
three-dimensional model-based tracking has been presented
in [4] [13], in which a graphic rendering technology has been
combined with constrained active contour tracing to create
a robust wire-frame tracing system. A Lie group formalism
has been used to transform the motion computation problem
into a simple optimization problem. A visual servoing system
has been built and tested using this framework. A vision-
based line following strategy for UAVs has been proposed
in [14] follow the margins of water channels, crop lines and

other similar models.In this context, a nonlinear path following
controller has been designed along with a visual-based line
detection algorithm capable of detecting the average position
and orientation of the main lines on the image frames captured
by the UAV downwards facing camera. Closer to our domain,
in [15] a transmission line inspection system using a quad-
rotor UAV has been proposed to improve inspection efficiency.
The hardware and software for real-time data processing for
transmission line detection and tracking have been presented.
In [16], arbitrary object contours in a 2D image have been
considered as plane shapes to identify their structures to
inspect ground pipelines autonomously with a UAV. Image
processing is applied to estimate the object pose, while the
UAV autonomously tracks the structure according to this
position estimation. A robust autonomous UAV navigation
approach along one side of the overhead transmission lines
for inspection was presented in [17]. A perspective model was
adopted, and a Pan/Tilt monocular-based navigation scheme
has been developed. The transmission lines are detected and
their vanishing point calculated and optimized to provide the
UAV with a robust and accurate heading. A 3D tracking
algorithm for oil & gas pipelines based on the tracking struc-
ture identified via depth images has been presented in [18].
Through linear fitting of the nearest pixels of the depth image,
the pipeline berm can be identified. Then according to the
orientation and lateral difference information of the pipeline
obtained, the UAV autonomous navigation and tracking can
be realized.

III. METHOD

To compute the camera pose during the autonomous
pipeline inspection task, the specificities of the pipe-rack ge-
ometry are addressed, characterizing it with a combination of
contour image and point image features. An image processing
algorithm has been deployed to identify tube contours com-
bined with the well-known Hough transform. Once extracted
the transformation of the image features between different
consecutive images, the camera pose is calculated linearizing
with respect to the image motion. This process is computed
in terms of the Lie group SE(3) and its Lie algebra. In this
context, the group SE(3) represents the space of the poses
that exactly form the desired output of the algorithm, while
Lie algebra is the space tangent to the group to the identity and
is, therefore, the natural space in which to represent differential
quantities such as velocity and small motion. Therefore, such
representation provides a canonical method for linearizing the
relationship between pose parameters and image movement. In
the following, the models used to characterize the pipe-rack
and the UAV camera are discussed.

Without loss of generality, pipe-rack is described as an
ordered sequence of n, pipes with n, > 1 where the pipes
are placed on a common plane, numbered from left to right
looking in the direction of the flow. Note that, even if the
pipelines are not perfectly parallel, it can be assumed that they
are local, with respect to the portion of the plane visible in the
camera plane. The support plane of the pipelines corresponds
to the (x,,yp) plane, with the y,-axis aligned with the flow



Fig. 1.
direction and the origin o, corresponding to the most left point
of the first pipe, as shown in Fig. 1. Notice that the origin
of the fixed reference frame P : o, — x,Yy,%, can be chosen
arbitrarily, e.g. with respect to a local physical reference. Still,
in this paper, we assume the drone laying in the (x, 2,) plane
at time ¢ = 0. We denoted with p; the central point of the ¢-th
pipe, 7; the (external) pipe radius, v; the unit vector aligned
with the pipe/flow direction, and d; di distance between the
i-th and (i + 1)-th pipe.

As for the camera model, we assume that the UAV is
equipped with a downward-looking camera. A camera ref-
erence frame C : o, — x.y.z. is introduced, with the z.-
axis corresponding with the camera optical axis. To make the
notation simpler, let’s assume that the centre of the camera
reference frame o, corresponds to the centre of mass of the
UAV, thus avoiding the introduction of another reference frame
only for the UAV. In this context, the Pinhole camera model
is adopted. The non-singular upper-triangular camera matrix,
which contains the internal camera parameters, is denoted as
follows:

Representation of the pipe rack and reference frames.

K=1|0 chc Vo |, (D
0 0 1

where f. is the camera focal length in pixels, 7. is the aspect
ratio, s. is the skew, and (up,vo) is the principal point in
pixels. The camera projection matrix P in the fixed reference
frame is represented as the product of the camera matrix and
the Euclidean projection matrix EC representing the position
and orientation of P with respect to Cas E, = (Rc pp)
where RC € SO(3) and pj, € R? are the rotatlon matrix and
the posmon of the pipe-rack represented in C, respectively.
Given a Cartesian point p” fixed in P, the corresponding
projective coordinates (point image feature) are given by

u
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with ¢ = (¢' 1) the homogeneous representation of a
vector, while the actual image coordinates are given by

()20

The pose of the pipe-rack with respect to the UAV camera can
be expressed by the homogeneous transformation between the
reference frames P and C as follows:

. [ E
H—( p1>, @)

P O1x3

where Opxm is a null (n x m) matrix. Let the Euclidean
transformation matrix M (t) € SE(3) be the relative motion
of C between two consecutive camera frames (¢t — 1) — ¢
with respect to P and expressed in P. From now on, we will
call M the motion matrix. Hence, the rigid motion of the
UAV camera between consecutive video frames can then be
represented as follows:

H(t) = H,(t — 1)M(t). (5)
One objective of this paper is to elaborate the relationship
between M and the apparent motion of the image features in
the image plane of the camera (motion tracking problem) as
described in the following.

Motion Tracking: The motion matrix M forms a 4 x 4 ma-
trix representation of the SE(3) group of rigid body movements
in three-dimensional space, which is a six-dimensional Lie
group. In this context, the motion is represented considering
a coordinate system to describe small transformations close
to the identity, where the axes correspond to the different
deformation modes and the affine transformations are specified
as a weighted sum of the group generators added to the
identity. This leads to a local vector space representation
for infinitesimal transformations, in which the affine trans-
formation matrix M can be directly obtained from a vector
(see [19] [20]). Possible generators of the SE(3) group are the
elementary translations/rotation in/around the z, y and z axes:

0 0 0 1 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 1 0 0 0 0

G=lg 0 0 o) “=|lo 0 o0 o) E=|lo 0 0o 1)
0 0 0 O 0 0 0 0 0 0 0 O
0 0 0 © 0 0 1 0 0 -1 0 0
0 0 —-1 0 0 0 0 0 1 0 0 0

Ge=|lg 1 0 0o|%=|-1 0 0 0/%=|lo 0o o of
0 0 0 O 0 0 0 0 0 0 0 0

(6)
Such generators compose a basis for the vector space (known
as Lie algebra) of the derivatives of SE(3) near the identity. Let
1; be the six coefficients of the projected vector in the direction
of the elementary translations, thus the elements of the group
can be obtained from the generators via the exponential map:

l>

M = exp(p; l:ZHle )

where the Einstein summation convention over Latin indices
has been adopted and will be used throughout this paper.
Since the motion matrix M is the structure transformation
between two adjacent video frames, then the tracking problem
becomes to find the u; coefficients that describe the inter-
frame transformation. If the camera frame rate is sufficiently
high with respect to the apparent motion of the image features
in the image plane, i.e. if p1; < 1, then the exponential map
can be approximated by its linear terms as M ~ I, + u;G;,
where the symbol I,, represents the (n x n) identity matrix.
If this is the case, the motion is approximated as a linear sum
of that produced by each of the generators.

The partial derivative of the projective coordinates of the
image features, corresponding to a Cartesian point p” fixed
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Fig. 2. Visible edges of a pipeline from the UAV camera.

with respect to P, with respect to the ¢-th generator motion
can be calculated as

= PG;p”, ®)

that are linear functions of position, while the corresponding
motion in true image coordinates is given by

! ! UiW;
§=(§)=1<% mj, ©)
i Wi \v; — —5.*
which corresponds to the vector fields in the image plane
used to compute the affine transformation that describes the
structure transformation in the camera’s view.

The pipe-rack is characterized by a combination of two
kinds of image features: Pipeline edges and local texture
features.

Pipeline edges: Edges represent the most reliable image
features that can be extracted from a pipeline. They correspond
to a couple of straight lines depending on the relative pose
of the camera (the viewpoint) relative to the pipe. Assuming
to perform the estimation of the pose of the UAV camera
using the proposed motion tracking algorithm, visible edges
of each pipe belonging to the pipe-rack can be projected onto
the camera image plane (model rendering) to extract an error
vector describing the structure deformation. Let p! and p?
be points located on the visible lines, specifically on the left
line and on the right line (looking towards the flow direction),
respectively, at a minimum distance from the camera (see
Fig. 2). From now on, unless expressly indicated, all quantities
refer to P. We consider the point p; laying on the pipe axis
and at the minimum distance with respect to the camera, thus

p; =p; + (0. — p;) " 05, (10)

and the unit vector pointing from the camera to such a point

1
U; = lf(pé—och Y

where [; = ||p, — o.|| corresponds to the minimum distance
between the camera and the pipe principal axis. Then, by

Pipe

Fig. 3. Extraction of the normal component of the apparent motion of pipe
edge (left) and of a pipe texture point feature (right).

computing the angle 3; = arcsin(r;/l;) and the distance from
the camera to the visible lines

3i = |loc — pil|= [loc — pil|= /17 — 77,
we can finally compute the points on the visible edges as

13)
(14)

(12)

Pé = o.+§R(V;, 8w,
p; = Oc+0;R(v;, —fi)uy,

where R(a,«) is the rotation matrix around the axis @ of an
angle « [21]. Hence, both visible lines are fully described in
Cartesian space through these points and the unit vector v;.
Finally, the back projection on the camera image plane is a
straightforward operation that only requires care in considering
the camera’s field of view by calculating the two ends of the
visible segment of these lines.

Fig. 3 (left) shows the process for extracting the normal
component of the apparent motion of the tube edges. In
particular, the rendered segments are sampled with some
measurement points and, starting from each of these points p,,
the closest pipe edge is searched along the direction normal to
the rendered segment, which corresponds to the unit vector 7.
In this way, the extraction process has only linear complexity,
instead of a square complexity as with other types of image
features. Finally, the distance e; between the measurement
point and the actual pipe edge is measured.

Texture features: Due to the symmetry of a pipe-rack along
the flow direction, using only the edges, the movement along
the g, axis is not observable. To address this problem, the
second type of image feature has to be considered. A real
pipeline is typically covered in rust and dirt, which can be
easily identified and tracked with standard image descriptors
based on SURF, SIFT, BRIEF or ORB [22]. At the start of the
tracking process, all the point features that are visible on each
pipe, which are delimited in the image by the visible edges
computed in the previous section, are identified. Through the
intersection of the corresponding camera ray and the pipe
3D model, it is possible to estimate the 3D position of such
model with respect to P. These points are added to the 3D
model of the pipe rack along with the corresponding image
descriptors, which are needed to locate the same points again
in future images. Once a new image needs to be processed,
two processes begin: the first is dedicated to finding previous
feature points around the expected position of the rendered
model. Differently, the second process is dedicated to finding
new image features to add to the 3D model to cope with the
continuous motion of the UAV along the pipe-rack.

For all matched points p;, as shown in Fig. 3(right), the
apparent motion is described through its direction by means of
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Fig. 4. Block scheme of the motion tracking (solid lines) and of the model
parameters adaptation processes (dotted lines).

the unity vector 75, and the corresponding image displacement
€.

The overall tracking process is represented in the block
scheme reported in Fig. 4. At each sampling time, the expected
view of the pipe-rack is rendered (“CAD model”), and the
location of each visible point image feature is identified using
the current estimation of the camera projection matrix P(t—1)
(“Render Model”). A predefined number of sampling points
with a regular interval are located on such visible edges, while
suitable elaboration windows are extracted from the image
corresponding to each point image feature. The actual edge
is then searched in the image for each sampling point for
a nearby edge in the normal direction to the rendered edge.
Similarly, each point image feature descriptors are searched in
the corresponding window, and new key points are identified
and assigned to the CAD model of the corresponding pipeline
(“Image feature extraction”). In this context, 500 sampling
points and tens of point image features are measured in
this way, for a total of n image features. The algorithm
then projects such n-dimensional measurement vector onto
the 6-dimensional subspace corresponding to homogeneous
transformation giving the least-squares estimate of the motion
matrix M (t) (“Motion & parameters estimation”). The camera
UAV pose H(t) is then update These steps are cyclically
repeated to track the pose of the camera in the defined fixed
frame.

To calculate the motion of the camera, for each sample point
p,, indifferently if it has been extracted from an edge or a
texture feature, the normal component of the motion fields are
computed as

oij =& n, (15)

thus e; can be fitted as a linear combination of the o; ; to
give a linearized estimation of the camera motion. Note that
0;,; describes the subspace of the Euclidean transformation
group through the magnitude of the edge normal motion and of
the point image features that would be observed in the image

at the j-th sample point for the i-th group generator. These
measurements can be considered as a set of six 7-dimensional
vectors describing the motion in the image of each of the six
Euclidean transformation modes. This motion corresponds to
the pipe rack’s geometric transformation, which best fits the
observed edge and texture-features positions and can be found
by minimizing the square error between the transformed and
actual edge/texture-feature positions in the image plane. To
such a purpose, the least-squares algorithm can be applied as
follows:

Yi = exOik (16)

Jij = (0iroik) (17)

pi = Ji}lv (18)

Proof. Let \; be the six coefficients of the projected vector.

Let’s demonstrate that A; = p; gives the minimum least-
squares solution to

p=(ex—Ajoge)”. (19)

k

Let’s derive the gradient of (19) with respect to the projection
vector
op

_— = *2202',1@ (ek — Ajaj,k) ,
k

oh (20)

and setting \; = u; + €; while substituting (18) gives
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The p; are thus the coefficients of a linear approximation to
the Euclidean motion which minimizes the sum squared error
between the rendered and the observed image features (¢; =
0). When ¢; # 0, the residual sum-squared error is computed
integrating (20)

(22)
O

p = ple,=oteidi je;.

The proposed tracking algorithm is therefore able to contin-
ually estimate Hy (through (5) and, hence, P) by computing
the coefficients p; of inter-frame motions as shown in Fig. 4.

Estimation of pipe-rack Parameters: One key advantage
of the proposed approach is that it is possible to include
more complex situations such as the estimation of 3D-model
parameters along with the object motion. Considering a real
pipe-rack is reasonable to assume that the radius of each
pipe is known and that the pipes are parallel. However, the
pipes are not always constrained, but often resting only on the
supports of the pipe holder. Due to thermal expansion and vi-
brations generated during the liquid transportation operations,
the distance between the pipes could vary over time. So, the
proposed approach can be extended to estimate online the
distance between adjacent pipes. Compared to the reference



frame shown in Fig. 1, which is fixed with the first pipe, if
the distance between the i-th and the (i + 1)-th pipe varies of
an assigned amount, assuming that the other distances between
the pipes remain fixed, all the pipes from the (i + 1)-th move
rigidly along the x,, axis by this amount. So, the visible edges
also move similarly. Thus, the projected point onto the camera
plane of the j-th feature point belonging to the ¢-th pipe, with
1=2,...,ny, can be expressed as

Tij; = PTlf)f,] (23)

where p?’ ; represents the nominal position when all pipes are
tangent (i.e. d; = 0 V1), represented in P, and

1 0 0 d;—1
01 0 0 e 3

O O I A A
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The generators of T'; are equal and correspond to G;. Let
Wi, with 2 =7,...,n,+5, be the coefficients of the projected
vector in the direction of the elementary translations which
corresponds to dy., with k = 1,...,n,—1. The elements of the
corresponding Lie group can be obtained from the generator
via the exponential map, which can be approximated with the
linear term in case of slow variations between consecutive
frames:

T;(t) = exp (ni+5G1) Ti(t — 1)
~ (I4 + ui+5G1) Ti(t - 1).

(25)

Since the pipe distance is unknown but assumed to remain
constant, the optimization problem becomes to find the p;
coefficients that nullify the inter-frame transformation due
to the pipe displacement error. Finally, thanks to the simple
structure of T';, equation (25) can be further simplified as
follows: d;(t) = d;(t — 1) + pti6.

The partial derivative of (23) with respect to the (i + 5)-th
generator can be calculated as

"’;'7]' = PGlTif)f,ja (26)

with i = 2,...,n,.

The corresponding motion in true image coordinates is given
by (9), which is the corresponding vector fields in the image
plane. These are added to the vector fields already used for
the motion tracking algorithm (see Fig. 4), which now fits into
a (n, + 5)-dimensional rather than the six-dimensional least-
squares solution. In this way, the 3D-model parameters of the
pipe-rack can be estimated during the motion of the camera.

Finally, the objective sum-of-squares function previously
introduced can be significantly affected by some large-error
measurements. Likewise, the corresponding Gaussian distri-
bution dies too quickly to admit many sample measurements
with a large number of standard deviations.

A well-known solution is to replace the objective function
with one that applies less weighting to the outliers [23] and
can be obtained by replacing (16) and (17) with

Z s(er)exoi k
K
(Xk s(en)aikajr)

vi = 27)

Jij = (28)

h
where 1

) = T e

This correspond to replacing the Gaussian distribution with
the following one

(29)

e 1%
Ple)=e (14 )", (30)
which behaves like a Gaussian for e < v and Laplacian
for e > v. The function s(-) checks the confidence with
which each measure fits into the least squares procedure and,
therefore, can be seen as a representation of the saliency of
the measure. A common choice for the v parameter is approx-
imately one standard deviation of the inliers. This approach is
known as iterative reweighted least squares (IRLS) since s
changes on e with each iteration.

IV. UAV VISUAL SERVOING

A visual servoing algorithm can be achieved using the pro-
posed visual tracking system shown in Fig. 4. This algorithm
exploits the homogeneous transformation matrix H? of the
tracking system within a control law to provide feedback to
servo the UAV (for simplicity, we supposed C coincident with
the UAV body frame) to the desired target pose with respect
to P. The inverse of the target matrix H” 4 1s computed
and the product of this with the current pose yields the
transformation from the desired pose to the current pose as
H, = H? *1H£ 4- The translation velocity vector v% and
yaw rate w, that must be applied to the UAV are then extracted
from this representation as follows

Ve - (S (wE) ”5) — log(H.),

© "\ 0ua 1 Gh

where S(-) is the skew-symmetric matrix. The corresponding
UAV control input can be calculated by multiplying those
velocity errors with positive gains. In a real application, a
maximum cruise velocity can be imposed through suitable
saturation.

V. TEST CASE

blue To demonstrate the performance of the localization
algorithm, a simulation test case has been carried out in
MATLAB!, simulating the dynamics of a UAV equipped with
a downward camera, flying above a known pipe-rack structure
(see Fig. 5). The simulated pipe-rack consists of 5 pipes with
the radius varying from 15 and 20 cm. Four of those are
parallel, while one tube is placed orthogonally with respect
to the parallel ones. In addition, one of the pipe (the first
starting from the left) changes its size from 15 to 20 cm. The
distance between each pipe is 10 cm. The reference frame
has been chosen as described in Section III. In this setup, 25
texture feature points were randomly added to each pipe (100
total), which are 10 m long. However, only a part of these
features is visible in the camera’s field of view, depending on
the position of the UAV during its motion. Along with the
simulated pipe-rack, in Fig. 5 is also shown the synthesized

IMATLAB 2020b under Windows Operating System has been adopted.



Fig. 5. 3D model of the Pipe rack considered in the MATLAB simulations,
with highlighted random-generated texture image features (star points) and
visible edges (red/blue lines). The synthesized image corresponding to the
3D scene is also shown where solid (dotted) lines correspond to the actual
edges and the starts correspond to the actual texture image points.

Fig. 6. Time histories of the camera position and orientation, UAV linear
velocity and orientation velocity.

Fig. 7. Time histories of the position and orientation tracking errors. The
orientation data is represented with the ZYX-Euler angles (yaw, pitch, roll).

image corresponding to the implemented 3D scene. The edges
of the pipes are samples with 20 tracking points. An ideal
camera has been considered, with a frame rate of 25 Hz, a
resolution of (720 x 480)-pixel and the following intrinsic
parameters: f, = 630, r. = 1, s, = 0, up = 360, and
vg = 240. The controller of UAV has been implemented as
presented in [?].

In this setup, the UAV is commanded to navigate the
pipelines crossing four waypoints. A motion trajectory with
continuous acceleration has been planned considering a maxi-
mum cruise velocity of 0.5 m/s and 0.2 rad/s for linear and
angular velocity, respectively. Taking into account the under-
actuation of UAVs commonly used for inspection tasks (i.e.
rotary wings), only the rotation around the Z—axis (the Yaw,
indicated as ) is directly controlled. However the full pose
of the platform is estimated. The planned position/orientation
and relative velocity of the UAV body are depicted in Fig. 6.
During the motion, the error between the estimated and actual
position and orientation of the UAV has been monitored. To
test the algorithm in more realistic conditions, the body of
the UAV has been perturbed with external disturbance during
the flight to simulate the effect of the wind in forms of wind
gusts. In particular, the dryden wind model [?] has been used
to simulate turbulence effect, by modifying the position cal-
culated by the control action of a quantity proportional to the
force and direction of the wind. The effect of such turbulence
can be observed in Fig. 6. In particular in the first graph from
the top, the commanded/executed trajectory, is possible to see
the tracking error caused by the external disturbance injecting
a vibration behavior on the flying platform. Moreover, the
simulated wind also affects the overall attitude of the UAV,
since the low-level controller continuously tries to contrast
the wind force.As for the localization results, the position and
orientation tracking errors between the estimated position of
the UAV and the actual one are reported in Fig 7. These errors
are negligible for all motion components during dynamics
and depend mainly on the speed of the UAV relative to the
camera’s frame rate.

To assess the algorithm robustness operating under worse
conditions, a second test has been performed assuming a
wrong CAD Model of the pipe-rack structure and precisely
in the knowledge of the distance between the pipelines of the
rack is affected by an error. If the actual distance between each
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Fig. 8. Time histories of the summed pipe distances dj, as described in
eq. (24). On the left the ideal case, while on the right with camera quantization
error and white Gaussian noise.

pipe has been set at 10 cm (i.e. considering the four pipes of
the rack: Jl =10 cm, JQ = 20 cm, Jg = 30 cm), while the
initial estimation has been set to: d; = 15 cm, ds = 35 cm,
ds = 50 cm, therefore with a relatively large error. Fig. 8
(left) shows the time history of the estimation of the pipe-
rack parameters, which converges to the actual values in few
iterations.

blue Finally, a set of simulations has been performed
considering different pipelines and extracted visual features.
We tested different scenes increasing the number of pipes
(from 2 to 5) and the total amount of visual features (from
10 to 50), randomly distributed on the tubes. In these tests,
the effects of the quantization of the camera pixels and a
withe Gaussian noise with 2 pixel standard deviation has been
considered to add measurement noise. For each setup, a total
number of 10 simulations have been performed. Results on
the mean of the tracking pose error and its standard deviation
are reported in Table I. Note that, as expected, the tracking
error, in this case, is higher with respect to the first test case
due to the pixel error. In addition, it is worth noticing that
the number of pipes (and consequently, the extracted edges)
affects the orientation error.

VI. CONCLUSION

In this work, a robust pose-tracking system based on a
single camera sensor has been presented to localize a UAV
moving on a pipe-rack. A unified framework based on the
Lie group SE(3), which allows the simultaneous estimation of
the pose of the UAV and some parameters of the pipe-rack
model have been described. The tracking algorithm mainly
works considering simple image features (i.e. image contours
and image features) allowing its execution on low performance
computers. In addition, thanks to the computational efficiency
of this algorithm, the execution of several iterations of the
proposed tracking algorithm could be possible on each ac-
quired image to improve performance. Simulated experiments
demonstrate the effectiveness of the proposed approach.

As future approaches, the tracking method will be validated
on a real platform operating into a laboratory mock-up. In
addition, since the proposed algorithm requires the knowledge
of the camera intrinsic parameters, the current work can
be extended to estimate such parameters online, during the
tracking of the camera motion. Finally, different additional
criteria can be added to the formulated reweighted function
to improve the robustness of the motion tracking algorithm to



TABLE I

POSITION AND ORIENTATION ERROR CONSIDERING DIFFERENT NUMBER

OF PIPES AND VISUAL FEATURES.

Ip 2 314 5] |

10 0.145+£0.02
1.9+0.5 0.139+0.02
1.851+0.6 0.13+0.03
1.24+0.4 0.12£0.01
1.0+0.3 m

deg

20 0.12+0.01
1.5£0.3 | 0.124%0.015
1.55+0.3 0.1240.02
1.15+0.4 | 0.11540.005
1.15£0.3 m

deg

30 0.1140.005
1.2£0.2 | 0.11540.001
1.240.2 0.11£0.01
0.91+0.2 0.1124+0.01
0.8+0.15 m

deg

40 0.1£0.01
0.940.1 0.12+0.01
0.8+0.15 0.09£0.05
0.9+0.25 0.09+0.01
0.840.1 m

deg

50 0.09£0.009
0.8+0.05 | 0.085+0.015
0.79£0.1 0.07£0.02
0.6+0.15 | 0.08+£0.005
0.5+0.1 m

deg

face wrong localization conditions caused by a wrong visibility
of the pipe-rack.
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