
materials

Article

A Hybrid Approach of ANFIS—Artificial Bee Colony
Algorithm for Intelligent Modeling and Optimization of
Plasma Arc Cutting on Monel™ 400 Alloy

Mahalingam Siva Kumar 1, Devaraj Rajamani 1,* , Emad Abouel Nasr 2 , Esakki Balasubramanian 1,
Hussein Mohamed 3,4 and Antonello Astarita 5

����������
�������

Citation: Siva Kumar, M.; Rajamani,

D.; Abouel Nasr, E.; Balasubramanian,

E.; Mohamed, H.; Astarita, A. A

Hybrid Approach of ANFIS—

Artificial Bee Colony Algorithm for

Intelligent Modeling and

Optimization of Plasma Arc Cutting

on Monel™ 400 Alloy. Materials 2021,

14, 6373. https://doi.org/10.3390/

ma14216373

Academic Editors: Jan Haubrich and

Shinichi Tashiro

Received: 2 September 2021

Accepted: 21 October 2021

Published: 25 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centre for Autonomous System Research, Department of Mechanical Engineering, Vel Tech Rangarajan Dr.
Sagunthala R&D Institute of Science and Technology, Chennai 600062, India;
drmsivakumar@veltech.edu.in (M.S.K.); esak.bala@gmail.com (E.B.)

2 Department of Industrial Engineering, College of Engineering, King Saud University,
Riyadh 11421, Saudi Arabia; eabdelghany@ksu.edu.sa

3 Department of Mechanical Engineering, Faculty of Engineering, Helwan University, Cairo 11732, Egypt;
hussein@h-eng.helwan.edu.eg

4 Department of Mechanical Engineering, Faculty of Engineering, Ahram Canadian University,
Giza 12566, Egypt

5 Department of Chemical, Materials, and Industrial Production Engineering, University of Naples Federico II,
80138 Naples, Italy; antonello.astarita@unina.it

* Correspondence: rajamanitamil1991@gmail.com

Abstract: This paper focusses on a hybrid approach based on genetic algorithm (GA) and an adaptive
neuro fuzzy inference system (ANFIS) for modeling the correlation between plasma arc cutting (PAC)
parameters and the response characteristics of machined Monel 400 alloy sheets. PAC experiments
are performed based on box-behnken design methodology by considering cutting speed, gas pressure,
arc current, and stand-off distance as input parameters, and surface roughness (Ra), kerf width (kw),
and micro hardness (mh) as response characteristics. GA is efficaciously utilized as the training
algorithm to optimize the ANFIS parameters. The training, testing errors, and statistical validation
parameter results indicated that the ANFIS learned by GA outperforms in the forecasting of PAC
responses compared with the results of multiple linear regression models. Besides that, to obtain the
optimal combination PAC parameters, multi-response optimization was performed using a trained
ANFIS network coupled with an artificial bee colony algorithm (ABC). The superlative responses,
such as Ra of 1.5387 µm, kw of 1.2034 mm, and mh of 176.08, are used to forecast the optimum cutting
conditions, such as a cutting speed of 2330.39 mm/min, gas pressure of 3.84 bar, arc current of 45 A,
and stand-off distance of 2.01 mm, respectively. Furthermore, the ABC predicted results are validated
by conducting confirmatory experiments, and it was found that the error between the predicted and
the actual results are lower than 6.38%, indicating the adoptability of the proposed ABC in optimizing
real-world complex machining processes.

Keywords: modeling; genetic algorithm; adaptive neuro-fuzzy inference system; optimization;
artificial bee colony algorithm; box-behnken design

1. Introduction

The current technological revolution has introduced several modern engineering
materials, such as alloys and composites, to replace traditional materials in a variety of
applications. Monel 400, a Nickel alloy subset, is one of the most widely used materials in
engineering and structural applications due to its unique properties, which include a higher
weight-to-strength ratio, improved corrosive resistance, and improved thermal proper-
ties [1]. A number of secondary processes, such as cutting, milling, drilling, trimming, and
so on, are required for effective utilization of these alloys in the aforementioned industries.
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Due to the increased toughness and lower thermal conductivity of Monel 400 alloys, pro-
ducing geometrically complex end-use parts using traditional machining processes is more
difficult, resulting in frequent tool damage and inferior surface quality [2].

Numerous research studies have recently focused on improving the quality and
performance characteristics of conventionally machined Monel 400 alloys by incorporating
various accompanying factors during the machining process [3–6]. Even though previous
research has significantly improved the performance of machined parts, achieving the
expected part quality for high-precision applications remains difficult. As a result, non-
traditional machining processes are required to overcome the shortcomings of traditional
machining techniques. For the processing of these difficult-to-machine materials, several
researchers have recently focused their attention on numerous non-traditional machining
processes such as laser beam machining, abrasive waterjet cutting, electrical discharge
machining, ultrasonic machining, and plasma arc cutting processes, etc. [7–10].

Among these non-traditional machining processes, plasma arc cutting (PAC) is a
far-reaching thermal energy-based machining technique commonly used for processing
diverse conductive materials to stringent design requirements and intricate geometrical
profiles with manifest automation, higher cutting speed, and reasonable cutting cost [11].
Despite its potential benefits, the realization of attractive cutting features such as improv-
ing the removal of substrate material, refining the kerf characteristics, and enhancing the
surface quality in PAC processed parts are tedious due to the existence of plentiful process
related control factors [12]. Due to the abundance of process parameters and complexity in
the PAC machining process, it is critical to develop the most precise mapping between the
output responses and input parameters for understanding process behavior, parametric
investigation, process simulation, and optimization [13]. It also presents an opportunity
to understand the shortcomings of the PAC process to attain the requirements of man-
ufacturing industries. In recent years, several researchers have focused on developing
comprehensive modeling techniques to predict the machining performance through con-
sidering diverse input parameters. Although different statistical approaches have been
proposed for modeling the machining processes, such as regression models [14], support
vector machines [15], and finite element models [16], soft computing techniques such as
fuzzy logic [17], artificial neural networks [18], and adaptive neuro-fuzzy inference system
(ANFIS) [19] are prominent in predicting the performance of machining processes because
of their progressive computational capability.

Modeling the advanced machining processes through statistical techniques are tedious
due to the existence of complexity and non-linearity in the machining processes, which
requires further assumptions and validations and mathematical procedures; this also
necessitates a significant amount of experiments. Therefore, these inadequacies restrict
the utilization of classical statistical models in real-world industrial applications [20]. On
the other hand, due to the capability of model-free estimation, nonlinear mapping, and
exceptional learning capability from the experimental data, soft computing techniques can
be successfully applied for the intelligent modeling of machining processes.

Several studies have previously attempted to use soft computing techniques such as
genetic programming, fuzzy logic, and artificial neural networks to correlate the relation-
ships between quality and performance characteristics, as well as the input parameters
of various machining processes. Fuzzy logic (FL) and artificial neural networks (ANN)
have the common ability to solve non-linear and complex engineering problems that are
combined with uncertainties and noise [21]. However, ANFIS is a hybrid approach derived
from the combinational merits of ANN and FL that includes the exceptional computational
capability and supervised learning ability of ANN and the expert knowledge of FL. Com-
bining ANN and fuzzy-set theory can provide benefits and overcome the drawbacks in
both techniques. The ANFIS model can be trained without the need for the expert knowl-
edge required for a fuzzy logic model. The ANFIS model benefits from both numerical
and linguistic knowledge. ANFIS also makes use of the ANN’s ability to classify data and
recognize patterns. The ANFIS model is more transparent to the user than the ANN model
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and causes fewer memorization errors. As a result, the ANFIS has several advantages,
including its adaptability, nonlinear capability, and rapid learning capacity [22]. Recently,
ANFIS has been extensively used for the accurate modeling of the input–output relation-
ships of conventional and non-conventional machining processes, such as drilling [23],
turning [24], milling [25], electrical discharge machining [26], laser machining [27], and
abrasive aqua jet cutting [28], etc., with a high degree of non-linearity. The performance
of the ANFIS predictive model is solely dependent on its training parameters (premise
and consequent parameters). The ANFIS training parameters that are often explored by
trial-and-error methods for non-linear and complex systems, such as advanced machining
processes, are tedious and time consuming [29]. In recent years, some researchers have con-
centrated on improving the learning capabilities of the ANFIS approach by integrating the
network with other intelligent tuning techniques. Song and Kasabov [30] have proposed a
transductive neuro-fuzzy inference system with weighted data normalization for creating
a personalized predictive model. They found that the proposed model can be efficiently
utilized for handling large datasets. Benmiloud [31] proposed an improved ANFIS frame-
work for solving non-linear functions. The result of the proposed approach was found
to be good, and the approach is well-suited for solving complex problems with minimal
error values. Furthermore, several researchers have focused on the classical models and
metaheuristic optimization algorithms to optimize the ANFIS training parameters. Because
classical approaches may have difficulty regarding local optimal values when training the
network, the prediction accuracy declines. However, derivative-free algorithms such as
genetic algorithm (GA), simulated annealing (SA), particle swarm optimization (PSO), the
cuckoo search algorithm (CSO), and ant and bee colony optimization (ACO and BCO),
have been satisfactorily used to deal with this issue during ANFIS training [32–34].

Population-based metaheuristic algorithms, particularly GA, are widely used as the
training algorithm to construct the most reliable and robust ANFIS networks for complex
machining processes through optimizing their premise and consequent parameters by
probability-based search strategies. The GA-ANFIS hybrid approach has been extensively
used in the modeling of several machining processes such as drilling [35], electrical dis-
charge machining [36], and milling [37,38]. However, the modeling of PAC parameters
using a GA-ANFIS integrated approach has not been dealt with in the literature.

Apart from these extensive research efforts in the intelligent modelling of machin-
ing processes, various researchers from around the world have focused on a variety of
traditional and contemporary metaheuristic optimization techniques to optimize process
parameters. Traditional optimization techniques often produce discrete combinations of a
predetermined level of process parameters, and these combinations are not always opti-
mal [39]. Due to there being less computational effort and with the prospect of searching
for a large set of feasible solutions, metaheuristic optimization techniques such as GA,
SA, PSO, teaching-learning based optimization (TLBO), etc., are often efficiently utilized
for the optimization of non-linear processes such as machining and additive manufactur-
ing. Because PAC is a highly non-linear and complex machining process governed by
numerous processing parameters, a small deviation in process parameter can drastically
affect the quality and performance characteristics of machined components. Recently,
some researchers have utilized metaheuristic algorithms such as GA [40–42] and the whale
optimization algorithm [43] for effective optimization of PAC processes and their character-
istics. However, the artificial bee colony algorithm (ABC) has not been utilized previously
to perform optimization studies on ABC processes. The main advantages of the ABC algo-
rithm over other optimization methods for solving optimization problems are its simplicity,
high flexibility, and robustness, and the fact that it has few control parameters, can be easily
combined with other methods, has the ability to handle objectives with a stochastic nature,
has fast convergence, and can be used for both exploration and exploitation [44].

Therefore, the present work focuses on developing a soft computing approach for
process modeling and optimization of PAC processes. The approach used consists of two
elements: firstly, an integrated expert system of GA-ANFIS is proposed for the effective
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assessment of PAC performances, including surface roughness (Ra), kerf width (kw), and
micro hardness (mh) by considering cutting speed, gas pressure, arc current, and stand-off
distance as the independent variables. GA is effectively utilized as a training algorithm for
the ANFIS network to estimate optimal network modeling parameters. The effectiveness of
the proposed GA-ANFIS approach is evaluated using various statistical elements such as
mean absolute percentage error and root-mean square error. Secondly, multi-objective opti-
mization is performed to identify the optimal parameters for improving the performance
characteristics of PAC processes using an artificial bee colony algorithm.

2. Proposed Methodology
2.1. Response Surface Methodology

A creative experimental approach can significantly reduce the number of experimental
trials while maintaining the precision of any manufacturing process. As a result, the current
work employs a box-behnken design (BBD) based on response surface methodology (RSM),
a statistical and cost-effective design of experiment approach, to design and conduct the
PAC experiments [45]. Thirty experiments were designed and performed with six replicates
in a block with four-factors and three levels. The second-order polynomial relation that
evolved through RSM was utilized to express the behavior of the PAC process, which is
given by:

Y = β0 +
n

∑
i=1

βiXn +
n

∑
i=1

diXh
i ± ε (1)

where h is the degree of the polynomial (i.e., 2 for the present investigation), β represents
the coefficients of regression, and X and Y are considered as response and predictor
variables, respectively, while ε indicates the normal distribution. The empirical models
were developed from experimental analysis data. The graphical representation of the
proposed research is depicted in Figure 1.
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Figure 1. Flow chart for proposed methodology.

2.2. Adaptive Neuro-Fuzzy Inference System

The ANFIS is a hybrid predictive approach that combines artificial neural networks
and fuzzy logic systems to map the relationship between uncertain input and output
variables [46]. The ANFIS model was created by combining the network topology of
a fuzzy system with the back-propagation algorithm of a neural network to reduce the
optimization search space and automate the fuzzy system’s parametric training. The
training error will be reduced as a result of the ANFIS model, while the learning and
optimization capabilities will be enhanced.
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The proposed ANFIS architecture consists of five layers, as shown in Figure 2. They
are: (1) input fuzzification layer, (2) product layer, (3) fuzzy rule base construction or
normalized layer, (4) de-fuzzification layer, and (5) output layer. The description of the
relation between the input and output of each layer in ANFIS is discussed below:
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First layer (Input fuzzification layer): In this layer, crisp inputs (A1, A2 and B1, B2, the
nodes, and m and n, inputs of the nodes) are transforms to linguistic terms (µAi, µBj) using
the membership functions. The output of this layer can be expressed as:

O1,i = µAi(m), i = 1, 2
O1,j = µBj(n), j = 1, 2

(2)

Here, Ai and Bj represents the linguistic labels of inputs; m and n are input variables
to node i, j, and O1,i; and O1,j denotes the output functions. The variables on this layer are
referred to as premise parameters.

Second Layer (Product layer): Every node in this layer is a node labelled II, which
multiplies all the input signals and sends it to its output. The outputs ω1 and ω2 of this
layer are the weight functions of the next layer. The output node function of this layer can
be written as:

O2,i = ωi = µAi(m)·µBj(n), i = 1, 2 (3)

Here, O2,i denote the output of the product layer. Each node output of this layer
represents the reasoning capability of one fuzzy logic rule.

Third Layer (Fuzzy rule base construction or normalized layer): In this layer, the
nodes are labelled as N and a series of fuzzy logic rules are built in advance to express the
behavior of the prediction process. The ith node calculates the ratio of the ith rules firing
strength to the sum of all other firing strengths, given as follows:

O3,i = ωi =
ωi

ω1 + ω2
, i = 1, 2 (4)

where,O3,i denote the output of the normalized layer and wi denotes the normalized
firing strength.

Fourth Layer (De-fuzzification layer): This is the last part of fuzzy rule, whose nodes
are adaptive. In this layer, the Takagi–Sugeno fuzzy type rule (IF–THEN) is applied in the
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weighted output in each node. The de-fuzzy relationship between the input and output of
this layer can be written as:

O4,i = ωi fi(pim + qin + ri), i = 1, 2 (5)

Here, O4,i denotes the output of the fourth layer and pim, qin, and ri denote the linear
or consequent parameter of the node.

Fifth Layer (Combined output layer): This is the overall output layer, which consists
of two nodes whose nodes are labelled as ∑. The output of this layer is the total of the
input signals, where the first node represents the results of kerf deviation and the second
node represents the results of the material removal rate. The results of this layer can be
written as:

O5,i = ∑
i

ωi fi =

∑
i

ωi fi

∑
i

ωi
, i = 1, 2 (6)

where O5,i represents the output of the fifth layer.
The mathematical form of membership functions that are used in the fuzzy rule is

summarized as follows:

µ(X, a, b, c) = exp

[
−
(

x− c
a

)2
]

(7)

where a and b vary the width of the curve and c locates at the center of the curve. The
parameter c should be positive, and all these parameters are called the premise parameters.

Training of ANFIS Network Using the Genetic Algorithm

Deciding the parameters of the ANFIS prediction model, such as clustering radius,
quash factor, and percentage of training data, is difficult because most of these parameters
are selected from the knowledge of the users and/or by using a trial-and-error approach.
To overcome this problem in the ANFIS training of the genetic algorithm, an efficient
metaheuristic optimization tool is employed to automate the process of deciding these
parameters and to improve the learning rate through minimizing the prediction error.
The process of training the ANFIS model using GA is presented in Figure 3. The root-
mean square error (RMSE) and the mean absolute percentage error (MAPE) act as the
objective functions of the ANFIS-GA training algorithm. These two approaches are hy-
bridized to obtain the benefits of ANFIS and GA so that the proposed model can perform
more efficiently.

GA is a well-known population-based evolutionary optimization algorithm that, in
contrast with conventional optimization techniques, generates global optimum solutions for
constrained and unconstrained problems with stochastic, non-linear, and non-differentiable
objective functions using natural selection principles [47]. Many researchers have sug-
gested that global optimization techniques such as genetic algorithms, particle swarm
optimization, and artificial bee colony algorithms might prevent fuzzy logic, ANN, and
ANFIS from falling into a local minimum [48–54].

By altering the set of randomly generated initial populations in GA, a better solu-
tion can be predicted. Each initial population’s fitness is assessed, with a higher fitness
indicating that the solution is good. New solutions are generated in each iteration using
reproduction, crossover, and mutation functions to operate on the obtained population.
The obtained solutions are evaluated and tested for the termination criterion based on the
essence of GA after several iterations. Individuals known as good solutions are chosen
by reproduction operators and subsidize the population in the following generation. To
generate the next solution, crossover operators combine chromosomes based on their likeli-
hood of crossing. The chromosomes are primed by the mutation operator to change and
adjust their values, which aids in population diversity. These steps are repeated until the
termination criterion is satisfied, or a chromosome has achieved the best fitness and thus is
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considered the best solution for the objective function. Initially, the parameters of genfis2
have been given as the input for GA as the binary string, and the network parameters are
represented by the genes of individual chromosomes. The best solutions are then obtained
through generating the initial random parameters by means of the population of strings
(i.e., genes→ chromosomes→ population→ generation). In this study, the chromosomes for
the next generation are chosen using a roulette wheel. Furthermore, the genes of each
reproduced chromosome were subjected to crossover and mutation operations. Finally,
the values of fitness functions are obtained by replacing the initialized chromosomes with
mutated chromosomes using a complete replacement strategy.
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2.3. Artificial Bee Colony Algorithm

The artificial bee colony (ABC) algorithm is a population-based metaheuristic tech-
nique that mimics the foraging behavior of honeybees to explore global solutions for
intricate real-world optimization problems [55]. In the ABC algorithm, the exchange of
information among the bees in dancing areas are employed through three categories of bee:
employed, unemployed, or onlooker and scout bees. Among these, the employed bees are
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currently engaged in exploiting the food sources (solution of a problem), the unemployed
or onlooker bees continuously look out for a food source to exploit, while the scout bees
are waiting in the nest and are establishing the food source through information shared
by employed bees (exploration). In the ABC algorithm, the food source is confined within
D-dimensional space and signifies a feasible solution for the optimization problem. The
quantity of nectar in the food source improves the probability of attracting the onlooker
bees, which is considered as the fitness function for the optimization problem. The algo-
rithm is controlled by three major parameters, namely colony size (number of bees), limit
(number of trials), and the maximum cycle.

The implementation of the ABC algorithm consists of four major steps, including
initializing the position of food sources, colony size, and algorithm variables; searching for
the position of new food sources by employed bees; searching the position of new food
sources by unemployed bees; and the scout bee phase. Stepwise implementation of these
phases is explained, as follows [56]:

Step 1 Initialization of Bee colony

Forty random sets of values are generated using Equation (8) between the lower (Lj)
and upper (Uj) boundary values of the parameters cutting speed, gas pressure, arc current,
and stand-off distance and this is considered as the initial position (Pij) of 40 bees. The
index for number of bee and its dimensional position, i.e., number of parameters, are
considered as i and j.

Pij = Lj + Rij
(
Uj − Lj

)
(8)

Step 2 Evaluation of fitness value of bee

For each bee, the response value of Ra, kw, and mh are calculated using the ANFIS
model developed in the previous stage for the experimental values. Due to multiple
objectives with contradictory natures (both minimization and maximization), using the
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method, it is
converted into a single objective and the same is considered as the fitness value of each bee.

Step 3 Selection of employed bees and unemployed bees

The bees are arranged in descending order of TOPSIS values, and the first 20 bees are
selected as employed bees to carry out the further process in the algorithm. The remaining
20 bees are considered as unemployed bees. The positions, i.e., parameter values, along
with this response values corresponding to first rank bees, are stored in a separate file and
considered as the result of the first iteration.

Step 4 Determination of new position of employed bees

The new position (Qij) of employed bees is calculated using the following Equation (9),
where δij represents a constant between−1 and 1 and k represents a random number within
the maximum number of employed bees. These values are checked against its boundary
values and then the response values are calculated using the ANFIS Model. Using TOPSIS,
the best 20 bees are selected by combining the old and new response values.

Qij = Pij + δij

(
Pij − Pkj

)
(9)

Step 5 Determination of new position of unemployed bees

Based on the fitness value of unemployed bees, the probability and cumulative proba-
bility are calculated using Equations (10) and (11). The onlooker bees are selected to look
for new food sources using the roulette wheel selection method. The new positions are
calculated using Equation (9), and the fitness values are determined as discussed in step (2).
An individual onlooker bee’s fitness value is compared, corresponding to its old and new
position. If the old position’s fitness is good compared to the new position’s fitness, then
the onlooker bee is noticed. If the noticed count of the onlooker bee exceeds the number 10,
i.e., 50% of unemployed bees, then the scout bee is initiated, with the position calculated
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by Equation (8), and its fitness value is then computed as per the procedure given in the
evaluation of fitness value of the bee.

ri =
fi

∑nb
i=1 fi

(10)

ci = ∑i
l=1 fl (11)

Step 6 Replacement of initial population of bee

The new position of both employed and unemployed bees are replaced with the
initial population of the bee’s location, along with its response values. Using the TOPSIS
(Technique for Order of Preference by Similarity to Ideal Solution) method, the fitness
values are calculated for the new positions of the bees.

Step 7 Stopping criteria

The above steps, starting from c to f, are repeated until the stopping criteria is reached,
i.e., up to 50 iterations. The step-by-step implementation of the ABC algorithm for solving
the present multi-response PAC problem is presented in Figure 4.

Materials 2021, 14, x FOR PEER REVIEW 10 of 26 
 

 

 

Figure 4. Implementation of the ABC algorithm for multi-response optimization. 

3. Plasma Arc Cutting Experiments 

Experimental investigations on PAC of Monel 400 alloy, with the material composi-

tion of 63% nickel, 31.6% copper, 2.5% steel, 2% manganese, 0.5% silicon, and 0.3% carbon, 

was performed as per the experimental design. Specimens of 3 mm thickness with 200 

mm width and 200 mm length were considered as the workpiece material. The PAC ex-

periments were performed using an industrial purpose plasma arc cutting system (Pro arc 

CNC profile cutting system, Pro-arc welding and cutting systems private limited, Pune, 

India). The schematic of the PAC experimental system is presented in Figure 5. The PAC 

setup was furnished with PlasmaCAM CNC software to confirm the accurate motion of 

the plasma jet through the nozzle. Compressed air was used as a shield gas to generate 

high-energy plasma to thaw out and spew the smelted metal onto the substrate surface. 

The precision in cutting operation was accomplished through a servo-operated torch com-

prising a copper nozzle with an air-cooled swirl.  

The PAC of a 25 mm length was performed in each experimental run along the width 

of the specimen to appraise the surface roughness (Ra), kerf width (kw), and micro hard-

ness (mh). Four significant material and process related parameters, such as cutting speed 

(A), gas pressure (B), arc current (C), and stand-off distance (D), were used to regulate the 

PAC experiments and to assess the selected response characteristics. The levels of these 

parameters were finalized through conducting exhaustive preliminary experiments by 

changing one variable at a time. The numerical values of the selected parameters and their 

levels are presented in Table 1.  

 

Read lower limit (ll[ ]) and upper limit (ul[ ]) of nc, jp, sd, 

ts, nh, hmcr, par, bw, ni and nitr 

For each i=1 to nh 

Generate nc[ ], jp[ ], sd[ ] and ts[ ]                
within ll[ ] and ul[ ] 

End 

       

 
 

 

 

Start 

For each harmony i=1 to nh 

   Improvise the Harmony from the memory        

based on rhmcr, based on rpar with pitch 
adjustment new harmony within the bounds 

of ll[ ] and ul[ ]  

End      
 

if (itr<=nitr) 

itr = itr + 1 

Yes 

No 

Display the best values from the file  

Stop 

Set itr=1  

For each harmony i=1 to nh 
    Using anfis models calculate  

     mrr[ ], kt[ ] and sr[ ]       

End 
       

 

 

 

 

For each harmony i=1 to nh 

  Convert multi-objective into single (MoSo) 

using TOPSIS method and rank them 
End 

Store the parameters nc, jp, sd, ts and its mrr, 

kt and sr corresponding to the 1st rank 

harmony into file       

 
 

 

 

Figure 4. Implementation of the ABC algorithm for multi-response optimization.

3. Plasma Arc Cutting Experiments

Experimental investigations on PAC of Monel 400 alloy, with the material composition
of 63% nickel, 31.6% copper, 2.5% steel, 2% manganese, 0.5% silicon, and 0.3% carbon, was
performed as per the experimental design. Specimens of 3 mm thickness with 200 mm
width and 200 mm length were considered as the workpiece material. The PAC experiments
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were performed using an industrial purpose plasma arc cutting system (Pro arc CNC profile
cutting system, Pro-arc welding and cutting systems private limited, Pune, India). The
schematic of the PAC experimental system is presented in Figure 5. The PAC setup was
furnished with PlasmaCAM CNC software to confirm the accurate motion of the plasma
jet through the nozzle. Compressed air was used as a shield gas to generate high-energy
plasma to thaw out and spew the smelted metal onto the substrate surface. The precision in
cutting operation was accomplished through a servo-operated torch comprising a copper
nozzle with an air-cooled swirl.
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The PAC of a 25 mm length was performed in each experimental run along the width
of the specimen to appraise the surface roughness (Ra), kerf width (kw), and micro hardness
(mh). Four significant material and process related parameters, such as cutting speed (A),
gas pressure (B), arc current (C), and stand-off distance (D), were used to regulate the
PAC experiments and to assess the selected response characteristics. The levels of these
parameters were finalized through conducting exhaustive preliminary experiments by
changing one variable at a time. The numerical values of the selected parameters and their
levels are presented in Table 1.

Table 1. Selected PAC parameters and their levels.

Parameter Symbol
Level

Units
Low Medium High

Cutting speed (CS) A 2200 2400 2600 mm/min
Gas pressure (GP) B 3 3.5 4 Bar
Arc current (AC) C 45 50 55 A

Stand-off distance (SOD) D 2 2.5 3 mm

The surface roughness of the kerf cut area was measured using a Universal 3D Pro-
filometer (Rtec instruments, San Jose, CA, USA), and an average of three measurements
was used in order to eliminate statistical errors. Similarly, the kerf width of the top cut
surface was measured with the aid of a high precision optical microscope (RTM 900, Radi-
cal Scientific Equipments Private Limited, Ambala, Haryana, India) at 20×magnification.
Micro hardness values were analyzed for evaluating the impact of the thermal effect on the
sub-surface of the cutting zone using a Wolpert-micro-Vickers hardness tester (402 MVD,
Wilson Instruments, Lake Bluff, IL, USA) with a load of 300 g and a dwell time of 10 s. The
experimentally measured responses are presented in Table 2.
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Table 2. Experimentally measured response values.

Run
PAC Parameters Surface

Roughness
(µm)

Kerf Width
(mm)

Micro
Hardness

(HV)
Cutting Speed

(mm/min)
Gas Pressure

(Bar)
Arc Current

(A)
Stand-Off

Distance (mm)

1 2200 3.0 50 2.5 3.49 3.67 190
2 2600 3.0 50 2.5 2.70 2.75 164
3 2200 4.0 50 2.5 1.16 3.09 186
4 2600 4.0 50 2.5 3.43 2.49 189
5 2400 3.5 45 2.0 3.42 1.61 162
6 2400 3.5 55 2.0 2.46 2.22 196
7 2400 3.5 45 3.0 2.00 2.35 184
8 2400 3.5 55 3.0 1.65 2.13 170
9 2200 3.5 50 2.0 2.64 2.40 195
10 2600 3.5 50 2.0 4.26 2.34 184
11 2200 3.5 50 3.0 2.87 3.07 193
12 2600 3.5 50 3.0 2.79 1.97 177
13 2400 3.0 45 2.5 3.40 2.43 178
14 2400 4.0 45 2.5 1.76 2.54 154
15 2400 3.0 55 2.5 1.39 3.29 157
16 2400 4.0 55 2.5 1.77 2.27 202
17 2200 3.5 45 2.5 1.75 3.80 171
18 2600 3.5 45 2.5 2.49 1.74 163
19 2200 3.5 55 2.5 1.08 2.41 188
20 2600 3.5 55 2.5 1.64 3.18 161
21 2400 3.0 50 2.0 5.23 2.47 186
22 2400 4.0 50 2.0 1.81 1.94 191
23 2400 3.0 50 3.0 1.66 2.65 174
24 2400 4.0 50 3.0 3.77 2.06 192
25 2400 3.5 50 2.5 1.44 2.19 198
26 2400 3.5 50 2.5 1.48 2.11 197
27 2400 3.5 50 2.5 1.47 2.04 194
28 2400 3.5 50 2.5 1.41 2.15 193
29 2400 3.5 50 2.5 1.60 1.99 195
30 2400 3.5 50 2.5 1.78 2.02 192

4. Result and Discussions
4.1. Estimation of PAC Characteristics by GA Tuned ANFIS Model

The present study utilizes GA as a training tool for predicting optimal ANFIS parame-
ters. The selection of premise parameters (parameters related to membership functions)
and consequent parameters (parameters related to the defuzzification process) of ANFIS is
difficult because most of these parameters are selected from the knowledge of users and/or
a trial-and-error approach. To overcome this issue in ANFIS, an efficient metaheuristic
optimization tool, GA, is employed to automate the process, which can also improve the
learning rate through minimizing the prediction error. The hybridization of ANFIS-GA,
consists of three major stages, which include designing the model, training the network,
and evaluating the trained model. These two approaches are hybridized to obtain the
benefits of ANFIS and GA so that the proposed model can perform more efficiently.

In this work, the ‘genfis2’ MATLAB™ function, sugeno-type subtractive clustering
method is used to generate a FIS model. The behavior of the subtractive clustering ANFIS
model is varied based on the RADII, quash factor, accept ratio, and rejection ratio. The
range of influence of the cluster center for each parameter and response is defined as RADII
and it falls between 0 and 1. Usually, smaller cluster RADII will yield good results; hence,
in this work, it is assumed to be between 0.13 and 0.5. The neighborhood cluster center is
determined by multiplying the RADII with the quash factor. Apart from the above factors,
the amount of data available for checking and testing also influences the performance of
the FIS model. Generally, both accept and reject ratios are fixed as default value of 0.5 and
0.15, respectively. In developing the best FIS model for each response, the other factors,
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such as RADII, quash factor, and amount of training and checking data are considered
as variables.

In the first step of GA-ANFIS modeling, the control factors of the PAC process, i.e.,
cutting speed, gas pressure, arc current, and stand-off distance, are set as input factors, and
Ra, kw, and mh are considered as output factors. The FIS parameters, such as cluster radius,
quash factor, and percentage of data required to train the network, are then selected in order
to enhance the accuracy of the trained network with minimal prediction errors. Table 3
provides the range of ANFIS parameters selected for initializing the network training using
GA. The fuzzy rules are developed by clustering the selected process parameters into
several values and combining two or more membership functions. Due to the existence of
several process parameters, there is a need for the development of considerable membership
functions to establish the rule-based relationship between input parameters and selected
response factors. Therefore, in this work, the subtractive fuzzy clustering approach [57] is
incorporated. Among the several membership functions (MF), a gaussian shaped MF is
selected because of its smoothness and concise notation in forecasting the responses.

Table 3. FIS parameters used for the investigation.

Parameters Representation Values/Range

RADII—Cluster radius Four input parameters and a response (either Ra or kw or mh) 0.13 to 0.5
Quash factor To multiply RADII values 2 to 3

% of data for training FIS model Total number of experiments 65% to 85%

To develop the GA-ANFIS hybrid approach, the optimal parameters of GA were
selected by performing several parametric studies. A program was coded in the MATLAB
environment (Version: Matlab 2020b™, System configurations: 8 GB RAM, 1 TB Hard disk,
Intel Core i5 processer and off-line system) to develop the GA-ANFIS model. The ANFIS
network was trained by optimizing its premise and consequent parameters to own the
closer relationship between input and output variables using GA. The key parameters
used in GA for the optimization studies of the ANFIS network are given in Table 4. These
parameters were obtained through performing several iterations in the trial-and-error
method by keeping the references of existing studies [58].

Table 4. GA parameters for optimizing ANFIS network.

GA Parameter Value/Method

Population size 35
Method of selection for reproduction Roulette wheel selection method

Crossover probability 0.4
Crossover operator Single point crossover technique

Mutation probability 0.03
Mutation operator Right side swapping

Replacement strategy 100% replacement strategy
Termination criteria 100

The convergence plots of GA shown in Figure 6a–c exhibit the correlation between the
number of iterations and their significance on RMSE for selected performance measures
such as Ra, kw, and mh.

From the results of GA trained ANFIS, the optimal parameters of the FIS network
were obtained. As per the available twenty-nine items of experimental data, twenty
datasets were considered as the optimal values for the training of the ANFIS network. The
remaining nine data items were considered for validating the performance of the trained
network. Figure 7a–c shows the scatter plots of the training and checking errors obtained
from ANFIS. The errors of the training and testing data of actual and forecast values for Ra,
kw, and mh are listed in Table 5. From these results, it is observed that the proposed GA
trained ANFIS model provides a close correlation between the PAC parameters and their
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responses, with minimal training and testing errors, which demonstrates the reliability of
the proposed approach.

Table 5. ANFIS optimal parameters obtained through GA.

Response
RADII Value % of Testing

Data
Quash
Factor

Training
Error

Checking
ErrorCS GP AC SOD Ra/kw/mh

Ra 0.235 0.398 0.346 0.433 0.425 0.795 2.064 0.058 0.299
kw 0.456 0.270 0.269 0.316 0.259 0.761 2.646 0.022 0.132
mh 0.404 0.334 0.401 0.364 0.312 0.736 2.678 0.797 2.741
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4.2. Evaluation of GA-ANFIS Prediction Models through Statistical Analysis

In this work, a GA-ANFIS hybrid model was proposed to establish the relationship
between the PAC parameters on the quality and performance indices, such as Ra, kw, and
mh, of machined parts. Statistical analysis was performed to evaluate the efficacy of the
proposed GA-ANFIS model. For comparison purpose, multiple linear regression models
(MLRM), which are a widely used tool to obtain the best-fit mathematical equation when
there is more than one predictor variable, were developed for each response. The same
datasets were used in constructing the GA-ANFIS model. The precision of the proposed
hybrid model was assessed by calculating the root-mean square error (RMSE) and mean
absolute percentage error (MAPE) values. The RMSE and MAPE were calculated using the
following relations:

RMSE =

√√√√ 1
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M
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where M is the total number of the training sample, SZ is the real output value, and YZ is
the ANFIS output value in training.

The lower values of RMSE and MAPE indicate the higher accuracy and minimal
error of the predictive model. Table 6 reports the results of these criteria in the present
investigation. Based on the information specified in Table 6, it is thought that the predicted
RMSE and MAPE values of GA-ANFIS were superior compared to the values obtained
from MLRM. Figures 8–10 show the comparative analysis of the predicted values of GA-
ANFIS and MLRM, comparing them with the experimentally measured responses. It is
inferred that the predicted and experimental measured response values are close to each
other. However, the PAC responses predicted by GA-ANFIS are closer to the experimental
measured data, compared to the MLRM outcomes, i.e., the error is very small. From these
measures, it can be inferred that the GA-ANFIS hybrid approach empowers progressively
effective and precise estimation of the PAC process. Moreover, the computational time
for conventional and parametric tuned ANFIS has been evaluated in order to estimate the
computational complexity of the proposed approach. It was found that the parametric
tuned ANFIS took 14.6 s to complete the simulations for minimizing the RMSE and MAPE
values. On the other hand, the conventional ANFIS took only 2.3 s for each iteration (trial)
to obtain the training network. However, the conventional ANFIS required numerous trials
in order to obtain minimized error values, and this generally consumes more computational
time and effort. Therefore, the systematic approach of GA tuned ANFIS has been proven
as an effective approach for the modelling of complex problems.



Materials 2021, 14, 6373 15 of 25

Table 6. Statistical validation results of proposed ANFIS-GA vs. MLRM.

Approach
MAPE RMSE

Ra kw mh Ra kw mh

GA-ANFIS 3.2289 1.6069 0.4350 0.1484 0.0668 1.5731
MLRM 4.9235 2.4279 0.7875 0.1716 0.0881 2.4278
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Figure 9. Comparison of ANFIS and MLRM predicted vs. experimentally measured kerf
width values.
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hardness values.

4.3. Influence of PAC Parameters on Selected Responses

The influence of PAC parameters on the selected response characteristics were evalu-
ated with the aid of ANFIS three-dimensional surface plots. From the surface plots, two
parameters were varied for investigation, while the other two parameter values were kept
at middle levels. The impact of PAC control factors on Ra is described with the assistance
of three-dimensional plots (Figure 11a,b). The interaction dominance of CS and GP on the
Ra is depicted in Figure 11a. The plot indicates that the Ra is increasing with the increase
in CS from 2200 mm/min to 2600 mm/min, whereas the Ra is linearly decreasing with
the increase in GP. As CS increases, the arc coherence of the plasma will be deviated from
its axis, resulting in an enlarged kerf and simultaneous reduction in surface quality [59].
Therefore, the Ra increases with an increasing of CS. It can be seen that the higher GP
results in a smooth cut surface with minimized roughness values. As the GP increases,
the melted substrate materials are eventually ejected from the cut surface, and hence the
quality of the kerf zone will be improved. Moreover, an improved surface quality with an
Ra of 4.01 µm is observed at a higher GP (4 bar) and lower CS (2200 mm/min).

Figure 11b shows the effect of AC and SOD on the Ra. As can be seen from the
interaction plot, the increase in AC slightly increases the Ra, whereas the augmentation
of SOD within the selected range is found to have an insignificant impact on the surface
quality. The maximized AC leads an erratic arc to melt and evaporate the substrate from the
cutting zone, and hence the unpredicted material removal will happen at the surroundings
of the actual cutting zone during higher AC, which leads to an augmented oxidation zone
and Ra [60]. An improved surface quality (Ra of 1.89 µm) is attained by a combination of
lower AC (45 A) and medium SOD (2.5 mm).

The combined influence of PAC control parameters on the kw has been visualized
with the aid of ANFIS 3D surface plots (Figure 12a,b). The possession of AC and CS on
kw is depicted in Figure 12a. It can be seen that the increase in CS from 2200 mm/min
to 2800 mm/min results in a decreasing trend in kw, whereas the increase in AC up to a
certain level results in an augmented kw and then decreases with an increase in AC. High
heat energy is established at the higher CS with lower AC to melt the material efficiently
with adequate time; thus, lower kw is produced [61]. Moreover, due to the lower thickness
of the substrate material, no obvious deviation in kw is observed at the cutting zone.

The collective influences of SOD and GP on the kw is depicted in Figure 12b. As can
be seen from the plot, the kw value decreases linearly with an increase in GP from 3 to
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4 bar, whereas an increase in SOD from its lower to higher levels, along with GP, resulted
in an augmented kw. At higher GP and arc current, the plasma jet expelled from the nozzle
causes intense melting and vaporization, as well as an exothermic reaction, resulting in
an irregular kerf width. This could be attributed to the fact that higher SOD facilitates an
absence of arc coherence, resulting in arc swerving, which could increase vulnerability to
peripheral drag from the surroundings of actual plasma. As a result, increasing the SOD
results in an augmented plasma width and decreased kinetic energy at obtrusion, which
leads to an improper cutting quality at the top and bottom kerf surfaces; hence the kw is
increased [62]. An improved cut quality with a minimal kw of 1.8 mm is obtained at a
combination of higher GP (4 bar) and lower SOD (2 mm).
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The influence of PAC control parameters on mh is described with the assistance of
ANFIS three-dimensional plots (Figure 13a,b). The combinative influence of GP and SOD
on the mh is presented in Figure 13a. The surface plots demonstrate that the mh increases
with an increase in the parameters GP and SOD, from their lower to their higher values.
The intensity of plasma expelled to the cutting zone will increase as the GP and SOD
increase. As a result of the increased plasma thrusts, the recast layer at the kerf surfaces
also progresses, as does the formation oxide layer at the cutting area; thus, the mh value
increases [11]. Therefore, a suitable value of GP and SOD should be found for minimizing
the micro hardness of cut surfaces.

Figure 13b demonstrates the effect of AC and SOD on the micro hardness of PAC
processed Monel 400 sheets. The mh of the cut surface is found to increase with the
intensification in AC and SOD. The heat energy transferred to the substrate surface increases
as the AC and SOD intensifies from lower to higher values, which results in a higher heat
affected zone around kerf surfaces. The increased heating zone results in amplified mh and
oxide layer formation at the cutting zone [63]. From the plot, a minimized mh of 147 is
observed at lower values of AC (45 A) and SOD (2 mm).
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4.4. Optimization of PAC Parameters through ABC Algorithm

In this work, the objectives considered were the minimization of Ra, kw, and mh,
which are the functions of the PAC control parameters, namely cutting speed, gas pressure,
arc current, and stand-off distance. The optimized ANFIS multi-response models were
converted as single objective functions using the TOPSIS statistical approach and were
applied as the fitness functions for an artificial bee colony (ABC) algorithm. For the
implementation of the proposed hybrid ANFIS-ABC approach, a computer code was
developed in the MATLAB™ environment to integrate the FIS modeling and optimization
algorithm. The ABC was initialized with the control parameters, as listed in Table 7, which
were obtained from the existing works [64,65] to find the ideal combinations of optimal
PAC parameters.

Table 7. ABC algorithm parameters.

Parameters Value

Bee’s position A set of random values of parameters CS, GP, AC, and SOD within its lower and
upper boundary values

Total number of bees 40
Number of Employed bees 20 (50% of total bees)

Number of Unemployed bees 20 (50% of total bees)
Selection of Onlooker Bee Roulette wheel

Scout bees’ size 10 (50% of unemployed bees)
Stopping Criteria 50 iterations
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During the optimization using PAC, the parameters obtained at a higher closeness
coefficient (objective function) is considered as the global best (optimal parameters) that
satisfies the improvisation of Ra, kw, and mh. The proposed ABC was allowed to run for
50 iterations several times in order to achieve the optimal solutions. The performance
of the ABC algorithm, which demonstrates the convergence of objective function with
respect to the number of iterations, is shown in Figure 14. The algorithm was executed
23 times, and its corresponding response characteristic values were obtained (Table 8).
The optimal PAC parameters for the improved quality characteristics of processed Monel
400 alloys were attained by statistically analyzing the obtained optimal parameter values
through the TOPSIS approach. The higher closeness coefficient is considered for the
present optimization problem, and their corresponding parameter values were considered
as the global optimal parameters. The graphical representation of the obtained closeness
coefficient for each optimization run is represented in Figure 15. From the statistical
analysis, the following optimal PAC parameters were obtained at a closeness value of
0.9993, cutting speed of 2330.39 mm/min, gas pressure of 3.84 bar, arc current of 45 A, and
stand-off distance of 2.01 mm. The corresponding response characteristics at the optimal
cutting conditions are Ra of 1.5387 µm, kw of 1.2034 mm, and mh of 176.08.
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Table 8. Optimal values obtained through artificial bee colony algorithm.

Run
Response Characteristics

Closeness
Coefficient (Ci)Surface Roughness

(µm)
Kerf Width

(mm)
Micro Hardness

(HV)

1 1.5387 1.2034 176.08 0.9993
2 1.5390 1.2027 176.21 0.9992
3 1.5406 1.2074 175.52 0.9931
4 1.5408 1.2069 175.59 0.9928
5 1.5410 1.2063 175.64 0.9926
6 1.5431 1.2062 175.57 0.9923
7 1.5431 1.2062 175.57 0.9923
8 1.5445 1.2795 162.97 0.9978
9 1.5566 1.2990 161.89 0.9698
10 1.5620 1.2913 162.84 0.9661
11 1.5625 1.2350 170.73 0.9559
12 1.5635 1.2355 170.74 0.9558
13 1.5691 1.2355 170.87 0.9545
14 1.5749 1.3629 159.31 0.9988
15 1.5749 1.3629 159.31 0.9988
16 1.5749 1.3629 159.31 0.9988
17 1.5795 1.2993 162.43 0.9619
18 1.5840 1.3195 161.60 0.9612
19 1.9250 1.9938 176.65 0.8102
20 1.9571 1.7901 176.50 0.8657
21 1.9743 1.7583 176.64 0.7682
22 2.1055 1.7068 179.23 0.8731
23 2.7206 1.6760 154.82 0.2733

In order to evaluate the rationality of the proposed optimization approach, a validation
experiment was conducted based on the obtained optimal PAC parameters through the
ABC algorithm. The results of the confirmatory experiments are listed in Table 9. It can be
seen from Table 9 that the errors between the ABC predicted and the experimental values
are 4.56% for Ra, 6.38% for kw, and 3.25% for mh. The confirmatory experiments show better
agreement between the artificial bee colony algorithm predicted and the experimentally
measured responses, with acceptable errors. Therefore, the proposed combined ANFIS-
ABC can be suitable for the intelligent modelling and optimization of PAC parameters and
their consequential response characteristics in order to improve the cutting quality.

Table 9. Validation results for Ra, kw, and mh.

Responses Predicted Experimental Error %

Surface roughness (µm) 1.5387 1.6123 4.56
Kerf width (mm) 1.2034 1.2854 6.38
Micro hardness 176.08 182 3.25

Conclusively, the findings of the proposed approaches indicate that the hybrid ap-
proaches of a parametric tuned GA-ANFIS and ABC can be effectively used for prediction
modelling and the optimization of complex machining processes, namely, the plasma
arc cutting process. The results of GA-ANFIS indicate that the prediction ability can be
improved with minimized RMSE and MAPE values compared with the results obtained
through MLRM. The hybridization of metaheuristic algorithms for tuning the ANFIS
parameters is found to be efficient for reducing the computational capability with mini-
mized experimental trials. By considering the satisfactory findings of the proposed hybrid
approaches, similar techniques can be developed for intelligent modelling and optimiza-
tion for improving the quality and performance characteristics of similar non-traditional
machining processes.
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5. Conclusions

The present work utilized a hybrid approach of ANFIS-ABC for intelligent modelling
and multi-response optimization of PAC on Monel 400 alloy. The combined GA-ANFIS
approach was utilized to generate models for forecasting the Ra, kw, and mh of processed
alloy sheet. Multi-response optimization was performed for improving the cut quality of
the PAC process using an artificial bee colony algorithm. From the preceding discussions
of modeling and optimization studies, the following conclusions can be drawn:

• The accuracy of the proposed GA-ANFIS sub-clustering approach is enough to fore-
cast the relationship between PAC parameters and response characteristics, with an
average training and checking error of 0.058 and 0.299 for Ra, 0.022 and 0.132 for kw,
and 0.797 and 2.741 for mh.

• The comparative evaluation of the proposed models indicated that the GA-ANFIS
model is more efficient and exhibits a satisfactory enhancement in the forecasting of
PAC parameters and their response characteristics, with minimal prediction errors
such as RMSE and MAPE, compared with the MLRM approach.

• The ABC algorithm was found to be an efficient metaheuristic technique for optimizing
the multi-response characteristics of the PAC process with fast convergence with fewer
algorithm parameters. The obtained optimal parameters through the ABC algorithm
are a cutting speed of 2330.39 mm/min, gas pressure of 3.84 bar, arc current of 45 A,
and stand-off distance of 2.01 mm.

• The results of the confirmatory experiment show good agreement between pre-
dicted and experimental measured responses, having an error of 4.56% for Ra, 6.38%
for kw, and 3.25% for mh. Therefore, it can be concluded that the ABC algorithm
is an efficient technique for optimization studies in determining the optimal PAC
process parameters.

• The efficiency of the proposed approach can be further utilized and enhanced by
considering various parametric tuning algorithms, hybridization with other meta-
heuristics, and the processing conditions of various machining processes.

Author Contributions: Conceptualization, D.R.; methodology, D.R., M.S.K. and E.B.; design of exper-
iments, D.R.; experimental setup, D.R., M.S.K. and E.B.; experiments, D.R. and M.S.K.; measurements,
D.R., M.S.K. and E.B.; investigation, D.R., M.S.K., E.B. and H.M.; resources, D.R., E.B., E.A.N. and
A.A.; visualization, D.R., E.B., E.A.N. and A.A.; writing—original draft preparation, D.R., M.S.K.,
E.B., E.A.N., H.M. and A.A.; writing—review and editing, D.R., M.S.K., E.B., E.A.N. and H.M.;
supervision, E.B. and H.M.; project administration, D.R. and E.A.N.; funding acquisition, E.A.N. and
H.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research work is supported through the Researchers Supporting Project (RSP-2021/164),
King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data are provided in the main text of the manaucript.

Acknowledgments: The authors extend their appreciation to the Researchers Supporting Project (RSP-
2021/164), King Saud University, Riyadh, Saudi Arabia, for financially supporting this research work.

Conflicts of Interest: The authors declare that they have no conflict of interest. The funders had no
role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of
the manuscript, or in the decision to publish the results.

References
1. Devaraj, R.; Nasr, E.A.; Esakki, B.; Kasi, A.; Mohamed, H. Prediction and analysis of multi-response characteristics on plasma arc

cutting of Monel 400™ alloy using mamdani-fuzzy logic system and sensitivity analysis. Materials 2020, 13, 3558. [CrossRef]
2. Fan, W.; Ji, W.; Wang, L.; Zheng, L.; Wang, Y. A review on cutting tool technology in machining of Ni-based superalloys.

Int. J. Adv. Manuf. Technol. 2020, 110, 2863–2879. [CrossRef]

http://doi.org/10.3390/ma13163558
http://doi.org/10.1007/s00170-020-06052-9


Materials 2021, 14, 6373 23 of 25

3. Kumar, V.; Kumar, V.; Jangra, K.K. An experimental analysis and optimization of machining rate and surface characteristics in
WEDM of monel-400 using RSM and desirability approach. J. Ind. Eng. Int. 2015, 11, 297–307. [CrossRef]

4. Kalaimathi, M.; Venkatachalam, G.; Makhijani, N.P.; Agrawal, A.; Sivakumar, M. Investigations on machining of Monel 400 alloys
using electrochemical machining with sodium nitrate as electrolyte. Appl. Mech. Mater. 2014, 592–594, 467–472. [CrossRef]

5. Tayal, A.; Kalsi, N.S.; Gupta, M.K.; Garcia-Collado, A.; Sarikaya, M. Reliability and economic analysis in sustainable machining of
Monel 400 alloy. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021. [CrossRef]

6. Parida, A.K.; Maity, K. Experimental investigation on tool life and chip morphology in hot machining of Monel-400.
Eng. Sci. Technol. Int. J. 2018, 21, 371–379. [CrossRef]

7. Tamilarasan, A.; Rajamani, D. Multi-response optimization of Nd:YAG laser cutting parameters of Ti-6Al-4V superalloy sheet.
J. Mech. Sci. Technol. 2017, 31, 813–821. [CrossRef]
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