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Abstract: hCDKL5 refers to the human cyclin-dependent kinase like 5 that is primarily expressed
in the brain. Mutations in its coding sequence are often causative of hCDKL5 deficiency disorder,
a devastating neurodevelopmental disorder currently lacking a cure. The large-scale recombinant
production of hCDKL5 is desirable to boost the translation of preclinical therapeutic approaches into
the clinic. However, this is hampered by the intrinsically disordered nature of almost two-thirds of
the hCDKL5 sequence, making this region more susceptible to proteolytic attack, and the observed
toxicity when the enzyme is accumulated in the cytoplasm of eukaryotic host cells. The bacterium
Pseudoalteromonas haloplanktis TAC125 (PhTAC125) is the only prokaryotic host in which the full-
length production of hCDKL5 has been demonstrated. To date, a system-level understanding of
the metabolic burden imposed by hCDKL5 production is missing, although it would be crucial for
upscaling of the production process. Here, we combined experimental data on protein production
and nutrients assimilation with metabolic modelling to infer the global consequences of hCDKL5
production in PhTAC125 and to identify potential overproduction targets. Our analyses showed a
remarkable accuracy of the model in simulating the recombinant strain phenotype and also identified
priority targets for optimised protein production.

Keywords: CDKL5; genome-scale metabolic modelling; protein production

1. Introduction

The possibility to heterologously express and purify specific recombinant proteins
in large amounts permits their biochemical characterisation, the development of commer-
cial goods and their use in industrial processes. With the development of recombinant
insulin and its production in Escherichia coli in the 1980s [1], a multi-billion dollar market
was launched, leading to current large-scale applications that are nowadays capable of
releasing products ranging from protein biologics to industrial enzymes [2]. Ideally, the
practical steps that lead to recombinant protein production are pretty straightforward and
include the identification of the gene of interest, its cloning into an expression vector, its
transformation into the host of choice, the induction of protein synthesis and its final pu-
rification and characterisation [3]. The intrinsic complexity of biological systems, however,
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usually poses problems down the pipeline of bacterial heterologous protein production.
Indeed, as a consequence of the induction of the production of the foreign protein, the
biochemistry and physiology of the host may be dramatically altered. The numerous
physiological changes that may occur often lower the amount of the target foreign protein
that is produced and eventually recovered from the recombinant organism [4]. In bacteria,
high levels of recombinant protein production frequently lead to an impact on host cell
metabolism; this is usually detectable through growth retardation and is generally known
as ‘metabolic burden’ [5]. This additional metabolic load on the microbial chassis has
been defined as the portion of a host cell’s resources—either in the form of energy, such
as ATP or GTP, or raw materials, such as amino acids—that is required to maintain and
express foreign DNA, as either RNA or protein, in the cell [4]. In E. coli, for example, the
overexpression of an unnecessary protein results in a linear decrease in the growth rate,
with the zero-growth limit occurring when the overexpressed protein occupies a mass
fraction equal to 1-φ f ixed, with φ f ixed representing the growth-rate invariant fraction of the
proteome [6]. There are many factors contributing to the emergence of this burden on
growing cells that, at the same time, express a heterologous protein. These mainly include
the transcription, translation and folding of the foreign protein [5,7,8] and the processes
associated with plasmid maintenance, expression and amplification [7,8]. In addition,
the expression of recombinant proteins may induce a system-level stress response that
downregulates key metabolic pathway genes, leading to a decline in cellular health and
feedback inhibition of both growth and protein expression [9]. Finally, from an energetic
perspective, the expression of a foreign protein in a cell may use a significant fraction of
its metabolic resources and precursors, removing them away from its central metabolism
and placing a metabolic drain on the host [4]. Thus, upon protein production induction,
an overall cellular reprogramming has to occur in order to ensure an adequate supply of
energy and charged amino acids to the process of protein synthesis [9]. The identification
of these system-level adjustments following heterologous protein production requires the
use of computational representations of microbial metabolism that are able to consider
the entire cellular metabolic network. In addition, these computational models may help
identify the most suitable approaches to getting to target (protein) overproduction. Indeed,
it has been recently acknowledged that the most innovative approach currently available to
improving the yield of recombinant proteins, while minimising wet-lab costs, relies on the
combination of in silico studies to reduce the experimental search space [10]. Among all the
available in silico approaches, genome-scale metabolic models (GEMs) offer the possibility
to predict a cellular phenotype from a genotype under certain environmental conditions
and, importantly, to identify possible metabolic targets to improve the production of valu-
able compounds, while ensuring sufficiently high growth rates [11–13]. GEMs can also be
used for descriptive purposes, including the identification of specific metabolic rewiring
strategies following external perturbations and/or a nutrient switch [14,15]. Thus, not
surprisingly, GEMs have been extensively exploited in the context of recombinant protein
production, mostly with the aim of optimising either the cultivation conditions or the strain
genetic background for improved recombinant protein production [16–18].

Although E. coli is arguably the bacterium of choice for the production of recombinant
proteins, the emergence of a novel bacterial chassis is an important fact, especially consid-
ering the possible unique properties of their physiology and metabolism and the practical
applications in which they are expected to outperform other microbial platforms [19].
Among them, Pseudoalteromonas haloplanktis TAC125 (PhTAC125), the first Antarctic bac-
terium in which an efficient gene expression technology was established [20], is particularly
promising for a number of reasons. Firstly, several generations of cold-adapted gene ex-
pression vectors allow one to produce recombinant proteins either by constitutive or by
inducible systems and to address the product towards any cell compartment or to the extra-
cellular medium. Secondly, the development of synthetic media and efficient fermentation
schemes allows upscaling the recombinant protein production in automatic bioreactors.
Finally, the recently reported possibility to produce proteins within a range of tempera-
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ture from 15 to −2.5 ◦C enhances the chances to improve the conformational quality and
solubility of recombinant proteins. Up to now, PhTAC125 has been used for the produc-
tion of several recombinant proteins, such as a psychrophilic β-galactosidase, S. cerevisiae
α-glucosidase, human nerve growth factor and the lysosomal enzyme α-galactosidase
A (hGLA) [21–23].

Recently, PhTAC125 was found to be a potential chassis for the production of hu-
man CDKL5 (hCDKL5). hCDKL5 is a cyclin-dependent-like protein kinase abundantly
expressed in the brain, and it exerts its function in different neuron districts, such as the
nucleus, the cytoplasm and the synaptosome. Mutations in the X-linked cdkl5 gene often
end up in the enzyme absence or in the production of loss-of-function variants, and both
conditions are causative of hCDKL5 deficiency disorder (CDD), a rare and severe neurode-
velopmental disorder for which no cure is available [24]. Recently, a protein replacement
therapy was suggested, consisting of the administration of protein transduction domain
(TAT)-fused hCDKL5 (TAT-CDKL5). When injected in cdkl5-knockout mice, TAT-CDKL5
was able to rescue many anatomical and behavioural deficits [25]. The translation of this
promising therapeutic approach to clinics needs the large-scale recombinant production of
TAT-CDKL5. However, full-length human CDKL5 is a difficult-to-produce enzyme for two
main reasons:

(i) Almost two-thirds of its sequence is predicted to be intrinsically disordered, and the
lack of a precise 3D structure makes this region more susceptible to proteolytic attack
by host-encoded proteases.

(ii) The cytoplasmic accumulation of the enzyme in eukaryotic cells is associated to
considerable toxicity, and the only permissive production strategy is its extracellular
secretion, often accompanied with unwanted glycosylation [26]. PhTAC125 is the only
prokaryotic cell factory in which full-length hCDKL5 production has been demon-
strated, and the implementation of its efficient production process is the obligatory
step towards any possible application (Calvanese et al., 2021, in press).

In this work, we modelled the heterologous production of the hCDKL5 protein in the
bacterium PhTAC125. The genome-scale model of the recombinant strain was based on its
original formulation [27] and further refined/updated and constrained with experimental
data on hCDKL5 production and substrate consumption. This recombinant model was then
used to study the global metabolic consequences of the induction of hCDKL5 production
as well to identify potential targets for its overproduction.

2. Results and Discussion
2.1. An Updated Metabolic Reconstruction of PhTAC125

The latest version of the iMF721 metabolic model of P. haloplanktis TAC125 [27] was
updated to be compatible with the current Systems Biology Markup Language Level 3
Version 2 Core specification [28] extended with the Flux Balance Constraints version 2
package specification [29]. The update was conducted using the libsbml Python library.
It covered appropriate objective function declaration, compartment redefinition, model
definition annotation with SBO terms, extension of species definitions with chemical
formulas, update of gene names with the newest version of the P. haloplanktis genome
and various minor syntax changes. The update increased the iMF721 Memote Total Score
from 30% to 78% (Memote reports are available at https://github.com/mdziurzynski/
tac125-metabolic-model, accessed on 16 July 2021). Additionally, we used BOFdat [30]
to revise the original definition of the biomass composition in iMF721 using available
experimental data. We also used the revised genome sequence of P. haloplanktis [31] and a
compendium of transcriptomics data from previously published works [32] to improve
the formulation of the biomass assembly reaction originally proposed [27]. After updating
the model, we checked whether it could quantitatively reproduce growth phenotypes,
as done by the original metabolic reconstruction. Growth simulations on defined media
revealed an overall accuracy that matched the one of the original iMF721 reconstruction
(Supplementary Material, Figure S1). This updated version of the model was referred to as

https://github.com/mdziurzynski/tac125-metabolic-model
https://github.com/mdziurzynski/tac125-metabolic-model
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iMF721_v2 in subsequent sections and is available at https://github.com/mfondi/CDKL5
_recombinant_production, accessed on 16 July 2021.

2.2. CDKL5 Production in Controlled Growth Conditions

Human CDKL5 was recombinantly expressed as an N-terminally His-tagged engi-
neered construct to allow for easy Western blot detection and quantification. Its gene
was expressed under the control of an IPTG-regulatable promoter [33] cloned in a high-
copy-number plasmid, named pB40_79C-CDKL5 (average copy number equal to 100,
manuscript in preparation), in a mutant version of PhTAC125-KrPl LacY+ capable of fast
IPTG internalisation [33]. hCDKL5 synthesis was induced in the late exponential phase
with 5 mM IPTG at 15 ◦C in bacteria grown in GG medium [34] for 8 h. Total production
of the target protein was estimated to be 5.2 mg/L of the culture by Western blot using a
commercial His-tagged calibrator with a similar MW as hCDKL5.

2.3. Estimation of Average hCDKL5 Production Flux and Nutrients Uptake Rates

Here, we computed the actual (average) production and growth rates from the experi-
mental data. As for hCDKL5 (molecular weight 128,082.77 mg mmol−1), after 8 h, a total
amount of 5.2 mg (for 1 L of culture) was obtained. After the same amount of time, the
OD of the culture was measured to be 2.55, which, when multiplied by 0.74 (i.e., the factor
for converting PhTAC125 OD to grams of biomass [34]), corresponds to 1.887 g of cell dry
weight (CDW). Putting everything together, we can compute the average production flux
of hCDKL5 as follows:

[(5.2 mg/8 h)/128,082.77 mg mmol−1]/1.887 gCDW = 2.7 × 10−6 mmol/gCDW h−1

The average growth rate for the recombinant strain across the 8 h period was computed
using initial and final OD values:

(ln2.55 − ln0.94) ÷ 8 = 0.125 h−1

The same calculation led to an average growth rate of 0.169 h−1 for the WT strain.
According to these data, the production of hCDKL5 imposes an overall burden on growing
PhTAC125 cells, which leads to a 26% reduction in biomass production in the hCDKL5
strain (Figure 1A).

Metabolites 2021, 11, 491 4 of 16 
 

 

checked whether it could quantitatively reproduce growth phenotypes, as done by the 

original metabolic reconstruction. Growth simulations on defined media revealed an 

overall accuracy that matched the one of the original iMF721 reconstruction (Supplemen-

tary Material, Figure S1). This updated version of the model was referred to as iMF721_v2 

in subsequent sections and is available at https://github.com/mfondi/CDKL5_recombi-

nant_production. 

2.2. CDKL5 Production in Controlled Growth Conditions 

Human CDKL5 was recombinantly expressed as an N-terminally His-tagged engi-

neered construct to allow for easy Western blot detection and quantification. Its gene was 

expressed under the control of an IPTG-regulatable promoter [33] cloned in a high-copy-

number plasmid, named pB40_79C-CDKL5 (average copy number equal to 100, manu-

script in preparation), in a mutant version of PhTAC125-KrPl LacY+ capable of fast IPTG 

internalisation [33]. hCDKL5 synthesis was induced in the late exponential phase with 5 

mM IPTG at 15 °C in bacteria grown in GG medium [34] for 8 h. Total production of the 

target protein was estimated to be 5.2 mg/l of the culture by Western blot using a com-

mercial His-tagged calibrator with a similar MW as hCDKL5. 

2.3. Estimation of Average hCDKL5 Production Flux and Nutrients Uptake Rates 

Here, we computed the actual (average) production and growth rates from the ex-

perimental data. As for hCDKL5 (molecular weight 128,082.77 mg mmol−1), after 8 h, a 

total amount of 5.2 mg (for 1 l of culture) was obtained. After the same amount of time, 

the OD of the culture was measured to be 2.55, which, when multiplied by 0.74 (i.e., the 

factor for converting PhTAC125 OD to grams of biomass [34]), corresponds to 1.887 g of 

cell dry weight (CDW). Putting everything together, we can compute the average produc-

tion flux of hCDKL5 as follows: 

[(5.2 mg/8 h)/128,082.77 mg mmol−1]/1.887 gCDW = 2.7 × 10−6 mmol/gCDW h−1  

The average growth rate for the recombinant strain across the 8 h period was com-

puted using initial and final OD values: 

(ln2.55 − ln0.94) ÷ 8 = 0.125 h−1  

The same calculation led to an average growth rate of 0.169 h−1 for the WT strain. 

According to these data, the production of hCDKL5 imposes an overall burden on grow-

ing PhTAC125 cells, which leads to a 26% reduction in biomass production in the hCDKL5 

strain (Figure 1A). 

 

Figure 1. (A) Growth curves of WT and hCDKL5 strains, as experimentally determined. (B) Com-

parison between the model-predicted and measured growth rates in the wild-type strain. (C) Com-

parison between the measured hCDKL5 production rate in the recombinant strain and the one pre-

dicted by the model. (D) Production enveloper for hCDKL5. 

At this point, the only parameters that are missing to fully characterise the CDKL5 

production dynamics are the uptake rates for glutamate and gluconate when they repre-

sent the only C sources on a minimal medium. To calculate these, we set up an ad hoc 

Figure 1. (A) Growth curves of WT and hCDKL5 strains, as experimentally determined. (B) Compari-
son between the model-predicted and measured growth rates in the wild-type strain. (C) Comparison
between the measured hCDKL5 production rate in the recombinant strain and the one predicted by
the model. (D) Production enveloper for hCDKL5.

At this point, the only parameters that are missing to fully characterise the CDKL5
production dynamics are the uptake rates for glutamate and gluconate when they represent
the only C sources on a minimal medium. To calculate these, we set up an ad hoc experi-
ment (see Section 3 (Materials and Methods) and Supplementary Material) that revealed
an uptake rate of 0.35 and 0.66 mmol/gCDW h−1 for glutamate and gluconate, respectively.

https://github.com/mfondi/CDKL5_recombinant_production
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2.4. Recombinant Model Construction to Account for hCDKL5 Production

We then extended iMF721_v2 to include heterologous hCDKL5 production (leading to
iMF721_v2_CDKL5 reconstruction (see Supplementary Material, Figure S3). The processes
taken into account are (i) synthesis of the pB40 plasmid and (ii) synthesis of hCDKL5
mRNA and its translation into the corresponding protein sequence. As hCDKL5 is not
secreted by PhTAC125, no energy-dependent hCDKL5 secretion reaction was added to
the model. A plasmid copy number (Pcn) of 100 was used for pB40 because the latter is a
high-copy-number plasmid. The reaction included in the metabolic network of PhTAC125
representing the synthesis of pB40 is the following:

21H20 + 21ATP + 57dATP + 43dGTP + 43dCTP + 57dTTP -> pB40 + 21ADP + 21Pi + 21H

The stoichiometric coefficients for dATP, dGTP, dCTP and dTTP were determined ac-
cording to the GC composition of the pB40 plasmid. The ATP requirement for the synthesis
of the pB40 plasmid was estimated based on the amount of ATP required for the synthesis
of the chromosomal DNA, as previously described [16,18]. The obtained value (0.21) was
multiplied by 100, the estimated copy number of pB40. Finally, pB40 was included in the
biomass reaction of the model to account for the burden of the plasmid on the overall
physiology of the cell. The stoichiometric coefficient of pB40 was again derived from
the stoichiometric coefficient of chromosomal DNA in the biomass assembly reaction of
iMF721_v2. This was done using the following proportion: 3850,272:0.001608 = 8166:100X,
where the first, second, third and fourth terms represent the size (in bp) of the PhTAC125
genome, the stoichiometric coefficient for DNA in the original formulation of the PhTAC125
biomass reaction, the length of the pB40 plasmid and the (unknown) actual stoichiometric
coefficient for the 100 copies of the plasmid, respectively. This calculation led to a stoichio-
metric coefficient for pB40 of 0.000341. Concerning the reaction for hCDKL5 synthesis, this
was formalised as follows:

59Ala[c] + 6 Cys[c] + 63 Asp[c] + 76 Glu[c] + 32 Phe[c] + 72 Gly[c] + 49 His[c] + 39 Ile[c] + 84 Lys[c] + 101
Leu[c] + 20 Met[c] + 59 Asn[c] + 80 Pro[c] + 53 Gln[c] + 76 Arg[c] + 140 Ser[c] + 56 Thr[c] + 41 Val[c] + 6

Trp[c] + 32 Tyr[c] + 2288 atp[c] + 2286 gtp[c] -> cdkl5[c] + 2288 amp[c] + 2286 gdp[c] + 4574 Pi[c]’,

where the stoichiometric coefficients for the amino acids were based on the composition of
the protein sequence and the amount of ATP was computed considering the requirement
of four ATP molecules for each amino acid added to the protein [35]. As said above, since
hCDKL5 is not exported from the cell in vivo, no active transport reaction was included in
the model.

At this point, we constrained this iMF721_v2_CDKL5 reconstruction with experimen-
tal data to build two further models, i.e., a wt model and a recombinant model (named
recomb for brevity). More specifically, we constructed:

1. A wt model by constraining the iMF721_v2_CDKL5 reconstruction with
glutamate/gluconate uptake rates to the values experimentally determined and
setting the biomass assembly reaction as the BOF of the model

2. A recomb model by constraining the iMF721_v2_CDKL5 reconstruction with gluta-
mate/gluconate uptake and growth rates to the values experimentally determined
and setting the hCDKL5 production reaction as the BOF of the model

These two models were used for all the simulations described below. The schematic
representation of the computational steps leading to the two models is reported in
(Supplementary Material, Figure S3).

2.5. The PhTAC125 Recomb Model Accurately Simulates hCDKL5 Production

To account for the predictive capability of PhTAC125 reconstruction in the context of
hCDKL5 production, we computed growth and hCDKL5 production rates in the wt and
recomb models.
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As said above, the wt model was obtained by setting the lower bound of glutamate and
gluconate uptake reactions to 0.35 and 0.66 mmol/gCDW h−1, respectively, and performing
an FBA simulation using biomass production as the objective function. This wt model
predicted a growth rate of 0.119 h−1, which closely resembles the one experimentally
measured (Figure 1B, “WT”). Afterwards, to generate the recomb model, we maintained the
same boundaries for the glutamate and gluconate reactions and constrained the growth
rate to 74% of the optimal one predicted by the model (74% of 0.119 h−1) and optimised
for hCDKL5 production (Figure 1A). The simulations using this recomb model returned a
hCDKL5 production flux of 2.67× 10−6 mmol/g DCW h−1, which accurately resembles the
one measured experimentally (2.7 × 10−6 mmol/g DCW h−1) (Figure 1C). A production
envelope analysis correctly revealed that hCDKL5 production and biomass production
compete for a common pool of nutrients and allowed us to sketch the current trade-off
between these two cellular objectives (Figure 1D).

These data indicate that when constrained with experimental data, the recomb model
is capable of providing a stoichiometrically reliable representation of hCDKL5 production
in PhTAC125.

2.6. PhTAC125 Metabolic Rewiring Following hCDKL5 Induction

To explore the extent of PhTAC125 metabolic network rewiring upon the induction
of hCDKL5 synthesis, we then analysed the differences in flux distributions between wt
and recomb models. As expected, running an FBA simulation on the two models, we found
a different number of flux-carrying reactions, with the recomb model showing a higher
number of core reactions (491 vs. 484). However, since an FBA solution may not be unique
(i.e., alternative flux distributions may still lead to an equally optimal solution), we used
flux variability analysis (FVA) to assess the set of core reactions in each of the simulations
(see Materials and Methods). A set of 84 core reactions was shared by the wt and recomb
models. This set of reactions represented 74% and 97%, respectively, of the core reactions
of the two models (i.e., the set of reactions remaining after removing the set of reactions
showing a large variability range). Within this set, we identified 12 reactions (11 of them
were gene encoded) shared by both models but that showed an increased flux in the
recomb vs. the wt model (Table 1). The 11 gene-encoded reactions included the reactions
involved in histidine biosynthesis and an ammonia transporter. The histidine biosynthetic
reactions covered the entire pathway, i.e., from 5-phosphoribosyl 1-pyrophosphate (PRPP)
to histidine. The higher flux predicted in the histidine biosynthetic pathway of the recomb
model vs. the wt model can be explained by the different amino acid composition of
recombinant protein with respect to the native PhTAC125 proteome (Figure 2). Indeed,
as the abundance of this amino acid is double in hCDKL5 with respect to the PhTAC125
proteome, precursors used to produce histidine in the recomb model will be drained faster
than in the wt model and fluxes around those precursors are expected to be significantly
altered [36].

Table 1. Reactions showing an increased flux in the recomb vs. wt model simulations.

Reaction Model Code Subsystem Reaction Name

rxn00789 Histidine metabolism 1-(5-Phospho-D-ribosyl)-ATP:pyrophosphate
phosphoribosyl-transferase

rxn00863 Histidine metabolism L-histidinal:NAD + oxidoreductase
rxn02159 Histidine metabolism L-histidinol:NAD + oxidoreductase
rxn02160 Histidine metabolism L-histidinol-phosphate phosphohydrolase
rxn02320 Histidine metabolism 5-Amino-2-oxopentanoate:2-oxoglutarate aminotransferase
rxn02473 Histidine metabolism D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate hydrolyase
rxn02834 Histidine metabolism Phosphoribosyl-ATP pyrophosphohydrolase
rxn02835 Histidine metabolism 1-(5-Phospho-D-ribosyl)-AMP 1,6-hydrolase
rxn03135 Histidine metabolism Imidazole-glycerol-3-phosphate synthase
rxn03175 Histidine metabolism N-(5′-phospho-D-ribosylformimino)-5-amino-1-
rxn05466 Ammonia transport Ammonia transport via diffusion
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2.7. Finding the Optimal Growth Medium

We then sought to identify potential carbon sources whose inclusion in the original,
optimised medium could boost the production of hCDKL5. To this purpose, we selected all
the transport reactions present in the iMF721_v2 metabolic reconstruction and created a list
including the transported compounds. We considered PhTAC125 as capable of taking up
these compounds inside the cell because its genome encodes the corresponding transporters.
We then performed one simulation for each of these compounds, adding it to the defined
medium used during the previous simulations (Schatz salts plus glutamate and gluconate;
see Materials and Methods), constraining the growth rate to the experimentally determined
value and using hCDKL5 production as the objective function. In these simulations, the
uptake rate of the extra carbon source was arbitrarily set to 0.5 mmol/gCDW h−1. We
then estimated the effect of the amended carbon source by computing the ratio between
the hCDKL5 production flux in the new carbon source and the original one (i.e., with no
amendments) and selected the first 30 compounds in the list (Figure 3).
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The three most promising compounds identified in our analysis were amylotriose,
maltose and mannitol. The first catabolic steps of these three compounds led to the forma-
tion of D-glucose (amylotriose and maltose) or D-fructose in PhTAC125, thus suggesting
that the strengthening of sugar metabolism might the primary effect of adding these com-
pounds to the growth medium of the recombinant strain and one of the possible ways to
increase hCDKL5 production. To better address this point, we further investigated which
part of the PhTAC125 metabolic network is specifically affected by the amendment of
the best-performing nutrients to the growth medium. We thus checked which reactions
increased their flux in the recombinant model growing in GG medium plus amylotriose
compared to the same model grown in simple GG medium (Table 2). This list of reactions
was filtered by removing those (non-core) reactions showing more than 30% variation
between their minimum and maximum fluxes during an FVA, as described in Materi-
als and Methods. Overall, we found 15 gene-encoded reactions displaying an increased
flux in this condition: the majority of them (11) were involved in histidine biosynthesis;
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3 in phenylalanine, tyrosine and tryptophan biosynthesis; and 1 in riboflavin metabolism.
We found a similar scenario (i.e., the same involved pathways) for the other top four
nutrients (maltose, mannitol, thymidine and galactose), with a majority of histidine and
phenylalanine metabolism-related enzymes displaying an increased flux in the amended
medium. Additional pathways that might be affected by these nutrients include nicotinate
and nicotinamide metabolism (found when simulating the amendment of thymidine) and
galactose metabolism (found when simulating the amendment of galactose).

Table 2. Reactions showing an increased flux in the recomb model growing in GG medium amended with amylotriose.

Reaction Model Code Subsystem Reaction Name

rxn05466 Ammonium transporter Ammonia transport via diffusion
rxn02160 Histidine metabolism L-histidinol-phosphate phosphohydrolase
rxn00863 Histidine metabolism L-histidinal:NAD + oxidoreductase
rxn02159 Histidine metabolism L-histidinol:NAD + oxidoreductase
rxn02834 Histidine metabolism Phosphoribosyl-ATP pyrophosphohydrolase
rxn03175 Histidine metabolism N-(5′-phospho-D-ribosylformimino)-5-amino-1-
rxn02473 Histidine metabolism D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate hydro-lyase

rxn02508 Phenylalanine, tyrosine and
tryptophan biosynthesis N-(5-phospho-beta-D-ribosyl)anthranilate ketol-isomerase

rxn02320 Histidine metabolism 5-Amino-2-oxopentanoate:2-oxoglutarate aminotransferase

rxn02507 Phenylalanine, tyrosine and
tryptophan biosynthesis 1-(2-Carboxyphenylamino)-1-deoxy-D-ribulose-5-phosphate

rxn00789 Histidine metabolism 1-(5-Phospho-D-ribosyl)-ATP:pyrophosphate
phosphoribosyl-transferase

rxn03135 Histidine metabolism Imidazole-glycerol-3-phosphate synthase

rxn00791 Phenylalanine, tyrosine and
tryptophan biosynthesis N-(5-phospho-D-ribosyl)anthranilate:pyrophosphate

rxn02835 Histidine metabolism 1-(5-Phospho-D-ribosyl)-AMP 1,6-hydrolase
rxn00392 Riboflavin metabolism ATP:riboflavin 5′-phosphotransferase

Taken together, these results suggest that the main effect of adding extra nutrients
to the medium would be an increased availability of histidine molecules inside the cell,
which, in turn, would result in an improved production rate of hCDKL5. Again, this can
be explained by the different histidine content of the overall PhTAC125 proteome and of
the hCDKL5 sequence (Figure 2). The enzymes involved in phenylalanine, tyrosine and
tryptophan biosynthesis that appear to increase their flux in the tested conditions include
those responsible for the generation of 5-phospho-alpha-D-ribose 1-diphosphate (PRPP),
which is a key pentose phosphate pathway (PPP) intermediate for purine, pyrimidine
and histidine biosynthesis. Its connection to increased hCDKL5 production might thus be
double: on the one side, it could fuel histidine biosynthesis for the reasons described above;
on the other side, it could facilitate the synthesis of purines and pyrimidines required by
plasmid replication and transcription during heterologous protein expression.

2.8. Finding Hypothetical Targets for hCDKL5 Overproduction

We then used the model to predict possible targets to improve the production of
hCDKL5 in P. haloplanktis TAC125. We focused our attention on the use of the well-
established FSEOF algorithm [37]. Briefly, FSEOF scans all the fluxes in the reconstruction
and identifies the increasing ones when the flux towards product formation is set (enforced)
as a further constraint during FBA. The reactions identified by FSEOF are primary overex-
pression targets that may lead to improved synthesis of the desired target (hCDKL5 in our
case). By applying FSEOF, as described in Materials and Methods, we identified 70 target
gene-encoded reactions whose overexpression may lead to improved target production.
The complete list of these reactions is available in Supplementary Material. The top 10
target reactions identified by FSEOF are shown in Table 3. The first reaction in the list is
represented by rxn05937, catalysing the formation of NADPH from NADP and reduced
ferredoxin. Forcing the flux through this reaction would allow increasing the overall
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NADPH pool of the cell, and this has been widely recognised as an important factor in
the process of heterologous protein production in microorganisms [38]. Reduced ferre-
doxin necessary for the production of NAPH might be provided by L-glutamateferredoxin
oxidoreductase (Table 3), catalysing the conversion of L-glutamate to L-glutamine with
the reduction of ferredoxin. Reactions belonging to the Entner–Doudoroff (ED) branch
of the PPP are also high-ranking overexpression targets according to FSEOF (Table 3,
Figure 4A). These include the three enzymes catalysing the conversion to D-glucono-1,5-
lactone 6-phosphate to pyruvate and D-glyceraldehyde 3-phosphate (encoded by agaI,
edd and eda). Overall, the degradation of one molecule of glucose through this pathway,
as opposed to classical PPP leading to ribose-5P, leads to lower amounts of reducing
equivalents (one NADPH produced instead of two) but ensures a greater and balanced
production of precursors (namely pyruvate and glyceraldehyde-3P (G3P)) that can be used
both to fuel the TCA cycle and for amino acid biosynthesis [39]. Indeed, it is known that
the ED pathway, as a variant glycolysis pathway, produces equal amounts of G3P and
pyruvate, and this superior stoichiometric feature makes the ED pathway a preferable
route for precursor supply [40]. Importantly, targets within these metabolic pathways
(i.e., ED and PPP in general) have been identified in other works aimed at identified
optimisation production strategies [18,19,39,41]. Most of the other reactions identified
by the FSEOF algorithm are involved in the metabolism of amino acids. In particular,
our simulations suggest that the production of hCDKL5 might be improved by redi-
recting the catabolism of glutamate towards the production of aspartate (through the
action of L-aspartate-2-oxoglutarate aminotransferase) and its subsequent conversion to
4-phospho-L-aspartate and L-aspartate-4-semialdehyde (Figure 4B), catalysed by ATPL-
aspartate-4-phosphotransferase and L-aspartate-4-semialdehyde: NADP + oxidoreductase,
respectively. L-aspartate-4-semialdehyde, in particular, serves as a substrate for the biosyn-
thesis of many amino acids, including lysine, threonine and glycine (Figure 4B). Finally, our
FSEOF simulation identified the enzyme serine O-acetyltransferase (catalysing the forma-
tion of serine from CoA and O-acetyl-L-serine) as a likely hCDKL5 overproduction target.
Looking at the unbalanced distribution of S residues in the sequence of hCDKL5 with
respect to the one of the PhTAC125 genome (Figure 2), it can be hypothesised that the mean-
ing of this latter finding resides in the necessity to increase the production of serine to cope
with the higher request of this amino acid following the induction of CDKL5 production.

Table 3. Top 10 reaction targets predicted by the FSEOF algorithm.

Reaction Model
Code Subsystem Reaction Name Formula

rxn05937 NA Ferredoxin:NADP+
oxidoreductase

NADP + H+ + reduced ferredoxin => NADPH +
oxidised ferredoxin

rxn12822
Glyoxylate and
dicarboxylate
metabolism

L-glutamateferredoxin
oxidoreductase

(transaminating)

2 L-glutamate + 2 oxidised ferredoxin => 2-oxoglutarate
+ L-glutamine + 2 H+ + 2 reduced ferredoxin

rxn01477 PPP 6-Phospho-D-gluconate
hydro-lyase (edd)

6-Phospho-D-gluconate => H2O +
2-keto-3-deoxy-6-phosphogluconate

rxn03884 PPP

2-Dehydro-3-deoxy-D-
gluconate-6-phosphate

D-glyceraldehyde-3-
phosphate-lyase

(eda)

2-Keto-3-deoxy-6-phosphogluconate => pyruvate +
glyceraldehyde-3-phosphate

rxn01476 PPP
6-Phospho-D-glucono-

1,5-lactone
lactonohydrolase (AgaI)

H2O + 6-phospho-D-glucono-1-5-lactone => H+ +
6-phospho-D-gluconate
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Table 3. Cont.

Reaction Model
Code Subsystem Reaction Name Formula

rxn00260 Alanine, aspartate and
glutamate metabolism

L-aspartate2-
oxoglutarate

aminotransferase

2-Oxoglutarate + L-aspartate <= L-glutamate +
oxaloacetate

rxn00337 Glycine, serine and
threonine metabolism

ATPL-aspartate
4-phosphotransferase ATP + L-aspartate => ADP + 4-phospho-L-aspartate

rxn01643

Glycine, serine and
threonine-cysteine and

methionine-lysine
metabolism

L-aspartate-4-
semialdehyde:NADP+

oxidoreductase
(phosphorylating)

NADP + phosphate + L-aspartate-4-semialdehyde <=
NADPH + 4-phospho-L-aspartate

rxn00285 Citrate cycle (TCA
cycle)

Succinate-CoA ligase
(ADP forming)

ATP + CoA + succinate => ADP + phosphate +
succinyl-CoA

rxn00423
Cysteine and
methionine
metabolism

Serine
O-acetyltransferase Acetyl-CoA + L-serine <= CoA + O-acetyl-L-serine
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Further, to provide a general view of the reactions identified as potential overex-
pression targets by FSEOF, we grouped them according to their corresponding metabolic
pathway (Figure 4C). In line with the results illustrated above, 6 pathways (out of 10
with more than two reactions included) were representatives of amino acid metabolism,
with 4 of them appearing in the top five pathways (i.e., Val/Leu/Ile, Phe/Tyr/Trp and
Lys biosynthesis and His metabolism). In addition to amino acid metabolism, the other
pathways represented were urea and amino group metabolism, glycolysis, the PPP and
purine metabolism.

3. Materials and Methods
3.1. Bacterial Strains and Conjugation Experiments

The pB40_79C-CDKL5 plasmid was mobilised from E. coli S17-1(λpir) to KrPL LacY+ [33]
through standard conjugation techniques [41]. E. coli S17-1(λpir)—a strain possessing
mob and tra genes for plasmid mobilisation [42]—was routinely grown in LB (10 g/L of
bacto-tryptone, 5 g/L of yeast extract, 10 g/L of NaCl) at 37 ◦C with the supplementa-
tion of 34 µg/mL of chloramphenicol, if needed, for plasmid selection. KrPL LacY+, a
P. haloplanktis TAC125 strain engineered for improved IPTG uptake [33], was grown at
15 ◦C in TYP (16 g/L of bacto-tryptone, 16 g/L of yeast extract, 10 g/L of NaCl) for conju-
gational experiments and initial pre-inocula. Recombinant KrPL LacY+ was selected with
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25 and 12.5 µg/mL of chloramphenicol in liquid and solid media, respectively. Solid LB
and TYP broths were prepared by the addition of 15 g/L of agar.

3.2. hCDKL5 Production

The pB40_79C-CDKL5 plasmid allows the IPTG-inducible expression of a PhTAC125
codon optimised gene coding for an engineered variant of human CDKL5 isoform 1. The
translated protein possesses tandem His-Sumo [43] and Tatk [25,44] N-terminal tags and a
C-terminal 3xflag. The whole 1144 aa sequence was expressed as a cytosolic protein from
the pB40 plasmid, which is characterised by an average copy number of 100 (manuscript
in preparation). For recombinant gene expression, KrPL LacY+ was cultivated at 15 ◦C in
a 100 mL Erlenmeyer flask containing 20 mL of GG medium [34]: 10 g/L of L-glutamic
acid monosodium salt monohydrate, 10 g/L of gluconic acid sodium salt, 10 g/L of NaCl,
1 g/L of NH4NO3, 1 g/L of KH2PO4, 0.2 g/L of MgSO4·7H2O, 5 mg/L of FeSO4·7H2O
and 5 mg/L of CaCl2 2H2O (pH 7.8). After inoculating at 0.10 OD600, bacterial growth
was followed for 13 h and the recombinant gene expression triggered at 1.00 OD600 with
5 mM IPTG. Eight hours after induction, the bacterial cells were harvested by centrifu-
gation (4 ◦C, 4000× g, 20 min) when they reached 2.55 OD600. To check and estimate
hCDKL5 intracellular production at the end of the culture, bacterial pellets equivalent
to 1.00 OD600 were resuspended in 60 µL of Laemmli Buffer 4× and denatured at 90 ◦C
for 20 min. Denatured cellular extracts equivalent to 1/120 OD600 were loaded onto a
7.5% precast Mini-Protean TGX (BioRad Laboratories, Hercules, CA, USA) and resolved by
SDS-PAGE. Known amounts of His-Neuropilin (110 kDa; Immunological Sciences, Rome,
Italy) were loaded onto adjacent lanes to develop a calibration curve. Then, separated
proteins were transferred to a PVDF membrane using a semi-dry system, and His-tagged
proteins (hCDKL5 and His-Neuropilin) were detected with an HRP-conjugated anti-His an-
tibody (1:2000; Sigma-Aldrich) using the enhanced chemiluminescence (ECL) kit (BioRad,
Hercules, CA, USA) and a ChemiDoc MP Imaging System (BioRad, Hercules, CA, USA).
Quantitative analyses of blotted hCDKL5 and His-Neuropinilin were carried out using
Image Lab software (BioRad, Hercules, CA, USA), and the volumetric yield was derived
considering the final biomass concentration (OD600: 2.55).

3.3. Glutamate and Gluconate Consumption Experiment

PhTAC125 bacterial culture was grown in GG medium modified so to contain 5 g/L
of L-glutamic acid monosodium salt monohydrate and 5 g/L of D-gluconic acid sodium
salt in a stirred tank reactor with a 3 L fermenter (Applikon, Schiedam, The Netherlands)
with a working volume of 1.5 L. The bioreactor was equipped with standard pH, pO2, level
and temperature sensors for bioprocess monitoring. Culture was carried out at 15 ◦C for 30
h under aerobic conditions (45% dissolved oxygen). Next, 1 mL samples for metabolomic
analysis were collected during growth and centrifuged at 1300 rpm for 20 min at 4 ◦C.
After centrifugation, supernatants were recovered, filtered through membranes with a pore
diameter of 0.22 µm and stored at −80 ◦C.

3.4. Metabolomic Data

Metabolomic data on cell growth media were obtained by 1H nuclear magnetic reso-
nance (NMR) spectroscopy. The supernatant samples were thawed at room temperature.
Next, 540 µL of each sample was added with 60 µL of potassium phosphate buffer (1.5 M
K2HPO4, 100% (v/v) 2H2O, 10 mM sodium trimethylsilyl [2,2,3,3−2H4] propionate (TMSP),
pH 7.4). The mixture was transferred into 5 mm NMR tubes for subsequent analysis.

Spectral acquisition and processing were performed according to standard proce-
dures [45,46]. One-dimensional (1D) 1H NMR spectra were recorded using a Bruker
600 MHz spectrometer (Bruker BioSpin Gmbh, Rheinstetten, Germany) operating at
600.13 MHz proton Larmor frequency and equipped with a 5 mm PATXI 1H-13C-15N and
2H-decoupling probe, including a z-axis gradient coil, automatic tuning and matching and
an automatic and refrigerate sample changer (SampleJet, Bruker BioSpin Gmbh, Rhein-
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stetten, Germany). A BTO 2000 thermocouple served for temperature stabilisation at the
level of ~0.1 K at the samples. Before measurement, samples were kept for 5 min inside the
NMR probe head for temperature equilibration at 300 K.

NMR spectra were acquired with water peak suppression using the 1D standard
NOESY pulse sequence (128 scans, 65,536 data points, spectral width of 12,019 Hz, acquisi-
tion time of 2.7 s, relaxation delay of 4 s and mixing time of 0.01 s).

The raw data were multiplied by 0.3 Hz exponential line broadening before applying
Fourier transformation. Transformed spectra were automatically corrected for phase and
baseline distortions. All spectra were then calibrated to the reference signal of TMSP at
δ = 0.00 ppm using TopSpin 3.5 (Bruker BioSpin Gmbh, Rheinstetten, Germany).

The signals deriving from glutamate and gluconate were assigned using an internal
NMR spectral library of pure organic compounds; matching between the present NMR
spectra and the NMR spectral library was performed using AssureNMR software (Bruker
BioSpin Gmbh, Rheinstetten, Germany). Their concentrations were calculated by inte-
grating the corresponding signals in the defined spectral range using a home-made R
3.0.2 script.

3.5. PhTAC125 Genome-Scale Metabolic Reconstruction and Constraint-Based Simulations

The original P. haloplanktis TAC125 genome-scale metabolic reconstruction [27] was
used as the starting point of the modelling procedures. This metabolic reconstruction was
then updated and quality-checked, as described above, using BOFdat [30] (for the biomass
reaction) and Memote [47] (model consistency evaluation).

The recently published genome sequence of P. haloplanktis TAC125 [31] was fed into
BOFdat DNA.py script in order to generate the updated stoichiometric coefficients for As,
Ts, Cs, and Gs. Similarly, a compendium of expression (RNAseq) data from previously
published [32] datasets was fed into the BOFdat RNA.py code in order to generate revised
and experimentally based stoichiometric coefficients for RNA building blocks.

Constraint-based simulation (e.g., FBA) were performed using COBRA Toolbox
v3.0 [48] in MATLAB 2020b and using Gurobi as a solver. Overexpression targets were
identified using the latest FSEOF version implemented in Raven [49] and selecting 100 iter-
ations and a ratio coefficient of the optimal target reaction flux of 0.9. The codes used to
run all the simulations are available at https://github.com/mfondi/CDKL5_recombinant_
production, accessed on 26 July 2021.

3.6. Identification of Core Reactions

Flux variability analysis (FVA) was used to assess the relevance of each reaction when
simulating growth and hCDKL5 production. The fluxVariability function of the COBRA
toolbox was used for this purpose. The following procedure was applied (separately) to
both wt and recomb models. First, an FBA optimisation was run on the model to predict the
flux across each reaction. Afterwards, an FVA simulation with exactly the same constraints
as the previous FBA simulation was performed and the flux range for each reaction stored.
Then, for each of the two models, only those reactions satisfying the following criterion
were labelled as core reactions:
with solwt/recomb > 0:

fmin, FVA > 0.7 × solwt/recomb AND fmax, FVA < 1.3 × solwt/recomb

with solwt/recomb < 0:

fmax, FVA< 0.7 × solwt/recomb AND fmax, FVA >1.3 × solwt/recomb

with solwt, fmin, FVA and fmax, FVA representing the FBA solution, the lower FVA solution
value and the upper FVA solution value, respectively. According to this strategy, in each
simulation, only those (core) reactions displaying a flux value different from zero and

https://github.com/mfondi/CDKL5_recombinant_production
https://github.com/mfondi/CDKL5_recombinant_production
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with a narrow range of admissible flux (30%) during an FVA simulation were maintained,
whereas those not satisfying this condition were considered unreliable and filtered away.

4. Conclusions

In this work, we combined experimental and computational approaches to characteris-
ing the production of recombinant hCDKL5 in the Antarctic marine bacterium P. haloplanktis
TAC125. By constraining an updated genome-scale metabolic model of this bacterium with
experimentally determined nutrient absorption rates, we were able to predict hCDKL5
production rates that matched those determined experimentally and to correctly estimate
the burden (in terms of a reduction in biomass yield, about 25% compared to the wt strain)
of protein production in this bacterium. Next, we used the model to describe the metabolic
rewiring occurring in this bacterium upon the induction of hCDKL5 production and to
identify possible overproduction strategies (both in terms of amendments to the original
growth medium and in terms of overexpression targets). Despite the fact that each of
these analyses highlighted specific pathways and/or targets that appear to be strongly
connected to hCDKL5 production, common trends could be identified (e.g., the role played
by reactions belonging to histidine metabolism and to the PPP). Taken together, our find-
ings suggest that a possible future strategy for increasing the production of hCDKL5 in
PhTAC125 may involve the overexpression of the target genes identified by the FSEOF
algorithm and/or growth of the recombinant cells in media amended with one (or more)
of the compounds that our simulations identified as the most promising in increasing the
yield of the heterologous protein.

Work is currently in progress to experimentally verify both the hCDKL5 overproduc-
tion targets and the hypothetical amendments to the PhTAC125 growth medium capable
of increasing the protein yield in silico.
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