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Abstract. We study the regularity properties of the second order
linear operator in RN+1:

L u :=

m∑
j,k=1

ajk∂
2
xjxk

u +

N∑
j,k=1

bjkxk∂xju− ∂tu,

where A = (ajk)j,k=1,...,m , B = (bjk)j,k=1,...,N are real valued ma-

trices with constant coefficients, with A symmetric and strictly
positive. We prove that, if the operator L satisfies Hörman-
der’s hypoellipticity condition, and f is a Dini continuous function,
then the second order derivatives of the solution u to the equation
L u = f are Dini continuous functions as well. We also consider
the case of Dini continuous coefficients ajk’s. A key step in our
proof is a Taylor formula for classical solutions to L u = f that we
establish under minimal regularity assumptions on u.
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1. Introduction. We consider second order linear differential opera-
tors of the form

L :=
m∑

i,j=1

aij∂
2
xixj

+
N∑

i,j=1

bijxj∂xi − ∂t, (1.1)

where (x, t) ∈ RN+1, and 1 ≤ m ≤ N . The matrices A := (aij)i,j=1,...,m

and B := (bij)i,j=1,...,N have real constant entries. The first order part
of the operator L will be denoted by Y

Y :=
N∑

i,j=1

bijxj∂xi − ∂t = 〈Bx,D〉 − ∂t, (1.2)

and Y u will be understood as the Lie derivative

Y u(x, t) := lim
s→0

u(exp(sB)x, t− s)− u(x, t)

s
. (1.3)

Note that Y u is the derivative of u along the characteristic trajectory
of Y , if we identify the directional derivative Y with the vector valued
function Y (x, t) = (Bx,−1). The standing assumption of this article
is:

[H.1] The matrix A is symmetric and strictly positive, the matrix B
has the form

B =


B0,0 B0,1 . . . B0,κ−1 B0,κ

B1 B1,1 . . . B1,κ−1 B1,κ

O B2 . . . B2,κ−1 B2,κ
...

...
. . .

...
...

O O . . . Bκ Bκ,κ

 =


∗ ∗ . . . ∗ ∗
B1 ∗ . . . ∗ ∗
O B2 . . . ∗ ∗
...

...
. . .

...
...

O O . . . Bκ ∗


(1.4)

where every block Bj is an mj × mj−1 matrix of rank mj with j =
1, 2, . . . , κ. Moreover, the mjs are positive integers such that

m0 ≥ m1 ≥ . . . ≥ mκ ≥ 1, and m0 +m1 + . . .+mκ = N. (1.5)

We agree to let m0 := m to have a consistent notation, moreover O
denotes a block matrix whose entries are zeros, whereas the coefficients
of the blocks “∗” are arbitrary. Note that we allow the operator L to
be strongly degenerate, when m < N . However, the assumption [H.1]
implies that the first order part Y of L induces a strong regularity
property. Indeed, it is known that L is hypoelliptic, namely that
every distributional solution u to L u = f defined in some open set
Ω ⊂ RN+1 belongs to C∞(Ω), and is a classical solution to L u = f ,
whenever f ∈ C∞(Ω). In Section 2 we will recall several known results
about the operators L that will be used in the sequel.
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The interest in degenerate operators in the form L arises in sev-
eral research areas. Consider for instance the operator introduced by
Kolmogorov in [12], defined for (x, t) = (v, y, t) ∈ Rm × Rm × R as
follows

K :=
m∑
j=1

∂2
xj
−

m∑
j=1

xj∂xm+j
− ∂t = ∆v − 〈v,Dy〉 − ∂t. (1.6)

The operator K can be written in the form (1.1) with κ = 1,m1 = m,
and

B =

(
O O
−Im O

)
(1.7)

where Im denotes the m × m identity matrix. It appears in kinetic
theory as a prototype of the Boltzmann–Landau equation, describing
the density f = f(v, y, t) having position y and velocity v at time t.
We refer to the recent survey article [11] by Imbert and Silvestre, and
to its bibliography. Equations of the form [12] arise in mathematical
finance as well. Specifically, the following linear equation

S2∂SSV + log(S)∂AV + ∂tV = 0, (S,A, t) ∈ R+ × R×]0, T [

appears in the Black & Scholes theory when considering the problem of
the pricing of geometric average asian options, and takes the form [12]
as we change the variable (S,A, t) = (ex, y, T − t). For the applications
of operators in the form L to the finance and to the stochastic theory
we refer to the monograph [21] by Pascucci.

In this article we study the local regularity of the classical solution
u to L u = f when f is Dini continuous. For this reason we require as
few conditions as possible for the definition of L u.

Definition 1.1. Let Ω be an open subset of RN+1. We say that a
function u belongs to C2

L (Ω) if u, its derivatives ∂xiu, ∂xixju (i, j =
1, . . . ,m) and the Lie derivative Y u defined in (1.3) are continuous
functions in Ω. We also require, for i = 1, . . . ,m, that

lim
s→0

∂xiu(exp(sB)x, t− s)− ∂xiu(x, t)

|s|1/2
= 0, (1.8)

uniformly for every (x, t) ∈ K, where K is a compact set K ⊂ Ω.
Let f be a continuous function defined in Ω. We say that a function

u is a classical solution to L u = f in Ω if u belongs to C2
L (Ω), and

the equation L u = f is satisfied at every point of Ω.

As it is customary in the heat operator framework, we regard the
time derivative, here generalized by Y , as a second order operator (see
Remark 2.2 below for a formal justification of this fact). As a con-
sequence, (1.8) can be interpreted as a condition on the second order
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mixed derivative of the form Y 1/2∂xiu. Indeed, if the derivative Y ∂xiu

exists, then the fractional derivative Y ∂
1/2
xi u is equal to 0. Thus, condi-

tion (1.8) is not demanding and it is the weakest assumption we need in
order to prove that u is approximated by its intrinsic Taylor polynomial
of degree 2 (see Theorem 1.3 below).

Our main result is the local regularity of the classical solution u to
L u = f when f is Dini continuous. In order to define a modulus of
continuity which is suitable for the operator L we recall the Lie group
structure K = (RN+1, ◦) introduced by Lanconelli and Polidoro in [13],
and some related notation. In Section 2 we will explain its connection
with L . We let

E(t) := exp(−tB), (1.9)

and we define

K = (RN+1, ◦), (x, t)◦(ξ, τ) = (ξ+E(τ)x, t+τ), (x, t), (ξ, τ) ∈ RN+1.
(1.10)

Then K is a non-commutative group with zero element (0, 0) and inverse

(x, t)−1 = (−E(−t)x,−t).

In [13] it is proved that the operator L is invariant with respect to a
family of dilations (δr)r>0 if, and only if, the matrix B in (1.4) agrees
with B0 defined as:

B0 =


O O . . . O O
B1 O . . . O O
O B2 . . . O O
...

...
. . .

...
...

O O . . . Bκ O

 (1.11)

In other words, every block denoted by ∗ in (1.4) has zero entries. In
this case the dilation is defined for every positive r as

δr := diag(rIm, r
3Im1 , . . . , r

2κ+1Imκ , r
2), (1.12)

where Ik, k ∈ N, is the k-dimensional unit matrix.
In the sequel we let L0 be the operator obtained from L by replac-

ing its matrix B with B0 defined in (1.11), and we base our blow-up
argument on the family of dilations (δr)r>0. Hence we take advantage
of the invariant structure of L0 in the study of the regularity of L .
This fact is quite natural as L0 is the blow-up limit of L , as it is shown
in Section 2.2 of [1].

We now introduce a homogeneous semi-norm of degree 1 with respect
to the family of dilations (δr)r>0 in (1.12) and a quasi-distance which is
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invariant with respect to the group operation in (1.10). We first rewrite
the matrix δr with the equivalent notation

δr := diag(rα1 , . . . , rαN , r2), (1.13)

where α1, . . . , αm0 = 1, αm0+1, . . . , αm0+m1 = 3, αN−mκ , . . . , αN = 2κ +
1.

Definition 1.2. For every (x, t) ∈ RN+1 we set

‖(x, t)‖K := max
{
|x1|

1
α1 , . . . , |xN |

1
αN , |t|

1
2

}
. (1.14)

Note that the semi-norm is homogeneous of degree 1 with respect to
the family of dilations (δr)r>0, namely ‖δr(x, t)‖K = r‖(x, t)‖K for every
r > 0 and (x, t) ∈ RN+1. Moreover, the following pseudo-triangular in-
equality holds: for every bounded set H ⊂ RN+1 there exists a positive
constant cH such that

‖(x, t)−1‖K ≤ cH‖(x, t)‖K,
‖(x, t) ◦ (ξ, τ)‖K ≤ cH(‖(x, t)‖K + ‖(ξ, τ)‖K),

(1.15)

for every (x, t), (ξ, τ) ∈ H. We then define the quasi-distance dK by
setting

dK((x, t), (ξ, τ)) := ‖(ξ, τ)−1◦(x, t)‖K, (x, t), (ξ, τ) ∈ RN+1, (1.16)

and the boxes

Qr(x0, t0) := {(x, t) ∈ RN+1 | dK((x, t), (x0, t0)) < r}. (1.17)

Note that from (1.15) it directly follows

dK((x, t), (ξ, τ)) ≤ cH(dK((x, t), (y, s)) + dK((y, s), (ξ, τ))),

for every (x, t), (ξ, τ), (y, s) ∈ RN+1.
We are now in a position to state our result concerning the intrinsic

second order Taylor polynomial. We recall that the nth-order intrinsic
Taylor polynomial of a function u around the point z is defined as the
unique polynomial function P n

z u of order n such that

u(ζ)− P n
z u(ζ) = o(dK(ζ, z)n) as ζ → z,

where dK denotes the quasi-distance defined in (1.16).

Theorem 1.3. Let L be an operator in the form (1.1) satisfying hy-
pothesis [H.1]. Let Ω be an open subset of RN+1 and let u be a function
in C2

L (Ω). For every z := (x, t) ∈ Ω we define the second order Taylor
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polynomial of u around z as

T 2
z u(ζ) := u(z) +

m∑
i=1

∂xiu(z)(ξi − xi)

+
1

2

m∑
i,j=1

∂2
xixj

u(z)(ξi − xi)(ξj − xj)− Y u(z)(τ − t),
(1.18)

for any ζ = (ξ, τ) ∈ Ω. Indeed, we have

u(ζ)− T 2
z u(ζ) = o(dK(ζ, z)2) as ζ → z. (1.19)

Remark 1.4. We compare Theorem 1.3 with the existing literature.
We specifically refer to the results proved by Pagliarani, Pascucci and
Pignotti in [19, 20, 22]. The authors of the above mentioned papers
consider a suitable funtion space Cn,α

B (Ω), with n nonnegative integer
and α ∈ (0, 1], and prove that

u(ζ)− T nz u(ζ) = O(dK(ζ, z)n+α) as ζ → z. (1.20)

In order to compare this assertion with (1.19) we need to consider the
case n + α = 2. Note that the above articles do not cover the case
n = 2 and α = 0, while they cover n = 1 and α = 1. Thus, their main
results apply to the space C1,1

B (Ω) of the functions u that have Lipschitz
continuous first order derivatives ∂x1u, . . . , ∂xmu along the directions
x1, . . . , xm and satisfy

∂xiu(exp(sB)x, t− s)− ∂xiu(x, t) = O(|s|1/2), as s→ 0, (1.21)

for every (x, t) ∈ Ω and i = 1, . . . ,m. Moreover the functions u are
Lipschitz continuous along the direction of the vector field Y . In this
setting (1.20) reads as follows

u(ζ)− T 1
z u(ζ) = O(dK(ζ, z)2) as ζ → z.

We emphasize that the assumption u ∈ C1,1
B (Ω) does not imply the ex-

istence of the second order derivatives of u, then C1,1
B (Ω) differs subs-

tiantially from our space C2
L (Ω). For this reason, the proof of Theorem

1.3 requires slightly different arguments and the additional condition
(1.8), which is slightly stronger than (1.21).

In order to state the upcoming result Theorem 1.6, we define the
modulus of continuity of a function f defined on any set H ⊂ RN+1 as
follows

ωf (r) := sup
(x,t),(ξ,τ)∈H

dK((x,t),(ξ,τ))<r

|f(x, t)− f(ξ, τ)|. (1.22)
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Definition 1.5. A function f is said to be Dini-continuous in H if∫ 1

0

ωf (r)

r
dr < +∞.

We are now in position to state our main result.

Theorem 1.6. Let L be an operator in the form (1.1) satisfying hy-
pothesis [H.1]. Let u ∈ C2

L (Q1(0, 0)) be a classical solution to L u = f .
Suppose that f is Dini continuous. Then there exists a positive constant
c, only depending on the operator L , such that:

i):

|∂2u(0, 0)| ≤ c

(
sup
Q1(0,0)

|u|+ |f(0, 0)|+
∫ 1

0

ωf (r)

r
dr

)
;

ii): for any points (x, t) and (ξ, τ) ∈ Q 1
4
(0, 0) we have

|∂2u(x, t)− ∂2u(ξ, τ)| ≤ c

(
d sup
Q1(0,0)

|u|+ d sup
Q1(0,0)

|f |+

+

∫ d

0

ωf (r)

r
dr + d

∫ 1

d

ωf (r)

r2
dr

)
.

where d := dK((x, t), (ξ, τ)) and ∂2 stands either for ∂2
xixj

, with
i, j = 1, . . . ,m, or for Y .

We emphasize that Theorem 1.6 fails even in the simplest Euclidean
setting if we do not assume any regularity condition on the function f .
Consider for instance the function

u(x, y) = xy(log(x2 + y2))α, with 0 < α < 1.

A direct computation shows that

∆u(x, y)

= 8α
xy

x2 + y2
(log(x2 + y2))α−1+4α(α− 1)

xy

x2 + y2
(log(x2 + y2))α−2,

so that f(x, y) := ∆u(x, y) extends to a continuous function on R2,
which is not Dini continuous at the point (0, 0). On the other hand,
the derivative ∂x∂yu(x, y) is unbounded near the origin. We also point
out that, when α = 1, the function u is a counterexample for the L∞

bounds of the second order derivatives of weak solutions to ∆u = f . 1

1We acknowledge that this counterexample was pointed out to one of the authors
by Andreas Minne during the Workshop “New trends in PDEs”, held in Catania
on 29-30 May 2018.
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We finally consider the non-constant coefficients operator L̃ defined
as follows

L̃ :=
m∑

i,j=1

aij(x, t)∂
2
xixj

+
N∑

i,j=1

bijxj∂xi − ∂t. (1.23)

We assume that the coefficients aij are Dini continuous functions and,
in order to simplify the notation, we write

ωa(r) := max
i,j=1,...,m

sup
(x,t),(ξ,τ)∈H

dK((x,t),(ξ,τ))<r

|aij(x, t)− aij(ξ, τ)|. (1.24)

We assume that the following condition on the matrix
A(x, t) := (aij(x, t))i,j=1,...,m is satisfied.

[H.2] For every (x, t) ∈ RN+1, the matrix A(x, t) is symmetric and
satisfies

λ|ξ|2 ≤ 〈A(x, t)ξ, ξ〉 ≤ Λ|ξ|2, for every ξ ∈ Rm, (1.25)

for some positive constants λ,Λ.

Theorem 1.7. Let L̃ be an operator in the form (1.23) satisfying
the hypotheses [H.1] and [H.2]. Let u ∈ C2

L (Q1(0, 0)) be a classical

solution to L̃ u = f . Suppose that f and the coefficients aij, i, j =
1, . . . ,m, are Dini continuous. Then for any points (x, t) and (ξ, τ) ∈
Q 1

2
(0, 0) the following holds:

|∂2u(x, t)−∂2u(ξ, τ)| ≤ c

(
d sup
Q1(0,0)

|u|+ d sup
Q1(0,0)

|f |

+

∫ d

0

ωf (r)

r
dr + d

∫ 1

d

ωf (r)

r2
dr

)

+c

( m∑
i,j=1

sup
Q1(0,0)

| ∂2
xixj

u|
)(∫ d

0

ωa(r)

r
dr + d

∫ 1

d

ωa(r)

r2
dr
)
.

where d = dK((x, t), (ξ, τ)) and ∂2 stands either for ∂2
xixj

,i, j = 1, . . . ,m,
or for Y .

We now compare our main findings with the current literature on
this subject. We first consider functions f defined on H ⊂ RN+1 that
are Hölder continuous with respect to the distance (1.16), that is

|f(x, t)−f(ξ, τ)| ≤M dK((x, t), (ξ, τ))α, ∀(x, t), (ξ, τ) ∈ H, (1.26)
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for some constants M > 0 and α ∈]0, 1]. In this case we say that
f ∈ C0,α

L (H) and we let

‖f‖C0,α
L (H) = sup

H
|f |+ inf

{
M ≥ 0 | (1.26) holds

}
.

When α < 1 we write Cα
L(H) instead of C0,α

L (H). As a direct conse-
quence of Theorem 1.7 we have

Corollary 1.8. Let u ∈ C2
L (Q1(0, 0)) be a classical solution to L̃ u =

f . Suppose that f and the coefficients aij, i, j = 1, . . . ,m, belong to

C0,α
L (Q1(0, 0)). Then for any points (x, t) and (ξ, τ) ∈ Q 1

2
(0, 0) the

following holds:

• if α < 1

|∂2u(x, t)− ∂2u(ξ, τ)| ≤c dα
(

sup
Q1(0,0)

|u|+
‖f‖CαL(Q1(0,0))

α(1− α)

+
m∑

i,j=1

sup
Q1(0,0)

| ∂2
xixj

u|
‖a‖CαL(Q1(0,0))

α(1− α)

)
,

• if α = 1

|∂2u(x, t)− ∂2u(ξ, τ)| ≤ c d

(
sup
Q1(0,0)

|u|+ ‖f‖C0,1
L (Q1(0,0))| log d|

+

( m∑
i,j=1

sup
Q1(0,0)

| ∂2
xixj

u|
)
‖a‖C0,1

L (Q1(0,0))| log d|
)
.

Note that, for α < 1, Corollary 1.8 restores the Schauder estimates
previously proved by Manfredini in [16], and by Di Francesco and Poli-
doro in [6]. Note that, in this case, an interpolation inequality allows
us to state a bound for the Cα

L norm of the derivatives ∂2u in terms of
‖a‖CαL(Q1(0,0)), ‖f‖CαL(Q1(0,0)), and supQ1(0,0) |u| only. We also recall that
Schauder estimates in the framework of semigroups have been proved
by Lunardi [15], Lorenzi [14], Priola [23]. Theorems 1.6 and 1.7 improve
the previous ones, not only because we weaken the regularity assump-
tion on f and on the coefficients aij’s, but also because the Schauder
estimate for α = 1 is not given in the aforementioned articles. We also
quote analogous results obtained in the framework of stochastic theory
(see Menozzi [17] and its bibliography).

The proof of our main results is based on the method introduced by
Wang [25] in the study of the Poisson equation, which greatly simplifies
the other approaches previously used in literature. Wang considers in
[25] a solution u to the equation ∆u = f in some open set Ω. Without
loss of generality, he assumes that the unit ball B1(0) is contained in Ω
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and considers a sequence of Dirichlet problems as follows. Let Brk(0)
be the Euclidean ball centered at the origin and of radius rk = 1

2k
, and

let uk be the solution to the Dirichlet problem

∆uk = f(0), in Brk(0), uk = u in ∂Brk(0).

Quantitative information on the derivatives of every solution uk is ob-
tained by using only the elementary properties of the Laplace equa-
tion, namely the weak maximum principle, and the standard apriori
estimates of the derivatives, that are obtained in [25] via mean value
formulas. The bounds for the derivatives of u are obtained as the limit
of the analogous bounds for uk. The Taylor expansion in this step is
crucial to conclude the proof.

In this work we apply the method described above to degenerate
Kolmogorov operators L , by adapting Wang’s approach to the non-
Euclidean structure defined in (1.10). In particular, the ball Brk(0)
is replaced by the box Qrk(0, 0) defined through the dilation δrk in-
troduced in (1.12). Concerning the Taylor expansion, we recall the
results due to Bonfiglioli [4] and the ones proved by Pagliarani, Pas-
cucci and Pignotti [19]. We emphasize that the authors of the above
articles assume that the second order derivatives of the function u are
Hölder continuous, while we only require that u belongs to the space
C2

L (Ω) introduced in Definition 1.1. As the regularity of the second
order derivatives of u is the very subject of this note, we do not assume
extra conditions on them and we prove in Proposition 1.3 the Taylor
approximation under the minimal requirement that u ∈ C2

L (Ω).

We conclude this introduction with a short discussion about the ap-
plicative and theoretical interest in the operator K defined in (1.6),
that is

K :=
m∑
j=1

∂2
xj
−

m∑
j=1

xj∂xm+j
− ∂t = ∆v − 〈v,Dy〉 − ∂t.

Recall that it appears in kinetic theory, and describes the density f =
f(v, y, t) of particles that have velocity v and position y at time t. In
this setting, the Lie group has a quite natural intepretation. Indeed the
composition law (1.10) agrees with the Galilean change of variables

(v, y, t) ◦ (v0, y0, t0) = (v0 + v, y0 + y + tv0, t0 + t),

for every (v, y, t), (v0, y0, t0) ∈ R2m+1.
It is easy to see that K is invariant with respect to the above change

of variables. Specifically, if w(v, y, t) = u(v0 + v, y0 + y+ tv0, t0 + t) and
g(v, y, t) = f(v0 + v, y0 + y + tv0, t0 + t), then

K u = f ⇐⇒ K w = g for every (v0, y0, t0) ∈ R2m+1.
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As the matrix B in (1.7) is in the form (1.11), K is invariant with
respect to the dilatation δr(v, y, t) := (rv, r3y, r2t). Note that the di-
latation acts as the usual parabolic scaling with respect to the variable
v and t. The term r3 in front of y is due to the fact that the veloc-
ity v is the derivative of the position y with respect to time t. For a
more exhaustive description of the operator L , and of its applications,
we refer to the survey article [1] by Anceschi and Polidoro and to its
bibliography.

After the work of Kolmogorov [12] where (1.6) was introduced, and
Hörmander’s celebrated article [10] on the hypoellipticity of second or-
der degenerate linear operators, the regularity theory for operators that
are invariant with respect to a Lie group structure has been widely de-
veloped by many authors. We quote here the seminal works by Folland
[7], Folland and Stein [8], Rotschild and Stein [24], Nagel, Stein and
Wainger [18]. We also refer to the monograph by Bonfiglioli, Lanconelli
and Uguzzoni [3] that contains an updated description of this theory.
Wei, Jiang, and Wu adapt in [26] the method introduced by Wang [25]
and prove Schauder estimates for hypoelliptic degenerate operators on
the Heisenberg group. The Taylor formula used in [26] is proved by
Arena, Caruso and Causa in [2]. In a different framework, Wang’s
method has been used by Bucur and Karakhanyan [5] in the study of
fractional operators.

This paper is structured as follows. In Section 2, we recall the basic
facts about the analysis on Lie groups we need in our treatment. It also
contains some properties about the fundamental solution of the opera-
tor L . In Section 3 we prove some preliminary results. In particular,
we obtain some a priori estimates of the derivatives of the solutions u
to L u = 0 in terms of the L∞ norm of u. In Section 4 we prove our
main result on the Taylor approximation of any function u ∈ C2

L (Ω).
Section 5 contains the proof of Theorem 1.6, while Section 6 contains
the proof of Theorem 1.7.

2. Lie Group Invariance and Fundamental Solution. Here we
discuss the invariance properties of Kolmogorov operators with respect
to the Lie Group structure K = (RN+1, ◦) introduced in (1.10). More-
over, we recall some known results concerning the fundamental solution
of L .

We first introduce some further notation. As the constant matrix A is
symmetric and positive, there exists a symmetric and positive matrix
A1/2 = (aij)i,j=1,...,m such that A = A1/2A1/2. In order to check the
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hypothesis [H.1], we write L in terms of vector fields as follows

L =
m∑
i=1

X2
i + Y,

where

Xi :=
m∑
j=1

aij∂xj , i = 1, . . . ,m, Y := 〈Bx,D〉 − ∂t, (2.1)

We recall that assumption [H.1] is implied by Hörmander’s condition
(see [10]):

rank Lie (X1, . . . , Xm, Y ) (x, t) = N + 1, ∀ (x, t) ∈ RN+1. (2.2)

Yet another condition, equivalent to [H.1], (see [13]), is that

C(t) > 0, for every t > 0,

where

C(t) =

∫ t

0

E(s)

(
A O
O O

)
ET (s) ds.

We now recall that, under the the hypothesis of hypoellipticity, Hörman-
der constructed the fundamental solution of L as

Γ(x, t, ξ, τ) = Γ(x− E(t− τ)ξ, t− τ),

where Γ(x, t) = Γ(x, t, 0, 0) and Γ(x, t) = 0 for every t ≤ 0, while

Γ(x, t) =
(4π)−

N
2√

detC(t)
exp
(
− 1

4
〈C−1(t)x, x〉 − t tr(B)

)
, t > 0.

As a fundamental solution to L , the following representation formula
holds true: for every u ∈ C∞0 (RN+1) we have

u(z) = −
∫
RN+1

[Γ(z, ·)L (u)](ζ)dζ. (2.3)

We now conclude the analysis of the Lie Group K, providing tools
that will be very useful to prove our main results. We adopt the nota-
tion of [13] and we quote the results therein. For a given ζ ∈ RN+1, we
denote by `ζ the left translation on K = (RN+1, ◦) defined as follows

`ζ : RN+1 → RN+1, `ζ(z) = ζ ◦ z.
Then the vector fields X1, . . . , Xm and Y are left-invariant, with respect
to the group law (1.10), in the sense that

Xj (u(ζ ◦ · )) = (Xju) (ζ ◦ · ), j = 1, . . . ,m,

Y (u(ζ ◦ · )) = (Y u) (ζ ◦ · ),
(2.4)
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for every ζ ∈ RN+1 and every u sufficiently smooth. Hence, in particu-
lar,

L ◦ `ζ = `ζ ◦L or, equivalently, L (u(ζ ◦ · )) = (L u) (ζ ◦ · ).
Regarding the invariance with respect to the dilation introduced in

(1.12), we recall that the operator L0, obtained from L by replacing
its matrix B with B0 in (1.11), satisfies

L0 (u ◦ δr) = r2δr (L0u) , for every r > 0, (2.5)

for every function u sufficiently smooth (see Proposition 2.2 in [13]).
In this case, we say that K =

(
RN+1, ◦, (δr)r>0

)
is a homogeneous Lie

group, and we have

δr (z ◦ ζ) = (δrz) ◦ (δrζ) , for every z, ζ ∈ RN+1 and r > 0.

As we rely on a blow-up argument, we also apply the dilation (1.12)
to the general operator L satisfying [H.1]. Specifically, we define Lr

as the scaled operator of L in terms of (δr)r>0 as follows

Lr := r2(δr ◦L ◦ δ 1
r
), (2.6)

and we write its explicit expression in terms of the matrix B and (δr)
as

Lr =
m∑

i,j=1

aij∂
2
xixj

+ Yr, r ∈ (0, 1] (2.7)

where
Yr := 〈Brx,D〉 − ∂t (2.8)

and Br := r2δrBδ 1
r
, i.e.,

Br =


r2B0,0 r4B0,1 . . . r2κB0,κ−1 r2κ+2B0,κ

B1 r2B1,1 . . . r2κ−2B1,κ−1 r2κB1,κ

O B2 . . . r2κ−4B2,κ−1 r2κ−2B2,κ
...

...
. . .

...
...

O O . . . Bκ r2Bκ,κ

 . (2.9)

Clearly, Lr = L for every r > 0 if and only if B = B0, and the
principal part operator L0 is obtained as the limit of (2.6) as r → 0.

Setting Er(t) = exp(−tBr), we define the translation group related
to Lr as

(x, t) ◦r (ξ, τ) = (ξ + Er(τ)x, t+ τ), (x, t), (ξ, τ) ∈ RN+1. (2.10)

Remark 2.1. As it will be useful in the blow-up limit procedure, we
point out that the composition law defined in (2.10) depends continu-
ously on r ∈ (0, 1]. Moreover, taking r = 0 in (2.9) we find the matrix
B0 and “ ◦r” in (2.10) simply becomes the composition law related to the
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dilation-invariant operator L0. Thus, “ ◦r” is a continuous function on
the compact set [0, 1].

The homogeneous dimension of RN+1 with respect to (δr)r>0 is the
integer Q+ 2, where Q is the so called spatial homogeneous dimension
of RN+1

Q := m+ 3m1 + . . .+ (2κ+ 1)mκ. (2.11)

We observe that the following equation holds true

det δr = rQ+2 for every r > 0.

Remark 2.2. We recall the notion of homogeneous function in a ho-
mogeneous group. We say that a function u defined on RN+1 is homo-
geneous of degree α ∈ R if

u(δr(z)) = rαu(z) for every z ∈ RN+1.

A differential operator X will be called homogeneous of degree β ∈ R
with respect to (δr)r≥0 if

Xu(δr(z)) = rβ (Xu) (δr(z)) for every z ∈ RN+1,

and for every sufficiently smooth function u. Note that, if u is homo-
geneous of degree α and X is homogeneous of degree β, then Xu is
homogeneous of degree α− β.

As far as we are concerned with the vector fields of the Kolmogorov
operator L0 under the invariance assumption (2.5), we have that
X1, . . . , Xm are homogeneous of degree 1 and Y is homogeneous of de-
gree 2 with respect to (δr)r≥0. In particular, L0 =

∑m
j=1X

2
j + Y is

homogeneous of degree 2, and its fundamental solution Γ0 is a homo-
geneous function of degree −Q. As a direct consequence, the estimate
Γ0(z, ζ) ≤ c

‖ζ−1◦z‖QK
holds for every z, ζ ∈ RN+1, with z 6= ζ. Analogous

bounds hold for the first order and second order derivatives of Γ0, as
they are homogeneous of degree −Q− 1 and −Q− 2, respectively.

In the sequel, as we also consider the not dilation-invariant operator
L , we rely on the following estimates (see Proposition 2.7 in [6]). Let
z0 ∈ RN+1 and R0 > 0 be a given point and a given constant. Assume
that all the eigenvalues of the matrix A belong to some interval [λ,Λ] ⊂
R+. Then there exists a positive constant c, only depending on λ,Λ
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and on the matrix B, such that the following bounds hold

Γ(z, ζ) ≤ c

‖ζ−1 ◦ z‖QK
,

|∂xjΓ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+1
K

, |∂ξjΓ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+1
K

,

|∂xixjΓ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+2
K

, |∂ξiξjΓ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+2
K

,

|Y Γ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+2
K

, |Y ∗Γ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+2
K

,

(2.12)

for every i, j = 1, . . . ,m, z, ζ ∈ QR0(z0) with z 6= ζ. Here Y ∗ denotes
the transposed operator of Y , defined as follows∫

RN+1

φ(x, t)Y ∗ψ(x, t) dxdt =

∫
RN+1

ψ(x, t)Y φ(x, t) dxdt,

for every ψ, φ ∈ C∞0 (RN+1).
A similar result holds for the derivatives ∂xjΓ(z, ζ) and ∂ξjΓ(z, ζ) for

j = m+ 1, . . . , N . These functions need to be considered as derivatives
of order αj, where the integer αj has been introduced in (1.13). We
have

|∂xjΓ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+αj
K

, |∂ξkΓ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+αk
K

,

|∂xj∂ξkΓ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+αj+αk
K

,
(2.13)

for every j, k = 1, . . . , N , z, ζ ∈ QR0(z0) with z 6= ζ. Note that, as
α1 = · · · = αm = 1, the bounds in the first line of (2.13) agree with
the second line of (2.12). The proof of (2.13) directly follows from the
bound (2.59) and (2.60) in [6].

We conclude this Section with the following corollary of the estimates
(2.12) and (2.13), which will be useful in the sequel.

Lemma 2.3. Assume that all the eigenvalues of the matrix A belong
to some interval [λ,Λ] ⊂ R+. Then there exist two positive constants
C, only depending on λ,Λ and on the matrix B, such that the following
holds true. For every R ∈]0, 1] we have that

sup
{

Γ(z, ζ) : z ∈ QR
2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤ C

RQ
. (2.14)

Moreover

sup
{∣∣∂xj∂ξkΓ(z, ζ)

∣∣ : z ∈ QR
2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤ C

RQ+αj+αk
.

(2.15)
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and

sup
{
|Y ∂ξkΓ(z, ζ)| : z ∈ QR

2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤ C

RQ+2+αk
.

(2.16)
for every j, k = 1, . . . , N .

Proof. We first choose R0 > 0 such that ‖ζ−1 ◦ z‖K ≤ R0 whenever
z ∈ Q 1

2
(0), and ζ ∈ Q1(0). The existence of such a positive number

follows from the pseudo-triangular inequality (1.15). With this choice
of R0, we apply (2.12), and we find

sup
{

Γ(z, ζ) : z ∈ QR
2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤

c
(

inf
{
‖ζ−1 ◦ z‖K : z ∈ QR

2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
})−Q

.
(2.17)

We therefore need to estimate the infimum of ‖ζ−1 ◦ z‖K for z ∈ QR
2
(0)

and ζ ∈ QR(0) \ Q 3R
4

(0). We first consider the points z̄ := δ 1
R

(z) and

ζ̄ := δ 1
R

(ζ) which belong to Q 1
2
(0) and Q1(0) \Q 3

4
(0), respectively. We

now define the function g(z̄, ζ̄) := ‖ζ̄−1 ◦R z̄‖K, which is continuous on

the compact set E := Q 1
2
(0) × Q1(0) \ Q 3

4
(0) × [0, 1], as observed in

Remark 2.1. Thus, by Weierstrass’s Theorem, g attains a minimum m
on E, i.e.,

‖ζ̄−1 ◦R z̄‖K ≥ m, ∀z̄ ∈ Q 1
2
(0), ∀ζ̄ ∈ Q1(0) \ Q 3

4
(0), ∀R ∈ [0, 1].

Going back to the box of radius R, i.e. applying dilation δR to the
points z̄ and ζ̄ yields

‖ζ−1 ◦ z‖K ≥ mR, z ∈ QR
2
(0), ζ ∈ QR(0) \ Q 3R

4
(0), (2.18)

and therefore (2.17) becomes

sup
{

Γ(z, ζ) : z ∈ QR
2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤ c

mQRQ
=:

C

RQ

(2.19)

where the constant C does not depend on R.
To obtain (2.15) and (2.16), we use the bounds for the derivatives of

Γ in (2.12) and apply the same arguments as above.

3. Preliminary results. In this Section we list some preliminary facts,
which are useful in proving our main results. First, we prove a priori
estimates for the derivatives of u solution to the Kolmogorov equation
with right-hand side equal to 0. To this end, we represent solutions to
L u = 0 as convolutions with the fundamental solution Γ of L and its
derivatives ∂x1Γ, ..., ∂xNΓ.
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We then prove a mean-value formula for u, which is based on the
Euclidean mean-value theorem and on the homogeneity of the funda-
mental solution.

In order to state the first result of this Section, we recall the notation
introduced in (1.13), that is δr = diag(rα1 , . . . , rαN , r2). In the sequel
we assume that all the eigenvalues of the constant matrix A belong to
some interval [λ,Λ] ⊂ R+. We are now in position to state our result.

Proposition 3.1. Let u be a solution to L u = 0 in QR(z0), with
R ∈]0, 1]. Then

|∂xju|(z) ≤ C

Rαj
‖u‖L∞(QR(z0)), for every z ∈ QR

2
(z0), j = 1, . . . , N,

for some positive constant C only depending on λ,Λ and on the matrix
B.

Proof. Without loss of generality, we can assume z0 = 0. Let ηR ∈
C∞0 (RN+1) be a cut-off function such that

ηR(x, t) = χ(‖(x, t)‖K), (3.1)

where χ ∈ C∞([0,+∞), [0, 1]) is such that χ(s) = 1 if s ≤ 3R
4

, χ(s) = 0
if s ≥ R and |χ′| ≤ c

R
, |χ′′| ≤ c

R2 . Then, for every z ∈ QR(0) and for
i = 1, . . . , N , there exists a constant c, only depending on B, such that

|∂xiηR(z)| ≤ c

Rαi
, |∂t ηR(z)| ≤ c

R2
. (3.2)

Consequently, for every z ∈ QR(0) and i, j = 1, . . . ,m, we have
|∂2
xixj

ηR(z)| ≤ c
R2 and therefore we obtain a bound for the second order

part of |L ηR(z)|.
Since ηR ≡ 1 in ∈ Q 3R

4
(0), for every z ∈ QR

2
(0) we represent a

solution u to L u = 0 as follows

u(z) = (ηRu)(z) = −
∫
QR(0)

[Γ(z, ·)L (ηRu)](ζ)dζ. (3.3)

Since L = div(ADm) + Y and L u = 0 by assumption, (3.3) can be
rewritten as

u(z) = (ηRu)(z) = −
∫
QR(0)

[Γ(z, ·)div(ADm(ηR))u](ζ)dζ

−
∫
QR(0)

[Γ(z, ·)Y (ηR)u](ζ)dζ

− 2

∫
QR(0)

[Γ(z, ·)〈Dmu,ADmηR〉](ζ)dζ.

(3.4)
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Integrating by parts the last integral in (3.4), we obtain, for every
z ∈ QR

2
(0)

u(z) = (ηRu)(z) =

∫
QR(0)

[Γ(z, ·)div(ADm(ηR))u](ζ)dζ

−
∫
QR(0)

[Γ(z, ·)Y (ηR)u](ζ)dζ

+ 2

∫
QR(0)

[〈Dζ
mΓ(z, ·), ADmηR〉u](ζ)dζ,

(3.5)

where Dm is the gradient with respect to x1, . . . , xm and the superscript
in Dζ

m indicates that we are differentiating w.r.t the variable ζ.
Since z ∈ QR

2
(0) and ∂xiηR, Y (ηR) = 0 (i = 1, . . . ,m) in Q 3R

4
(0),

after differentiating under the integral sign (3.5), we find

∂xju(z) = ∂xj(ηRu)(z) =

∫
QR(0)\Q 3R

4
(0)

[∂xjΓ(z, ·)div(ADm(ηR))u](ζ)dζ

−
∫
QR(0)\Q 3R

4
(0)

[∂xjΓ(z, ·)Y (ηR)u](ζ)dζ

+2

∫
QR(0)\Q 3R

4
(0)

[〈∂xjDζ
mΓ(z, ·), ADmηR〉u](ζ)dζ,

for every j = 1, ..., N . Thus, we obtain

|∂xju(z)| ≤
∫
QR(0)\Q 3R

4
(0)

∣∣[∂xjΓ(z, ·)div(ADm(ηR))u](ζ)
∣∣dζ

+

∫
QR(0)\Q 3R

4
(0)

∣∣[∂xjΓ(z, ·)Y (ηR)u](ζ)
∣∣dζ

+2

∫
QR(0)\Q 3R

4
(0)

∣∣[〈∂xjDζ
mΓ(z, ·), ADmηR〉u](ζ)

∣∣dζ
=: Ĩ1(z) + Ĩ2(z) + Ĩ3(z),
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We estimate Ĩ1(z) and Ĩ2(z), for z ∈ QR
2
(0). We have

Ĩ1(z) ≤ ‖u‖L∞(QR(0)) sup
QR(0)\Q 3R

4
(0)

|div(ADm(ηR))|·

·meas(QR(0)) sup
z∈QR

2
(0),

ζ∈QR(0)\Q 3R
4

(0)

∣∣∂xjΓ(z, ζ)
∣∣,

Ĩ2(z) ≤ ‖u‖L∞(QR(0)) sup
QR(0)\Q 3R

4
(0)

|Y (ηR)|·

·meas(QR(0)) sup
z∈QR

2
(0),

ζ∈QR(0)\Q 3R
4

(0)

∣∣∂xjΓ(z, ζ)
∣∣.

We now apply Lemma 2.3 and obtain

sup
z∈QR

2
(0),

ζ∈QR(0)\Q 3R
4

(0)

∣∣∂xjΓ(z, ζ)
∣∣ ≤ C̃

RQ+αj
. (3.6)

Moreover, by our choice of the cut-off function ηR, we have

|div(ADm(ηR))| ≤ Λ c

R2
in QR(0), (3.7)

where Λ is the largest eigenvalue of A. Finally, combining inequalities
(3.6) and (3.7) with meas(QR(0)) = RQ+2meas(Q1(0)), we obtain

Ĩ1(z) ≤ C

Rαj
‖u‖L∞(QR(0)), z ∈ QR

2
(0), (3.8)

We now estimate |Y (ηR)| ≤ |〈Bx,DηR〉| + |∂tηR| in QR(0) \ Q 3R
4

(0).

The bound for the derivative with respect to time of ηR is obtained
using (3.2). Moreover

|〈Bx,DηR(ζ)〉| ≤
N∑

i,k=1

|bik||xk||∂xiηR(ζ)| ≤ c

N∑
i,k=1

|bik|Rαk−αi , (3.9)

where ζ ∈ QR(0) \ Q 3R
4

(0). Notice that in sum (3.9) the exponent

αk − αi is always greater or equal to −2, because of the form of the
matrix B. Since by assumption R ≤ 1, we estimate (3.9) as follows

|〈Bx,DηR〉| ≤
C ′

R2
, in QR(0) \ Q 3R

4
(0), (3.10)

where C ′ is a constant that only depends on the matrix B and on the
constant c in (3.2).
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Finally, using again meas(QR(0)) = RQ+2meas(Q1(0)), together with
(3.6) and (3.10), we obtain

Ĩ2(z) ≤ C

Rαj
‖u‖L∞(QR(0)), z ∈ QR

2
(0), (3.11)

where C depends only on the constants c and C̃ in (3.2) and (3.6) and
on the matrix B.

By the same argument we prove that, for a point z ∈ QR
2
(0), we have

Ĩ3(z) ≤ ‖u‖L∞(QR(0))
c

R
meas(QR(0)) sup

z∈QR
2

(0),

ζ∈QR(0)\Q 3R
4

(0)

∣∣∂xjDζ
mΓ(z, ζ)

∣∣.
As a consequence,

Ĩ3(z) ≤ C

Rαj
‖u‖L∞(QR(0)),

where C denotes once again a constant depending only on c, C̃ and B.
Combining the inequality above with (3.8) and (3.11), we finally obtain

‖∂xju‖L∞(QR
2

(0)) ≤
C

Rαj
‖u‖L∞(QR(0)), j = 1, ..., N.

We state a result analogous to Proposition 3.1, written in terms of
the vector fields X1, . . . , Xm, Y introduced in (2.1).

Proposition 3.2. Let u be a solution to L u = 0 in QR(0), for R ∈
]0, 1[, then for any Xi, Xj ∈ {X1, ..., Xm}, there exists a constant C,
only depending on λ,Λ and on the matrix B, such that

|Xiu|(z) ≤ C

R
‖u‖L∞(QR(0)), z ∈ QR

2
(0),

|XiXju|(z) ≤ C

R2
‖u‖L∞(QR(0)), z ∈ QR

2
(0).

Similarly, we have that

|Y u|(z) ≤ C

R2
‖u‖L∞(QR(0)), z ∈ QR

2
(0).

Proof. The estimate of X1, . . . , Xm has been proved in Proposition 3.1.
The proof of the remaining estimates is obtained by reasoning as in
Proposition 3.1, and using estimates (2.15) and (2.16), respectively.
We omit the details here.
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In the sequel, we will need to estimate the second order derivatives
of a solution to L u = g, where g is a polynomial of degree at most
two. To this end, we let

g1(z) = 〈v, x〉, g2(z) = 〈Mx, x〉, (3.12)

be two polynomial functions, where v and M denote a constant vector
of RN and a N ×N constant matrix, respectively.

Lemma 3.3. Let ηR be the cut-off function introduced in (3.1) and let
g1 and g2 be the functions defined in (3.12). Then there exists a positive
constant C, only depending on λ,Λ and on the matrix B, such that∣∣∣∣∂2

xixj

∫
QR(0)

Γ(z, ζ)ηR(ζ)dζ

∣∣∣∣ ≤ C, (3.13)

∣∣∣∣∂2
xixj

∫
QR(0)

Γ(z, ζ)ηR(ζ)g1(ζ)dζ

∣∣∣∣ ≤ CR, (3.14)

∣∣∣∣∂2
xixj

∫
QR(0)

Γ(z, ζ)ηR(ζ)g2(ζ)dζ

∣∣∣∣ ≤ CR2, (3.15)

for every z ∈ QR
2
(0), R ∈]0, 1] and for any i, j = 1, . . . ,m.

Proof. Reasoning as in the proof of Proposition 2.11 in [6], we write the
right-hand side of (3.13) as

∂2
xixj

∫
QR(0)

Γ(ζ−1 ◦ z)ηR(ζ)dζ

= lim
ε→0

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z)ηR(ζ)dζ

+ ηR(z)

∫
‖ζ‖K=1

∂xiΓ0(ζ)νjdσ(ζ)

=: lim
ε→0

I0
1 (ε, z) + I0

2 (z).

(3.16)

We rewrite I0
1 (ε, z) as

I0
1 (ε, z) =

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z) (ηR(ζ)− ηR(z)) dζ

+ ηR(z)

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z)dζ.

(3.17)

By the definition of ηR, we have

0 ≤ ηR ≤ 1, ηR(ζ)− ηR(z) = 0, ∀ζ ∈ Q 3R
4

(0), z ∈ QR
2
(0). (3.18)
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Thus, taking advantage of Lemma 2.3, we infer∣∣∣∣ ∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z) (ηR(ζ)− ηR(z)) dζ

∣∣∣∣
=

∣∣∣∣ ∫
QR(0)\Q 3R

4 (0)

∂2
xixj

Γ(ζ−1 ◦ z) (ηR(ζ)− ηR(z)) dζ

∣∣∣∣ ≤ C
(3.19)

Thus we find

I0
2 (z) + lim

ε→0
ηR(z)

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z)dζ = C. (3.20)

Combining estimates (3.19) and (3.20) we conclude the proof of (3.13).
We now prove (3.14). Reasoning as in (3.16) and exploiting the

definition of g1, we can rewrite the right-hand side of (3.14) as

∂2
xixj

∫
QR(0)

Γ(ζ−1 ◦ z)ηR(ζ)〈v, ξ〉dζ

= lim
ε→0

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z)ηR(ζ)〈v, ξ〉dζ

+ 〈v, x〉ηR(z)

∫
‖ζ‖K=1

∂xiΓ0(ζ)νjdσ(ζ)

=: lim
ε→0

I1
1 (ε, z) + I1

2 (z).

(3.21)

We prove that the first integral in (3.21) uniformly converges as ε→ 0+.
We first rewrite I1

1 (ε, z) as

I1
1 (ε, z) =

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z) (ηR(ζ)− ηR(z)) 〈v, ξ〉dζ

+

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z) (ηR(z)) 〈v, ξ − x〉dζ

+ 〈v, x〉ηR(z)

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

∂2
xixj

Γ(ζ−1 ◦ z)dζ

=: I ′1(ε, z) + I ′2(ε, z) + I ′3(ε, z).
(3.22)

To estimate I ′1(ε, z) we use the same argument as in (3.19), with the
only difference that now in the integral we have the additional term
〈v, ξ〉. We find a bound for this term observing that

|〈v, ξ〉| ≤ ‖v‖ · ‖ζ‖K ≤ ‖v‖ ·R, (3.23)
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where ‖v‖ denotes the norm of v in RN . Therefore, we obtain

|I ′1(ε, z)| ≤ C

∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

dζ

‖ζ−1 ◦ z‖Q+1
K
≤ cR, (3.24)

where C is a constant that depends only on λ,Λ, B and v.
We now show that the same bound holds for I ′2(ε, z). We first observe

that

|〈v, x− ξ〉| ≤ ‖v‖ · ‖ζ−1 ◦ z‖K, (3.25)

As a consequence, using again (3.18) and (2.12), we infer

|I ′2(ε, z)| ≤
∫
QR(0)∩{‖ζ−1◦z‖K≥ε}

dζ

‖ζ−1 ◦ z‖Q+1
K
≤ c(R− ε) ≤ cR. (3.26)

Using (3.24) and (3.26) we obtain

lim
ε→0+

I ′1(ε, z) = O(R), lim
ε→0+

I ′2(ε, z) = O(R), as R→ 0. (3.27)

Finally, as for I ′3(ε, z), we compute

lim
ε→0

∫
QR(0)∩{ε≤‖ζ−1◦z‖K≤cR}

∂2
xixj

Γ(ζ−1 ◦ z)dζ

= lim
ε→0

∫
QR(0)∩{ε≤‖ζ−1◦z‖K≤cR}

∂2
wiwj

Γ(w)e−τ trBdw

= − lim
ε→0

∫
‖w‖K=ε

∂wiΓ(w)e−τ trBνjdσj(w)

+ lim
ε→0

∫
‖w‖K=cR

∂wiΓ(w)e−τ trBνjdσj(w)

= −
∫
‖w‖K=1

∂wiΓ0(w)νjdσj(w) +

∫
‖w‖K=cR

∂wiΓ(w)e−τ trBνjdσj(w).

We then obtain,

I1
2 (z) + lim

ε→0
I ′3(ε, z) = 〈v, x〉ηR(z)

∫
‖ζ‖K=1

∂xiΓ0(ζ)νjdσ(ζ)

− 〈v, x〉ηR(z)

∫
‖w‖K=1

∂wiΓ0(w)νjdσj(w)

+ 〈v, x〉ηR(z)

∫
‖w‖K=cR

∂wiΓ(w)e−τ trBνjdσj(w)

= 〈v, x〉ηR(z)

∫
‖w‖K=cR

∂wiΓ(w)e−τ trBνjdσj(w).

(3.28)
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Keeping in mind that

lim
R→0

∫
‖w‖K=cR

∂wiΓ(w)e−τ trBνjdσj(w) =

∫
‖w‖K=1

∂wiΓ0(w)νjdσj(w) = c′,

we finally find

I1
2 (z) + lim

ε→0
I ′3(ε, z) = O(R), as R→ 0. (3.29)

Identity (3.14) follows from (3.24), (3.26) and (3.29).
By the same argument, we obtain

∂2
xixj

∫
QR(0)

Γ(ζ−1 ◦ z)ηR(ζ)〈Mξ, ξ〉dζ = O(R2). (3.30)

We omit the details here as the procedure is analogous.

From Proposition 3.1 and Lemma 3.3, we derive the following result.

Lemma 3.4. Let w be a solution to Lw = 〈v, ξ〉+ 〈Mξ, ξ〉 in QR(0),
where v and M are as in (3.12). Then

|∂2
xixj

w(z)| ≤ C

R2
‖w‖L∞(QR(0)) + CR, (3.31)

for every i, j = 1, . . . ,m, 0 < R ≤ 1 and for any z ∈ QR
2

(0).

Proof. Reasoning as in Proposition 3.1, we obtain

|∂2
xixj

w(z)| ≤
∫
QR(0)\Q 3R

4
(0)

∣∣[∂2
xixj

Γ(z, ·)div(ADm(ηR))w](ζ)
∣∣dζ

+

∫
QR(0)\Q

(3/4)%k
(0)

∣∣[∂2
xixj

Γ(z, ·)Y (ηR)w](ζ)
∣∣dζ

+ 2

∫
QR(0)\Q 3R

4
(0)

∣∣[∂2
xixj

Γ(z, ·)〈Dmw,ADmηR〉](ζ)
∣∣dζ

+

∣∣∣∣[∂2
xixj

∫
QR(0)

[Γ(z, ·)ηR](ζ)〈v, ξ〉dζ
]∣∣∣∣

+

∣∣∣∣[∂2
xixj

∫
QR(0)

[Γ(z, ·)ηR](ζ)〈Mξ, ξ〉dζ
]∣∣∣∣

=: I1(z) + I2(z) + I3(z) + I4(z) + I5(z).
(3.32)

The terms I1(z), I2(z), I3(z) were already estimated in Proposition 3.1
as

I1(z), I2(z), I3(z) ≤ C

R2
‖w‖L∞(QR(0)), z ∈ QR

2
(0).
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Additionally, I4(z) and I5(z) are O(R) in virtue of Lemma 3.3 and thus
(3.31) is proved.

We now prove a mean value theorem for solutions u to L u = 0 in
cylinders QR(ζ).

Proposition 3.5 (Scale invariant Lipschitz estimate). Let ζ be any
point of RN+1, and let u be a solution to L u = 0 in QR(ζ), with
R ∈]0, 1]. Then the following estimate holds

|u(z)− u(ζ)| ≤ C

R
dK(z, ζ)‖u‖L∞(QR(ζ)), (3.33)

for every z ∈ QR
2
(ζ). Here C is a constant that only depends on λ,Λ

and on the matrix B.

Proof. Thanks to the left-invariance of the operator L , it is not restric-
tive to assume ζ = 0, then we need to prove

|u(z)− u(0)| ≤ C

R
‖z‖K‖u‖L∞(QR(0)).

Consider z = (x, t) ∈ QR
2
(0), and apply the standard mean-value the-

orem

|u(z)− u(0)| = |u(x1, . . . , xN , t)− u(0, . . . , 0, 0)|

≤
N∑
i=1

|xi| |∂xiu(ϑ1x1, . . . , ϑNxN , t)|+ |t| |Y u(0, . . . , 0, ϑt),

(3.34)

where ϑ1, . . . , ϑN , ϑ ∈]0, 1[. For every i = 1, . . . , N , we have |xi| ≤
‖z‖αiK ≤ Rαi , and (ϑ1x1, . . . , ϑNxN , t) ∈ QR

2
(0). Then, by Proposition

3.1, we find

|∂xiu(ϑ1x1, . . . , ϑNxN , t)| ≤
c

Rαi
‖u‖L∞(QR(0)).

so that

|xi| |∂xiu(ϑ1x1, . . . , ϑNxN , t)| ≤
c

R
‖z‖K‖u‖L∞(QR(0)).

Analogously, we have that |ϑt| ≤ |t| ≤ ‖z‖2
K ≤ R2, and from Proposi-

tion 3.2 it follows that

|Y u(0, . . . , 0, ϑt)| ≤ c

R2
‖u‖L∞(QR(0)),

thus

|t| |Y u(0, . . . , 0, ϑt)| ≤ c

R
‖z‖K‖u‖L∞(QR(0)).

The proof of the proposition can be obtained by combining the above
estimates.
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4. Taylor formula. In this Section we prove Theorem 1.3. The proof
is based on the method introduced by Pagliarani, Pascucci and Pig-
notti in [19] for the dilation-invariant operator L0 and then generalized
by Pagliarani and Pignotti in [20] and by Pignotti in [22] to the not
dilation-invariant one.

We want to emphasize the main differences with respect to the pre-
vious approaches in the literature. The first result about a Taylor
inequality in homogeneous groups goes back to the seminal book of
Folland and Stein, [9]. In the proof, they used a quantitative version
of the Carathéodory-Chow-Rashevsky connectivity result and a Mean
Value Theorem. A slightly improved version of this result has been
proved by Bonfiglioli [4] that led him to derive also a Taylor formula
with integral remainder. Both approaches were assuming, for a poly-
nomial of degree n, the differentiability up to order n in the Euclidean
sense. A more intrinsic point of view has been introduced in the pa-
per [19], where the authors considered functions regular in the intrinsic
sense.

In order to prove Theorem 1.3, we follow the same procedure intro-
duced in [19] and [20, 22] and we point out the modifications needed
to deal with our slightly different situation.

We next introduce some further notation. We define the spaces
V0, . . . , Vκ as the vector subspaces of RN which are invariant with re-
spect to dilation (δr)r>0 introduced in (1.12). Specifically, for n =
0, . . . , κ, we set

Vn := {0}m̄n−1 × Rmn × {0}N−m̄n ,

where m̄n := m0 + . . .mn, with m−1 ≡ 0. Moreover, we let x[n] be the
projection of x ∈ RN on Vn. Note that

RN =
κ⊕

n=0

Vn, x = x[0] + · · ·+ x[κ], (4.1)

for every x ∈ RN . Moreover, in accordance with the dilation (δr)r>0,
we have

δr(x
[n]) = r2n+1x[n], ∀x[n] ∈ Vn, (4.2)

for every n = 0, . . . , κ. In virtue of assumption [H.1], the linear appli-
cation Bn : V0 → Vn is surjective; however, it is in general not injective.
Thus, we define the subspaces V0,n ⊂ V0 as follows

V0,n := ker(Bn)⊥.

The linear map Bn : V0,n → Vn is now bijective.
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The method of the proof relies on the construction of a finite sequence
of points which connect z = (x, t) and ζ = (ξ, τ) and are located along
suitable trajectories. More precisely, we start from z and choose z1 =
(x1, t1) as the point along the integral curve of the drift Y satisfying the
condition t1 = τ . We then move along the integral paths of X1, . . . , Xm

to a point z2 = (x2, t2) such that x
[0]
2 = ξ[0] and t2 = τ . This allows us

to exploit the regularity of u along the vector fields X1, . . . , Xm, Y and
estimate the remainder in (1.19) in terms of the homogeneous norm of
the new points.

Since we have no apriori regularity of u with respect to other vector
fields, we increment the higher level coordinates x[1], . . . , x[κ] by mov-
ing along trajectories defined as concatenations of integral curves of
X1, . . . , Xm, Y . Specifically, for any z ∈ RN+1 and s ∈ R we define

iteratively the family of trajectories (γ
(n)
v,s (z))n=0,...,κ as follows

γ(0)
v,s(z) = esXv(z) = (x+ sv, t)

γ(n+1)
v,s (z) = e−s

2Y (γ
(n)
v,−s(e

s2Y (γ(n)
v,s (z)))),

(4.3)

where v is a suitable vector in V0, and Xv = v1∂x1 + · · ·+ vm∂xm .
At this point we need to distinguish the dilation-invariant operators

from the non dilation-inviariant ones. In the first case, the trajectories

(γ
(n)
v,s (z))n=0,...,κ have the remarkable property of modifying the compo-

nents x[n]+· · ·+x[κ] leaving unchanged the components x[0]+· · ·+x[n−1];
thus, we reach the point ζ after κ steps. The proof of Theorem 1.3,
for dilation-invariant operators, follows by exploiting the regularity of
u with respect to X1, . . . , Xm, Y , as we connect z to ζ along integral
curves of the vector fields X1, . . . , Xm, Y . The next example illustrates
the geometric construction in the simplest case, corresponding to κ = 1.

Example 4.1. We consider the degenerate Kolmogorov operator

K0 := ∂2
xx + x∂y − ∂t

and show how to use the trajectories defined in (4.3) to connect an
arbitrary point z ∈ R3 with the origin. In this case, we have

B =

(
0 0
1 0

)
and thus

esX(x, y, t) = (x+ s, y, t), esY (x, y, t) = (x, y + sx, t− s).

Moreover,

R2 = V0 ⊕ V1 = span{e1} ⊕ span{e2}, V0,0 = V0,1 = span{e1}.
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Let z = (x, y, t) be a point in R3, and consider for simplicity ζ =
(0, 0, 0). We first adjust the temporal component by moving along the
drift Y , and we reach the point

z1 = etY (z) = (x, y + tx, 0).

We then move along the integral curve of the vector field X to make x
equal to 0:

z2 = es0X(z1) = (x+ s0, y + tx, 0) = (0, y + tx, 0),

by choosing s0 = −x. We reached the point z2 ∈ V1 and we plan to
steer it to (0, 0, 0). We move along a curve defined as concatenation of
integral paths of X and Y as follows:

z3 = es1X(z2) = (s1, y + tx, 0),

z4 = es
2
1Y (z3) = (s1, y + tx+ s3

1,−s2
1),

z5 = e−s1X(z4) = (0, y + tx+ s3
1,−s2

1),

z6 = e−s
2
1Y (z5) = (0, y + tx+ s3

1, 0),

(4.4)

and we reach the point ζ = (0, 0, 0) if we choose s1 = (−tx− y)
1
3 .

When considering a not dilation-invariant operator L , the method

illustrated above fails. Indeed, in this case the trajectory (γ
(n)
v,s (z)) may

affect the components x[0] + · · ·+x[n−1], as the following example shows.

Example 4.2. We consider the degenerate Kolmogorov operator

K := ∂2
xx + x∂y + x∂x − ∂t. (4.5)

In this case, B takes the form

B =

(
1 0
1 0

)
.

and therefore the operator K is not dilation-invariant. Let us emphasize
the differences with the dilation-invariant case studied in Example 4.1.
We denote again the points in R3 by z = (x, y, t) and consider ζ =
(0, 0, 0). The first two steps of the procedure used in Example 4.1 allow
us to move from z to some point z1 = (x1, y1, 0), then to some other
point z2 = (0, y2, 0). The difference with the homogeneous case arises
in the third step, i.e. when we are dealing with the y-variable.

Let us suppose we want to move from any point z = (0, y, 0) ∈ V1 to
the origin (0, 0, 0). If we reproduce the same construction as in (4.4),
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we find:

z1 = esX(z) = (s, y, 0),

z2 = es
2Y (z1) = (ses

2

,−s+ ses
2

+ y,−s2),

z3 = e−sX(z2) = (ses
2 − s,−s+ ses

2

+ y,−s2),

z4 = e−s
2Y (z3) = (s(1− e−s2), s(1− e−s2) + y, 0).

(4.6)

If we choose s such that s(1 − e−s2) = −y, we obtain z4 = (−y, 0, 0),
so that its second component is zero but, in constrast with the previous
Example 4.1, we have that z4 doesn’t agree with our target point ζ =
(0, 0, 0).

In order to reach the point ζ = (0, 0, 0) also in the case of not dilation-
invariant operators, we rely on the method introduced by Pagliarani
and Pignotti in [20] and by Pignotti in [22]. In the case of the operator
K in (4.5) it is sufficient to use once more the integral curve of the
vector field X = ∂x. In the case of more general operators a further
topological argument is needed to conclude the construction. We refer
to [20, 22] for a detailed description of this construction.

We are now ready to prove our result.

Proof of Theorem 1.3. Let z = (x, t), ζ = (ξ, τ) be two given points of
Ω. As explained above, the proof relies on a finite sequence of inte-
gral paths of the vector fields X1, . . . , Xm and Y connecting z to ζ.
We use the construction made by Pagliarani, Pascucci and Pignotti
[19] for a dilation-invariant operator L . In this case the trajectories

(γ
(n)
v,s (z))n=0,...,κ defined in (4.3) are explicitly given and we prove that

(1.19) holds. We then discuss the modifications needed to deal with
any not dilation-invariant operator L , as introduced by Pagliarani and
Pignotti in [20] and by Pignotti in [22].

As a preliminary result, we prove our claim (1.19) under the assump-
tion that the points z = (x, t) and ζ = (ξ, τ) have the same temporal
component t = τ , by a finite iteration on n = 0, . . . , κ. We remove this
assumption in the last part of the proof.

Base case n = 0. In this case, we are only changing the variables
xi, for i = 1, . . . ,m, moving along the direction es0Xv0 where v0 =
(v0,1, . . . , v0,m, 0 . . . , 0) is a suitable unit vector in V0. Thus, equation
(1.18), with z = (x, t) and ζ = (x+ s0v0, t), rewrites as

T 2
z u(ζ) = u(x, t) +

m∑
i=1

∂xiu(x, t)s0v0,i +
s2

0

2

m∑
i,j=1

∂2
xi,xj

u(x, t)v0,iv0,j.(4.7)
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We observe that ‖z−1 ◦ ζ‖2
K = |s0|2 and therefore we want to show that

u(ζ)− T 2
z u(ζ) = o(|s0|2) as s0 → 0. (4.8)

By the multidimensional euclidean mean-value theorem, there exist
(v̄i,j)1≤i,j≤m, with v̄i,j ∈ span{e1, . . . , em} and |v̄i,j| ≤ |v0| such that

u(ζ)− T 2
z u(ζ) =

s2
0

2

m∑
i,j=1

(∂2
xi,xj

u(x+ s0v̄i,j, t)v0,iv0,j − ∂2
xi,xj

u(x, t))v0,iv0,j

= o(|s0|2) as s0 → 0,
(4.9)

where we have used the continuity of the second order derivatives of u.
Thus, we have proved (4.8) and we are done.

Let us remark that we do not need the dilation-invariance property
for Y , as we do not make use of the vector field Y in this part of the
construction.

Inductive step. Suppose that the thesis is true for a given nonnegative
n < κ. We prove it for n+ 1. For every z, ζ ∈ RN+1 we set

T̃ 2
z u(ζ) := T 2

z u(ζ)− u(z). (4.10)

We define the points

z = (x, t), z1 = γ(n)
v,s (z), z2 = es

2Y (z1)

z3 = γ
(n)
v,−s(z2), z4 = e−s

2Y (z3) = γ(n+1)
v,s (z)

where v is the unique unitary vector in V0,n+1 ⊂ V0, defined as v = w
|w| ,

where w is the vector in V0,n+1 such that Bn+1w = ζ [n+1] − z[n+1] and

s = |w|
1

2(n+1)+1 . We aim to prove that

u(z4)− T 2
z u(z4) = o(‖z−1 ◦ z4‖2

K) = o(|s|2) as s→ 0. (4.11)

We now rewrite (4.11) by using the notation (4.10) as follows

u(z4)− T 2
z u(z4) = u(z4)− u(z3)

(1)

+ u(z3)− u(z2)− T̃ 2
z2
u(z3)

(2)

+ u(z2)− u(z1)
(3)

+ T̃ 2
z1
u(z) + u(z1)− u(z)

(4)

+ T̃ 2
z2
u(z3)− T̃ 2

z1
u(z)

(5)

− T̃ 2
z u(z4)

(6)
.

(4.12)
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By the inductive hypothesis, the second and the forth difference are

o(|s|2) as s→ 0. Moreover, recalling (1.18), we have that T̃ 2
z u(z4) ≡ 0,

being x
[0]
4 = x[0] and t4 = t.

We next apply definition (1.18) to the fifth difference, and we find

T̃ 2
z2
u(z3)− T̃ 2

z1
u(z) =− s

m∑
i=1

(∂xiu(z2)− ∂xiu(z1))vi

− s2

2

m∑
i,j=1

(∂2
xixj

u(z2)− ∂2
xixj

u(z1))vivj.

(4.13)

As an immediate consequence of condition (1.8), we obtain the following
equation

∂xiu(z2)− ∂xiu(z1) = ∂xiu(es
2Y (z1))− ∂xiu(z1) = o(|s|).

Using the previous equation and the continuity of second order deriva-
tives of u, we find that (4.13) is equal to o(|s|2).

We now observe that

u(z4)− u(z3) = u(e−s
2Y (z3))− u(z3).

By applying the mean value theorem along the direction of the drift,
we find that there exists s̄ such that

u(e−s
2Y (z3))− u(z3) = −s2Y u(es̄Y (z3)),

where |s̄| ≤ |s|. Similarly we obtain that

u(z2)− u(z1) = s2Y u(es̃Y (z1)),

where again s̃ verifies |s̃| ≤ |s|.
By letting s → 0, we find that s̄, s̃ → 0, and therefore, using the

continuity of Y u, we have shown that the sum of the first and the third
difference in (4.12) is again equal to o(|s|2) as s→ 0. This proves (4.11)
and therefore concludes the proof of the inductive step.

As already pointed out, the construction of the trajectories in the case
of not dilation-invariant operators requires the adjustments introduced

in [20, 22], to deal with the fact that the term T̃ 2
z u(z4) in (4.12) fails

to vanish. Indeed, with the notation (4.1), x writes as x = x[0] + x[1] +

· · · + x[κ], and we have T̃ 2
z u(z4) 6= 0 whenever x

[0]
4 6= x[0]. To overcome

this problem, we define a new point z5 = (x5, t5) as follows:

x
[0]
5 = x[0], x

[1]
5 = x

[1]
4 , . . . , x

[κ]
5 = x

[κ]
4 , t5 = t4.

Note that in [20, 22] it is proved that∣∣∣x[0] − x[0]
4

∣∣∣ ≤ C‖z−1 ◦ ζ‖K,
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for some positive constant C only depending on the matrix B. Then

u(z5)− u(z4) = o(‖z−1 ◦ ζ‖2
K) as ζ → z. (4.14)

With this modification, expression (4.12) is replaced by

u(z5)− T 2
z u(z5) = u(z5)− u(z4)− T̃ 2

z u(z5) + o(‖z−1 ◦ ζ‖2
K) as ζ → z.

Moreover, x
[0]
5 = x[0] and t5 = t yield T̃ 2

z u(z5) = 0. From (4.14) it then
follows that

u(z5)− T 2
z u(z5) = o(‖z−1 ◦ ζ‖2

K) as ζ → z.

We are now in position to prove (1.19). We first consider the point
z̄ = e(t−τ)Y (z) = (e(t−τ)Bx, τ) and write

u(ζ)− T 2
z u(ζ) = u(ζ)− T 2

z̄ u(ζ) + T 2
z̄ u(ζ)− T 2

z u(ζ). (4.15)

Thanks to the previous steps, the first difference is o(‖z̄−1 ◦ ζ‖2
K) =

o(‖z−1 ◦ ζ‖2
K) as ‖z−1 ◦ ζ‖2

K → 0, since ζ and z̄ have the same temporal
component τ . At the same time, the second difference in (4.15) can be
rewritten as

T 2
z̄ u(ζ)− T 2

z u(ζ) = u(z̄)− u(z) +
m∑
i=1

(∂xiu(z̄)− ∂xiu(z)) (ξi − xi)

+
1

2

m∑
i,j=1

(
∂2
xixj

u(z̄)− ∂2
xixj

u(z)
)

(ξi − xi)(ξj − xj)

+ Y u(z)(τ − t).
(4.16)

Using the mean value theorem along the drift, we can rewrite difference
u(z̄)− u(z) in (4.16) as

u(e(t−τ)Y (z))− u(z) = (t− τ)Y u(eδY (z)), (4.17)

where δ is such that |δ| ≤ |t− τ |. Hence, we obtain

u(z̄)− u(z)− Y (z)(t− τ) = (t− τ)(Y u(eδY (z))− Y (z)), (4.18)

which is o(|t − τ |) = o(‖z−1 ◦ ζ‖2
K) as ‖z−1 ◦ ζ‖2

K → 0, thanks to the
continuity of Y u.

We observe that we can apply condition (1.8) to the point z, which
is not fixed, thanks to the fact that such a condition holds locally
uniformly. Hence, using the aforemention condition (1.8), together with
the continuity of the second derivatives of u, we obtain that the second
and third difference in (4.16) are also o(|t − τ |) = o(‖z−1 ◦ ζ‖2

K) as
‖z−1 ◦ ζ‖2

K → 0.
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Combining all the previous estimates, we obtain

T 2
z̄ u(ζ)− T 2

z u(ζ) = o(‖z−1 ◦ ζ‖2
K), as ‖z−1 ◦ ζ‖2

K → 0. (4.19)

and therefore (4.15) is equal to o(‖z−1 ◦ ζ‖2
K) as ‖z−1 ◦ ζ‖2

K → 0. This
concludes the proof.

5. Proof of Theorem 1.6. We first prove a preliminary lemma, which
is a straightforward consequence of the maximum principle.

Lemma 5.1. Given ϕ ∈ C(∂QR(z0)) and g ∈ Cb(QR(z0)), we let v be
the solution to the following Dirichlet problem{

L v = g, in QR(z0),
v = ϕ, in ∂QR(z0).

Then, the following holds

‖v‖L∞(QR(z0)) ≤ ‖ϕ‖L∞(QR(z0)) + |t− t1|‖g‖L∞(QR(z0)), (5.1)

where t1 = t0 − R2 is the time coordinate of the basis of the cylinder
QR(z0).

Proof. We introduce the function w(x, t) := (t − t1)‖g‖L∞(QR(z0)) +
‖ϕ‖L∞(QR(z0)) and we let u := v − w. Clearly, u satisfies L u = g +
‖g‖L∞(QR(z0)) ≥ 0 in QR(z0). Moreover, as v ≡ ϕ on the boundary of
QR(z0), we have u = ϕ − (t − t1)‖g‖L∞(QR(z0)) − ‖ϕ‖L∞(QR(z0)) ≤ 0 in
∂QR(z0). By the strong maximum principle, it follows that u(x, t) ≤ 0
in QR(z0). Replacing v by −v, estimate (5.1) follows at once.

Proof of Theorem 1.6. We first prove assertion (ii). We denote Qk =
Q%k(0), % = 1

2
and we consider the following sequence of Dirichlet prob-

lems: {
L uk = f(0), in Qk
uk = u, in ∂Qk

(5.2)

For any point z = (x, t) satisfying ‖z‖K ≤ 1
2
, we want to estimate the

quantity

I(z) := |∂2u(z)− ∂2u(0)|,
where ∂2u(z) stands for either ∂2

xixj
u(z), with i, j = 1, . . . ,m, or Y u(z).

To this end, we write I as the sum of three terms:

I(z) ≤ |∂2uk(z)− ∂2uk(0)|+ |∂2uk(0)− ∂2u(0)|+
+ |∂2u(z)− ∂2uk(z)| =: I1(z) + I2(z) + I3(z).

We first estimate I2. Following [25], we prove that (∂2uk(0))k∈N is
a Cauchy sequence and that its limit agrees with ∂2u(0). The same
assertion holds for I3 of course.
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First, we let vk := u−uk and we observe that vk satisfies the Dirichlet
boundary value problem{

L vk = f − f(0), in Qk
vk = 0, in ∂Qk

(5.3)

From Lemma 5.1 it follows that

‖vk‖∞ ≤ 4%2k‖f − f(0)‖∞ ≤ 4%2kωf (%
k). (5.4)

Moreover, since L (uk − uk+1) = 0 in Qk+1, we apply Proposition 3.2
and Lemma 5.1, and we find

‖∂xi(uk − uk+1)‖L∞(Qk+2) ≤ C%−k−2 sup
Qk+1

|uk − uk+1|

≤ C%−k
(

sup
Qk+1

|vk|+ sup
Qk+1

|vk+1|
)

≤ C%−k%2kωf (%
k) = C%kωf (%

k), (5.5)

for any i = 1, . . . ,m. In the same way, we obtain

‖∂2
xixj

(uk − uk+1)‖L∞(Qk+2) ≤ C%−2k−4 sup
Qk+1

|uk − uk+1|

≤ C%−2k%2kωf (%
k) = Cωf (%

k) (5.6)

for i, j = 1, . . . ,m, and

‖Y (uk − uk+1)‖L∞(Qk+2) ≤ C%−2k−4 sup
Qk+1

|uk − uk+1|

≤ C%−2k%2kωf (%
k) = Cωf (%

k). (5.7)

Let k ≥ 1 such that %k+4 ≤ ‖z‖K ≤ %k+3 , then we have:
∞∑
l=k

|∂2ul(0)− ∂2ul+1(0)| ≤ C
∞∑
l=k

ωf (%
l) ≤ C

∫ ‖z‖K
0

ωf (r)

r
dr. (5.8)

We next identify the sum of the series
∑∞

l=k (∂2ul(0)− ∂2ul+1(0)) as
∞∑
l=k

(
∂2ul(0)− ∂2ul+1(0)

)
= ∂2uk(0)− ∂2u(0). (5.9)

To this end, we first consider the derivative ∂2
xixj

uk and we prove that

lim
k→+∞

∂2
xixj

uk(0) = ∂2
xixj

T 2
0 u(0), (5.10)

where T 2
0 u(ζ) is the second-order Taylor polynomial of u around the

origin, computed at some point ζ = (ξ, τ) ∈ Qk:

T 2
0 u(ζ) = u(0) +

m∑
i=1

∂xiu(0)ξi +
1

2

m∑
i,j=1

∂2
xixj

u(0)ξiξj − Y u(0)τ.
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Thus, by applying Theorem 1.3 to u ∈ C2
L (Q1(0)), we obtain from

(5.10) that

lim
k→+∞

∂2
xixj

uk(0) = ∂2
xixj

u(0). (5.11)

We compute L T 2
0 u in ζ = (ξ, τ) as

L T 2
0 u(ζ) =

m∑
i,j=1

aij∂
2
ξiζj
u(0)− ∂tu(0) +

N∑
j=1

( m∑
i=1

bij∂ξiu(0)

)
ξj

+
N∑

l,j=1

( m∑
i=1

bil∂
2
ξjξi
u(0)

)
ξlξj

=
m∑

i,j=1

aij∂
2
ξiζj
u(0)− ∂tu(0) + 〈v, ξ〉+ 〈Mξ, ξ〉,

where v = (vj)j=1,...,N = (
∑m

i=1 bij∂ξiu(0))j=1,...,N is a constant vector of

RN and M = (mlj)l,j=1,...,N =
(∑m

i=1 bil∂
2
ξjξi
u(0)

)
l,j=1,...,N

is a N × N
constant matrix.

In addition, as L u = f in Qk, we have that

m∑
i,j=1

aij∂
2
ξiζj
u(0)− ∂tu(0) = L0u(0) = L u(0) = f(0) (5.12)

and thus

L T 2
0 u(ζ) = f(0) + 〈v, ξ〉+ 〈Mξ, ξ〉. (5.13)

Thus, the definition of uk in (5.2) gives us

L
(
T 2

0 u− uk
)

(ζ) = 〈v, ξ〉+ 〈Mξ, ξ〉, ζ ∈ Qk. (5.14)

We now apply Lemma 3.4 to T 2
0 u− uk for R = %k and infer

|∂2
xixj

(uk − T 2
0 u)(0)| ≤ C%−2k sup

Qk
|uk − T 2

0 u|+O(%k). (5.15)

Moreover, since T 2
0 u is the second-order Taylor polynomial of u, we

have u(ζ) = T 2
0 u(ζ) + o(‖ζ‖2

K). It follows that

sup
ζ∈Qk
|u− T 2

0 u| = o(%2k) (5.16)

Thus, from estimates (5.16) and (5.4), we obtain

sup
Qk
|uk − T 2

0 u| ≤ sup
Qk
|vk|+ sup

Qk
|u− T 2

0 u|

≤ 4ωf (%
k)%2k + o(%2k) ≤ o(%2k).

(5.17)
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Estimates (5.15) and (5.17) finally yield

|∂2
xixj

(uk − T 2
0 u)(0)| ≤ C%−2k sup

Qk
|uk − T 2

0 u|+O(%k)

≤ C%−2ko(%2k) +O(%k) ≤ o(1),

where, as usual, the indexes i and j range from 1 to m. Thus, for any
i, j = 1, . . . ,m we have showed that (5.10) holds true. Repeating the
same argument for the vector field Y , and using again Theorem 1.3, we
obtain:

lim
k→+∞

Y uk(0) = Y T 2
0 u(0) = Y u(0).

In conclusion, using (5.8), we obtain:

I2 ≤
∞∑
l=k

|∂2ul(0)− ∂2ul+1(0)| ≤ C

∫ ‖z‖K
0

ωf (r)

r
dr, (5.18)

for k ≥ 1 such that %k+4 ≤ ‖z‖K ≤ %k+3. Similarly, we can estimate I3

through the solution of L v = f(z) in Qj(z) and v = u on ∂Qj(z) and
obtain

I3 ≤
∞∑
l=k

|∂2ul(z)− ∂2ul+1(z)| ≤ C

∫ ‖z‖K
0

ωf (r)

r
dr. (5.19)

Finally, let us estimate I1. Since hk = uk − uk+1 ∈ C∞(Qk+2), we
can apply Proposition 3.5 to the functions ∂2

xixj
hk and Y hk:

|∂2
xixj

hk(z)− ∂2
xixj

hk(0)| ≤ C

%k
‖z‖K‖∂2

xixj
hk‖L∞(Qk+1)

and

|Y hk(z)− Y hk(0)| ≤ C

%k
‖z‖K‖Y hk‖L∞(Qk+1),

for i, j = 1, . . . ,m. We can now apply once again (5.6) to obtain

|∂2
xixj

hk(z)− ∂2
xixj

hk(0)| ≤ C

%k
‖z‖K‖∂2

xixj
hk‖L∞(Qk+1) ≤ C‖z‖K%−kωf (%k).

In addition, thanks to (5.7), we infer

|Y hk(z)− Y hk(0)| ≤ C

%k
‖z‖K‖Y hk‖L∞(Qk+1) ≤ C‖z‖K%−kωf (%k).
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Hence, since uk(z)− uk(0) = u0(z)− u0(0) +
∑k−1

j=0 (hj(0)− hj(z)), we
have

I1 ≤ |∂2u0(z)− ∂2u0(0)|+
k−1∑
j=0

|∂2hj(z)− ∂2hj(0)|

≤ C‖z‖K
(
‖u0‖L∞(Q0) + C

k−1∑
j=0

%−jωf (%
j)
)

≤ C‖z‖K
(
‖u‖L∞(Q1(0)) + ‖f‖L∞(Q1(0)) + C

∫ 1

‖z‖K

ωf (r)

r2

)
.

Combining the above estimate with (5.18) and (5.19), we complete the
proof of (ii).

We now prove assertion (i). We consider u1 solution to the following
Dirichlet problem{

L u1 = f(0), in Q1/2(0)
u1 = u, in ∂Q1/2(0)

Then, we have

|∂2u(0)| ≤ |∂2u(0)− ∂2u1(0)|+ |∂2u1(0)| (5.20)

Thanks to (5.18), we can estimate the first term in (5.20) as

|∂2u(0)− ∂2u1(0)| ≤ C

∫ 1

0

ωf (r)

r
dr. (5.21)

To estimate the second term in (5.20), we consider the function v(z) :=
u1(z)η1/2(z), where η1/2 is the cut-off function introduced in (3.1) with
R = 1

2
. Reasoning as in the proof of Proposition 3.1, we obtain

u(z) = v(z) =

∫
Q 1

2
(0)

[Γ(z, ·)div(ADm(η1/2))u1](ζ)dζ

−
∫
Q 1

2
(0)

[Γ(z, ·)Y (η1/2)u1](ζ)dζ

−
∫
Q 1

2
(0)

[Γ(z, ·)η1/2L (u1)](ζ)dζ

+ 2

∫
Q 1

2
(0)

[〈Dζ
mΓ(z, ·), ADmη1/2〉u1](ζ)dζ,

where z ∈ Q 1
4
(0). Thanks to Lemma 5.1, we estimate

sup
Q 1

2
(0)

|u1| ≤ sup
Q 1

2
(0)

|u|+ 4|f(0)|.
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As the derivatives of η1/2 vanish in Q3/8(0), for any i, j = 1, . . . ,m, we
obtain

|∂2
xixj

u1(z)| ≤
∫
Q 1

2
(0)\Q 3

8
(0)

∣∣[∂2
xixj

Γ(z, ·)div(ADm(η1/2))u1](ζ)
∣∣dζ

+

∫
Q 1

2
(0)\Q 3

8
(0)

∣∣[∂2
xixj

Γ(z, ·)Y (η1/2)u1](ζ)
∣∣dζ

+ 2

∫
Q 1

2
(0)\Q 3

8
(0)

∣∣[〈∂2
xixj

Dζ
mΓ(z, ·), ADmη1/2〉u1](ζ)

∣∣dζ
+

∣∣∣∣f(0)
[
∂2
xixj

∫
Q 1

2
(0)

[Γ(z, ·)η1/2](ζ)dζ
]∣∣∣∣

=: I1(z) + I2(z) + I3(z) + I4(z).
(5.22)

Moreover, as the derivatives of η1/2 are bounded, we estimate the first
and second integral in (5.22) as

I1(z) ≤ C
[

sup
Q 1

2
(0)

|u|+ 4|f(0)|
]
,

I2(z) ≤ C
[

sup
Q 1

2
(0)

|u|+ 4|f(0)|
]
,

I3(z) ≤ C
[

sup
Q 1

2
(0)

|u|+ 4|f(0)|
]
.

Finally, by taking advantage of (3.13), we obtain that I4(z) is bounded
by a constant C that only depends on B, λ and Λ.

By using the same argument we can estimate |Y u1(0)| and thus

|∂2u1(0)| ≤ C
[

sup
Q 1

2
(0)

|u|+ 4|f(0)|
]
. (5.23)

Combining estimates (5.20) and (5.23), we conclude the proof of The-
orem 1.6.

6. Dini continuous coefficients. This Section is devoted to the proof
of Theorem 1.7. We therefore consider a solution u to the equation

L̃ u = f,

where the operator L̃ does satisfy the hypotheses [H.1] and [H.2] and
f is assumed to be Dini continuous, and we proceed as in the proof
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of Theorem 1.6. Specifically, we denote Qk = Q%k(0), % = 1
2

and we
consider the following sequence of Dirichlet problems:

m∑
i,j=1

aij(0, 0)∂2
xixj

uk + Y uk = f(0), in Qk

uk = u, on ∂Qk.
(6.1)

Note that the bounds given in Propositions 3.1, 3.2 and 3.5 only depend
on the constants λ,Λ in [H.2] and on the matrix B. Keeping in mind
this fact, the proof of Theorem 1.7 is given by the same argument used
in the proof of Theorem 1.6.

Proof of Theorem 1.7. Consider, for every k ∈ N, the auxiliary function
vk := u−uk, and note that it is a solution to the boundary value problem

m∑
i,j=1

aij(0, 0)∂2
xixj

vk + Y vk

= f − f(0) +
m∑

i,j=1

(aij(0)− aij(x, t))∂2
xixj

u, in Qk

vk = 0, in ∂Qk

(6.2)

In order to simplify the notation, we let

η := max
i,j=1,...,m

‖∂2
xixj

u‖L∞(Q1). (6.3)

From Lemma 5.1 it follows that

‖vk‖L∞(Qk) ≤ C%2k[ωf (%
k) + ωa(%

k)η].

Hence

‖uk − uk+1‖L∞(Qk+1) ≤ C%2k[ωf (%
k) + ωa(%

k)η].

As already observed, we can apply Corollary 3.2 and obtain estimates
for the second order derivatives of vk. In fact, for any i, j = 1, . . . ,m,
we have

‖∂2
xixj

(uk − uk+1)‖L∞(Qk+2) ≤ C(%k)−2 sup
Qk+1

|uk − uk+1|

≤ C%−2k%2k[ωf (%
k) + ωa(%

k)η] (6.4)

= C[ωf (%
k) + ωa(%

k)η]

and

‖Y (uk − uk+1)‖L∞(Qk+2) ≤ C(%k)−2 sup
Qk+1

|uk − uk+1|

≤ C%−2k%2k[ωf (%
k) + ωa(%

k)η] (6.5)

= C[ωf (%
k) + ωa(%

k)η]
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To estimate the second order derivatives of the function u, we apply
Theorem 1.3 and proceed as in the proof of Theorem 1.6. Since there
are no significant differences, we omit the details here.
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