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RESUMEN

En esta tesis presentamos varios resultados relativos a la homogeneizaciéon de cristales
liquidos nematicos: dos de ellos son en dominios perforados, mientras que el otro se refiere a
las tasas de convergencia para la homogeneizaciéon de fronteras. El primer trabajo descrito en
este tesis es un resultado de I'-convergencia para el modelo de Landau-de Gennes en dominios
3D con perforaciones conectadas. El objetivo del andlisis es encontrar nuevos términos en el
funcional de energia que sean independientes del gradiente del tensor Q. El segundo resultado
es una estimacién de error para un modelo 2D utilizado para describir los efectos de rugosidad
en cristales liquidos nematicos mediante problemas de homogeneizacién, utilizando de nuevo
el modelo de Landau-de Gennes. El tdltimo problema es un resultado de convergencia local en
L? para un problema de homogeneizacién en R? con perforaciones aisladas. Aqui utilizamos
el modelo de Oseen-Frank, con el objetivo de encontrar nuevos términos dependientes del
gradiente en el funcional de energia.

En las siguientes lineas presentamos las principales ideas de cada capitulo.
¢ Capitulo 1 - Introduction

Comenzamos aqui con una breve introduccién a los cristales liquidos neméticos. Presen-
tamos dos modelos variacionales principales utilizados para describir los cristales liquidos
nemaéticos: Landau-de Gennes (LdG) y Oseen-Frank (OF). Para la teoria de LdG, que utiliza
los tensores Q como parametro de orden, presentamos las opciones tipicas para cada tipo de
contribucién energética (bulk, eldstica y superficial). Para la teoria OF basada en el director
nemético n € $? discutimos la energia elastica, que depende del director y de su gradiente.
A continuacién presentamos un breve resumen de los principales resultados matemaéticos
obtenidos para LdG y OF.

e Capitulo 2 - Homogenised bulk terms in a case of the Landau-de Gennes model

En este capitulo, analizamos un problema de homogeneizacién en R® utilizando el modelo
de Landau-de Gennes en el que las perforaciones forman una microlétice ctibica. Por microldtice
ctibica entendemos una familia de paralelepipedos interconectados de escala muy pequefia (ver
Figura 2) y a veces nos referimos a ella simplemente como andamio. Este tipo de geometria para
las inclusiones se utiliza principalmente en la industria, donde tales andamios se denominan
matriz sélida porosa bicontinua o BPSM (como en [22], [69] o [68]) y tales objetos pueden
construirse mediante la técnica de polimerizacién de dos fotones (two-photon polymerisation),
también llamada 2PP o TPP. Una vision general de esta técnica de impresién 3D se puede
encontrar en [9].

El trabajo de capitulo 2 contintia en la direcciéon de estudiar el material homogeneizado
y se basa en el trabajo de [28] y [29], que también se bas6 en [13, 16, 23]. La idea general de
estos trabajos es demostrar que el limite de homogeneizacién de un cristal liquido nemético

con inclusiones coloidales de una geometria especifica puede generar un nuevo material, que
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se comporta como un nuevo cristal liquido nemaético, pero ahora con diferentes pardmetros del
material. En [28] y [29], se desconecta el conjunto de particulas de inclusién, obtenidas a partir
de particulas modelo diferentes o idénticas, de forma que la distancia entre las particulas es
considerablemente mayor que el tamafio de las mismas, lo que se denomina régimen diluido.
Ademas, en este régimen, la fraccién de volumen de los coloides tiende a 0. Sin embargo,
la configuracién geométrica de una microlatice ctibica es mas relevante desde el punto de
vista fisico, ya que en [28] y en [29] no se pueden posicionar a priori las particulas coloidales
de forma periédica. Aqui la periodicidad se genera automéaticamente por la estructura de la
microlaticula ctbica.

La construccién matemadtica de una microlatice ctibica puede verse de la siguiente manera:
primero elegimos un pequefio pardmetro ¢ > 0, luego construimos una familia de paralelepipe-
dos idénticos disjuntos colocados de forma periédica (sus centros estdn a una distancia de &

entre sf), de la siguiente forma:

et et et et e et

R TRl e R Rt
conp, g, r € [1,+0) ya € (1,2). Luego los interconectamos con otras 3 familias de paralelipedos
idénticos, de forma que conseguimos un andamio conectado, pero, al mismo tiempo, no los
conectamos con d() (el andamio estd incluido en () y no toca dQ2). Explicamos por qué
elegimos a entre 1 y 2 en Remark 2.2.6 y destacamos aqui que, por nuestra construcciéon del
andamiaje, su volumen tiende a 0 a medida que ¢ — 0. Al mismo tiempo, si la familia inicial
de paralelepipedos idénticos disjuntos son realmente cubos, es decir, p = q = r, decimos que el
andamio presenta simetria ciibica.

En este entorno, podemos demostrar que, en el limite a medida que ¢ — 0, la interaccién
superficial entre el cristal liquido nemadtico y el andamio se transforma en una energia de tipo
bulk y, afinando las longitudes del andamio y eligiendo densidades de energia superficial
especificas, podemos conseguir los coeficientes bulk deseados. Por lo tanto, partiendo de un
cristal liquido nematico con coeficientes a granel a, b y ¢ (como se presenta en Subsection 1.3.2)
confinado en un dominio perforado por una microrred cubica, entonces, dado unos a’, b’, ¢’ y
eligiendo convenientemente los pardmetros del andamiaje y la energia superficial, en el limite,
podemos conseguir un nuevo material de tipo cristal liquido con nuevos coeficientes de masa
a', by ¢, centrandonos en conseguir a’, ya que esto depende de la temperatura (depende de la
temperatura a la que el estado isotrépico pierde estabilidad - ver Subsection 1.3.2 para mds
detalles).

Para ser més precisos, dejemos que () sea un dominio acotado y liso y que N: sea una
microlétice ctbica, para € > 0. Consideramos el siguiente funcional de energia libre de Landau-

de Gennes:
3
FelQ] := /Q (fe(VQ) + f5(Q))dx + e‘"(sg—s“) /a/\/ fs(Q,v)do,

con O, = O\ N, y suponemos que:



* f,:Sy®R3 — [0, +00) es diferenciable, fuertemente convexa® y existe una constante A, > 0 tal
que
ASDP < £o(D) < A|DP%, |[(V£e)(D)] < Ae(ID] +1),

para cualquier D € Sy x R3.

* f, + So — R es continua, acotada desde abajo y existe una constante A, > 0 tal que
1£5(Q)] < Ap(|QI° + 1) para cualquier Q € Sp.

o fi: Sop xS? — R es continua y existe una constante estrictamente positiva s tal que, para

cualquier Q1, Q2 € So y v € S?, tenemos
1£s(Q1,v) — fs(Qa,v)| < AsQ1 — Q2| (|Q1 ] + Q2 +1).

También imponemos “strong anchoring” en la frontera de Q): sea ¢ € H/2(9Q), Sp) un
dato de frontera y denotamos por Hg((2, Sp) un conjunto de funciones Q de H'(Q, &) tal que
Q = g en 0 en el sentido de la traza. Del mismo modo, definimos H;,(Qg, So) como H' ()
con Q = g en d() en el sentido de la traza.

Para presentar el resultado principal, necesitamos introducir la funcién fje, : So — R

Ccomo:

fhom(Q) : qr

prr prq
Lr@uar+ B2 [ pQuar+ £ [ g0 var,

para cualquier Q € Sy, donde C = [—1/2, 1/ 2]3 y C*, CY y C* son las uniones de las caras
normales a Ox, Oy y Oz.
Ademds, dentro del andamio, utilizamos el operador de extensién armoénica,

E; : H;(Qg, Sp) — H;,(Q, Sp), definido de la siguiente manera: en (), tenemos E.Q := Q

y dentro del andamio, E.Q es la solucién tnica del siguiente problema:

AE.Q=0 inN.
EEQ=Q onodN..

Utilizando herramientas de I'-convergencia, podemos demostrar el resultado principal para

este situacion general:

Teorema. Sea Fy : Sp — [0, +o0) definido como

FolQ] = /Q (£(VQ) + £(Q) + from(Q))dx

y dejemos que Qp € H;(Q, So) sea un minimizador local aislado de H! para Fy, es decir existe
do > 0 tal que Fo[Qo] < Fo[Q] para cualquier Q € Hy(Q), Sp) tal que ||Q — QOHHQ,(Q,SO) < d
y Q # Qo. Entonces, para cualquier ¢ suficientemente pequefio, existe una secuencia de

minimizadores locales Q, de F; tal que E.Q, — Qo fuertemente en H;(Q, So)-

Digamos que una funcién f : So ® R® — R es fuertemente convexa si existe § > 0 tal que la funcién f : Sy @ R®* — R
definida por f(D) = f(D) — 8|D|? es convexa.
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Al mismo tiempo, somos capaces de calcular un indice de convergencia para la rapidez
con la que las energias superficiales convergen a su funcional homogeneizado. Para ello,
primero tenemos que tener en cuenta la geometria del andamio: a partir de la red inicial de
paralelepipedos construidos, s6lo unos pocos de ellos estan en contacto con el cristal liquido
nematico - s6lo los que estan cerca de d(), mientras que los otros tocan el NLC sélo por
sus bordes. En Subsection 2.4.2, , demostramos que estas interacciones no tienen ninguna
contribucién en el limite a medida que ¢ — 0, por lo tanto, el funcional homogeneizado estéd
dado por el limite de las energias superficiales calculadas en las “paredes de los paralelepipedos
de conexién”. Suponiendo ademads que f; es localmente Lipschitz continuo y que g estd acotado
y Lipschitz, podemos demostrar en Proposition 2.6.1 de Section 2.6 que la tasa de convergencia
descrita anteriormente es de orden €, con

n{*5h2-}
mgy = min 3 ,2— 0w,

donde « € (1,2) es el pardmetro utilizado para la construccion de la microlétice cabica.

¢ Capitulo 3 - Error estimates for rugosity effects

En este capitulo, consideramos el caso de un cristal liquido nemaético en un dominio con
una frontera oscilante. Nos interesa estudiar el caso en el que las superficies onduladas, para las
que la longitud de onda es de tamafio comparable a la amplitud, pueden conducir a energias
superficiales efectivas en el limite a medida que la amplitud converge a cero. Los problemas de
este tipo se han considerado en el lenguaje de la homogeneizaciéon de las EDP en un dominio
con una frontera oscilante, donde se puede demostrar rigurosamente que ciertos sistemas
rugosas, escalares, lineales, tienen ciertos comportamientos efectivos en el limite. Estos han
sido considerados, por ejemplo, en el contexto de [4, 6, 7, 12, 32] 0 [48], pero la lista no es
en absoluto exhaustiva. Una vision general contemporédnea de la literatura de esta direccién
se puede encontrar, por ejemplo, en la introduccién de [6]. Sin embargo, la naturaleza de las
energias superficiales fisicamente significativas en el contexto de los cristales liquidos nematicos
proporciona modelos que atin no han sido considerados en la literatura dentro de este marco
de homogeneizacion.

Consideramos un escenario simplificado de una losa bidimensional con rugosidad periédica
y una energia libre cuadratica, que proporciona un modelo de juguete de un paranematico.
Es decir, un sistema de moléculas mesogénicas a alta temperatura que se ha fundido en un
estado isotrépico, pero que ain admite algin ordenamiento nematico local inducido por la
superficie. En este caso, gracias a la simplicidad del sistema, podemos proporcionar estima-
ciones cuantitativas sobre cémo se comportan los estados basicos en el limite homogeneizado.
Consideramos un parametro de rugosidad, ¢, arbitrariamente pequefio, que se utiliza para
describir la frontera oscilante y luego el problema limite describe el comportamiento a medida
que este pardmetro tiende a cero. En una situacion fisica el pardmetro ¢ es pequefio, pero finito.
Si se intenta entonces entender hasta qué punto el problema limite es una buena descripcién

del problema con & pequefio, se necesita obtener tasas de convergencia. Mientras que un resultado



de I'-convergencia nos da una descripcién del sistema en un limite potencialmente no fisico, la
obtencién de una tasa de convergencia permite la comprensién cuantitativa de la aproximacion
al limite tedrico en regimenes de parametros fisicamente razonables.

Se sabe, a partir de la teoria general de la homogeneizacién, que las tasas de convergencia
pueden mejorarse calculando correctores, una manifestacion del hecho de que los fenémenos
de la capa limite generan diferencias localizadas entre los dos problemas (véase, por ejemplo,
el Lema 5.1 frente al Teorema 5.2 en [4]). Un enfoque alternativo, para obtener mejores tasas
de convergencia, y sin utilizar correctores, es utilizar normas mas débiles que no pongan
demasiado peso en lo que ocurre en la frontera. Este enfoque parece no estar estudiado en la
literatura de homogeneizacion estdndar y es nuestra principal contribucién aqui. Utilizamos
un argumento de dualidad en un entorno L” que, sin embargo, no incluye el punto final
p = +0o, que esperamos que sea el 6ptimo. Ademas, el uso del argumento de dualidad se
basa en la estructura lineal y una extensién al caso no lineal no es inmediata. Para entender
estas cuestiones, analizamos el escenario mas simplificado posible que sigue teniendo cierta
relevancia fisica.

Consideramos la situaciéon de una losa bidimensional con rugosidad peridédica y el modelo
de Landau-de Gennes para la descripcion del cristal liquido nemaético utilizado. Mdas concreta-
mente, el dominio limitante es de la forma Qy = {(x,y) | x € [0,27), y € (0,R)}, donde R > 0
x €[0,27), y € (¢e(x),R)},
donde ¢¢(x) = ep(x/e) y ¢ : R — R es una funcién C? 27-periédica con ¢ > 0. Denotamos

es una constante, y el dominio rugoso es de la forma Q, = {(x, )

con I'e = {(x,e@(x/¢€)) | x € [0,27)} la frontera rugosa y con I'r = {(x,R) | x € [0,27)}
la frontera superior fija de los dominios. Consideramos una energia libre cuadréatica de la

siguiente forma:
w w
FiQ) = [ VP +cloP dixy) + [ Plo - dot [ 10~ Quf do,
Qs rs 2 1—‘R 2

donde ¢ > 0 es constante, wy > 0 es la fuerza de anclaje, Q=1 @, — %I y QrR = VR VR — %I
(1/E y Vg son las normales exteriores a I'; y I' R).

En este modelo simplificado, utilizando Proposition 3.2.1, podemos identificar la energia

2 1(G1 G
, CON Wer = WoY Y Qef = - ’

. . . Wef
superficial homogeneizada como —%|Q —
P & 2 197 Q 1\& G

donde 7, G1 y G; se definen en Definition 3.2.1. La funcién de energia libre homogeneizada es

entonces de la forma

7l = [ [VQF+eleP dxy + [ -yl don+ [ 0~ el dow,
Qo To I'r
donde vy es la normal exterior de I'p = {(x,0) | x € [0,27)}.

Sea Q; el minimizador de F; y Qp el minimizador de Fy. En [12] y [48], los autores son
capaces de demostrar que ||Qe — Qol|g1(q,) < Cv/e. Segtn [32], nuestro modelo simplificado
estd bajo el caso 0 = B = a — 1, en el que demuestran que [|Qe — Qollg1(n,) < Ka(ve+1).
Tanto en [5] como en [6], se demuestra que (Qs)g>0 converge fuertemente en L?(Q)) a Qo,

bajo varios supuestos para los dominios. Utilizando “boundary layers”, en [4] los autores son
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capaces de demostrar que [|Q: — Qo — €Q1l|1(,) < CV/e, donde Q; es un término de frontera
de primer orden (“first-order boundary term”). En este trabajo, podemos demostrar la siguiente

estimacion de error:

Teorema. Para cualquier p € (2, +0c0), existe una constante e-independiente C tal que:

=
1Qo — Qell iz, < C-e 7,

donde la constante C depende de c, wo, p, [|¢|l.~(0,27)) |9 L=([0,27)), Qo ¥ [[Qollwres ()

Es facil observar que la fraccién ’%1, con p € (2,4), nos permite obtener cualquier

exponente deseado del intervalo (1/2,1). Para demostrar este teorema, primero mostramos en
Section 3.3 que Q¢ y Qo existen y admiten la regularidad W>?, para cualquier p € (2, +). A
continuacién, adaptamos en Section 3.4 las pruebas de [12] y [48] al caso de las funciones W7
para obtener Proposition 3.5.1. El resultado que dicta el exponente de ¢ de nuestra estimacion
del error es Lemma 3.4.2. Una estimacién similar a este lema representa [6, Lemma 5.1, (15)],
donde el exponente obtenido es dz—fiz para = estimaciones, para cualquier d > 2. La prueba de
nuestra estimacién del error también se basa en la construccién de un operador de extension,
de WP(Q),) a W'P(Q)), que se define en Definition 3.5.3 y tiene limites independientes de e.
Con todos estos ingredientes, podemos entonces demostrar el resultado principal de esta parte,

en Section 3.5.
¢ Capitulo 4 - Homogenised elastic terms in a case of the Oseen-Frank model

Consideramos una energia eldstica general en un caso 2D para el modelo de Oseen-Frank
con perforaciones aisladas. El objetivo de este estudio es analizar cémo se podria obtener un
cristal liquido nematico con propiedades eldsticas novedosas mediante procedimientos de ho-
mogeneizacion. Bajo condiciones adecuadas podemos analizar el problema de homogeneizacién
de valores en S! a través de un problema escalar obtenido mediante el procedimiento de lifting.
También demostramos un resultado de convergencia local en L2.

En este capitulo, consideramos un cristal liquido nemético en un dominio acotado, liso y
simplemente conectado Q) C IR? y consideramos una versién generalizada en R? de la energia

de Oseen-Frank:
E[n] = /Q Ki(n)(div n)2 + Kz (n)(div n) (curl n) + K3 (n) (curl n)z dx + u /Q (n- n0)2 dx,

donde los coeficientes eldsticos Kj, K> y K3 ya no son necesariamente constantes, sino que ahora
dependen de n. La razén de considerar esta generalizacion es que el tipo de homogeneizacién
que vamos a considerar, mediante coloides, proporciona un funcional de esta forma. Asi, en
concreto, partiendo de las constantes Kj, K> y Kzobtendremos, mediante la homogeneizacién
coloidal, una funcional de este tipo. Ademads, hemos afiadido un nuevo término, en el que
} es una constante positiva y 19 € S! is also constant. también es constante. Imponemos
condiciones para Kj, K» y K3 tal que, para y = 0, tenemos E[n] > 0, para cualquier n € S!,

y E[n] = 0, para cualquier n constante. El término que contiene y también intenta imitar, de



forma muy simplificada, un campo magnético constante externo aplicado al cristal liquido
nematico, que obliga a competir entre la minimizacién de la energia eldstica del material y el
deseo de alinearse perpendicularmente al campo magnético.

Ahora perforamos el dominio de forma periédica, de la siguiente manera. Consideramos
una particula modelo T, formada por Nt componentes mutuamente disjuntos que denotamos
T!,donde i € {1,2,...,Nr}. Suponemos que cada componente T' es un conjunto compacto,
acotado, liso y simplemente conectado de la celda periédica Y = (0,1)2. Consideramos un
pardmetro pequefio € > 0 y construimos una latice de puntos X, tal que en cada punto ¢ € X,,
tenemos ¢(¢+Y) C Q. Denotamos el namero de tales puntos por N; y despues en cada punto
xg € X, conje {1,N,}, perforamos el dominio con el conjunto T, i e(xg + TZ) Denotamos
por T la unién de todos los T’ i y por Q. := Q\ T the perforated domain. el dominio perforado.
Por nuestra construccién, los agujeros estan suficientemente alejados de d().

Consideramos la siguiente funcién de energfa:
Fe(u) = / K1 (u) (curl u)z + 12 (1) (curl u) (div u) + x3(u) (div u)2 + u(u -ﬁ)z dx,
Q.

donde «1, k2 y k3 se suponen en C?(S!;R), 1 > 0 es una constante positiva y # € S! también es
constante. Despreciamos, por ahora, el espacio al que pertenece u.

Nos interesa estudiar el siguiente problema de homogeneizacién: dados los coeficientes
eldsticos iniciales «1, k y k3 y las particulas modelo T?, nos gustaria obtener, a medida que ¢ — 0,
un nuevo material, que se comporta también como un cristal liquido nemaético, pero ahora con
nuevos coeficientes eldsticos: k7, x5 y x3. Como nuestro objetivo es generar nuevos coeficientes
elasticos, despreciamos cualquier tipo de energia superficial tipica (como la de Rapini-Papoular,
por ejemplo) e imponemos, por simplicidad, que u = (1,0) en 9Q) y no imponemos condiciones

de contorno en las perforaciones. De este modo, consideramos F, : V. — [0, +c0), donde

= {u e H(QS") : u=(1,0) on aQ2}.

Nuestra eleccién del modelo de Oseen-Frank da lugar a algunos retos interesantes, debido
a que trabajamos con funciones con valores en S!, como sigue. En primer lugar, teniendo
ue Hl(Qg ; Sl), existe una extension E.u € HI(Q; R) siempre que los agujeros sean suficiente-
mente regulares, pero no necesariamente en H!(();S!). En segundo lugar, dado u € H!(Q;S'),
no podemos esperar a priori tener una funcién ¢ € H!(Q; R) tal que u = (cos ¢, sin ¢). Para
superar los problemas mencionados anteriormente, hacemos uso de varios resultados de [21]
que nos dan conexiones entre el grado topolégico de una funcién, la posibilidad de extender
una funcién con valores en S! y la existencia de una elevacién ¢.

La hipétesis principal de nuestro trabajo se basa en que podemos tener estados energéticos
del material lo suficientemente bajos como para que exista una secuencia (”€)g>0 C Vg de
puntos criticos de F¢ con la propiedad de que su grado topolégico computado en la frontera de

. ij . . 2 . 2
los agujeros T;” debe ser 0. De este modo, demostramos que existe una funcién de elevacién

ix



¢e : QO — R, para cada u, dado por el argumento anterior, tal que 1, = (cos ¢, sin ¢;).

Ademas, dado que u, = (1,0) on 0Q), definimos el espacio
Ve ={p € H(QzR) : ¢ =00naQ}

y observamos que u, € V¢ implica ¢, € V,.
Observamos que, en este entorno, el problema de homogeneizacién escalar representa un

caso particular del trabajo realizado en [34] y es de la forma:

—div(A(@:)V@e) = B(@e, V) in Q,
A(@e)Vee-v=0 on 97,
Pe = 0 on 0()

donde A es una funcién de valor matricial que depende de un pardmetro que contiene toda la
informacién relacionada con los coeficientes eldsticos iniciales y # tiene crecimiento cuadratico
en la segunda variable y depende de la derivada de A, es decir A’.

El resultado principal de [34] afirma que existe gy € H}(Q) N L*(Q) tal que Egpe — @
débilmente en L?(Q)) (donde Ej es la extensién por 0 en los agujeros) y que resuelve la siguiente
EDP:

—div(Ao(90) Vo) = Zo(¢o, Vo) inQ
@ =0 on 0Q)

donde Ag y %y son los componentes homogeneizados obtenidos de A y %.
Entonces, por Proposition 4.3.6, podemos decir que 1y = (cos ¢y, sin @) es un punto critico

de la siguiente funcional de energia homogeneizada Fy : Vo — [0, +c0):
Fo(u) = / x5 (u) (curl u)2 + x5 (1) (curl u) (div u) + «3 (u) (div u)2 + Oop (u -ﬁ)z dx,
Q

donde 6 representa la fraccién de volumen entre la parte de cristal liquido nemadtico y la celda
periédica y Vo = {u € H'(();S') : u = (1,0) on 0Q}.

Las funciones «j, x5 y k3 representan los nuevos coeficientes eldsticos para el material
homogeneizado. Su dependencia de los coeficientes elasticos iniciales «1, x; y x3 se da en
Subsection 4.5.5 y se basa en el uso de la misma matriz correctora que en, por ejemplo
[14, 15, 34, 39, 40]-

Nos gustaria ahora expresar la dependencia entre la secuencia elegida de puntos criticos u,
y la funcién construida ug. En primer lugar, observamos que, en [33], los autores son capaces
de demostrar que las soluciones @ estdn uniformemente acotadas en V. Entonces, utilizando

también [5, Lemma 2.3], podemos demostrar el siguiente resultado:

Teorema. A lo largo de una subsecuencia de (ug) todavia denotada con el subindice «:

e>0"

para cualquier conjunto abierto w tal que w C (), tenemos lin(} |lue — ugl| 12(0unwst) = 0-
e— !



Como se indica en [34], no hay que esperar una fuerte convergencia de ¢, a ¢g en LZ(Q), ni
tampoco en casi todas partes en (). Sin embargo, si consideramos que los coeficientes eldsticos

iniciales son constantes, entonces tenemos
|p: — @oll12() — 0, ase =0,

ya que nuestro problema es un caso particular de [36], en el que consideran agujeros aislados
en cada celda, o, en cierta medida, esto puede verse como [5, Theorem A.1], donde consideran
la situacién mds generalizada de agujeros conectados. Ademads, se podria demostrar de forma
muy similar a la del [5, Appendix] que podemos extender el resultado de convergencia local

hasta la frontera de (), ya que imponemos condiciones homogéneas de contorno de Dirichlet.

X1






ABSTRACT

In this thesis we present various results concerning homogenisation of nematic liquid crys-
tals: two of them are in perforated domains, while the other one concerns rates of convergence
for boundary homogenisation. The first work described in this thesis is a I'-convergence result
for the Landau-de Gennes model in 3D domains with connected perforations. The goal of the
analysis is to find new terms in the energy functional that are independent of the gradient.
The second result is an error estimate for a 2D toy model used to describe rugosity effects in
nematic liquid crystals via homogenisation problems, using once again the Landau-de Gennes
model. The last problem is a local L?-convergence result for a homogenisation problem in R?
with isolated perforations. Here we use the Oseen-Frank model, with the goal of finding new
gradient-dependent terms in the energy functional.

We start, in Chapter 1, with a brief introduction to nematic liquid crystals. We introduce
two major variational models used to describe nematic liquid crystals: Landau-de Gennes
(LdG) and Oseen-Frank (OF). For LdG theory, which uses Q-tensors as the order parameter,
we present typical choices for each type of energy contribution (bulk, elastic and surface). For
OF theory based on the order parameter n € S? we discuss the elastic energy, that depends
on the director and its gradient. We then present a short summary of the main mathematical
results obtained for LdG and OF.

In Chapter 2, we analyse a homogenisation problem in R® using the Landau-de Gennes
model in which the perforations form a cubic microlattice. We assume a dillute regime, that
is the volume of the cubic microlattice tends to 0 as its characteristic length scale tends to 0.
The goal of this problem is to show that, given this geometrical setting, by choosing various
types of surface energies one can obtain a new material in the limit of vanishing characteristic
size of the microlattice. This material also behaves like a nematic liquid crystal, but now with
different bulk coefficients. At the end of this chapter, we discuss a rate of convergence of the
approximating surface energies to a homogenised term.

In Chapter 3, we concentrate on achieving and improving error estimates in homogenisation
problems, since they can give us crucial information for manufacturing processes. Here, we
consider a simplified 2D model in which we highlight how one could replace a rugose
boundary with the imposed homeotropic alignment by a flat boundary with an effective
alignment depending on the initial geometry of the rugosity. We are able to improve an L?
error estimate for a class of linear nonhomogeneous Robin problems.

In Chapter 4, we consider a general elastic energy in a 2D case for the Oseen-Frank model
in domains with isolated perforations. The goal of this study is to analyse how one could
obtain a nematic liquid crystal with novel elastic properties via homogenisation procedures.
Under suitable conditions we can analyse the S!-valued homogenisation problem via a scalar

problem obtained through the lifting procedure. We also prove a local L? convergence result.
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INTRODUCTION

Liquid crystals are materials which, beside having the possibility of being in the conventional
states of matter (solid, liquid and gas), can enter a new, intermediary, state of matter, also
called mesophase, between the solid and liquid states of matter. The discovery of liquid crystals
is traditionally assigned to the publication of Friedrich R. K. Reinitzer’s work in 1888 [66] (later
translated in English in [67] and also in [70]), called Contributions to the knowledge of cholesterol.
Reinitzer was an Austrian botanist who, while analysing the properties of cholesteryl benzoate, a
material which is solid at room temperature, observed an interesting phenomena. At 145.5°C,
the material turns into a cloudy liquid, hence presenting turbidity, but if one were to increase
the temperature of the material and exceed the value of 178.5°C, only then it would become a
clear liquid. Reinitzer sent his observations to the German physicist Otto Lehmann, who was
using the newly invented technique of polarized microscophy. Lehmann became interested in
these materials and became a leading figure in the early study of liquid crystals. In 1889, in [57],
Lehmann creates the term “flowing crystals” to describe these new materials and, according to
[73], by 1900 he started using the terminology “liquid crystals”.

One would think that the discovery of such new materials and, especially, of a new state
of matter would be welcomed and appreciated by the whole academic world, but that was
definitely not the case here. Gustav H. ]J. A. Tammann was a physical chemist and represented
one of the main figures who would challenge this discovery: initially, by simply stating that
the turbidity (the cloudiness of a fluid) observed in cholesteryl benzoate happens mainly
because of impurities, later by publishing two articles with rather interesting titles (On the
so-called liquid crystal phases - [74] - in 1901 and On the so-called liquid crystal phases 1I - [75] - in
1902). This culminates in 1905 by publicly challenging Lehmann over the authenticity of liquid
crystals. More details related to the rather turbid first years of the development, recognition
and acceptance of liquid crystals by the academic community can be found in [42], where the
authors present a very detailed line of events from the history of liquid crystals by not only
highlighting the events, but also illustrating various factors that help the reader understand
better what lead to such events.

Going back to the double melting phenomena observed by Reinitzer for cholesteryl benzoate
nowadays, the temperature at which the material enters the LC phase is called melting point
and the one at which enters the isotropic liquid state is called clearing point. In 1907, Daniel

Vorldnder, published [77] (translated in English in [70]), analysed the importance of molecular
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shape in liquid crystal materials. By constructing the ortho, meta and para isomers of PAA, he
was able to prove that only the para isomer is a liquid crystal, the one which has elongated
molecules.

There are two important classifications of liquid crystals: the first one is with respect to
which property of the material needs to be changed such that it can achieve a mesophase and
the other one is described with respect to what mesophases it can achieve. Thermotropic liquid
crystals are materials which can enter a mesophase due to the change of their temperature,
while lyotropic liquid crystals are the ones which can enter a mesophase due to the change of
their concentration of particles. In 1922, Georges Friedel was able to identify in Lehmann’s
liquid crystals new mesophases and he introduced, in [47], the following classification of
liquid crystals: nematics, smectics and cholesterics. The term nematic comes from the Greek
nema, which means thread, and in a nematic phase, the particles tend to align locally to
a preferred direction. The cholesteric phase is similar with the nematic one, but now the
preferred orientational configuration is helical. Friedel used the term cholesteric due to the
amount of cholesterol products that presented this property. A smectic liquid crystal has a
layered structure, therefore it is more ordered than a nematic phase. The term smectic comes
from the Greek smegma, which means soap, and Friedel used this terminology due to the
amount of soap-like products that presented this layered structure.

The development of new materials always gives rise to the following natural question:
where can we use them? According to [42], at the beginning of the 20th century, the overall
perspective was that liquid crystals are very interesting new materials, but with no future
possible applications (see, for example, Vorldnder’s quote from [42, page 193]). However, with
the launch and development of television and TVs, as time passed, a new possible idea emerged
during 1960-1970: a flat-screen display using liquid crystal technology that will be hanged on
the wall. Various types of liquid crystal display technologies were developed, most important
of which we would like to mention [55] (the dynamic scattering LCD) and the patents [54]
and [45] (the twisted nematic displays - which we still use to this date). But most of them had
initially the following problem: if one were to use a portable liquid crystal display, then this
device should not consume too much power (such that it can last days, not just hours) and,
most importantly, the liquid crystal material should be stable in the nematic phase for a wide
range of temperatures. One of the initial compounds used in LCDs was MBBA, which was
stable at room temperature, but if the temperature was below a value around 20° C, then the
LCD would need a heater in order to function properly. This severely affected the portability
idea of the device and the necessity of creating new liquid crystalline materials emerged once
again. In 1973, George Gray and his team publishes [51], where they present a new class of
liquid crystalline materials which are very suited for the use in LCDs. By 1974, the range of
temperatures at which the liquid crystal material from an LCD is still in the nematic phase
was between —10°C and 60°C, which allowed LCDs to be broadly used in various applications.
Since then, the LCD technology has constantly evolved: the rather old flat screen LCD TVs
have now been replaced by curved ones, to offer the viewer a better cinema experience, while
their size has grown significantly throughout time. Also, mobile phones with foldable LCDs

have been patented and are slowly rising in popularity.



1.1 NEMATIC LIQUID CRYSTALS

As mentioned in the previous paragraph, one of the contributing factors to creating a global
presence and a wide spread of applications of LCDs has been the development of new liquid
crystalline materials, by mixing various liquid crystals either among them or with other types
of substances. Hence, the study of homogenisation problems for liquid crystals represents
an important direction of research in the liquid crystal community, since it might offer an
insight on how to create or design liquid crystals with desired properties, such as new elastic
properties, new optical properties or thermotropic properties (as it was the case for the early
years of development of LCDs). In this work, the focus is on thermotropic nematic liquid
crystals and we start, in Section 1.1, to offer a better description of these materials. At the
same time, we have consciously neglected in this section the presentation of the mathematical
models that can describe the alignment of the liquid crystal particles, but, in Section 1.3 and
Section 1.2, we present two of them: the Landau-de Gennes theory and the Oseen-Frank one,

which are later going to be deployed in the results present in this work.

1.1 NEMATIC LIQUID CRYSTALS

The liquid crystal state of matter is an intermediary state of matter between the conventional
solid and isotropic liquid states of matter. We recall here that the particles of a nematic liquid
crystal (NLC) are rod-like structures, meaning that they have an elongated shape and they
present a head-to-tail symmetry. While the particles of such of a material can translate freely,
meaning that we have no positional ordering - just like in the isotropic liquid phase, however
their specific feature is that they tend to align locally to a preferred direction, meaning that
there is a local orientational ordering, mimicking the solid state of matter. In the following
figure, we offer a schematic representation of the alignment of the particles of a thermotropic

nematic liquid crystal with respect to the change of temperature.

E i melting point i clearing point Temperature
| |
| |

Solid crystal Nematic Isotropic liquid

Figure 1: Thermotropic nematic liquid crystals. Image courtesy of J. M. Taylor.

The first discovered nematic liquid crystal is due to the organic chemist Ludwig Gattermann
and it is para-azoxyanisole, also known as PAA. The melting point of this material is around

118°C and the clearing point is around 135°C, according to, for example, [79]. The first known
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nematic liquid crystal that can enter the nematic phase at room temperature (around 21°C)
is MBBA, or methoxybenzylidenebutylaniline, and was first prepared by H. Kelker and B.
Scheurle in 1969, according to [42]. More details about this material and others related to it
(the family of p-alkyloxybenzilidene-p-n-alkylanilines) can be found, for example, in [63].

In order to measure the local orientation of the particles, at a macroscopic/mesoscopic scale,
we need first to take into account their special geometry. In classical mechanics, continuous
bodies are formed from material points, while here all the NLC particles have a microstructure
for which their properties have, on the macroscopic scale, a mechanical significance. We proceed
in the following fashion.

Let us consider that Q C R? is a domain that contains NLC and let x € Q. We assume
that at the point x, we have a preferred direction of the molecules and we can continue in two

different ways:

* a more macroscopic model, the Oseen-Frank model, where we assume that the preffered
direction of the particles at the point x is described by n(x) € $?, with 5? being the unit
sphere from IR3. We use, in this case, functions of the type 1 : () — S2.

* a more mesoscopic model, capable also of describing the phase transition between
isotropic and nematic states of matter, the Landau-de Gennes model, in which we use a
Q-tensor, a symmetric traceless 3 x 3 real matrix, that is going to store some information
related to the orientation of the particles at the point x. We use, in this case, functions of
the type Q : O — Sy, where Sy is the set of all Q-tensors.

1.2 OSEEN-FRANK THEORY

Let us assume that the orientation of the particles contained at the point x is described by a
single unit vector n € §2. Hence, for the entire nematic liquid crystal material, we construct a
function n : Q) — S? for which n(x) represents the preferred direction of the particles contained
at the point x.

It is assumed that the local energy of the material is described by a free energy density, also

called the free energy integrand, of the following form:
w=w(n,Vn),

where the dependency on Vn is considered due to the spatial distortions of the material.

Moreover, we construct the total elastic free energy, described as:

W:/Qw(n(x),Vn(x)) dx.



1.2 OSEEN-FRANK THEORY

It is generally assumed that for a relaxed configuration (one without any external influences)
we have w = 0 and it is supposed that any other configuration would imply a higher energy of

the material, hence, we impose the condition:
w(n,Vn) > 0.

Recalling now that a nematic liquid crystal has rod-like particles, implying a head-to-tail

symmetry, we must also impose that:
w(n,Vn) =w(—n,—Vn).

At the same time, the free energy of the material per unit volume has to be the same
when computed with respect to two frames of references. Thus, a frame-indifference condition is

necessary, which takes the form:
w(n, Vn) = w(Rn, RVnRT),

for any rotation R € O(3).

The construction of such free energy integrand w is based on the work of F. C. Frank from
1958 [46], which was build upon the work of H. Zocher from 1925 [81] and later on the work of
C. W. Oseen in 1933 [62]. The reader can also consult [73] and [76] for more information.

The representation formula for w is the following:

2w(n, Vn) :=K; (div n)2 + Kz (n - curl n)2 + Ks|n x curl n}2+ (1.2.1)
+ (Kz + Kyg) (tr(Vn)? — (div n)?), (1.2.2)

where Kj, K5, K3 and Ky are often referred as Frank’s constants or moduli. Each of the coefficients
from the previous equation are related to a specific type of deformation of the material: K;
is the splay constant, K; is the twist constant, K3 is the bend constant and (K, + Ky) is the
saddle-splay constant. Splay, twist and bend names refer to specific types of deformation and
can be visualised, for example, in [73, Figure 2.1] or in [60, Fig. 1.4]. Specific values for Frank’s
constants can be found at [73, (2.60) and (2.61)] for PAA and MBBA, while in [60, Table 1.1] are
presented the values for 5CB and 8CB, other two nematic liquid crystals.

The previous constrains that we have imposed for w as in (1.2.1) generate the following

inequalities, due to the work of Ericksen [43]:
Ki >0, K, >0, K3 >0, K > |K4] and 2K; > K; + Ky,

which are known as Ericksen inequalities.
Sometimes, another free energy integrand is considered, often referred as the one-constant

approximation, which assumes

K::K1:K2:K3andK4:0.
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In this case, one could prove that the energy integrand (1.2.1) becomes:

w(n,Vn) = %K\Vn 2

(see, for example, [73, p. 23]).

1.3 LANDAU-DE GENNES THEORY

The following introduction follows the same lines as in [38], [59] or [76].
Let us assume that, for the molecules that we imagine being at the point x € (), their

orientation is described by a probability density function fy : $> — R, with
o fx(p) dA =1, (1.3.1)

where dA represents the area measure on S2. The last equality describes that the probability of
finding a molecule at the point x however oriented in 52 is 1. For M C S?, the probability p[M]

of finding a molecule at the point x oriented in M is defined as:

p[M] = /M fe(p) dA.

Since a nematic liquid crystal has particles for which the probability of finding the head or

the tail in the direction of p are the same, we have:

fx(p) = fx(=p), Vp € S~ (1.3.2)

Let m be the first order moment of fy at x, defined as:

m(x) = [ p filp) da.

Using (1.3.2), we obtain:

mx) = [ ph(p)da= [ (=p)fi(=p)da== [ —pf(p) da = —m(»),

hence m(x) = 0.
Therefore, the information about the orientation of the particles at the point x is contained

in the higher order moments of fy. Let M be the following second order tensor:

M@= [ (@ p) flp)da,
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where for p = (p1,p2,p3) € S* we denote by p ® p the 3 x 3 matrix with components
(pi]-)i,j c13 defined as pi; = pipj, for any i,j € {1,2,3}. From its definition, it is easy to
see that M satisfies tr(M) = 1 and MT = M, meaning that M is a symmetric tensor with trace
equal to 1.

Let now e be a unit vector from IR3. Since M can be seen as a linear operator from R3 to R3,

one can easily deduce the following equality:

e- Me = /52 (p-e)zfx(p) dA.

Moreover, we have the following inequalities:

0<e-Me< | fi(p)dA=1,
SZ

due to (1.3.1) and since, for any p,e € 52, we have (p . 6)2 < 1. The lower bound is achieved
whenever nearly all molecules from x are perpendicular to e and the upper bound when they
are parralel to e.

Let us consider now the case in which the probability density function f is constant. This
and (1.3.1) implies that

Such a setting actually implies that the particles can orient themselves, with equal probability,
in any possible direction from $?, which represents the case in which the nematic liquid crystal

is in the isotropic liquid state of matter. We denote by M the second order tensor associated to

fo:

My p®pdA.

T 4n e
It can be proved that My commutes with any rotation R and this, together with the constraint
that My does not vanish, implies that My must be a multiple of the identity (the proof can be
found, for example, in [76]). Since tr(My) = 1, we get that:

1

My = §]I3,

where I3 is the 3 x 3 identity tensor.

We now introduce the order tensor defined as

Q::M_MO/
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which measures the deviation of second order moments M associated to a probability density
function f, from the second order tensor My which characterises the isotropic liquid state of

matter. This can also be written as:
1
Q(x) = /SZ fe(p) <P ®p- 3113> dA. (1.33)

Due to the properties of M and M, one obtains that Q is a symmetric traceless 3 x 3 real

matrix. We call such a matrix a Q-tensor and we denote the set of all Q-tensors as:

So={Q e M3(R) | Q=Q, tr(Q) =0},

where M;3(R) denotes the set of all 3 x 3 real matrices.

We classify now the Q-tensors based on their eigenvalues. Let Q be a Q-tensor, A1, A2 and
A3 its eigenvalues and ej, e, and e3 the corresponding eigenvectors. Since tr(Q) = 0, we have
Az = —A1 — Ap.

For Ay = Ay = A3, we obtain that they are all equal to 0, which implies that Q = 0. This
corresponds to the isotropic state.

For A1 = A,, using the Spectral Theorem as in [76], it can be proved that:

1
Q :s<n®n— ]I3>,
3
where s = —3A; and n = e3. We say, in this case, that Q is uniaxial. Moreover, s is called the
scalar order parameter and n is called the director.

For A; # A;, one obtains, in a similar fashion as in the previous case, that:

1
Q= —(s1m1 ®ny +som, @mz) + 3(51 + 52)1I3,

where n; = e1, np = ey, 51 = —2A1 — Az and s, = —A; — 2A;,. We say, in this case, that Q is
biaxial.

We also make here the observation that Q is computed at a point x, hence the previous
classification holds for Q(x), so a nematic liquid crystal can be uniaxial at some points and
biaxial at others.

Moreover, any Q-tensor defined via the “microscopic” definition (1.3.3) must satisfy the

eigenvalues constraint

1 2 .
-3 < A < 3 Vie{1,2,3},

which is often called the physicality constraint and the interval < — %, ;) as the physical regime

(such as in, for example, [10]).
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In this work, we consider Q : 3 — Sy as modelling NLC configurations and focus on

studying critical points of the free energy

/Fel(Q(x)er(x))+]:b(Q(x))dx+/ F5(Q(x), v(x)) dS(x),
Q Q)

where we have taken into consideration an elastic energy density (given by ), a bulk energy
density (F;) and a surface energy density (F;). We continue our work with the presentation of

each of these energy densities.

1.3.1 ELASTIC ENERGY

The elastic energy density F,; measures the spatial distortions of a nematic liquid crystal inside
of the domain (), hence it is a function of Q and VQ. The typical choice for the elastic energy
density is given by

Fa(Q,VQ) := L1 0;Q;j0x Qi + L2 9jQ;j0kQix + Lz 9;QixdxQjj,

where L1, L, and L3 are material constants and the Einstein’s summation convention was used.
In a similar fashion as in the case of the Oseen-Frank elastic energy, this choice of F,; agrees
with the physical invariances of the material and, moreover, we need to impose the following

conditions:

3 1
L1>0 —L1 <ILz<2L;and — ng — EL3 < Ly,

similar to Ericksen inequalities, in order for the elastic energy to be coercive and bounded from
below.

The one constant approximation of the Landau-de-Gennes elastic energy is frequently used
to simplify the analysis. This approximation has the form:

2
7

Fa(Q VQ):=L|VQ

where L is a positive constant.

1.3.2 BULK ENERGY

The bulk energy density J;, models the phase transition from the isotropic liquid state of
matter to the nematic state. Due to the geometry of the particles, a frame-indifferent condition
is usually imposed on Fy, in the following mathematical sense: F;(Q) = F,(RQRT), for any
Q € Sp and any rotation R € O(3).



10

INTRODUCTION

The typical choice for F}, is a quartic polynomial in Q, as in, for example, [38] or [76], and

it is of the following form:
1 1 1 2
Fp(Q) = EA Qi Qji + §B Qi Qi Qxi + ZLC' (QijQii)",
where Einstein’s summation convention was used. This can also be written as:

Fp(Q) = %A r(Q?) + %B r(Q%) + }LC- (tr(Qz))Z.

The constant A is temperature dependent and is of the form A = a(T — T*), where « is
a material constant, T is the absolute temperature and T* is a characteristic liquid crystal
temperature (it is the temperature at which the isotropic phase loses stability), while B and
C are also material constants. Moreover, the coefficient B is negative by the frame-indifferent
condition and C is positive, otherwise the energy functional will have no lower bounds.

This choice of a quartic polynomial in Q for the bulk energy is used because it is the
lowest order term in a Taylor expansion of the bulk energy that in suitable regimes predicts a
uniaxial phase as a global minimiser. For large enough values of A, the bulk energy is globally
minimised at Q = 0, which corresponds to the isotropic phase, and for small enough values
of A, the global minimisers are uniaxial Q-tensors for which the corresponding scalar order
parameters are explicitly computable, as in, for example, [59].

Note that higher order polynomials can be used, such as the sextic Landau-de Gennes
potential, which can be relevant for obtaining biaxial Q-tensors as global minimisers (see [38,

Sect. 2.3.3]) and is of the following form:

Fp(Q) = a2 tr(Q?) — a3 tr(Q%) + ag (tr(Q%))? + a5 tr(Q?) tr(Q%) + a6 (tr(Q%))* + af (tr(Q%))?,

with a¢ > 0 and 6a¢ + a;, > 0.

1.3.3 SURFACE ENERGY

The interaction at an interface between a nematic liquid crystal and another material, which
can be either a solid, a liquid or a vapour, is a crucial component in the development of
liquid crystal-display technologies. One typically distinguishes between two situations: strong
anchoring and weak anchoring.

In the strong anchoring case, F; is neglected and only Dirichlet boundary conditions are
imposed, such as Q = Qp, where Qg € Sy is the prescribed desired alignment on the interface.
By chemically treating the surface of the material, one can achieve a homeotropic alignment of
the NLC particles, meaning that they are perpendicular to the interface. At the same time, by
rubbing techniques, one can achieve homogeneous alignment of the NLC particles, meaning that
they lie parallel to the surface.

In the weak anchoring case, we consider a surface energy described by a surface energy

density F;, which is generally assumed that it depends on Q and v, where v is the exterior
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normal to the interface 0Q). As in the previous sections, due to the physical invariances of the

system, we need to impose the condition:
Fs(Qv) = Fs(RQR", Rv),

for any rotation R € O;3.
In [28, Prop. 2.6], the authors are able to prove that such F; can be described by a function
Fo : R* = R in the following way:

Fo(Q,v) = Fo(tr(Q?), tr(Q%), v-Qu, v- Q%).

The typical choice for such F; is the Rapini-Papoular surface energy density [64]:

F(Qu) = M (9,7,

where Wgyrface > 0 is constant and it is called anchoring strength and Q, = s (1/ QU — 113) is
a uniaxial Q-tensor derived from v with constant scalar order parameter sg. Higher values
of Wisurface cOrrespond to a higher penalisation of deviations from the preferred state and the
sign of sg describes the preferred type of alignment of NLC molecules on 9Q): for sy > 0, the
alignment is parallel to d(), while for sy < 0 the alignment will be perpendicular on 9Q2. Typical
values for Wy face can be found in [60, Table 1.2].

Another choice for F; that satisfies the physical invariances is represented by:

Fs(Qv) =a(v-Q%) +b(v-Qv)(v- Q%) + c(vQ*)?,

where a, b and c are positive constants, which is similar to an expression proposed by T. J.

Sluckin & A. Poniewierski in [71], based on an idea of W. J. A. Goossens [50].

1.4 CONTENTS OF THE THESIS

In this thesis we present various results concerning homogenisation of nematic liquid crys-
tals: two projects are posed in perforated domains, while the third project concerns rates of
convergence for boundary homogenisation. First we present a [-convergence result in R3 for
domains with connected perforations. We consider the Landau-de Gennes model with the goal
of finding new terms without gradients in the energy functional. The second result is an error
estimate for a 2D toy model used to describe rugosity effects in nematic liquid crystals via
homogenisation problems. Here we once again use the Landau-de Gennes model. The last
result establishes local L?-convergence for a homogenisation problem in R? in domains with
isolated perforations. This result for the Oseen-Frank model leads us to novel effective elastic
terms.

In Chapter 2, we analyse a homogenisation problem in R® using the Landau-de Gennes
model in which the perforations form a cubic microlattice and we assume to work in a dillute

regime, that is the volume of the cubic microlattice tends to 0 as its characteristic length
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scale tends to 0. The goal of this problem is to show that, given this geometrical setting, by
choosing various types of surface energies one can obtain a new material in the limit, which
also behaves like a nematic liquid crystal, but now with different bulk coefficients. At the end
of this chapter, we also establish a rate of convergence for how fast the approximating surface
energies converge to a homogenised term.

In Chapter 3, the emphasis is on achieving and improving error estimates in homogenisation
problems. These estimates can give us crucial information for manufacturing processes. We
consider a simplified 2D model in which we highlight how one could replace a rugose
boundary with an imposed homeotropic alignment by a flat boundary with an effective
alignment depending on the initial geometry of the rugosity. We are able here to improve an
L? error estimate for a class of linear nonhomogeneous Robin problems.

In Chapter 4, we consider a general elastic energy in a 2D case for the Oseen-Frank model in
domains with isolated perforations. The goal of this study is to analyse how one could produce
a new nematic liquid crystal with novel elastic properties via homogenisation procedures.
Under suitable conditions we can analyse the S!'-valued homogenisation problem via a scalar

problem obtained through the lifting procedure and we prove a local L? convergence result.

1.4.1 HOMOGENISED BULK TERMS IN A CASE OF THE LANDAU-DE GENNES
MODEL

In this chapter, we consider a cubic microlattice scaffold within a nematic liquid crystal
described by a Landau-de Gennes model. By cubic microlattice scaffold we understand a family
of inter-connected parallelepipeds of very small scale, as in Figure 2, and we sometimes refer
to it simply as scaffold. This type of geometry for the inclusions is mainly used in industry,
where such scaffolds are called bicontinuous porous solid matrix or BPSM (such as in [22], [69] or
[68]) and such objects can be constructed via two-photon polymerisation technique, also called
(2PP or TPP). A general overview of this 3D printing technique can be found in [9].

This work continues in the direction of studying the homogenised material and it is built
on the work from [28] and [29], which was also based on [13, 16, 23]. The general thrust of
these papers is to prove that the homogenisation limit of a nematic liquid crystal with colloidal
inclusions of a specific geometry can generate a new material, which behaves like a new
nematic liquid crystal, but now with different material parameters. In [28] and [29], the set
of inclusion particles is disconnected, obtained from different or identical model particles, in
such a way that the distance between the particles is considerable larger than the size of them,
which is called the dilute regime. Also, in this regime, the volume fraction of colloids tends
to zero. However, the geometric configuration of a cubic microlattice is more relevant from
the physical point of view, since in [28] and in [29] one cannot position a priori the colloidal
particles in a periodic fashion. Here the periodicity is automatically generated by the structure
of the cubic microlattice.

The mathematical construction of a cubic microlattice can be seen in the following way:

we first choose a small parameter ¢ > 0, then we construct a family of disjoint identical
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parallelepipeds placed in a periodic fashion (their centers are at a distance of ¢ between each

other), of the following form:

N et e et e et

R TR s R e
with p, q, r € [1,400) and a € (1,2). Then we inter-connect them with other 3 families of
identical parallelipipeds, such that we achieve a connected scaffold, but, at the same time,
we do not connect them with d() (the scaffold is included in () and does not touch 9(}). We
explain why we choose a between 1 and 2 in Remark 2.2.6 and we emphasize here that, by
our construction of the scaffold, its volume tends to 0 as ¢ — 0. At the same time, if the initial
family of disjoint identical parallelepipeds are actually cubes, that is p = g = r, we say that the
scaffold presents cubic symmetry.

In this setting, we are able to prove that, in the limit as ¢ — 0, the surface interaction
between the nematic liquid crystal and the scaffold transforms into a bulk-type of energy
and, by tuning the lengths of the scaffold and by choosing specific surface energy densities,
we can achieve desired bulk coefficients. Hence, starting from a nematic liquid crystal with
bulk coefficients a, b and c (as presented in Subsection 1.3.2) confined in a domain perforated
by a cubic microlattice, then, given some 4’, b/, ¢’ and suitably choosing parameters of the
scaffolding and the surface energy, in the limit, we can achieve a new liquid crystal-type of
material, with new bulk coefficients 4’, b’ and ¢/, with the focus on achieving @', since this
is temperature-dependent (it depends on the temperature at which the isotropic state loses
stability - see Subsection 1.3.2 for more details).

To be more precise, let (2 be a bounded and smooth domain and let N be a cubic microlattice

scaffold, for ¢ > 0. We consider the following Landau-de Gennes free energy functional:

3
RiQ)= [ (R(VQ)+ @)+ o [ f(@ v,

where Q, = O\ NV, and we assume that:

* f,: Sy ®R® — [0, +00) is differentiable, strongly convex* and there exists a constant A, > 0
such that
ADP < fo(D) < 2D, [(V£e)(D)| < A(ID] +1),

forany D € Sy x R3.

* fp : So — R is continuous, bounded from below and there exists a constant A, > 0 such that

fo(Q) < Ap(1Q1° +1) for any Q € So.

o fi: 8y xS? — R is continuous and there exists a strictly positive constant \s such that, for any
Q1,Qs € S and any v € S?, we have

1£s(Q1v) — fs(Qa,v)| < As]Q1 — Q2| (|Q1 ] + Q2 +1).

* We say that a function f : Sp ® R® — R is strongly convex if there exists § > 0 such that the function f : Sp @ R® —
R defined by f(D) = f(D) — 6|D|? is convex.

13
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We also impose strong anchoring on the boundary of Q: let ¢ € H'/2(90), Sy) be a boundary
datum and we denote by Hg}(Q, So) the set of maps Q from H!((), Sp) such that Q = g on 9Q)
in the trace sense. Similarly, we define Hg(Q, Sp) to be H'(Q);) with Q = g on 9 in the trace
sense.

In order to present the main result, we need to introduce the function fj,,, : So — R as:

_qtr ptr Ptq
fun(Q =T [ f@ude+ 22 [ Qe+ EXL [ £(Qujde,

for any Q € Sp, where C = [ -1/2,1/ 2] ? and C*, C¥ and C* are the unions of the faces normal
to Ox, Oy and Oz.

Moreover, inside the scaffold, we use the harmonic extension operator, E; : Hg(Qg, So) —
H;,(Q, Sp), defined in the following way: in Q). we have E.Q := Q and inside the scaffold, E.Q

is the unique solution of the following problem:

AE.Q=0 inA\,
EEQ=Q onoN..

Using I'-convergence tools, we are able to prove the main result for this general framework:

Theorem 1.4.1. Let Fy : Sy — [0, +0c0) be defined as

FolQ] = /Q (£(VQ) + £(Q) + from(Q))dx

and let Qg € H;(Q, So) be an isolated H'-local minimiser for Jy, that is, there exists 6y > 0
such that Fy[Qo] < Fo[Q] for any Q € H;(Q, So) such that ||Q — QO“HEY(Q,SO) < dpand Q # Qo.
Then for any ¢ small enough, there exists a sequence of H 1Jocal minimisers Q, of F; such that
E.Q: — Qo strongly in H;(Q, So).-

At the same time, we are able to compute a rate of convergence for how fast the surface
energies converge to their homogenised functional. In order to achieve this, we first need
to take into account the geometry of the scaffold: from the initial lattice of parallelepipeds
constructed, only few of them are in contact with the nematic liquid crystal - only those which
are close to d(2, while the others touch the NLC only by their edges. In Subsection 2.4.2, we
prove that these interactions have no contribution in the limit as ¢ — 0, hence, the homogenised
functional is given by the limit of the surface energies computed on the “walls of the connecting
parallelepipeds”. By assuming further that f; is locally Lipschitz continuous and that g is
bounded and Lipschitz, we are able to prove in Proposition 2.6.1 from Section 2.6 that the

previously described rate of convergence is of order £, with

n{*5 2o}
my = min 3 22—y,

where a € (1,2) is the parameter used for the construction of the cubic microlattice.

We now present some applications of Theorem 1.4.1 for some particular cases of interest for
the Landau-de Gennes model. We distinguish first two cases: the scaffold chosen presents or
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not cubic symmetry (that is, p = g = r or not). Then we split the discussion depending on the
bulk energy density chosen and, correspondingly, the surface energy density chosen.
1) Let us assume first that p = g = r. In this case, fj,,,, becomes:

fun(@ =~ [ f(Q e
a) We consider first the typical choice for the Landau-de Gennes bulk energy density:
fo(Q) = atr(Q*) = b tr(Q) + c tr(Q%)?,

where a,b,c € R, with b,¢c > 0.
In this case, in order to achieve a new material with the parameters a’, b’ and ¢/, that we

simply write (a,b,c) ~ (', b, "), we choose

SPCQu) =

LIRS

((a—a)( Q) — (v~ b)(V~QBV)+2(C/—C)(V~Q4V)>
and we obtain

o0 (Q) = (@ —a)er(QY) — (1 = b) 1r(Q%) + (¢ — ¢) ((Q))".

In this way, the functionals F; and F{ become:

3—ua

E@G@4F=/ (f:(VQq) +atr(@2) —btr(Q?) +c (w(@2) )+ ;¢ | fPQev)do

Q

and
FEPC[Q] := / (fe(VQ) +d' tr(Q*) — b tr(Q%) + ¢’ (tr(QZ))z)dx,

and we are able to present the main result for this subcase.

Theorem 1.4.2. Let (a,b,¢) and (a’,V',¢’) be two set of parameters with ¢ > 0 and ¢’ > 0. Then,

for any isolated H I_]local minimiser Qy of the functional Fo LDG "and for € > 0 small enough,

there exists a sequence of local minimisers Q; of the functionals ]-"SLD G, such that E.Q: — Qo
strongly in Hg,(Q, So).

b) We also consider the following bulk energy density
f7(Q) = a tr(Q?)

and we choose f; to be given by the Rapini-Papoular form (2.3.6):

RQv) =L —a) Q- Q)

15
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where Q, = v ® v —I3/3 and I3 is the 3 x 3 identity matrix. In this way, we have (a,0,0) ~»
(ﬂ/, 0/ 0)/

nom(Q) = (a —a) tr(Q%)

and the free energy functionals become

83—0(

Q= [ (V@) +at(@dx+ 5 —a) (5 [ w(@i—uar)

Qe

and
Q= [ (f(VQ)+ ' r(Q)dx

Theorem 1.4.3. Let a and a’ be two parameters. Then, for any isolated H'-local minimiser Qo
of the functional FR?, and for ¢ > 0 small enough, there exists a sequence of local minimisers
Q. of the functionals FXP, such that E.Q. — Qo strongly in H;,(Q, So)-

¢) Since the typical choice for the Landau-de Gennes bulk energy density represents the
lowest order polynomial from a Taylor series expansion in Q that admits a uniaxial state as a

global minimiser, we highlight also the case in which

N
Q) = Y artr(QY),
k=2

where N € N, N > 4 is fixed, with the coefficients a; € R chosen such that the polynomial
h:R — R, defined by h(x) = YI_, a;x¥, for any x € R, admits at least one local minimum
over R.

Here, we choose

M
Q) =Y h(v-Q'),
4 k=2
where (by) kez M are the coefficients of the polynomial i : R — R of degree M € N, M > 4,
defined by i(x) = M, byx*, for any x € R, with the property that i admits at least one local
minimum over R.

In this way,

max{M,N}

seQ) =Y otr(QY),

k=2
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where, for any k € 2, max{M, N}, we have

ax + by, if 2 <k < min{M, N}
ck = 4 ag, if min{M, N} <k <max{M,N}and M < N
by, if min{M, N} < k < max{M,N} and M > N.

The free energy functionals become

FE Q] = /Q 5 (fe<vczg>+éaktr<@’;>)dx+z-ﬁbk-(83“ /B (V.Qg;v)da)

k=2
and

max{M,N}

7i"al = [ ((vQ)+ o (@) )

Theorem 1.4.4. Let (ar)i 5 and (bi )iz 31 be such that the polynomials /1 and i defined earlier
admit at least one local minimum over R. Then, for any isolated H L_local minimiser Qo of the
functional fgen, and for e > 0 small enough, there exists a sequence of local minimisers Q. of
the functionals F£", such that E.Q; — Qo strongly in Hg}(Q, So)-

2) For the loss of cubic symmetry case, we only highlight the case in which f, is the typical
choice of Landau-de Gennes bulk energy density:

£(Q) = a tr(Q) ~ b1r(Q%) + e tr(Q*) = a 1r(Q?) ~ br(Q)) + 5 (1r(QY),

with ¢ > 0. Similar results can be obtained for the other cases in which we modify the form of

o

In order to describe f,,,, we introduce

Ty +2 0 0 }7 +2 0 0
1 1 2 1
A= 0 i 0 and B = 0 —+- 0
’ Pt 1 1 2
0 0 —+=-—- 0 0 -+ -
p g9 T p
2/1 1 1 . .
and w = 3 (P + P + r>' Note that A, B and w are constants depending only on the choice

of p, g and r. Moreover, we have tr(A) = 0 and B = wl3 + A, where I3 is the 3 x 3 identity
matrix.

We consider the following surface energy density

Q) = 5 (0 — ) Q) — (B = B) (v Q) + (¢ — ) (v Q*),

17
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with a’, b’ and ¢’ real parameters such that ¢’ > 0 and the associated free energy functional:

83—04

e—et

FEMQ) = / (fo(VQe) +a tr(QF) — b tr(Q}) + c tr(QF))dx + £ (Qe v)do
QO N

In this case, the function fj,,, becomes

Q) = (@~ a)tr(@) — (0 = B)(Q%) + (¢ — )tr(@Y)+
(@ — )4 Q%) — ('~ b)r(A- Q) + (¢~ c)tr(A- QY).

Theorem 1.4.5. Let (a,b,¢) and (', V', ¢’) be two set of parameters with ¢ > 0 and ¢’ > 0. Then,

for € > 0 small enough and for any isolated H!-local minimiser Qy of the functional:

]_—gsym[Q] — /Q (fe(vQ) —|—altl‘(Q2) _ b/tr(Q3) + c/(tr(Qz))z)dx—i—
+ é /Q ((a" —a)tr(A-Q*(x)) — (b = b)tr(A- Q3 (x)) + (' — o)tr(A- Q*(x)))dx

there exists a sequence of local minimisers Q. of the functionals F&¥™" such that E.Q:. — Qo
strongly in Hg(Q), Sp).

The terms of the form tr(A - QF) describe a new preferred alignment of the liquid crystal

particles inside of the domain, given by the loss of the cubic symmetry of the scaffold.

1.4.2 ERROR ESTIMATES FOR RUGOSITY EFFECTS

In this chapter, we consider the case of a nematic liquid crystal in a domain with an oscillating
boundary. We are interested to study the case in which undulated surfaces, for which the
wavelength is of comparable size to the amplitude, can lead to effective surface energies in the
limit as the amplitude converges to zero. Problems of this flavour have been considered in the
language of homogenisation of PDEs in a domain with an oscillating boundary, where certain
scalar, linear, rugose systems may be rigorously proven to have certain effective behaviours in
the limit. These have been considered, for example, in the context of [4, 6, 7, 12, 32] or [48],
but the list is not by any means exhaustive. A contemporary overview of the literature from
this direction can be found, for example, in the introduction of [6]. The nature of physically
meaningful surface energies in the context nematic liquid crystals however provides models
that have yet to be considered in the literature within this homogenisation framework.

We consider a simplified setting of a two-dimensional slab with periodic rugosity and a
quadratic free energy, which provides a toy model of a paranematic. That is, a high-temperature
system of mesogenic molecules which has melted into an isotropic state, but still admits
some local nematic ordering induced by the surface. In this case, by the simplicity of the
system, we are able to provide quantitative estimates on how ground states behave in the
homogenised limit. We consider a rugosity parameter, ¢, arbitrarily small, that is used to

describe the oscillating boundary and then the limit problem describes the behaviour as this
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parameter tends to zero. In a physical situation the parameter ¢ is small, but finite. If one then
attempts to understand to what extent the limit problem is a good description of the problem
with e small, one needs to obtain convergence rates. While a I'-convergence result gives us a
description of the system in a potentially unphysical limit, obtaining a convergence rate allows
quantitative understanding of the approach to the theoretical limit in physically reasonable
parameter regimes.

It is known from the general theory of homogenisation that convergence rates can be
improved by calculating correctors, a manifestation of the fact that the boundary layer phe-
nomena generate localized differences between the two problems (see for instance Lemma 5.1
versus Theorem 5.2 in [4]). An alternative approach, in order to obtain improved convergence
rates, and without using correctors, is to use weaker norms that do not put too much weight
on what happens at the boundary. This approach seems not to be studied in the standard
homogenisation literature and is our main contribution here. We use a duality argument in
an L7 setting that however does not include the endpoint p = 400, which we expect to be the
optimal one. Also the use of duality argument builds on the linear structure and an extension
to the the nonlinear case is not immediate. In order to understand these issues we analyse the
most simplified setting possible that still has a certain physical relevance.

We consider the situation of a two-dimensional slab with periodic rugosity and the Landau-
de Gennes model for the description of the nematic liquid crystal used. More specifically,
the limiting domain is of the form Oy = {(x,y) | x € [0,27), y € (0,R)}, where R > 0 is a
constant, and the rugose domain is of the form Q. = {(x,y) | x € [0,27), y € (¢:(x),R)},
where @¢(x) = ep(x/¢) and ¢ : R — R is a C? 27t-periodic function with ¢ > 0. We denote with
I'e = {(x,ep(x/¢€)) | x € [0,271) } the rugose boundary and with Tr = {(x,R) | x € [0,277)} the
fixed upper boundary of the domains. We consider a quadratic free energy of the following
form:

2 w 2 w 2
Q= [ VP +elQf iy + [ Rlo-Qf do+ [ o Qul*der,
0. r, 2 Iy 2
where ¢ > 0 is constant, wyp > 0 is the anchoring strength, Qg = Ve Q@ Ve — %I and Qg =
VR ® Vg — 31 (ve and vg are the outward normals to I'; and I'g).
In this simplified model, using Proposition 3.2.1, we are able to identify the homogenised
2 . 1 (G G
, with w,r = wpy and = — , where 7, G; and
ef = WoY Qef Y <G2 G 7, G1
G are defined in Definition 3.2.1. The homogenised free energy functional is then of the form

W, f
surface energy as - Q- Qef

ol = [ [VQF+eleP ey + [ le-Qultda+ [ Q- el dow,
Qo Ty Tr
where 1y is the outward normal to I'p = {(x,0) | x € [0,277)}.

Let Q. be the minimiser of F, and Qg the minimiser of Fy. In [12] and [48], the authors
are able to prove that [|Q: — Qollmi(n,) < Cv/e. According to [32], our simplified model is
under the case 0 = g = & — 1, in which they prove that ||Qe — Qol/r1(0,) < K2(v/e + 1). Both
in [5] and [6], it is proved that (QS)€>O converges strongly in LZ(QE) to Qp, under various
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assumptions for the domains. Using boundary layers, in [4] the authors are able to prove that
Qe — Qo — eQ1ll (0, < Cv/e, where Qq is a first-order boundary term. In this work, we are
able to prove the following L? error estimate:

Theorem 1.4.6. For any p € (2, 4+0), there exists an e-independent constant C such that:

p-1
1Q0 = Qellrz) <C-e 7,

where the constant C depends on ¢, wo, p, |[@||1=(j027)), |9l =(0,27)), Qo and [|Qol[wie(cry)-

It is easy to observe that the fraction ijl, with p € (2,+0c0), allows us to obtain any
desired exponent from the interval (1/2,1). In order to prove this theorem, we first show in
Section 3.3 that Q. and Qp exist and admit W27 regularity, for any p € (2, +). Then, we
adapt in Section 3.4 the proofs from [12] and [48] to the case of W!* functions in order to
obtain Proposition 3.5.1. The result that dictates the exponent of ¢ from our error estimate
is Lemma 3.4.2. A similar estimate to this lemma represents [6, Lemma 5.1, (15)], where the
exponent obtained is dzidZ for L# estimates, for any d > 2. The proof of our error estimate is
also based on the construction of an extension operator, from W (Q,) to W7 (), which is
defined in Definition 3.5.3 and has e-independent bounds. With all of these ingredients, we are
able then to prove the main result of this part, in Section 3.5.

At the end of this subsection, we would also like to mention that one could achieve more
general results for rugosity effects. In [31], a I'-convergence result in IR"” is achieved in a
sufficiently general setting such that one could consider either the Landau-de Gennes setting

or the Oseen-Frank one. For more details, the reader can consult [31].

1.4.3 HOMOGENISED ELASTIC TERMS IN A CASE OF THE OSEEN-FRANK
MODEL

We consider a nematic liquid crystal in a bounded, smooth and simply connected domain
Q) C R? and we consider a generalised version in IR? of the Oseen-Frank energy introduced in

(1.2.1):
E[n] = /QKl(TZ)(diV n)2 + Kz (n) (div n) (curl n) + K3 (n) (curl n)2 dx + u /Q (n- no)z dx,

where the elastic coefficients Kj, K; and K3 are not necessarily constants any more, but they now
depend on n. The reason for considering this generalisation is that the type of homogenisation
we will consider, using colloids, provides a functional of this form. So, in particular, starting
from Kj, K; and K3 constants, we will get, through colloidal homogenisation, a functional of
this type. Moreover, we have added a new term, in which y is a positive constant and ng € S!
is also constant. We impose conditions on Kj, K, and K3 such that, for = 0, we have E [n] >0,
for any n € S!, and E[n] = 0, for any 1 constant. The term containing y also tries to mimic, in
a very simplified fashion, an external constant magnetic field applied to the nematic liquid
crystal, which forces a competition between minimising the elastic energy of the material and

the desire to align perpendicular to the magnetic field.
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We now perforate the domain in a periodic fashion, in the following way. We consider
a model particle T, made up from Nt mutually disjoint components which we denote T',
where i € {1,2,..., N7}. We assume that each component T! is a bounded, smooth and simply
connected compact set from the periodic cell Y = (0,1)2. We consider a small parameter ¢ > 0
and we construct a lattice of points X, such that in each point ¢ € X,, we have s((',‘ + Y) c Q.
We denote the number of such points by N, and then, in each point x£ € X, with j € {1, N},
we perforate the domain with the set Té’j = e(xé + Ti). We denote by T, the union of all Tg’j S
and by Q, := Q \ T, the perforated domain. By our construction, the holes are sufficiently far
away from 0Q).

We consider the following energy functional:
Fe(u) = / x1(u) (curl u)2 + xep (1) (curl ) (div u) + x3(u) (div u)2 + p(u .ﬂ)2 dx,
Qe

where «1, x; and «3 are assumed to be in C?(S!;R), u > 0 is a positive constant and u € S is
also constant. We neglect, for now, the space from which u belongs.

We are interested to study the following homogenisation problem: given initial elastic
coefficients «1, x; and x3 and the model particles T!, we would like to obtain, as ¢ — 0, a new
material, which behaves also like a nematic liquid crystal, but now with new elastic coefficients:
ki, x5 and k3. Since our goal is to generate new elastic coefficients, we neglect any sort of
typical surface energy (such as Rapini-Papoular, for example) and we impose, for simplicity,
that u = (1,0) on dQ) and we impose no boundary conditions on the perforations. In this way,

we consider F, : V, — [0, +00), where

Ve = {u € HY(Qg;S') : u=(1,0) on aQ}.

Our choice of the Oseen-Frank model gives rise to some interesting challenges, due to
the fact that we work with S'-valued functions, as follows. First, having u € Hl(Qg; Sl),
there exists an extension E.u € H'(Q);R) as long as the holes are sufficiently regular, but not
necessarily in H!(€);S!). Secondly, given u € H'(Q,;S'), we can not a priori expect to have
a function ¢ € H'(Qg;R) such that u = (cos ¢,sin ¢). In order to overcome the previously
mentioned issues, we make use of various results from [21] that give us connections between
the topological degree of a function, the possibility of extending an S!'-valued function and the
existence of a lifting ¢.

The main assumption of our work is based on the fact that we can have low enough energy
states of the material such that there exists a sequence (ug)£>0 C V; of critical points of F, with
the property that their topological degree computed on the boundary of the holes T;’ must be
0. In this way, we prove that there exists a lifting function ¢, : Q0; — R, for each u, given by
the previous argument, such that u, = (cos ¢, sin ¢, ). Moreover, since u, = (1,0) on 9Q),, we

define the space

Ve={pc H(Qs;R) : ¢ =00n03Q}
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and we note that u, € V. implies ¢, € V.
We observe that, in this setting, the scalar homogenisation problem represents a particular

case of the work done in [34] and is of the form:

—div(A(pe)Voe) = B(pe, Vo)  in Qe
A(@e)Vee-v=0 on 9T, (1.4.1)
¢e =0 on 0Q)

where A is a matrix-valued function depending on one parameter which contains all the
information related to the initial elastic coefficients and % has quadratic growth in the second
variable and it depends on the derivative of A, namely A’.

The main result from [34] states that there exists ¢o € H}(Q) N L®(Q) such that Egp: — @
weakly in L?(Q)) (where Ej is the extension by 0 in the holes) and that it solves the following
PDE:

—div(Ao(@o) Vo) = Bo(@o, Vo) in Q)
@0 =0 on 0Q)

where Ap and % are the homogenised components obtained from A and %.
Then, by Proposition 4.3.6, we are able to say that uy = (cos @, sin ¢p) is a critical point of
the following homogenised energy functional Fy : Vo — [0, +0):

Fo(u) = /Q K7 (u) (curl u)2 + 13 (1) (curl u) (div u) + x5 (1) (div u)2 + Oopt (u -ﬁ)z dx, (1.4.2)

where 0 represents the volume fraction between the nematic liquid crystal part and the
periodic cell and Vo = {u € H'((3;S!) : u = (1,0) on 0Q)}.

The functions «j, x5 and «x3 from (1.4.2) represent the new elastic coefficients for the
homogenised material. Their dependency on the initial elastic coefficients «y, x, and «3 is
given in Subsection 4.5.5 and it is based on using the same corrector matrix as in, for example
[14, 15, 34, 39, 40]-

We would like now to express the dependency between the chosen sequence of critical
points u, and the constructed function uy. We first note that, in [33], the authors are able to
prove that the solutions ¢, of (1.4.1) are uniformly bounded in V. Then, by also using [5,

Lemma 2.3], we are able to prove the following result:

Theorem 1.4.7. Along a subsequence of (i) still denoted with subscript e:

e>0’

for any open set w such that w C (), we have lirr(} l[1e — uoll 12(nws1) = O
e—
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As stated in [34], one should not expect strong convergence of ¢, to ¢o in L?(Q)), nor
almost everywhere in (). However, if we were to consider the initial elastic coefficients as being

constants, then we have
lpe = @ollr2(q) — 0, ase = 0,

since our problem is a particular case of [36], in which they consider holes that are isolated
in each cell, or, by some extent, this can be seen as [5, Theorem A.1], where they consider the
more generalised situation of connected holes. Moreover, one could prove in a very similar
fashion as in [5, Appendix] that we can extend the local convergence result up to the boundary

of (), since we impose homogeneous Dirichlet boundary conditions.
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HOMOGENISED BULK TERMS IN A
CASE OF THE LANDAU-DE GENNES
MODEL

Abstract

We consider a Landau-de Gennes model for a connected cubic lattice scaffold in a nematic
host, in a dilute regime. We analyse the homogenised limit for both cases in which the lattice
of embedded particles presents or not cubic symmetry and then we compute the free effective
energy of the composite material.

In the cubic symmetry case, we impose different types of surface anchoring energy densities,
such as quartic, Rapini-Papoular or more general versions, and, in this case, we show that we
can tune any coefficient from the corresponding bulk potential, especially the phase transition
temperature.

In the case with loss of cubic symmetry, we prove similar results in which the effective
free energy functional has now an additional term, which describes a change in the preferred
alignment of the liquid crystal particles inside the domain.

Moreover, we compute the rate of convergence for how fast the surface energies converge
to the homogenised one in terms of the H! norm of the difference between a minimiser of the
homogenised free energy and a correspoding strongly converging sequence of minimisers of

the approximating free energies.

This chapter is part of [30], which has been published in ESAIM:COCYV, Volume 27,

2021 (article number 95).
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2.1 INTRODUCTION

We consider a cubic microlattice scaffold constructed of connected particles of micrometer scale,
within a nematic liquid crystal. In this article, we treat the particles of the cubic microlattice
as being inclusions from the mathematical point of view, while they might be interpreted as
colloids from the physical point of view, even though they do not possess all of their properties.
The cubic microlattice scaffold is also called a bicontinuous porous solid matrix (BPSM) in
the physics literature (for example, see [22], [68] or [69]). By cubic microlattice scaffold we
understand a connected family of parallelepipeds or cubes of different sizes, placed in a periodic
fashion, as in Figure 2, where only the embedded particles have been shown. For simplicity,
we might refer to this object as being a scaffold or a cubic microlattice. This type of scaffold is
usually obtained using the two-photon polymerization (TPP or 2PP) process, which represents
a technique of 3D-manufacturing structures and which can generate stand-alone objects. An
overview of the field of TPP processes can be found in [9]. There are numerous experiments,
theory and computer simulations regarding embedding microparticles into nematic liquid

crystals (for example, see [41], [61] and [65]).

Figure 2: Example of a cubic microlattice.

The system bears mathematical similarities to that of colloids embedded into nematic
liquid crystals. The mathematical studies of nematic colloids (the mixture of colloidal particles

embedded into nematic liquid crystals) are split into two broad categories:

¢ one is dealing with the effect produced by a small number of particles in this mixture,
with a focus on the defect patterns that arise in the alignment of the nematic particles
induced by the interaction at the boundary of the colloid between the two combined

materials (see, for example, [2, 3, 24, 27, 25, 26, 78]);

¢ the other one treats the study of the collective effects, that is the homogenisation process

(see, for example, [13, 16, 23, 28] and [29]).

This work continues within the second direction, that is studying the homogenised material,

and it is built on the work from [28] and [29], which was also based on [13, 16, 23]. The general
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thrust of these papers is to prove that the homogenisation limit of a nematic liquid crystal with
colloidal inclusions of a specific geometry can generate a new material, which behaves like a
new nematic liquid crystal, but now with different material parameters.

In [28] and [29], the set of inclusion particles is disconnected, obtained from different or
identical model particles, in such a way that the distance between the particles is considerable
larger than the size of them, which is called the dilute regime. Also, in this regime, the volume
fraction of colloids tends to zero.

In this article, we are going to consider the case of a cubic microlattice scaffold, as shown in
Figure 2. The idea of using such a particular geometry for the scaffold comes from the work
done in [68]. At the same time, this geometric configuration is more relevant from the physical
point of view, since in [28] and in [29] one cannot position a priori the colloidal particles in
a periodic fashion. Here the periodicity is automatically generated by the structure of the
cubic microlattice. We construct two types of scaffolds: one with identical cubes centered in
a periodic 3D lattice of points, cubes which are inter-connected by parallelepipeds, and one
where we replace the cube with a parallelepiped with three different length sides. If by cubic
symmetry we understand the family of rotations that leave a cube invariant, then the first case
is when the scaffold particles have cubic symmetry and the second one is with the loss of this
type of symmetry.

The main new aspects of this work are:

* the set of all the inclusion particles is now replaced with an individual inclusion particle,

which can be seen as a connected union of smaller particles

* the model particle that we use (that is, a parallelepiped or a cube) grants us the possibility
to compute the surface contribution for arbitrarily high order terms in the surface energy
density - hence, a generalisation has been done for higher order polynomials in the bulk

energy potential that admit at least one local minimiser (see Theorem 2.3.4);

¢ in the case where the cubic symmetry is lost, we obtain a new term into the homogenised
limit that can be seen as a change in the preferred alignment of the liquid crystal particles

inside the domain (see Theorem 2.3.5);

* we obtain a rate of convergence for how fast the surface energies converge to the ho-
mogenised one (more details in Proposition 2.6.1); in remark 2.6.1, we also obtain a rate
of convergence for how fast the sequence of minimisers of the free energies tend to a

minimiser of the homogenised free energy;

Liquid crystal materials, which typically consist of either rod-like or disc-like molecules,
can achieve a state of matter which has properties between those of conventional liquids and
those of solid crystals. The liquid crystal state of matter is one where there exists a long range
orientational order for the molecules. In order to quantify the local preferred alignment of the
rod-like molecules, we use the theory of Q-tensors (for more details, see [59]). A background of
the field of liquid crystal materials can be found in [38].

Let QO C R3 be an open and bounded domain from R3. For every ¢ > 0, we construct a

cubic microlattice N, inside of (), such that, as ¢ — 0, the volume of the scaffold tends to o.
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More details regarding the construction of the cubic microlattice can be found in Section 2.2
and in Subsection 2.7.1.

Let O, = O\ N, which represents the space where only liquid crystal particles can be
found. We use functions Q : Q)¢ — Sp to describe the orientation of the liquid crystal particles,

where:

So={QeR¥?: Q=Q, r(Q) =0},

is denoted as the set of Q-tensors. In the space Sy, if we define |Q| = (tr(Qz))l/z, for any
Q € 8o, we can see that Sp is a normed linear space and the so-called Frobenius norm is
induced by the scalar product Q - P = tr(Q - P).

We consider the following Landau-de Gennes free energy functional:

3

FlQ = [ (A(VQ)+ Q)+

(e —e) Jon f:(Q,v)do, (2.1.1)

where f, represents the elastic energy, f, the bulk energy, fs the surface density energy, « is a real
parameter and 9N the surface of the scaffold. The coefficient in front of the surface energy term
is chosen such that the denominator €* (e — €*) balances the effect given by the surface terms
from 0N, in the limit ¢ — 0.

The elastic energy, also called the distortion energy, penalises the distortion of Q in the space
and, in the Landau-de Gennes theory, it is usually considered to be a positive definite quadratic
form in VQ. More details regarding the elastic energy used can be found in Subsection 2.3.2.

The bulk energy in our case consists only of the thermotropic energy, which is a potential
function that describes the preferred state of the liquid crystal, that is either uniaxial, biaxial or
isotropic’. For large values of the temperature, the minimum of this energy is obtained in the
isotropic case, that is Q = 0, and for small values, the minimum set is a connected set of the
form s(v @ v — I3/3), with v € §? and I3 the identity 3 x 3 matrix, and this is a connected set
diffeomorphic with the real projective plane. The simplest form that we can take for the bulk

energy in our case is the quartic expansion:

f(Q)=a tr(Qz) —b tr(Qg) +c tr(QZ)Z, (2.1.2)

where the coefficient a2 depends on the temperature of the liquid crystal and b and ¢ depend on
the properties of the liquid crystal material, with b,c > 0. The coefficient of tr(Q?) depends
on the temperature at which the phase transition occurs. More specifically, a from (2.1.2) is
of the form a := a,(T — T.), in which a, is a material parameter and T, is the characteristic
temperature of the nematic liquid crystal material (the temperature where the isotropic state
starts losing local stability). More details regarding the bulk energy used can be found in
Subsection 2.3.2.

The surface energy describes the interaction between the liquid crystal material and the

boundary of the scaffold. We assume, for simplicity, that it depends only on Q and on v, where

The isotropic case corresponds to the case in which Q = 0. The uniaxial case corresponds to the one in which two
of the eigenvalues of Q are equal and the third one has a different value. The biaxial case corresponds to the case in
which all the eigenvalues have different values.
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v is the outward normal at the boundary of the cubic microlattice. Throughout this work,
we choose several versions for the surface energy, depending on the bulk energy used and
on whether the scaffold presents cubic symmetry or not. More details regarding the surface
energies used can be found in Subsection 2.3.2.

We are interested in studying the behaviour of the whole material when ¢ — 0. We will
show that in our dilute regime we obtain for the homogenised material an energy functional of

the following form

FlQ) = /Q (fo(VQ) + fo(Q) + fram(Q))dx, (2.13)

where f,,,, is defined in (2.3.1) and in (2.3.2), depending on the choice of f,.

Our focus will be on a priori designing the fj,,,, in terms of the available parameters
of the system. More specifically, if (a,b,c) are the parameters from (2.1.2) of the nematic
liquid crystal used in the homogenisation process and (a’,V’, ') are the desired parameters
for the homogenised material, our goal is to choose the lenghts of the model particle used for
constructing the scaffold and a surface energy density fs such that if, for example, the bulk
energy chosen is the one from (2.1.2), then, in the limit ¢ = 0, we want to obtain a fj,,, with

the following property:

o(Q) + from(Q) = a' tr(Q*) — b tr(Q?) + ¢ tr(Q*)>2.
The article is organised in the following manner:
* in Section 2.2 we present the technical assumptions of the problem;

* in Section 2.3 we present the main results of this work: a general result together with its

applications to the Landau-de Gennes model;

* in Section 2.4 we present the study of the properties of the functional F; for a fixed value
of e > 0;

* in Section 2.5 we glue together the properties studied in the previous section and analyse

the I'-limit of F; as ¢ — 0 and we prove the main theorems stated in Section 2.3;

* in Section 2.6 we analyse the rate of convergence of the sequence of surface energies to
the homogenised surface functional, where the main result is Proposition 2.6.1, but we
also analyse the rate of convergence of the sequence of minimisers of the free energies to

a minimiser of the homogenised free energy (see remark 2.6.1)
and

e in Section 2.7 we prove various results, the most important of which is the proposition

regarding the explicit extension function that we use in Subsection 2.4.1.
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2.2 NOTATIONS AND TECHNICAL ASSUMPTIONS

Let QO C R® be a bounded, Lipschitz domain, that models the ambient liquid crystal, and let
C C R3 be the model particle for the cubic microlattice. Since () is bounded in IR?, then:

d Lo, ly, ho € [0, +OO) such that O - [—Lo, Lo] X [—lo, lo] X [—ho,ho]. (2.2.1)

4

In Figure 3, we illustrate some examples of cubic microlattices, where the “connecting’
boxes (which can be seen better in Figure 2 as being the black cubes) are cubes of size &%, with
a = 1.4999 ? and ¢ has a positive value close to o, since we desire to work in the dilute regime.
The distance between two closest black cubes is equal to ¢, therefore the length of the black
cubes is significantly smaller than the distance between them, by using the exponent «. 3 For
Figure 2, we used ¢ = 0.05, « = 1.4999 and | = 0.25, so we keep the same ratio between ¢ and [

as in Figure 3.
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<l'-:.-- = . -:--‘- B
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i Bl s [T . =
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SNBSS i ST s Sri L | S ™
‘~ sl e D =S 8 <
LR =l | SS S S SEC
R == I~ - = B
———~ = g TS =
001 L <’<EE'S<S‘Z
(a) e = 0.01 and I = 0.05; (b) & = 0.001 and [ = 0.005.

Figure 3: Cubic microlattices constructed in the box [0, /]* with a = 1.4999.

In order to construct such a scaffold, we use as a model particle the cube:

e-[-14] 22

We denote by dC the surface of the cube C, which we also write it as:
oC=C" U CY U (7 (2.2.3)

where C* is the union of the two faces of the cube that are perpendicular to the x direction and
in the same way are defined CY and C*.
Then, for a fixed value of ¢ > 0 and an e-independent positive constant a, we define

c* et et et et
= [—2p,+2p] X [—Zq,+2q] X [—Zr,+27], (2.2.4)

> We choose « close to the value 3/2 in order to make the difference between the lengths of the sides of the black
cubes and the gray parallelepipeds from Figure 2 more visible, for relatively “large” values of ¢ (0.01, 0.05 or 0.001).

3 The reason why we represent the lattice only in the box [0, 1]3, with [ = 5¢, is that if we keep the same [ and shrink
¢, then the number of boxes appearing in the image would be significantly larger, hence, as we make & smaller, we
also zoom in to have a better picture of what is happening for small values of e.




2.2 NOTATIONS AND TECHNICAL ASSUMPTIONS

with p, q, ¥ € [1, +00).

Remark 2.2.1. Using the notion of cubic symmetry described in introduction, we call the
scaffold symmetric whenever p = q = r. In Figures 2 and 3, we illustrate only the symmetric

casep=g=r=1

We construct now the lattice
Xe={xeQ : x=(x1,x,x3), dist(x,0Q) > ¢ and x /e € Z for k € 1,3}, (2.2.5)
which we rewrite it as:
X, ={x : i€1,N;}, where N, = card (X). (2.2.6)

Hence, the first part of the scaffold is the family of parallelepipeds

NS . . .
Ce = U Ci, where C; = x; +C*, foreveryi € 1,N;, (2.2.7)
i=1

which represents the union of all black parallelepipeds from Figure 2.

Remark 2.2.2. We call throughout this work the black parallelepipeds constructed in (2.2.7) the
“inner particles” of the scaffold or the “inner parallelepipeds” or the “inner boxes”. In this way,
C. represents the set of all “inner parallelepipeds”. We choose the term “inner” because most
of these particles will interact with the nematic liquid crystal material only on their edges and
most of them are not visible, as shown in Figure 2, except for those which will be close to the
boundary of the domain Q.

We add now the lattice

Ve = {ys € Q : 3i,j € 1, N; such that \xé — xi\ =cand ye = - (x! —I—xé)}, card();) = M.

(2.2.8)

N[ —

In each of the points from the lattice ), we construct a gray parallelepiped, as shown in

Figure 2.

Remark 2.2.3. We call throughout this work the gray parallelepipeds from Figure 2 the
“connecting parallelepipeds” of the scaffold or the “connecting particles” or the “connecting
boxes”. The reason why we use this notation is because any single “connecting particle” joins

two different “inner particles”, for which their centers are at e distance apart from each other.

Remark 2.2.4. We can interpret now more easily the “inner parallelepipeds” which are close to
the Q) by observing that it has less than 6 adjacent “connecting parallelepipeds”. If it has 6,
then that “inner parallelepiped” will not be “visible” (in Figure 2) and further away from 0Q).
Moreover, we prove in Subsection 2.4.2 that all the “inner parallelepipeds” have no contribution
to the limiting problem, regardless whether they are close to the boundary of () or not. This is

mainly because the “inner parallelepipeds” which have 6 adjacent “connecting parallelepipeds”
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touch the nematic liquid crystal only on their edges (which are of measure zero) and the “inner
parallelepipeds” which have less than 6, their contribution becomes negligible due to their

“small” number. More details can be found in Subsection 2.4.2.

We split this lattice into three parts, since the “connecting parallelepipeds” are elongated
into three different directions, granted by the axes of the Cartesian coordinate system in R®.
We denote by P, the union of all of “connecting parallelepipeds”.

Since the scaffold is the union between the “inner particles” and the “connecting particles”,
we denote the scaffold as N; = C, U P, with o, its surface.

More details regarding the construction of these objects can be found in Subsection 2.7.1.

Remark 2.2.5. In this paper, we use the notation A < B for two real numbers A and B whenever
there exists an e-independent constant C such that A < C - B.

We assume furthermore that:
(A1) Q C R3 is a smooth and bounded domain;
(A 1 <<

Remark 2.2.6. The condition 1 < a ensures that the “connecting particles” exist and also the
dilute regime of the homogenisation problem. This is explained more in Subsection 2.7.1 and
in remark 2.7.1. The reason why we impose other bound comes from the fact that if & > 2,
then equicoercivity may be lost. An example of this situation is described in Lemma 2.4.7 and

we follow the same directions as in Lemma 3.6 from [28]. Another way of understanding why

we impose this upper bound is given by the factor in front of the surface energy: (e )’
2—u
. € . .
which can be seen as = Sincea >1,1—¢*1 — 1ase— 0, hence the factor in front of
the surface energy behaves like 2% Asa comparison, in [28], the factor in front of the surface

3—2u

energy is e and the upper bound used there is & < 3/2.

(A3) There exists a constant Aq > 0 such that
. i 1. j i
dist(z},0Q)) + = inf |z; — z;| > Aqe
2 j#i

for any e > 0 and any center z. of an object (either a “inner” or “connecting” parallelepiped) that

is contained within the cubic microlattice, where i € 1, (Ng + Me).

(Ag) As e — 0, the measures

Xe Ye Ze
X._ 3 Y. 3 zZ._ 3
Ug =¢ k§ léyg,k, Ue =€ 12 1(5%,1 and pf = ¢ ) 15y§;”’ (2.2.9)
— = m=

converge weakly* (as measures in R3) to the Lebesgue measure restricted on Q), denoted dx L Q.



2.3 MAIN RESULTS

(As) fo: So @ R® — [0, 400) is differentiable, strongly convex* and there exists a constant A, > 0
such that
A DI < fo(D) < ADP%,  |(V£)(D)] < Ae(ID] +1),

forany D € Sy x R3.

(A6) fp : So — R is continuous, bounded from below and there exists a constant Ay, > 0 such that
fo(Q)] < Ap(1Q1° +1) for any Q € So.

(A7) fs: So x S* — R is continuous and there exists a strictly positive constant As such that, for any
Q1,Qs € Sy and any v € S?, we have

1£s(Q1,v) — fs(Qa,v)| < AsQ1 — Q2| (|Q1 ] + Q2] +1).

It is easy to see from here that f; has a quartic growth in Q.

2.3 MAIN RESULTS

2.3.1 GENERAL CASE

Let fhom : So — R be the function defined as:

From(Q) :_q+r/fstda+p+r/fs da+p+q/fst (2.3.1)

for any Q € &y, where C¥, CY and C? are defined in (2.2.3). From (A7), we can deduce that fj,
is also continuous and that it has a quartic growth. If we work in the symmetric case, that is

p = q = r, then relation (2.3.1) becomes:

fhom . / fs Q V (2~3'2)

Remark 2.3.1. Throughout this paper, the function f,,, is sometimes referred to as being the
homogenised functional, simply because it represents the effect that arises from the surface

energy term in the limiting free energy functional.

The main results of these notes concerns the asymptotic behaviour of local minimisers of
the functional F;, as ¢ — 0.

Let ¢ € H'/2(90), Sy) be a boundary datum. We denote by Hg(Q), Sp) the set of maps Q
from H'(Q), Sy) such that Q = g on dQ) in the trace sense. Similarly, we define H;,(QE, Sp) to
be H'(Q,) with Q = ¢ on dQ) in the trace sense.

4 We say that a function f : Sop ® R® — R is strongly convex if there exists 8 > 0 such that f : Sy ® R? — R, defined
by f(D) = f(D) — 8|D|?, is convex.
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We use the harmonic extension operator, E. : Hg(Q, So) — Hg(Q, Sp), defined in the
following way: E.Q := Q on (), and inside the scaffold, E;Q is the unique solution of the
following problem:

AE.Q =0 inA\,
EEQ=Q onoN..

Using this framework, we can produce the main result of this work:

Theorem 2.3.1. Suppose that the assumptions (A1)-(A7) are satisfied. Let Qg € Hg}(Q, Sp) be
an isolated H'-local minimiser for Fy, defined in (2.1.3), that is, there exists Jy > 0 such that
FolQo] < Fo[Q] for any Q € H;,(Q, Sp) such that ||Q — QOHH&(Q’SO) < ép and Q # Qp. Then
for any ¢ sufficiently small enough, there exists a sequence of H I]ocal minimisers Q; of F;
such that E.Q, — Qo strongly in Hg}(Q, So).

2.3.2 APPLICATIONS TO THE LANDAU-DE GENNES MODEL

In this subsection, we particularise Theorem 2.3.1 to the case of the Landau-de Gennes model.
Before doing this, let us introduce first some of the energies used in this model for nematic
liquid crystals.

o The elastic energy

We consider the following form for the elastic energy:

o Ly (0Q;\* L,0Q;j9Qu L3 dQu 0Q;
fE(VQ) o Z [2<8xk> + 7 ax] axk * 7 aX] axk ’

ijke{1,23}

where Qj; is the (ij)th component of Q, (x1,x2, x3) represents the usual cartesian coordinates
and e;j; represents the Levi-Civita symbol.

In order to fulfill assumption (As), we take as in [58]:

3 1
L1 >0, —L1 < Lz < 2Ly, _ng — TOLB < L». (2.3.3)

o The bulk energy

For the bulk energy density, we use several versions of it. The first one is the classical quartic
polynomial in the scalar invariants of Q, defined in (2.1.2), which verifies the conditions of

assumption (Ay):
fo(Q) = a tr(Q?) — b tr(Q”) + ¢ tr(Q*)*

We also prove similar results for a general polynomial in the scalar invariants of Q, that is:

N
5Q) = Y atr(QY), (2.3.4)
k=2
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where N € IN, N > 4 is fixed, with the coefficients a; € R chosen such that the polynomial
h:R — R, defined by h(x) = Y, axx, for any x € R, admits at least one local minimum
over R.

o The surface energy

For each of the versions of the bulk energy densities, we choose suitable surface energy densities,
such that, in the homogenised functional, the surface terms grant an effect f;,,, which has the
same form as the initial bulk energy chosen, but with different coefficients, most important
of which the coefficient of tr(Q?) is now different. Therefore, our choice of the surface energy
density has a strong connection with the bulk energy density chosen.

Moreover, since Theorem 2.3.1 holds for any values of p, g and r, that is, for any type of
parallelepiped chosen for the construction of the scaffold, and since, in reality, 2PP (two-photon
polymerization) materials with cubic symmetry properties, in the sense from remark 2.2.1, have
been obtained (for example, in [68]), then we also split our work on whether the scaffold is
symmetric or not.

Hence, our choices of surface energy densities will depend on the bulk energy density
chosen and if the scaffold is symmetric or not.

I) If the scaffold is symmetric, as described in remark 2.2.1, then the physical invariances
require

f(UQUT, Uu) = f,(Q,u), V(Q,u) € Sy x R3, U € O(3)

and this leads, according to Proposition 2.6 from [28], to a surface energy of the form
£:(Qv) = fi(tr(Q%), tr(Q°),v- Qu,v- Q%v), ¥(Qv) € So x R. (2:3.5)

1) Let us consider the case in which the bulk energy is the classical Landau-de Gennes
quartic polynomial in Q, described by (2.1.2). In this case, we use one of the most common
forms for the surface energy, which is the Rapini-Papoular energy:

f(Qv) = Wir(Q—sy (veov—13/3)), (2.3.6)

where W is a coefficient measuring the strength of the anchoring, s, is measuring the deviation
from the homeotropic (perpendicular) anchoring to the boundary and I3 is the 3 x 3 identity
matrix.

Another surface energy density that we use, which verifies (2.3.5), is the following;:

Zb/ /
£:(Qv) = ko(v- Q%) + ky(v-Qv)(v- Q%) + k(v Q*)* +a’ tr(Q%) + ?tr((f) + %tr(Qz)2,
(2.3.7)
where k;, k, ke, a’, b’ and ¢’ are constants.

Remark 2.3.2. If our choice of f; contains terms of the form tr(Q?) or tr(Q?), then these terms
very easily generate in f,,, terms similar with the one from the bulk energy defined in (2.1.2),

since they are exactly the same. Our goal in the paragraphs is to use the other terms from
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(2.3.7) for the surface energy densities, which are of the form v - Qv and for which the previous

implication is not that immediate.

2) For the bulk energy density in (2.3.4), we choose a more general form for f;(Q,v),
depending only on terms of the form v - Q%v. In this situation, the function fj,,,, can be computed
easily, due to the geometry of the scaffold. More specifically, according to Proposition 2.7.4,
we obtain in the homogenised functional terms of the form tr(Qk ), with k > 4, but they only
depend on tr(Q?) and tr(Q?), since tr(Q) = 0. In order to prove this statement, let A1, A, and
A3 the eigenvalues of Q. Then they satisfy the system:

AM+A4+A3=0
AT+ A3+ A5 =tr(Q?)
A+ A3+ A3 =tr(Q%)

and, by solving the system, we can see that A1, A; and A3 can be viewed as functions of tr(Q?)
and tr(Q?3). Since tr(QF) = A’f + )\’5 + Ak for any k € N, k > 1, then it is easy to see from here
that tr(QF), for k > 4, is depending only on tr(Q?) and tr(Q%). Indeed, by Cayley-Hamilton
theorem, the identity:

3 1 2 1 3\
Q- Etr(Q )Q — gtr(Q )3 =0

becomes valid for any Q-tensor Q, where I3 is the 3 x 3 identity matrix. Multiplying this
identity succcessively by Q, Q?, Q® and so on and taking the trace we obtain the claim.

IT) If the scaffold does not present cubic symmetry, in the sense of remark 2.2.1, we only
illustrate the case in which the bulk energy density is the one from (2.1.2) and the surface
energy density is a variation of (2.3.7).

The goal of the next subsubsections is to analyse each particular case described above and

to obtain similar results as Theorem 2.3.1 for each of it.

L. The symmetric case: p = q =r

Assuming p = g = r implies that the “inner” parallelepipeds constructed in (2.2.7) are actually
cubes.

1. We analyse first the case in which f, is defined in (2.1.2), that is:

fo(Q) = a tr(Q?) — b tr(Q°) +c tr(Q%)*.

a) We analyse the case when (a,b,¢) ~ (a’,b'c’), where all the parameters are non-zero
and ¢ and ¢’ are positive, which by “~~” we mean that from a nematic liquid crystal with the
parameters (a,b, c) we want to generate a new homogenised material, which also behaves like
a NLC, but with parameters (a’,V’,¢’).
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We choose f; in this case to be:

e = £ <(a’ —a)(v- Q) = (t/ =b)(v- QW) +2(c' =€) (v- Q4V)) (23.8)

where 4/, b’ and ¢’ are the desired coefficients in the homogenised bulk potential, such that in

the homogenised material, we have:

DG (Q) = (' —a) tr(Q?) — (b — b) tr(Q%) + (¢ —¢) (tr(Q2))™. (2.3.9)

We are interested in studying the behaviour of the whole material when ¢ — 0, that is,

studying the following functionals:

FIOIQ = [ (£(VQ) +atr(@) —bir(Q) + e (x(Q))dx

Qe

(2.3.10)

and

FEPCIQ] := / (fe(VQ) +a "tr(Q?) — b tr(Q3) + ¢’ (tr(Qz))z)dx. (2.3.11)

Theorem 2.3.2. Let (a,b,¢) and (a’,V,c’) be two set of parameters with ¢ > 0 and ¢’ > 0.
Suppose that the assumptions (A1)-(Ay) are satisfied and also the inequalities from (2.3.3).

Then, for any isolated H'-local minimiser Qq of the functional FOLD G defined by (2.3.11), and
for e > 0 sufficiently small enough, there exists a sequence of local minimisers Q. of the
functionals f}DG, defined by (2.3.10), such that E.Q, — Qp strongly in Hg}(Q, So)-

Proof. This theorem is a particular case of Theorem 2.3.1. It is sufficient to prove that relation

(2.3.9) can be obtained via (2.3.2), that is:
wom (Q / fEPE(Qv)do = (@' = a) tr(Q%) — (b = b) tr(Q%) + (¢ —¢) (tr(Q2))".
Using Proposition 2.7.4, we have:
/ac v- Q*vdo = 2tr(Q?), /ac v-Q%do = 2tr(Q*) and /ac v- Q*vdo = 2tr(Q%),

from which we get

/fLDG i-i((a ) 2r(Q%) — (U — b) - 24r(Q%) + 2(c' — <) - 24r(QY)) =
= hLo%G(Q) = (d' —a)tr(Q*) — (V' = b)tr(Q°) + (¢ —¢) - 2tr(Q*).
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Since Q € &y, then, by Cayley-Hamilton theorem, if A1, A, and A3 are the eigenvalues of Q,
we have:

{A1+A2+A3 =tr(Q) =0

AMAy + A2A3 + A3Ay = %((tf(Q))z —tr(Q?)) = —%tf(Q2)

and

tr(QY) = AT+ A5+ A5 = (A2 4+ A3+ A2)2 —2(A2A3 + A3A3 + A3A3)
= (A3 + A3+ A3)% — 2((MA2 + Aoz + A3A)? — 201045 (A1 + Aa + A3))

-2( @)

= (u(
%(trm)

from which we get the relation 2tr(Q*) = (tr(QZ))
Hence, we conclude that:

oC(Q) = (4 = a)tr(Q%) — (1 = b)er(Q) + (¢ — ¢) (er(Q%)",
O

b) We analyse now the case in which we want (a,0,0) ~» (a’,0,0), with a and a4’ non-zero.
In this situation, we have

fr'(Q) =atr(Q?)

and we choose f; to be given by the Rapini-Papoular form (2.3.6):

RP(Qv) = 1;72(a —a)tr(Q—Q,)% (2.3.12)

where Q, = v ®v —1I3/3 and I3 is the 3 x 3 identity matrix.
In this case, we have:

3—ua
Q= [ (V) +ar(@)d+ 5 —a)- (i [ w(@i—uar)
(2.3.13)
and we prove that

o (Q) = (d' — a) tr(Q?), (2.3.14)

and

FIQ = [ (£(VQ) +a'tr(@)d. (2:3:15)
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Theorem 2.3.3. Let a and a’ be two parameters. Suppose that the assumptions (A1)-(A7) are
satisfied and also the inequalities from (2.3.3). Then, for any isolated H'-local minimiser Qg
of the functional FXP defined by (2.3.15), and for ¢ > 0 sufficiently small enough, there
exists a sequence of local minimisers Q. of the functionals }"fp , defined by (2.3.13), such that
E.Q; — Qo strongly in H;(Q, Sp)-

Proof. The proof follows the same steps as in the proof of Theorem 2.3.2, using Proposition 2.7.5.

We only have to prove that relation (2.3.14) can be obtained using (2.3.2), knowing that (2.3.12)
holds.

From (2.3.2) and Proposition 2.7.5, we have:

hom / f _129‘1pz<ﬂ,—ﬂ>/actr(Q—Qv)d(7

_ (6)(6tr(Q2) 1 4) = (d —a)(Q) + %(a' _a).

We can eliminate the constant — 3 (a' —a) from fRP since it does not influence the minimisers
of the functional FX”, so we obtain: fRP (Q) = (a' — a)tr(Q?). O

2. We now analyse the situation in which f, is of the form given by (2.3.4). In this situation,
we choose:

Q) = Zkz be(v- Q"v), (2.3.16)
=2

where (by) reznt are the coefficients of the polynomial i : R — R of degree M € N, M > 4,
defined by i(x) = M, byx*, for any x € R, with the property that i admits at least one local
minimum over R.
In the same manner, we have
max{M,N}
on(Q = ) actr(QY),

k=2
where, for any k € 2, max{M, N}, we have
ap+ by, if2 <k < min{M,N}

Ck = Q ag, if min{M,N} <k <max{M,N}and M <N
by, if min{M, N} < k < max{M,N} and M > N.

In this case, F. and J{ become:

3—ua

| w Qév)da) (23.17)
Ne

e—¢&*

FE Qe = /Qc <fe(VQg) +éak tr(Q’Q))dx%— g 'ébk- < £
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and

max{M,N}

fgen[Q] = /Q (fe(VQ) + k:ZZ Cx tr(Qk)>dx. (2.3.18)

Theorem 2.3.4. Let (ar) 5 and (bk)yczp; be such that the polynomials & and i defined
earlier admit at least one local minimum over R. Suppose that the assumptions (A;)-(A7)
are satisfied and also the inequalities from (2.3.3). Then, for any isolated H'-local minimiser
Qo of the functional ]-"ge” defined by (2.3.18), and for ¢ > 0 sufficiently small enough, there
exists a sequence of local minimisers Q. of the functionals 75", defined by (2.3.17), such that
E.Q¢ — Qo strongly in H;(Q, Sp)-

Proof. This theorem is a particular case of Theorem 2.3.1. Using once again Proposition 2.7.4,
the proof is finished. O
II. The asymmetric case p # q # 1 # p

We now assume that p, g and r are three different real values, each greater than or equal to 1.
In this situation, the “inner particles” are not cubes anymore, but simple parallelepipeds.

We only illustrate how to proceed for the case in which we have
f(Q)=a tr(Qz) —b tr(Qa) +c tr(Q4) =a tr(QZ) —b tr(Q3) + % (tr(QZ))Z,

with ¢ > 0. Similar results can be obtained for the other cases in which we modify the form of

o

Let
22000 0 oo o
1 p g9 T 1 q T
A= - 0 - ==+ 0 and B = 0 -+ - 0
: y 1 1 2
0 -+ - == 0 0 —+-=
p g9 T p

2/1 1 1
and w = 3 ( + -+ r>' Note that A, B and w are constants depending only on the choice

of p, g and r. Moreover, we have tr(A) = 0 and B = wl3 + A, where I3 is the 3 x 3 identity
matrix.
Consider now

SIQ) = o (@~ ) Q) — (B =B QW) + (¢~ ) (- QW), (2319

with a’, b" and ¢’ real parameters such that ¢’ > 0 and the associated free energy functional:

FEIQ) = [ (VQ0 + atr(Q2) ~ b (@) + e Q)+

83—(x

e—¢ev

fsasym(Qs,V)d(T- (2.3.20)
ONG
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We prove in the next theorem that the homogenised functional is:

wom (Q) = (" = )tr(Q%) — (V' = b)tr(Q%) + (¢’ — )tr(Q)) +
+ %((a/ —a)tr(A-Q*) — (V —b)tr(A- Q%) + (¢ —o)tr(A-QY)). (2.3.21)

Theorem 2.3.5. Let (a4,b,¢) and (a',b’,c’) be two set of parameters with ¢ > 0 and ¢’ > 0.
Suppose that the assumptions (A1)-(Ay) are satisfied and also the inequalities from (2.3.3).

Then, for ¢ > 0 sufficiently small enough and for any isolated H'-local minimiser Qy of the

functional:
7@l = /Q ((VQ) +a'tr(Q) —'tr(Q%) +¢ (1r(Q)) ")+
+ 5 /Q ((a" —a)tr(A-Q*(x)) — (b = b)tr(A- Q3 (x)) + (' — o)tr(A- Q*(x)))dx

there exists a sequence of local minimisers Q. of the functionals Fe™ | defined by (2.3.20), such
that E.Q, — Qo strongly in H;(Q, Sp)-

Proof. We follow the same steps as in Theorem 2.3.2 and in Theorem 2.3.3, that is, we prove
that relation (2.3.21) can be obtained using (2.3.1) and (2.3.19).

In the proof of Proposition 2.7.4, we obtain that:

/ V- kada = 2011k / V- kada =2qp and V- kadcr = 2933 %,
x Ccy Cc=

for any k € N, k # 0, where g; is the ij-th component of QF, from which we get:

f”sym( v)do = —((a' —a)quz — (b' = b)qu3 + (" —c)qu,4)

/ o
/z )

Using now (2.3.1), we obtain:

\H S

((a" = a)q2 — (b' = b)q2s + (' — c)g224)

((a" —a)gss2 — (V' = b)gass + (" — €)q334).

S\Hg

1 1 1 1 1 1 1
}Izljrynm(Q) = a(ﬂ/ —a) (%1,2 (q + r) + 22,2 <p + r) +q33,2 (p + q> ) -
1. 11 1 1 1 1
_ a(b — b) (5]11,3 <q + 7’> + g3 (p —+ 7’> + 4333 (p + q>>+
+1(C/—C)< <1_|_1>+ <1+1>_|_ <1+1>)
w q11,4 g 7 4224 L 433 4 st
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which we can see as:

o (Q) = %((a/ —a)tr(B-Q*) — (V/ — b)tr(B- Q) + (¢’ — o)tr(B- QY)

and since B = wll3 + A, we obtain:

wom (Q) = ((a" = a)tr(Q%) — (b — b)tr(Q%) + (¢ — o)tr(QY)) +
+ %((a’ —a)tr(A-Q*) — (V —b)tr(A- Q%) + (¢ —c)tr(A-QY)),

from which we conclude. O

Remark 2.3.3. We have obtained in this case a part which is exactly the same as in the case in
which we have cubic symmetry, but also three terms of the form tr(A - Q%) which describe a
new preferred alignment of the liquid crystal particles inside of the domain, given by the loss
of the cubic symmetry of the scaffold.

2.4 PROPERTIES OF THE FUNCTIONAL F,

2.4.1 ANALYTICAL TOOLS: TRACE AND EXTENSION

The main result of this subsection consists on a L? inequality, which is adapted from lemma 3.1.
from [28], because our scaffold now consists on inter-connected particles and the interaction
between the liquid crystal and the cubic microlattice happens only up to five faces of the
particles of the scaffold.

In the following, given a set P C IR? and a real number a > 0, we define aP = {ax : x € P}.

Lemma 2.4.1. Let P C R? be a compact, convex set whose interior contains the origin. Let
a and b be positive numbers such that 2 < b. Then there exists a bijective, Lipschitz map
¢ : bP \ aP — By \ B, that has a Lipschitz inverse and satisfies

IVl Lo@prap) + HV(<P71)HL<>°(E\E) < C(P),
where C(P) is a positive constant that depends only on P and neither on a nor b.

The proof of Lemma 2.4.1 follows the same steps as Lemma 3.2. from [28], the only difference

being that now we are in the case of R? instead of R3.

Lemma 2.4.2. Let P C RR? be a compact, convex set whose interior contains the origin
and n € [2,4]. Then, there exists C = C(P,¢) > 0, such that for any 0 < a < b and any
u € HY(bP \ aP), there holds

515 lul"ds < ZZQCZ/ |u|”dx+nc/ (Jul 2+ |Vul*)dx,
a(aP) b* —a® Jyp\ap 2 Jop\ap
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where yﬁ represents the curvilinear integral in R%.

Proof. Using Lemma 2.4.1, we can restrict without loss of generality to the case in which
P = B;, which is the two dimensional unit disk, centered in origin. Then dB; = {x € R? :
x| =1} ={(p,0) : p=1, 6 € [0,27]}, for any T > 0, and we can write, for any p € [4,b] and
any 6 € [0,27):

ul?(0,0) = lu"(6,0) ~ [ 3:(1ul") (x,0)de

a

< |ul|™(p,0) + n/p (Ju|"" - |07ul) (T, 0)dT

a

0
<lul"(p,0)+ 5 [ ("2 4 o) (z,0)de

b
ul"(a,6) < |ul"(p,6) + 5 [ (P2 +VuP) (x,6)dx

If we multiply both sides by p and integrate over [a, b] with respect to p, we get:

; b b ; n b b o
u"(@,0) [ pdp< [1u0.0)-p o+ [Tpdo [ (P24 VuP)(x,0)de
a a a a

b2 — a2
7 v

n b n n<b2 _a2) b 2n—2 2

"(@,0)< [ Jul(p,)-p dp+ ") [ (uPr 2 (Vap) ().
a a

Since for any T € [a,b] we have T > g, then:

b? —
2a

2 b 2 2\ b
“Jul'(@,0)a < [ jul(e0)-pdo+ "EED [ (P2 [9uP) (2,0) < dr,

Now we integrate with respect to 6 over [0,277] and we get:

bz_az 27 ;
. <
- /0 lu["(a,0) - d6 <

< 2 b ’u’n( 9) . d d9+ M 2 b (‘ulzﬂfz_i_ ’vu‘Z)(T 9) ‘TdeG
- 0 a pr pap 4a 0 a ’ ’

which implies

2 2 2 2
b —a 515 lu|"ds g/ |u|”dx+n(ba)/ (Ju|*"~2 +|Vul*)dx,
20 J3B, B,\Ba 4a By\B,

therefore
2a n
u”dsg/ u”dx+/ ul=2 4+ |Vul?)dx.
B, ulrds < [l g [ (P vl

If we apply now the Lipschitz homeomorphism ¢ defined by Lemma 2.4.1, the conclusion
follows. =
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Lemma 2.4.3. For any Q € H'(Q,, Sy) and any 7 € [2,4], there holds:

83 €2—0c

n TZ 2n—2 n
5”‘(‘5—5“)/31\/7’(2' dos 7 1_8‘11/0 (lQ" =2+ |vQP )dx+ / |Q["dx.

&3
Pi’OOf. Let Ig[Q] - E‘X(E—E"C)/BNT |Q|I’ld0_ and

3

X € ut n
Q= r—n L [ |Q"de.

e(e—e*) = 7

Let ey = (1,0,0)T, &2 = (0,1,0)7, &5 = (0,0,1)T and k € 1, X,. Then, according to the
definitions from Subsection 2.7.1, y?’k is the center of the “connecting parallelepiped” P;” k
with the “contact” faces 7. If this parallelepiped is sufficiently far away from the boundary
of ), then Figure 4 shows a cross section of a neighbourhood of Pk, surrounding 7F, a
section which is parallel to the yOz plane and which is passing through y?’k + deq, where

o ol
bel, = [—ps gy

2p ~ 2p
same argument will work, since we have relations (2.2.5) and (2.2.8).

Let 7X(5) be

} . Nevertheles, if the parallelepiped P** is close to 9Q), then the

TH) = {yé"" + Se1 + yes + ze3

o o o o
— o <y<s; - <z< o,
2q 29" 2r r

which represents the centered white rectangle from Figure 4.
Let VX(5) be

114 114 IX

—s+§q§y§s—8; et < z<e—}\Tk()

Vi(0) = {yé"k+5el+yez+ze3 7 >

which represents the darker shaded area from Figure 4, containing only liquid crystal particles,
that is VX(6) C Q, for any 6 € I,,.

In our case, VX(4) plays the role of bP \ aP from Lemma 2.4.3.

If for every 6 € I,, we apply the translation yk + de1 to the origin of the system, then for

1 1 1 1
P00 |~ gm] < |-z

b o
we can choose a = &*, therefore e¥P = TX(5). In order to choose b, we assume: > <e-— % and
b o
E <eg— ;q, that is: b < 2ge — &* and b < 2re — €*. Since p,q,7 > 1, we can choose b = 2¢ — ¢*.

In this way, we have bP \ aP C VE(5) and we also have b > a < 2e —&* > &* < a > 1.
Therefore, we can apply Lemma 2.4.2 for Q with a = €%, b = 2¢ — ¢* and P defined as

before, hence:

e n
"ds < / ”dx+/ 212 1y O[2)dx
B QS g [t T [ (0P VP

X
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Figure 4: Cross section of the scaffold, parallel to yOz plane, passing through yg’k + de1. The gray shaded
areas represent the liquid crystal and the white rectangles represent the sections of the parts of the
scaffold nearby.

and since bP C V%(5), we have:

n

80{
ndss—/ ndx+ / 2n72+ \V/ 2 dx,
B0 S s [ erans S [ (0 vop)

for every ¢ € I,,. Integrating now with respect to 4 over I,,, we get:

806
"ds)ds < — / ”dx) do+
/1,, (ygnk(a) Q ) 2e(e —ev) Jj, ( VE(5) Q

n -2 2
n 2/1,, (/W) (1972 + [V QP)ds ) o

X

et n
n < n " 2n—2 2
|10 < sy [ 1Qrax+ 5 [ QP2+ vep)ay,

where UK := ;e I, VE(8) C O is now a three dimensional object. Hence:

83—uc 82_“ 1

n
n < - < 2n—2 2 n
s_sa /7;le| daw 2 1—8“_1 /UJIC‘ (|Q| +‘VQ| )dx+2(1_€“_1)2 /I;{%lQ’ d‘x'
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Repeating the same argument for all the other “connecting parallelepipeds” of the scaffold
and considering the fact that parts of U are added only up to four times (by constructing the
same sets for the nearby “connecting parallelepipeds” from the scaffold), then the conclusion
follows. ]

Since we are interested in the homogenised material, it is useful to consider maps defined on
the entire () and for this we use the harmonic extension operator E; : H;(Qe, So) — Hé(Q, So),
defined as follows: for Q € Hé(Qg, Sp), we take E.Q = Q in Q) and inside N, E.Q solves the
following PDE:

AE.Q =0 in N,
{ (2.4.1)

EEQ=Q onadN;

Since N; has a Lipschitz boundary, we can apply Theorem 4.19 from [35] and see that there
exists a unique solution E.Q & HY(N;) to the problem (2.4.1). Hence the operator E; is well
defined. Moreover, from (2.4.1), we can see that E.Q verifies:

HVESQHLZ(M) = mm{HVuHLz(NE) } uc Hl(./\/;;), u = Q on 8./\@} (2.4.2)

Our aim is now to prove that the extension operator E. is uniformly bounded with respect

to e > 0. More specifically, we prove that the following lemma holds.

Lemma 2.4.4. There exists a constant C > 0 such that [|[VE.Ql/;2() < CIVQ|[2(q,) for any
e € (0,€9), where ¢ is suitably small enough, and for any Q € H;(Qg, So)-

Proof. By Subsection 2.7.3, we know that there exists v € H(Q) such that:

v=Qin (),
v = Q on dN;
HVUHLZ(Q) S HVQHLZ(OE)'

Using relation (2.4.2), we see that
HVEsQHLZ(/\@ < HVUHLZ(M)
and because E.Q = Q in (), we have E.Q = v = Q in (), and therefore:

HVEsQHLZ(Q) < HVUHLZ(O) S HVQHLZ(Qs)'
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2.4.2 ZERO CONTRIBUTION FROM THE SURFACE TERMS DEPENDING ON
THE “INNER PARALLELEPIPEDS”

In order to describe the surface energy, we need a better description of O\, therefore we analyse
what faces from every parallelepiped constructed are in contact with the liquid crystal. More

precisely, the liquid crystal is in contact with the scaffold:

* on only four of the six faces of the “connecting parallelepipeds”, centered in points from
V., that is, on every TF, 'Tyl and 7", defined in (2.7.6), (2.7.11) and (2.7.16);

* only on the edges of some of the “inner parallelepipeds”, centered in some of the points
from X, parallelepipeds which are not close to the boundary of () - we are reffering here
to the “inner particles” which are not “visible” in Figure 2 - in this case, the interaction is

neglected and let

N1 = the total number of parallelepipeds from this case; (2.4.3)

* on at most five of the six faces of some of the “inner parallelepipeds”, centered in some
of the points from X, parallelepipeds which are close to the boundary of () - we are

reffering here to the “inner particles” which are “visible” in Figure 2 - in this case, let
Ng» = the total number of parallelepipeds from this case; (2.4.4)
and let

S’ = the union of all the rectangles (at most five in this case) that

are in contact with the liquid crystal material, (2.4.5)
forany i € 1, Ngp.

From relations (2.4.3) and (2.4.4), we have N; = N1 + N;». Using (2.7.6), (2.7.11), (2.7.16)
and (2.4.5), we can write ON; = oINS UN , where:

Ns,z Xe Ys Ze
ING = <Usi) and ON] = <U7}">U<U7;’>U<U 7"”) (2.4.6)
i=1 k=1 =1 m=1

Let J.[Q] be the surface energy term from (2.1.1) and let us split this term into two parts:

Je[Q) = JP1Ql + 1] Q. (2.4.7)
where
S 83*0‘ 83*0& NS,Z
2 Q] = e—e Jons fs(Q,v)do = Py ;/Sifs(Q,v)dO‘, (2.4.8)
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using (2.4.6), and

3—a
J7Ql = 88_ & Jor fs(Q,v)do, (2.4.9)
which can be also expressed using (2.4.6) as
J71Q) = 1Ql+ 1 Q) + Q). (2.4.10)
where:
( g Xe
JE(Q] Z o Jo(Qv)do
3 x Ye
JE1Q] Z fs Q,v)do; (2.4.11)
, 3
Q= ZTﬁQJ

In this section, we prove that the surface term ]& has a negligible contribution to the
homogenised material, that is J°[Q] — 0 as e — 0, for any Q € H;,(Q, Sp), since we can use
the extension operator E; defined in the previous subsection.

We start by proving if Q : QO — Sy is a bounded, Lipschitz map, then J$[Q] — 0 as & — 0
and then, by a density argument, for all Q € H;,(Q, So).

Lemma 2.4.5. Let Q : O — Sy be a bounded, Lipschitz map. Then J$[Q] — 0, as e — 0, where
J¢ is defined in (2.4.7) and in (2.4.8).

Proof. By (2.4.8), we have:

g3—a Nea e3—u Ne
93y BACORELCIEr == o NIACORIEED
3¢XN£2
sy NICHORRILEl
3¢XN£2
sy CURRINIE

e 2C(P +q+7)

NS,Z
< . . 4 .
Te—gt par (el =(Q) 1) g/zm dot)
gte s 2C(p+q-+r)
S e — et : (HQH oo(ﬁ) +1) : T (BC) 82/

where 9C represents the surface of the model particle C defined in (2.2.2), C! represents the

“inner parallelepipeds” constructed in relation (2.2.7), N> is defined in (2.4.4) and C is the

e-independent constant given from the inequality that states that f; has a quartic growth in Q,
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which can be obtained from assumption (A7). We have also used that Q is bounded on Q. In
Loly + lohg + hoLo
2

, hence:

the proof of Proposition 2.7.3, we obtain N,y <

e3—u Nej

). Sifs(Q(f),V)da(t)' <.

ok
E-8 O

€3f¢x N o

€
e _ v 1221 Sifs(Q(t)/V)d(T(t)) <" a1 0ase=0,

g3t Lolo + Loho + Lyhg
e—et €2 =

=

since a € <1, ;) , where Ly, Iy and hy are defined in (2.2.1) and C' and C” are e-independent

constants.
OJ

Lemma 2.4.6. For any Q € H;(Qe, So), we have J$[Q] — 0as e — 0.

Proof. Let (Qj);>1 be a sequence of smooth maps that converge strongly in Hg(Q, So) to Q. By
Lemma 2.4.5, we have ]f[Qj] — 0as e — 0, for any j > 1. By assumption (A7), we have on N/S:

1£:(Qj,v) — £:(Qv)| <1Q; = QI(IQ;* +|QI° +1)
<S1Q - QI(1Q - QP +1QIP +1)
S1Qj— QI +1Q; - Ql(IQP +1)

Thanks to the continuity of the trace operator from H!(Q) to H'/2(dQ)), the Sobolev
embedding H'/2(9Q);) < L*(9Q)) and the strong convergence Q; — Q in Hg(Qg, Sp), we get
that Q; — Q a.e. on IN?, since ONE C 9Q. Therefore, there exists ¢ € L*(ONE) such that
|Qj — Q| < ¢ ae. in NS and we can write:

1£(Qjv) — £(Qv) S¢*+9(|QP +1) (2.4.12)

on N, for every j > 1.

At the same time, we have the compact Sobolev embedding H'/2(3Q);) < L3(9Q)), there-
fore |Q[® is in L'(dN.°). Hence, the right hand side from (2.4.12) is in L'(dN¥) and we can
apply the Lebesgue dominated convergence theorem and get:

lim £s(Qjyv) = fs(Q,v)|do =0,

j—r+oo NS

for any & > 0 fixed.
3w

— 0,
£—¢el

the conclusion follows. O

Now, because for ¢ — 0 we get [ONS| — 0 (according to Proposition 2.7.3) and
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Therefore, from now on we omit the term J© from the free energy functional and we only

study the behaviour of:

Q= [ (V) +@)dx+ T [ @
Q, E—E a/\/eT

which we denote simply by F,[Q], but we keep the same notation for surfaces generated by
the scaffold.

2.4.3 EQUICOERCIVITY OF JF;

Proposition 2.4.1. Suppose that the assumptions (A)-(A7) hold and also that there exists u > 0
such that f;,(Q) > p|Q|® — C, for any Q € Sp. Let Q € Hg(Q, So) satisfy F¢[Q] < M, for some
e-independent constant. Then there holds

/ IVQ|* < Cum
Qe

for € > 0 small enough and for some Cp; > 0 depending only on M, f, f;, fs and Q).

Proof. Assumption (Ag) ensures that |f;(Q,v)| < |Q|* + 1, therefore:

3—u s
- /M Ql*de — G - G,

according to Proposition 2.7.2. Using Lemma 2.4.3 with n = 4, we have:

& &

3—u
J7Ql= -G / (1QI* +1)do > ~Cy -
ONT S

&€ — &

e 4do < 282704 6 4
hence
2 2—n
]Z[Q] Z —Cl'CZ‘l_gg/Q (‘Q‘G‘F’VQ’ )dx—C1 Cz / \Q]4dx—C1

At the same time, from the generalised version of the Holder’s inequality and from the fact

that Q) is bounded, we have
2/3
= [ 1arax<jor( [ jorar)
Q. Q.

1/4
< / !Q|4dX> < e, ( / |Q\6dx)
Qe Qe

and so

1/6

2 2/3

T £ 6 2 1 1/3 6

Je QI = _C3‘1_€a1/0€ (IQl°+IvQl )dx—Cs-m-!QI (/Og Q| dx) -G,
(2.4.13)

where C3 = max{C; - C, C; - Cs}.
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Since f,(Q) > u|Ql® — C, £.(VQ) > A, 1|VQ|? (according to (As) and (Ag)) and Q| < |Q)],
we have:

/ (fb(Q)+fe(VQ))dx2y/ ]Q|6dx—|—)\el/ IVOPdx — |0 (2.4.14)
0. 0. o

and because F;[Q] < M, combining (2.4.13) and (2.4.14), we obtain

2—u 1/3
(rt =) [ivepar < ( ([ 1arar) ), (2.4.15)

he(t) = 2+ (Cae) + t- Cs(e)) + Ce,

G- Q13 g2-u
a1 = ety O5(8) = Cor oy —pand Go = (M + G+ ClOY).

where

for any t > 0, with C4(e) =

. 1/3
As ¢ — 0, we have Cy(e) N\, C3|ZQ| > 0 and Cs(e) \, (—p) < 0. Hence, for ¢ > 0 small
enough, we have:
Ca- Q173
3|2| < Cy(e) < C3- 1Y% and — u < Cs(e) < —% < 0. (2.4.16)

Let to(€) be the solution of the equation C4(¢) +t - Cs5(e) = 0. We prove that h,(t) is bounded
from above on [0, +00). Computing the critical points of /,, it is easy to check that 2¢y(e) /3 is

the point in which the function attains its maximum over [0, +o0), which is:

4C3 (e 4 4
max{he(t) : t € [0, +00)} = 27C42<(s)) +Cy < > C3-10]- g 1+ Cg,
5

using (2.4.16). Therefore, the function &, is bounded from above on [0, 4+c0).
827“

Using the same arguments we can see that A; 1 — Cz - is also bounded from below,

1 —en-1
away from 0, for € > 0 small enough, and from here the conclusion follows, based on relation

(2.4.15). O

In the end of this subsection, we present a situation in which if « > 2, then the energy
becomes unbounded from below. For simplicity, we choose the scaffold to be symmetric with

p = q =r = 1. Let us consider the following free energy functional:

3—ua
_ 2 21-2 5. € !
gg(u)—/gg(|Vu| + klu|*7%) dx — 6 T /aNgM do,

where k > 0and ! € (2,4), foru: Q — R, u € H'(Q;).

4
Lemma 2.4.7. Forany / € (2,4),2 < a < —o k> 0,6 > 0, there holds:

inf{G(u) : ue€ H(Q),u=00nd0} - —co ase — 0.
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Proof. Let C3/, = [—3/2,3/2]% and we recall that C = [—1,1]3. Let us consider now ¢ €
C®(C5/7) such that 9 =1 on C.

Let us now choose an “inner parallelepiped” from the scaffold such that it is close to the
boundary of (2 and such that it has less than 6 adjacent “connecting parallelepipeds”. In this
case, some of its faces are in contact with the nematic liquid crystal. Let us denote this “inner

parallelepiped” by C? and its center x). We can write, based on 2.7.1, that:

o o

IS

3 x
CSZXS+ |:—2,2:| :x8~|—%C.

Let us define the following function:

ue(x) = e”‘/zﬁ(p<;(x - x8)>, Vx € Q,

where B > 0 will be chosen later.

Let us also define:

3

80{
2
Due to assumption (A3) and our choice of &, we have that C? ¢ R? C Q.

From the definition of u,, we have that u, = 1 in C. Moreover, u, = 0 in Q '\ R? and
u. € HY(Q).
Let us define now T2 the faces of C? that are in contact with the nematic liquid crystal.

Going back to the definition of the free energy functional, we have:

3—u
g€<u€)g/ (Ve + e 2) dx — 6 & / e do,
Q, 3 TO

& —

since 7.0 C ON..
Using the properties of 1., we obtain that:

B s3—¢x
Ge(ue) < /Qg . (|Vtte)? + Jue)* %) dx — 5 - p— /7? |ue|" do <

€

< / (|Vu€|2 + |ug|2’_2) dx —6- 82_”‘/ lue|' do == Ge(ue),
RANCY 0

€

since Q. NRY € RY\ C? and, due to our choice of &, we have that ¢/2 < ¢ — &* < ¢, which
3—ua 3—a

Y e €

implies that — < — = —g

o

€
Applying a change of variables, using the definition of #, and considering only one face of
7;0, we get:

a(ug) = % . 82‘3/

|V(P|2 dx + 1 . 8(0{/25)(212)+3a/ |(P’2172 dx — é . €2+u¢fl(oc/2+;3)_
C32\C 8 4

C3/2\C
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Since in the last equation the integrals are bounded, in order to prove that G, is unbounded

from below, we want to show that there exists § > 0 such that:

/
S2—n- — 2.

g (4=1)=2p-(1-1) e2+a—a-5—pl 2

<ﬁ-(l—2)<zx-6_

{82,3 < 2ta—ah—pl o]
2

4 _
But the last inequality is equivalent with choosing « & <2, l—2> , hence, G, is unbounded

from below and, since G,(-) < G(-), we conclude our proof. O

Remark 2.4.1. The previous lemma has been adapted from Lemma 3.6 from [28]. In a similar

fashion, one can use Lemma 3.7 from [28] to prove similar results for the case in which

-2

2.4.4 LOWER SEMI-CONTINUITY OF JF;

Proposition 2.4.2. Suppose that the assumptions (A1)-(A7) are satisfied. Then, the following
statement holds: for any positive M > 0, there exists ¢o(M) > 0 such that for any € € (0, So(M))
and for any sequence (Q))jen from H'(Q, Sy) that converges H'-weakly to a function Q €
H'(Q,, Sp) and which satisfies IVQjllr2() < M for any j € N, then

Fe[Q] < liminf F[Q;].

j—+oo

Proof. The proof of Proposition 2.4.2 follows the same steps as in [28]. We prove this proposition

on each component of F;. Before that, let
wy = liminf/ IVQj|*dx — / |VQ|*dx.
J7t JO, Q.

Since Qj —QinH 1 then VQ]- — VQin L2, therefore wy > 0. Moreover, up to extracting a

subsequence, we can assume that

/ ]VQ#dx—)/ IVQ[*dx + wy (2.4.17)
Qe Qe

as j — +oo.

From the assumption (As), we have that f, is strongly convex, that is for # > 0 small
enough, f.(D) := f.(D) — 8|D|? is a convex function from Sy ® R to [0, +c0). In this case, the
functional fQE fe(+)dx is lower semicontinuous. Therefore

liminf/g)sfg(VQj)dx > /Qeﬁ(VQ)dx,

J—+oo
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from which we get

j—rtoo

liminf/ogfe(VQj)dx—/nge(VQ)dx >

> <li_minf/ fe(VQj)dx —/ ﬂ(VQ)dx) + 6wy > 0. (2.4.18)
jmrtee Jo, Qe
Since Q; — Q in H'(Q) and the injection H'(Q,) C L?*(Q)) is compact, then we can
assume, up to extracting a subsequence, that Q; — Q a.e. in ();. Then, from the assumption
(Ag), we can see that the sequence ( fb(Qj))]. N satisfies all the conditions from Fatou’s lemma,
therefore:

lim inf o fo(Q;)dx > /Qg l]igljgffb(Qj)dx = /QE f5(Q)dx. (2.4.19)

j—+oo

Regarding the surface energy, we split N,/ into:

Aj={x e N7+ [Qi(x) — Q)| < 1Q()|+1)
B =N\ A4y = {x e o]+ [Q)(x) — Q) > Q)| +1},

for any j € IN.
Using (A7), we have

/lfs(Qj,V)—fs(Q,V)ldUS/ (1QP +1QP +1)-1Q; - Qlde
Aj A;

]

g/ ((1Qi—Ql+ QD +1QPF +1) - (1Q| + 1)do
A.

]

< [ (1QF +1(Ql+1de 5 [ (1Ql' + 1

] ]

Then due to the continuous embedding of H'/2(dN;) into L*(9N%):
e3— 3w

15 = p@lae s S [ e+ < 1o

E—¢€
]

according also to Proposition 2.7.2. At the same time, the compact embedding H'/2(dN;) —
L*(dN;) and the continuity of the trace operator from H'(Q)) into H'/2(dN;) grants that
Qj — Q ae. on 0N, up to extracting a subsequence. We can now apply the dominated

convergence theorem and get:

& —

3—u
3 _ /A‘ ]fs(Qj/V) — fs(Q,v)|do — 0 as j — +oco. (2.4.20)
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Regarding the B; sets, we have, according to (A7):

1£s(Qiv) — £:(Qv)| < AslQj — QI(IQi° + 1QP° +1)
S1Q - QIIQi° +1Q5 — QF +1) (using |Q[ +1 < [Q; — Ql)
S1Q—Ql(1Q— QP + QP +1Q; — QP +1)
S1Q-Ql(Q-QP+1) Sl —-Q*

Using Lemma 2.4.3 for (Q; — Q) with n = 4, we have:

(Qjv) — fs(Q,v)

Ql'do < /W Q) - Ql*de

e—¢et

€

1
Sroa / Q)= QI+ VG = VQfdx + 57—y [ 10~ QP
Since H'(Q);) is compactly embedded into L*((),) and Q — Qin H'(Q,), then Q — Qin
L*(Q) and so
1 4 ,
W/fle|Q]_Q| dx =0, as j — +oo.

For the term containing |Q; — Q|°, we proceed in the following way:

[, 10— Qlfar= [ IE(Q; - Q) < [ E(Q; ~ @)l = [[Ec(Q; = Q)

< || Ee(Q; (by the continuous injection H'(Q) € L%(Q))

)] [

< ||Ee(Q (because Q; = Q on 0Q))

HHl

]
3
S VE(Q = Qi) = ( /Q [VE(Q; — Q)I2dx>

S (/Q IVQ; — VQ]de>3 (using Lemma 2.4.4).
Now, because ||VQ]HL2 ) < M, then:
[ 1vQ - vapdr < [ (vQR+ VP e
and therefore

¢ 2—w
7(1 + M4)/ IVQ; — VQ[* dx +0(1). (2.4.21)
Qe

(Qj/v) _fS(Q/ )‘d(f ~ 1

Using that Q; — Q in H!(Q) and (2.4.17), we obtain that / IVQ; — VQ[*dx — wy as
Qe

j — +00 and combining this with (2.4.20) and (2.4.21), we get:

liminf J7[0:] = J7[Q] > —Cay - wo - ———— 4.
im in Je Qi = Je Q] 2 =Cm-wo - 17— (2.4.22)
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where Cy is a constant dependent of M and independent of e.

According to (2.4.18), (2.4.19) and (2.4.22), we finally obtain that

nguc
l}gﬁgf -Fe[Q]] FelQl > <9 - CMl_glx_1>w0
82704
and since {1 — 0 as ¢ — 0, the conclusion follows.

2.5 CONVERGENCE OF LOCAL MINIMISERS

2.5.1 POINTWISE CONVERGENCE OF THE SURFACE INTEGRAL

The aim of this section is to prove the following statement:

Theorem 2.5.1. Suppose that the assumptions (A1)-(A7) are satisfied. Then, for any bounded,
Lipschitz map Q : Q — Sy, there holds J7 [Q] — Jo[Q] as e — 0, where

Q] = /Q From(Q)dx. (2.5.1)

Proof. Let us fix a bounded, Lipschitz map Q : Q) — Sy and let ], be the following functional:

A s_¢< yIRECE »vﬂa+E;Aﬁx@ﬁﬁnmw+éi/;ﬁ«x%mxwmﬁ,

(2.5.2)
where yg , yg "and y™ are defined in (2.7.3), (2.7.8) and (2.7.13), Tk, ’Tyl and 7" are defined

in (2.7.6), (2.7.11) and (2.7.16) and X,, Y and Z, are defined in (2.7.1), (2.7.7) and (2.7.12).

We prove that J.[Q] — Jo[Q] and that |J7[Q] — J:[Q]| — 0 as e — 0, for any Q with the
properties set earlier.

Let

Y4(Q(w) = [ £(Q(w),v(r)de(0
w)) = [ £(Q(w),v(r)do(x) (253)

¥7(Q(n)) = szs(Q(To),V(T))dU(T)

for any 19 € ), where C*, C¥ and C* are defined in (2.2.3). Because f; is continuous on Sy x s2,
then ¥, ¥Y and ¥ are also continuous. In this case, for example, the first sum from (2.5.2),

denoted as ]?(, becomes:
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Q= Sy [ R, vde
) - ol o

_80471 Xe
_M'ET cyfs(Q(yg'k)'”)d”p(q’Z = / Hew

-t [ o + S /‘PZ N (D), (254)

where uX is defined in (2.2.9), that is, assumption (Ay).
According to (Ayg), as ¢ — 0, uX converges weakly* to the Lebesgue measure restricted to ()

and because ¥Y and ¥# are continuous, then:

iR~ [ rmac [ ¥Qm

Computing in a similar way J¢ and J?, we get:

1Ty ptr P+q _
ol = [ (Trrw e + Lty (@) + EEIYAQ() Jdr = [ fun(@ie)de

which implies that J.[Q] — Jo[Q], where Jj is defined in (2.5.1). For [X[Q] and JX[Q], we have:

—

10 Il < S 3 1A, - Q) v o)
Sy / (IR +1QF)P +1)1Q(r) - QyElde ()
- Xe
S f_ (10l 1) Lip(@)- Yo(Th) -diam(T), (259
=1

using that Q is bounded on O and where Lip(Q) is the Lipschitz constant of Q, ¢(T}) is the
total area of 7.¥ and diam(7}) is the diameter of 7¥, which coincides with the diameter of the

parallelepiped P*, defined in (2.7.1). Hence

X X 2(r+q) pe—¢ 3 e\ e e\’
Us [Q] - J; [QHS par R Xe-e - <£—p> +<q> +<r> (2.5.6)

a2 ay 2 a 2 L a1
Now, as ¢ — 0, we have: \/<s—€) +<S> +(S> — 0; pe—e _ P 317 =
p q r e—et 1 gl
lo ho

L
because 1 < &; X, - € < ?0 — 1) Pl e = Lolghg — elghy, according to Proposition 2.7.1,

where Ly, Iy and hg are defined in (2.2.1). Since X; is positive, we see that:

0 < lim (Xg . 83) < hna (Lolol’lo — Eloho) = Lolphy < +o0. (257)
e—

e—0

Therefore JX[Q] — JX[Q] as ¢ — 0. We get the same result for the other two components,

from which we conclude.
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t
&3
Remark 2.5.1. It is easy to see that if we replace the coefficient ) of the surface energy
term J, with:
e %
L4 m—)O,then]g [Q] —>0a38—>0;
&3
. i g372% — 0, then JX[Q] — +o0as e — 0.

In both cases, we lose the convergence J7 [Q] — Jo[Q].

2.5.2 T-CONVERGENCE OF THE APPROXIMATING FREE ENERGIES

Lemma 2.5.1. Suppose that the assumption (Ay) is satisfied. Let Q; and Q> from Hg(Q, Sp) be
such that

maX{HVQIHLZ(Q)/ ||VQ2||L2(Q)} <M (2.5.8)
for some e-independent constant M. Then, for ¢ sufficiently small, we have:
171Q2] = JT 11| < Cu (€27 +1Q2 = Qill () (2:5.9)
for some Cp1 > 0 depending only on M, f;, (3, C and g.

Proof. According to (A7) and Holder inequality, we have:

3—a

U71Qa) — I71Qi1]| < / Q1P + 102 +1)Qz - Qulde
ONT

e—¢ev

JEa 1/4 3/4 3/4
< ( J Q1!4d0> (( / !Qn%w) T ( / \Qz|4da) n \aNZP/‘*).
£€—¢& oNT oNT oNT

If we make use of Lemma 2.4.3, then:

e—¢et

3—a 2 o
= / Qil*do < Sal/ (]Q1|6+]VQ\)dx+ /!Ql|4dx

for any i € {1,2}. By the continuous injection H!(Q);) into L®(Q.), we have

€3fa

282 6 1
[ 100490 5 5 (190 ey + 100Ray) + 3

_£¢x—1)2HQiHL4(Q)

(2.5.10)
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Using the Poincaré inequality as in Theorem 4.4.7, page 193, from [80], the compact embed-

ding
H'(Q,) — L*(Q) and the fact that Q, C ), we get for e small enough:
83—11 4 < 282—¢x 5 6 1 4
e— e Jonr Qif*do S 1 — en1 HVQZ'HLZ(Q) + HVQZ'HLZ(Q) + 2(1—er-1)2 HVQZ'HLZ(Q)
2¢274 1
< == 2 6 R VL.
~ 1 en—l (M +M )+2(1_€a—1)2M’

where we used (2.5.8) and we can see that the right-hand side from the last inequality can
2—u 1
be bounded in terms of M, since {1 N\ 0 and A—e 1) N\( 1 as ¢ — 0. But since

1 1
A=) N\, 1 as ¢ = 0, we can choose ¢ > 0 such that A1)y < 2 and we can move the

constant 2 under the “<” sign. Hence, the last relation can be written as:
83—0{
e—¢gt

/ |Qi*de < & (M? + M®) + M*.
oNT
In a similar fashion, using the same arguments as before for (2.5.10), we get in the case of

(Q2—Qn):

€3f¢x

[ 10— Quldr £ & (M2 M) + Q2 — Qo

Using the same bounds as in (2.5.10), we conclude by observing that there exists a constant
Cm > 0 such that:

1/4

J71Q2] = 1T 1Qu) < Cm- ((€7%) 7 + 1Q2 = Qillsqy)

Lemma 2.5.2. For any Q € H;,(Q, So), there holds J7 [Q] — Jo[Q] as ¢ — 0.

Proof. Let (Qj)j>1 be a sequence of smooth functions that converge strongly to Q in Hg (€2, Sp).
Then there holds:

717101 - Jo[Q]] < JT1Q1 = JT1Q]| + [IT1Q] = Jo[Q)] + |Jo[Qj] — Jo[Q]-

From Lemma 2.5.1, we have that

I71QI - 1T 1Q S €/** +1Q - Qill sy

and we recall that for ¢ — 0 we have !/27%/4 — 0 because « € (1,2).

Since the (Qj)j>1 converge strongly in Hg(Q), from the compact Sobolev embedding, we
get that Q; — Q in L*(Q)) as j — oo, therefore Q; — Q a.e. in Q.

From Theorem 2.5.1, we obtain that ]Z—[Q]'] — Jo[Qj] as e = 0, for any j > 1.
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For the last term, we can write ‘]O[Qj] — IO[QH < Ja }fhom[Qj] — from|Q] |dx. In here, we
have: fj,,y, is continuous, Q; — Q a.e. in Q and f,,, has a quartic growth in Q (because f; has
the same growth), which implies that: ] From[Qj] ] < \Qj]4 + 1. At the same time, we can assume
that there exists ¢ € L!(Q) such that |Q]-|4 < ¢, for any j > 1, a.e. in Q). Therefore, we can
apply the Lebesgue dominated convergence theorem and get that Jo[Q;] — Jo[Q] as j — +co.

Combining the results from above, we obtain:

limsup |17 Q] = J71Q]] S 11Q = Qjllraqy + |olQi] — Jo[Q]| = 0, asj — oo,

e—=0

from which we conclude.
]

We now prove that F; T-converges to Fy as ¢ — 0, with respect to the weak H!-topology.

Proposition 2.5.1. Suppose that the assumptions (A;)-(A7) are satisfied. Let Q; € H;,(QE, So)
be such that E.Q, — Q weakly in H'(Q) as ¢ — 0. Then:

lim inf F[Q:] > Fo[Q], lim J7 [Qe] = Jo[Q)-

Proof. The proof follows the same steps as in Proposition 4.2. from [28].
Since E.Q. — Q in H'(Q), then (E£Q8)8>0 is a bounded sequence in H!(Q)). Therefore, we
can choose a subsequence (Egj ng)].21 C (EgQE)DO such that

Furthermore, by the compact embeddings H'(Q) — L*(Q), with s € [1,6), we have that
E¢;Q:; — Q strongly in L*(Q2), for any s € [1,6). As a result, we also obtain that E¢,Q; — Q
a.e. in (). We denote the subsequence Egj ng as E.Q; for the ease of notation.

Now, according to (As), we have:

/ (£(VQ.) - £.(VQ))dx > / V(VQ) : (VQ. — VQ)dx =
Q. [QF
— [ VA(VQ): (VO - VQ)dx - [ VA(VQ): (VQ: - VQ)dr >
Q Ne
E/QVfE(VQ):(VQS—VQ)dx—Her(VQ)HLZ(NS)-HVQS—VQHU(M) (2.5.11)

Because Q € H'(Q)), then VQ € L?(Q) and, according to (As), the relation |V£,(VQ)| <
|VQ| + 1 implies that V£,(VQ) € L?(Q). Therefore, by the weak convergence E.Q, — Q in
H'(Q), the first term from the right hand side in (2.5.11) goes to 0 as ¢ — 0. The second term
goes to 0 as well thanks additionally to the fact that the volume of the scaffold N, tends to 0 as

e — 0, according to Proposition 2.7.1. Hence:

liminf /Q £:(VQe)dx > lim /Q £(VQ)dx = /Q £(VQ)dx. (2.5.12)

e—0
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For the bulk potential we apply Fatou’s lemma, since f,(Q¢)xa, — f»(Q) a.e. in Q) (because
fp is continuous, E.Q, — Q a.e. in Q and |NV| — 0, according to Proposition 2.7.1) and f; is
bounded from below (according to (Ag)), in order to obtain:

limin | Qx> | A@ax. (25.13)
For the surface enerqy, we first use Lemma 2.5.1 in the following inequality:
7 [EeQe] = IolQI| < |17 [EQe] = 1T 1QI] + ] 1Q) = Jo[Q]|
<2 EQe— Qe + 1IT1Q) — T[Q)-

1/2—a/4

Since we have ¢ — 0 for ¢ — 0 (because « € (1,2)), then combining the result from

Lemma 2.5.2 with the fact that E.Q, — Q strongly in L*(Q)), we obtain

lim J71Qc] = Jo[Ql. (25.14)
e—0
The proof is now complete, considering (2.5.12), (2.5.13) and (2.5.14). O

Proposition 2.5.2. Suppose that the assumptions (A1)-(Ay) are verified. Then, for any Q €
Hg}(Q, Sp), there exists a sequence (QE)£>O such that Q. € H!(Q)), for any € > 0, E.Q. — Q in
H'(Q) and:

limsup F¢[Q:] < Fo[Q].

e—0
The sequence (Q8)3>0 is called a recovery sequence.

Proof. Let us define in this case Q. = Q - xq,. Since |[N:| — 0 as ¢ — 0 (according to Proposi-
tion 2.7.1), then xq, — 1 strongly in L!(Q)) and we can apply Lebesgue’s dominated converge

theorem in order to obtain that:

im [ 490+ fl@)dr = [ £(VQ) + f(Qax
lim (F[Q] — J7[Ql) = Fo[Q] — Jo[Q]-

By Proposition 2.5.1, we have that lir% 171Q:] = Jo[Q], hence the conclusion follows. O
e—>

Proposition 2.5.1 and Proposition 2.5.2 show that F; I'-converges to Fy, as ¢ — 0, with

respect to the weak H! topology.

2.5.3 PROOF OF MAIN THEOREMS

Proof of Theorem 2.3.1. Let Qo from Hél,(Q, So) be an isolated H'-local minimiser for F, that
is, there exists dp > 0 such that Fy[Qo] < Fo[Q], for any Q € Hg}(Q, Sp), such that 0 <

Q- QoHHl(Q) < do.
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We would like to prove that for any & > 0, there exists Q; € Hé(Qg, Sp), which is a H L local
minimiser for F, such that E.Q, — Qo strongly in H;(Q, Sp) as e — 0.
For this, let

Be:= {Q € Hy(Q:, o) : [|[E:Q = Qoll () < 0}

Using Mazur’s lemma, we can show that the set B, is sequentially weakly closed in H!(()).
Then, by Proposition 2.4.2, we can see that, for ¢ small enough, F; is lower semicontinuous
) <
HVQOH 12(0 -l- éo. Hence, for any e sufficiently small, the functional F; admits at least one

on B, and, by Proposition 2.4.1, is also coercive on B, since any Q € B, has HVQHLZ

minimiser Qg from B..

Firstly, we prove that E.Q, — Qo weakly in H'(Q), as ¢ — 0.

Let By := {Q € H;(Q, So) ¢ [[Q— QOHHl(Q) < &y }. Because Q; € B, then (E:Q¢)e>0
represents a bounded sequence in H!(Q)), hence there exists a subsequence, which we still
denote (E:Q;)¢>o for the ease of notation, that converges weakly to a Q € By. We show that
Q= Qo

Since E.Q. — Q in H;(Q, Sp), we can apply Proposition 2.5.1 and get:

fO[Q] < 11m1nf.7:g[Qg] < hmsup fs[QS]

e—0

But Q; is a minimiser of F; on B, therefore, since Qo|, € B, we get that

o,

lim sup F.[Q.] < hm]-" [Qo] = 11m (/ fe(VQo) + fp(Q)dx + T, [Qo]> = Fo[Qo-

e—0

Hence, we have Fo[Q] < Fo[Qo]. Because Q is in By, that is ||Q — Qo|| 1) < do, then by
the definition of Qp, we get that Q = Q.

We now prove that E.Q, — Qo strongly in H!(Q), as ¢ — 0.

By (As), there exists # > 0 such that the function f,(D) = f.(D) — 6| D|? is convex. We can
repeat the same arguments from Proposition 2.5.1, more specifically, steps (2.5.12) and (2.5.13),
to get:

hmmf/ fe VQg)dx > / fe VQo)d
91iminf/ IVQ:[*dx > 9/ |V Qo|*dx,
e—0 Q. fo)

hrggionf/ngfb(Qg)dx > /be(Qo)dx

From Proposition 2.5.1, we have that 77 [Qe] — Jo[Qo] as € — 0. Also, from the proof that
Q = Qu, we can see that

lg%fe[Qs] = fO[QO]/
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which implies that

lim/ |VQ:[*dx = / |V Qol?dx.
e—0 Q, le)
This shows us that
V(EeQ¢)xa, — VQo strongly in Lz(Q), (2.5.15)

where x(, is the characteristic function of ().
We now show that V(E.Q.)x . converges strongly to 0 in L?(Q)). In order to prove this, in

Subsection 2.7.3, we obtain that:

IVEeQe|12(pzmy < C- [|[VQell2(rzm),

where P is a “connecting parallelepiped” elongated in the Oz direction and R;" is a 3D

object that “surrounds” P¢". More specifically, we have that:

et et et re—e% re—¢e*
zZm __ 4.Z,m < < .
P =y +[ ZP’ZP]X[ 2q’2q}x{ 2r " 2r }

and

RE™ =y + <<?§l[—1,1] x T[—l,l])\(i[—l,l] x f[—l,l])) x <r€2_r£a [—1,1]),

where 7" is the center of P and by t[—1,1], for t € R, we understand the set [—t, ].

In this way, we have that |R¢"| = 1 |PZ™| and RE™ C Q.. Moreover, if we take two
objects of the type RZ", then it is easy to see that they are disjoint: in the Oz direction, R;"
has the same height as P/ and in the xOy plane the “surrounding” objects are not touching
because we consider ¢ — 0 and, since a € (1,2), we have ¢* << &. Applying this technique
from Subsection 2.7.3 for all the “connecting parallelepipeds” of the type Ri"™, we obtain that
there exists an e-independent constant such that:

IVEQel 12(upzmy < C - [VQell2umzm),

and repeating in the same way for all the other “connecting parallelepipeds”, we obtain:

IVEQell12vr) < C- IV Qellr2wr),

where R/ represents the union of all “surrounding” objects for the “connecting paral-
lelepipeds”.

For the “inner parallelepipeds”, we can apply the same technique as before. If the “inner
parallelepiped” is not “visible” - meaning that is has six adjacent “connecting parallelepipeds”
- then the “surrounding” object constructed is included in the union of the six adjacent “con-

necting parallelipepds” and their respective “surounding” bodies. If the “inner parallelepiped”

63
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is close to the boundary - meaning that it has strictly less than 6 adjacent “connecting paral-
lelepipeds” - then the “surrounding” object constructed has a part included in the adjacent
“connecting parallelepipeds” and their respective “surrounding” bodies, but also a part which
was not taken into account until now. But this “surrounding” object will have its volume
only 5/4 times bigger than the “inner parallelepiped” chosen and the same technique as for
the “connecting parallelepipeds” can be applied. In this way, one can obtain the following

inequality:
IVEQell2ws) < ClIVQellzrsury),

where the constant used is e-independent and R is a 3D object with its volume tending to o as
e — 0 and represents the union of all “surrounding” parts for the “inner parallelepipeds” that
are not included in either the “connecting parallelepipeds” or their respective “surrounding”
bodies.

Hence, we can obtain that:

IVEQell 12y < C- [IVQelliar,).

where R, = RZUR;S C O, with }RS} —0ase— 0.
Due to our definition of the extension operator E, we have E.Q; = Q; in (), so we can

write the last inequality as follows:

HVEsQEHLZ(M) <C- HVE&QEHLZ(RS)- (2.5.16)

Now we want to prove that the right hand side term from the last inequality tends to o as

¢ — 0. For this, we use:

| IVEQPax= [ |VEQ xr dr< [ 2-(VEQ - VQ +[TQ[) -, dx <

€

Q. Q
gz/Q | (VEeQ:) xa, —VQ0\2dx+z/Q ‘VQOE.XRS dx,

where we have used that (), C ). Now the right hand side of the last inequality tends
to o: the first integral converges to 0 due to the fact that (VEgQS) X0, — VQo strongly in
L?(Q)), according to (2.5.15); the second integral converges to 0 because we can apply the
dominated convergence theorem, since ‘VQO‘Z)(& converges almost everywhere to 0 in ()
because ‘RE‘ — 0. Going back to (2.5.16), we obtain that (VE.Q;)xn. — 0 strongly in L?(Q)),
as ¢ — 0.

Combining all the results, we obtain that VE.Q, — VQy strongly in L?(Q)), hence E.Q, con-
verges strongly to Qg in H!(Q)), since the weak convergence E.Q. — Qo in H!(Q) automatically
implies the strong convergence E.Q. — Qp in L2(Q).

O
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2.6 RATE OF CONVERGENCE

The aim of this section is the study the rate of convergence of the sequence ] [Q:] to Jo[Qo],
where ]ST is defined in (2.4.10) and in (2.4.11), J is defined in (2.5.1) and (Qg)>0 is a sequence
from Hg(Q, So) that converges H!-strongly to Q € H;(Q, So). We omit the term JS because in
Subsection 2.4.2 we proved that this term has no contribution to the homogenised functional.

First, we recall some notations used in the previous sections. For a Q € Hg}(Q, Sp), we write

Jo[Q] in the following form:
nia = | (1‘1’Y(Q) T 1‘I’Z(Q))dx+
o) q

+/Q<1‘I’X(Q)+;‘I’Z(Q))dx+

r
Tyx Ty
-l-/Q (q‘F (Q)—l—p‘lI (Q))dx, (2.6.1)

where ¥X, ¥¥ and ¥# are defined in (2.5.3). We also write J.[Q], defined in (2.5.2), as:

1.1Q = /Q (M‘I’Y(Q)er_sa)‘l’z(Q))d#er

pr(e —e) pq(e — e
_ge— ox e gz Y
+/Q (qr(s—s"‘)T Q@+ PW(E—SD‘)T (Q)>dy€+
_re—e ox _re—et gy z
+/Q <qr(e—s“)qj Q)+ pr(s—s“)qj (Q>)dy€’ (2.6.2)

using (2.5.4) and the analogous formulae.

We suppose now that:
(Hy) the surface energy density fs is locally Lipschitz continuous.
Using the assumption (A7), from Section 2.2, we have:

£:(Quv) = £s(Q2,v) S 1Q2 = Quil(IQ1 P + Q2 +1), (26.3)

for any Q1,Qz € Spand any v € 52 and

QI SIQI*+1, (2.6.4)

for any Q € Sy and any v € S
We now have the following lemma:

Lemma 2.6.1. For any K € {X,Y, Z}, the function K is locally Lipschitz continuous and there
holds:

Q) S IQl* +1 IVE¥H(Q)| S IQF +1,
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for any Q € Sp. Moreover, the function YK satisfies:
[P5(Q1) —¥X(Q2)| £ 1Q2 — il (|1 + Q2P + 1),

for any Q1, Q2 € So.

Proof. The proof of this lemma follows immediatly, using the definitions of the functions ¥%,
¥Y and YZ from (2.5.3), the assumption (H;) and the properties of the function f; from (2.6.3)
and (2.6.4). O

We recall now that the measures %, 1! and uZ, which are defined in (2.2.9), converge
weakly*, as measures in R, to the Lebesgue measure restricted to (), according to (A) from
Section 2.2. We need to prescribe a rate of convergence and for this we use the W~'!-norm

(that is, the dual Lipschitz norm, also known as flat norm in some contexts):

IP‘S:: dK_/ dx : GWLOOQ,V oo oo 1}
KE?}(??,Z}S“P{/Q(” pe = | edx g (Q), IVelleq) + ol =@

Lemma 2.6.2. There exists a constant Ag,; > 0 such that F, < Agye for any e > 0.

Proof. Let ¢ € WY°(Q). Then, according to the definition of uX from (2.2.9), we have:

Xe Xe
duX =&Y g(y) = / (5 dx,
/Q pdp k:Z]qo y k; ity PV

where in the last equality we integrate over the cube with length ¢ centered in yff’k . Let QX be

the following set:

Xe
QX = (v + [—e/2,e/2%).
k=1

Hence, we can write:

[ odnd = [ ot

Q 0x

< [ Jo—pwtlaxs [l
0\QX

f

Then:

‘/ <Pdﬂ§—/ pdx
Q Q

HVGDHLoo : ’Q§| + HGDHLW(Q) : |Q\Q§!, (2.6.5)

where 8\26 comes from the largest possible value for |x — yf’k|, with x € (y?’k + [—€/2,€/2]%).

If we look now at the definition of the points yf.f’k in (2.7.2), hence also at the definition
of the points x in (2.2.5) and (2.2.6), we observe that O\ QX C {x € Q : dist(x,9Q) < ¢},
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therefore, we have |Q)\ QX| < C - ¢, where C is an e-independent constant. At the same time,
we have QX C O = |QX] < |Q], so (2.6.5) becomes:

’/ qu#f—/ pdx
@] Q

Computing in the same fashion for ) and uZ, we obtain the conclusion. O

eV/3
< T|W¢”L°°(O) Q|+ C-ellgllm) Se- HGDHWLw(Q)-

We also suppose that:
(Hz) g is bounded and Lipschitz, where g represents the prescribed boundary data.

Since () is bounded and smooth (by assumption (A;) from Section 2.2), we can extend the
function ¢ to a bounded and Lipschitz map from R> to Sy, denoted still as g.

We present an auxiliary result proved in [29]:

Lemma 2.6.3. Let Q) C R3 a bounded, smooth domain, and let g : Q) — Sp be a bounded,
Lipschitz map. For any Q € H;(Q, Sp) and o € (0,1), there exists a bounded, Lipschitz map
Qs : O — Sp that satisfies the following properties:

Qr =g onodQ)
1Qe [l S o 2 (IQN k) + 18w (c) (2.6.6)
IVQeli=y S o 2 (1Qllr () + I8lwim() (2.6.7)
1Q — Qrllz) S ollQllm () (2.6.8)
IVQ—=VQslli2) +0 asc — 0. (2.6.9)

The main result from this section is the following:

Proposition 2.6.1. Suppose that assumptions (A1)-(A7) (from Section 2.2) and (H;)-(Hz) (from
this section) hold. Then, for any Q € H;,(Q, Sp), there exists a sequence (Q;)e~o in H;,(Q, So)
that converges H!(Q)-strongly to Q and satisfies

UST[QE] —JolQll S EmO(HQHZIL—ﬂ(Q) + 1)/

for € small enough, where JT is defined in (2.4.10), ] is defined in (2.6.1) and

-1
my = min{ag’,Z—(x}.

The e-independent constant that is hidden by the use of the sign “<”, described as in

remark 2.2.5, depends only on the L*-norms of ¢ and Vg, on (), f; and the initial cube C.

Remark 2.6.1. The previous proposition allows us to obtain, as claimed, a rate of convergence
for the minimisers Q, of F, given by Theorem 2.3.4, to a minimiser Q of Fp in terms of
1EcQ, — Qllpi(q) = 0(1) as € — 0 (i.e. relation (2.6.10)).
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Indeed, this is obtained in the following way. First, let us fix a value for 0 < € < 1 such that

equation (2.5.9) holds. Then we use the inequality

171Q:) = JolQIl < 7 1Qc) — 1T [Qel| + 11T 1Qe] — Jo[Qll,

where Q, is the function from H;,(Q, Sp) granted by Lemma 2.6.3, with o = ™.
For the first term from the right-hand side from the last inequality, we use relation (2.5.9)

and we obtain, for a fixed ¢ sufficiently small:

710 — J71Qe]| < C- (/**/* + | EQ. — Qellis(cry).

where C is e-independent.
From the compact Sobolev embedding H!(Q)) — L*(Q)), we obtain:

JI1Q:) = I 1Qell < C- (627 * 4+ ||[EeQe — Qell ) -

Now, we observe that:

1EcQe — Qellmi(a) < [1EeQe — Qi) + 11Q: — Qo)
< EeQ: = Qllenay + 1Qe = Qllizq) + 1IVQ:e = VQll12(q)
< | EeQe — Qllnay + €™ Q1 (a) + IVQe = VQll 1200,

where we have used relation (2.6.8) in the last row. Relation (2.6.9) tells us that |VQ, —
VQ] 12(0) — 0 as ¢ — 0, hence, by the choice of ¢, we can control it with a constant. Since Q is

fixed, we can also control ||Q||y1() with an e-independent constant. Therefore, we can write:
1E:Qe — Qell () S I1EeQe — Qllpi () + €™
Hence, we have:
I71Q] = 1T [Qell S /274 4+ & + Q. = Qllmn -

and if we denote by m, = min{1/2 —«a/4,mp} (which is defined depending whether « is

bigger or smaller than 10/7), we can rewrite:

U 1Qe) = I 1Qell S ™ + | EeQe — Qll (),

since ¢ is chosen from (0,1).
For the term |J7 [Qc] — Jo[Q]|, we apply Proposition 2.6.1:

T 1Qel = Jo[Qll S €™ (I QM) + 1)
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and since Q is fixed, we obtain:

171Qc] — Jo[Q]| S ™ < ™,

using the definition of m,.

If we go back to our initial inequality, we obtain:

7 1Q:) = JolQIl < & + | E<Q; — Qllmn (- (2.6.10)
where
i 1, 1<a< E;
My = 7
' 2= Q <a<2
4 "7 )

Proof of Proposition 2.6.1. Let us fix a small € € (0,1) such that:

ol ol ol
ig_ ; <2p, q;_ ; < 2g and r;_ < 2r. (2.6.11)
. . . pe —&* ge — " re — e*
This is possible since Py NP, pypr: N\ g and Py N rase—0and p,q,r > 1.

Let now 8 be a positive parameter, to be chosen later, and let Q, := Q. € H;(Q, Sp) be the

Lipschitz map given by Lemma 2.6.3. Then, we have:

1171Qe] = JolQI| < 117 1Qe] — JelQell + Je[Qe] — Jo[Qel| + 1Jo[Qe] — Jo[Qll, (2.6.12)

where J; is defined in (2.5.2).
We analyse the first term from the right-hand side from (2.6.12). Using the same notations as
in Theorem 2.5.1, replacing Lip(Qe) (the Lipschitz constant) with ||V Qe||;~() and combining

relations (2.5.5) and (2.5.6), we obtain:

2(r+q) pe—e
pqr e—¢l

w5+ () (5

Using (2.5.7) and (2.6.11), we can rewrite the last inequality as follows:

JE[Qe] = TXIQell S (1Qellwe) + 1) - 1V Qell ooy -

N N N
|13<[QE1—7§<[Q4|5<||QE||iw<m+1)-HVQEHMQ)-\/ (=) +(5) +(5) @saa

p q
) 2(r+9q) ) .
since the term “par can be bounded with an e-independent constant. Because p,q,r > 1,
we have:
200 2u G2
L
p= g T
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and, because ¢ > 0 and « € (1,2), we also have:

14
O<e—s"‘§s—% <e¢ forke {p,q,r}.

Therefore, (2.6.13) becomes:
JEIQel = JEQel < (1Qel ey +1) - IVQelliw(r) - V2 +2e2,
and using the same arguments for ] [Q.] and J#[Q.], we obtain:
J71Qe) = TelQell < (IQellZqy +1) - IV Qellis(ary - Ve + 262 (2.6.14)

Using Lemma 2.6.3, we have:

_ 3
1Qell oy S €2 (I QN r1 ) + NIl o)
IVQelli=ay S e P *(I1Qll i ay + Igllwim(ay)-

Now, the constant involved by using the sign “<” is going to depend also on the L*-norms

of g and Vg, hence, relation (2.6.14) becomes:

A/ 2
I 1Qe] = Te[Qell < 87+€(HQH ) +1) S VeI 4+ 230 (|Q i ) +1)-

Since « € (1,2), we have 1 — 3B < a — 3B. Therefore, we can write the last inequality as

follows:
UST[QS] - TS[QSH S 5173&(“(2“?{1(0) + 1); (2.6.15)

since € € (0,1).
In order to analyse better the second term from (2.6.12), which contains J¢[Q.] and Jo[Q.],

we analyse the first terms from (2.6.1) and (2.6.2):

PS_S/TYQdeS_/TYQde_

pr(e —&*
pe — &t pe — & 1 / y
- ‘I’Y ‘I’Y _— = . b4 .
= pr(e—ev) / (Qe)dpc” - / (Qe)dx| + prie—e*) r Q (Qe)dx
pe — & 1
As we have seen before, we have m N . and we have chosen ¢ > 0 such that

1 e o o o

- < _pETE < g Moreover, we have _pETE 1 = M and we can impose

r— prie—e¥) " r pr(e—¢*) r pr(e — &%)
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“(p—1
further conditions regarding the choice of ¢, such that W < &1, which is equivalent
1 1
to choosing & such that el <1 — P + a Hence, we have:

= L@ - [ Qoay <

2
<2 [ ¥r@iap - [ ¥r(Qodx|+e

a—1

/Q‘I’Y(Qs)dx

Using the definition of IF,, we have:

Pf(es_—gs”‘)/o T(Qe)dre - / ¥1(Qe)dx| <

2 _
< 2 e Q) w7 (Qe) (o

Since Q. € H;(Q, Sp), Lemma 2.6.1 and Lemma 2.6.2, we obtain (also by moving the constant

2
B under the “<” sign):

’H/ Y (Qu)duX — /‘I’Y(Qg)dx

pr(e —e*)
Fe([1QellZmiy + 1) - IV Qells(ay + € (1Qellfw(qy + 1),

S e(lQellfw) +1)+

Applying Lemma 2.6.3, we get:

p‘c'_s/qfYdiys_/\IfY )dx

pr(e — e~

Se(e (1l +lglvie)* +1)+
+S<€_3ﬁ/2(”QHH1(Q) + ||gHL°°(Q)) + 1> e 2(11Ql ) + I8l (y) +

o 4
te 1<£ #(1QN () + g () +1>'

Moving the terms ||g||;~(q) and [|glw1~(q) under the “<” sign and using the fact that f > 0
and ¢ € (0,1), we have:

’”8_8 /‘I’Y Qe)dpX —/‘I’Y Q)dx

rie— ) S (e ) ([l g+ 1)

Applying the same technique for the other five terms from Jy and J;, which are in (2.6.1) and

(2.6.2), we obtain:

JelQe] = Jo[Qell S (7% + ¢ + e 1) (1 QI ) + 1)

and using once again that § > 0 and € € (0,1), we can write:

Te[Qe] — Jo[Qe]| S (1% + 2271 (HQH}L{l(Q) +1). (2.6.16)
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Moving now to the last term from (2.6.12), which is |Jo[Q.] — Jo[Q]|, we once again analyse

every difference that can be formed with the six terms from the definition of (2.6.1). Hence:

TPQ)dx— [ 1@

ar

1
< [ 1¥Q) - ¥ (Q)fdx
rJa
1
Using Lemma 2.6.1 and moving the constant P under the “<” sign, we have:

‘/Qi‘I’Y(QE)dx—/Qi‘I’Y(Q)dx

5/ (1QP +1Q:F +1)|Q - Q.ldx
QO

1/2
< (/Q(IQ\3+|QSP+1)2dx) - </Q!Q—Qs|2dX>
1/2
§<LU@“H@P+UM> 119 - Qullize

S (HQH%ﬁ(Q) + HQeH%ﬁ(Q) + 1) ’ ||Q - Q£||L2(Q)-

1/2

The sequence (Q:)e~o is bounded in L%(Q)), due to the continuous Sobolev embedding
H'(Q) — L°(Q) and to Lemma 2.6.3. Using once again Lemma 2.6.3 to control ||Q — Qellr2(02)s

we obtain:

1 1
[ Qi = [ Qx| S (10l + )

hence
Jo[Qe] — Jo[QIl S € (1Qll 51y +1)- (2.6.17)
Combining now relations (2.6.15), (2.6.16) and (2.6.17), we obtain:
JT1Q] = Jo[QIl < (67 + 72271+ ) (| Q) +1)-

Now we need to find a suitable value for p > 0 such that we can put the minimum positive

value between the exponents 1 — 38, « — 2B — 1 and f, in order to obtain the best rate of

1 a—1 7
convergence. This is equivalent to choosing f = min{4, IXT,Z — (x}. If o € <1, 4] , then
a—1 7 .. .
B = —5 If a € 1,2 , then B = 2 — a. This implies that:

I 1Qel = ol QI < € (I1QlI5n ey + 1),

N —

1
where my = rnin{ ,2 — oc} forw € (1,2). O
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2.7 APPENDIX

2.7.1 CONSTRUCTING THE CUBIC MICROLATTICE

In this subsection, we provide more details regarding the construction of the “connecting
parallelepipeds”, which are the grey parallelepipeds from Figure 2.

In each of the points from ), we construct a parallelepiped that connects the parallelepipeds
Ci and Cg, where i,j € 1, N; such that |x — xé\ =e.

If xi — x) = £(¢,0,0)7, then let:

o X, =card({(i,]) € 1,Ng2 { XL Xl = (£,0,0)T, i < it (2.7.1)
oYX {(i,j) e T,N: | xl — xl = (£,0,0)7, i < j} — T, X; a bijection;

° yf’k = %(xé + xé), where k = Y; (i,); (2.7.2)

ov:={uwt e

1, -
yet =5 e +xt), k=Y )) }; (27:3)

e P the “connecting parallelepiped” centered in y*¥, defined by PX* = y** + T,.C¥,

(2.7.4)
o o o o u o
here T, = | _ PE € pe—e] [ e &) [ e et L
where T,C { 2 X 24" 2 X 5 o |7 (2.7.5)
o
e 7 be the union of the four transparent faces of P¥* that have the length equal to pe—¢ ,
which are represented in Figure 5a. (2.7.6)
If xi — x] = £(0,¢,0)7, then let:
oY, = card({ (i, i) e N ‘x —xl = (0,¢,0) )<} (2.7.7)
eY!:{(i,j) €1,N; N. | xi —xl = (0,6,0)7, i <j} —1,Y; a bijection;
1
oys = (x —|—xg) where [ = Y{(i,});
1, - ..
V! = {yZ'l eV |y = 5+ xp), =YY (w)}; (2.7.8)

o P! the “connecting parallelepiped” centered in yg’l, defined by P/ = yz’l + T,C%, (2.7.9)

w_|_ g &) | _ge—e ge—et R
where T,C* = [ 2}7’2}7] X [ 20 2 ] X [ 21/,21’}, (2.7.10)
ge —&*

) 7;] be the union of the four transparent faces of P¢ ! that have the length equal to —

which are represented in Figure 5b. (2.7.11)
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If xi —xl= +(0,0,¢)7, then let:

o Z.=card({(i,j) € ,N; N. | xt —xl=(0,0,6)T, i <ij}) (2.7.12)
oﬂ:WﬁELM\x—x (0,0,e)7, i < j} — 1, Z abijection;

1 . .
.yg,m — E(xé +xé), where m = Yi(l,])/

)= {ym €,

1, -
%ng%+%hm=ﬁaﬁk (27.13)

e P the “connecting parallelepiped” centered in y>™, defined by P>™ = =™ + T,C*,

(2.7.14)
er et et et re—e% re—¢e*
[/ S - - _ .
where T,C* = [ 2p'2p] X [ Zq'ZIJ X { PR }, (2.7.15)
re — e

e 7" be the union of the four transparent faces of P7"" that have the length equal to pa—

which are represented in Figure 5c. (2.7.16)

<
PR

re — €

________

WP

________________________

=%
\
\
\
\
\
=
-
°
\
<]
\
\
\
X
<
=
°
)
A
A\
)
)

qe — & P £a e
q K - P

(@) The “connecting paral- (b) The “connecting paral- () The “connecting paral-
lelepiped” P, with the center lelepiped” P{", with the center lelepiped” P7™, with the center
in yif’k, with lateral transparent in yi’l, with lateral transparent in yZ™, with lateral transparent
faces Tk. faces 'Tyl faces T".

Figure 5: The three types of “connecting parallelepipeds” with centers from Y.

a—1
Remark 2.7.1. We can see that we need to set ¢#~! < min{p, g,r}, otherwise we have >
et _ & , e ¢ et ¢ . . .
1= 7 > 5 and, in the same way, — 20 = E and 5 2 > = 5 hence the inclusions from the family

C¢, which represents the set of all “inner parallelepipeds”, are not disjoint anymore and they
overlap. More specifically, the “connecting parallelepipeds” cannot be constructed anymore.
Since the parameters p, g and r are fixed and we are interested in what happens when ¢ — 0,
then the condition e*~! < min{p,q,7} implies that & > 1. If « = 1, then it is easy to see that
the volume of the scaffold does not tend to zero as € — 0, so we are not in the dilute regime

anymore.

2.7.2 VOLUME AND SURFACE AREA OF THE SCAFFOLD

Proposition 2.7.1. The volume of the scaffold N; tends to 0 as ¢ — 0.
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Proof. According to (2.2.1), (2.2.5), (2.2.6), (2.2.8), (2.7.1), (2.7.7) and (2.7.12), we have:

e g2’ g2’ €2’
Furthermore, we have:

g3u g2 g2u g2u
f— - —_— - —_— —_— o - —_— _— o - —_— —_— o
INe| = N par + X, par (pe —€*) + Ye par (ge — €) + Z, par (re —¢"),
3 g2u
where P represents the volume of an “inner parallelepiped” defined in (2.2.7) and ar (pe —

2x 20
), ;qr (ge — €*) and ;c]r (re — &%) represent the volume of a “connecting parallelepiped” Py*,

P/ ! and, respectively, P, which are defined in (2.7.4), (2.7.9) and (2.7.14). Hence:

| < Lololtolpa+1) aa-) _ 5 Loloho sy <L% | Lo, loh0)€2“+
pqr par P4 pr qr
n Loly + Loho + lphg 830‘72.
par

Because a > 1, according to (Ap), then2(a —1) > 0,3(a —1) > 0,24 —1 >0and 3a —2 > 0,
therefore |N;| — 0 as ¢ — 0. O

Proposition 2.7.2. There exists an ¢-independent constant C; = Cs(p, q,7,Q2) > 0 such that:

3
€
lim ——— |9 .
o0 e¥(e — &%) [ONe] < Cs
Proof. Using the same tehnique as in Proposition 2.7.1, we have, considering relations (2.7.6),
(2.7.11), (2.7.16) and (2.4.6):

’a_/\/;’ <Ng.gza‘.w+xs_ea(p£_€a)‘2(6]4—7’)_{_
pqr pqr
+Y€'€“<‘1€—5“)‘M—FZS-S“(M—S“)‘M
pqar pqr

< C(p,q,7, Lo, lo,ho) - €72 ((p+q+r)e — 2¢%).

Hence s ( )
. € L (ptgtr)e—2e"
g% s“(e—s"‘)‘aNE' < Cp a7 Loslo, o) lﬂ% g — gt < fee.
We denote C; the constant obtained in the last inequality. O

Proposition 2.7.3. Let NS be the set defined in (2.4.6). Then, for e — 0, we have [JNS| — 0.

Proof. According to (2.4.6), we have:

Nglz )
NS = < U 51),
i=1
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therefore, we can write:

Nej ) Ne2 ) Neo 2a 20
i=1 i=1 i=1 par par

where we have used (2.4.5) and (2.2.7). Since N> counts only the “inner parallelepipeds” that
are close to the boundary of () (meaning that these objects have less than 6 adjacent “connecting

parallelepipeds; also, see (2.4.4)), then we can write:

Lo-lp  Lo-hy Ilo-h
0o, Lo-fo , lo-ho

Neor <
& €2 €2 €2

4

where Lo, lp and kg are defined in (2.2.1) and they describe the parallelepiped that contains the

entire domain ). From here, we obtain:

82“(]7 +q+ 7’) ‘ Lolo + lohg + hoLo

JONT| < :
pqr &

< 21 0 ase—0,

since o > 1. ]

2.7.3 CONSTRUCTING AN EXPLICIT EXTENSION OF (Q INSIDE THE SCAF-
FOLD

The aim of this subsection is to prove that there exists a function v € H'(Q) such that v = Q
on oN;, v = Q in Q) and HVUHLZ(Q) < HVQHLZ(QE)'

In order to prove it, we first construct an explicit extension u : Q UN, — Sj such that
ue H! (QeU ./\/'ET, Sp) and there exists a constant C, independent of ¢, for which we have

HV”HLZ(/\/]) < CHVQHU(QE)’

which implies HVuHLZ(quNJ) < CHVQHLZ(QE)'
Then we construct v : ) — Sy such that v € H'(Q), v = u on Q. UN, v = u on 9N,/ and

there exists a constant ¢ such that:

HVUHLZ(Q) S CHquLZ(QEUMT)’

which implies that || V| 12(0) S|vol 12(00) using the properties mentioned for u.
We prove first the following result.

Lemma 2.7.1. Let zg,a,b € R, a,b,z0 > 0 and let A, = {(p cosf,psinf) : 0<60 <2m, a<
p < b} be a two dimensional annulus, B, = {(pcosf,psinf) : 0 <60 <2m, 0<p <a}bea
two dimensional ball with radius a, Ai?b = Agp x (—20,20) C R¥and B’ = B, X (—zp,29) C R®
be a three dimensional cylinder.
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Let Q € H'(A%,,S). Then the function u : BY® — S, defined for any z € (—zo, zo) as
1,2 1 y

,

(e g

uey2) = 1= (/AP Qb fory < P HE <l @7

A13/2

Q(s, t,z)d(s, t), for 0 < y/x2+y? < %

1
is from Hl(Bfo,SO), where ¢ € CZ° < (2,2

A13/2

>> is the following bump function defined as

) = eXp{4_(2p— 4(3—29)}’ VF)e(;’g)
0, VpE]R\(i,)

¢(p

the product ¢(p) Q represents product between a scalar and a Q-tensor and ][ represents the

average integral sign. Moreover, there exists a constant ¢ > 0, independent of zg, such that:

||| 12(5%) < cf| Q| 247 for any t € {x,v,z}, where u; represents the partial derivative of u
1 1,3/2

with respect to ¢, and:

||V1/l||L2(BTO) S CHVQHLZ(AT%/Z)'

Proof. First of all, we can assume without loss of generality that Q and u are scalar functions,
instead of Q-tensors. Hence, we prove this lemma for each of the component of Q and u.
Let T : Ay/p1 — Aj3/2 be the reflection defined as:

T(x,y) = ((JZTy ~1)x (JZTy 1)) = @), Yw) € i

Then T is invertible and also bi-Lipschitz.
LetQ € H! (Ai% /2) and u defined by (2.7.17). By Theorem 3.17 from [1], we can approximate

the function Q € H' (A ,,) with smooth functions from C (A7 ,).
Let (Qu)k=1 € C¥(AJ%,,) such that Qx — Q strongly in H' (A7’ ,) and, for any k > 1, let

ug : B — R defined for all z € (—zp,z9) as:

e(v/x2+ %) Qu(T(x,y),2)+
up(x,y,z) = +(1- Q(\/m))]i Qx(s,t,z)d(s,t), for

Qk(s,t,z)d(s, t), for 0 < 4/x2 4+ y? < %

By the above definition, we have that u; € C° (??) and that:

<y /x4y <1

NI —

A13/2
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,

X / > > ’o
(AP (Qk<x,y,z> - Qk(s,t,z)d(s,t>>+
X2 +y2 2y2 8523/2
T ) e (S r)-
=, NVEE) N
—(\/inyz)g'(P( X2 +y?) - <a§,k(x’,y’,2)>,for2S\/x2+y2<1
x-+vy
0, for 0 < /x24+y% < %
Since go(i) = ¢ <;> =0and ¢ € C® < (;, 2)), then we have aalik € CO(BifO). Moreover,
we obtain:
1/ auk2 2xy 2 28Qk2 I
— | (xy,z)d(xy) < / ————| (/x> +¥?) ()Y, z)d(x,y)+
3 A1 ox A1/21 ( x2 +]/2)3 ‘ ‘ ay/

2y2

Vi

2 2
2[0Q
+/A o(y/ 2% +2)] ‘8x/k (¥, 2)d(x,y)+
1/2,1

2

2
x 2
+/ ——— | ¢ (W2 + )| | QX Y, 2) — Qx(s,t,2)d(s, t)| d(x,y).
Avyga |V X2+ Y2 ‘ ’ A13/2

By the definition of ¢, we have ||¢||~gr) = 1 and ||¢/[|;~®) = 2V/9 +6V/3 - V3 x 423 <
5 (the maximum is obtained for p =1 — % 613 — 9).

1
For any (x,y) such that > < /x2+y? <1, we have:

x| LA
Ve R
2
22xy2§1:>‘ = 3 S212§2"
Y (VETEY|
2 ) )
co<_ 2 . < 2(x +y)3§4:—1§2¢3—1§3:
VETE - (EER) (V)
)
N
(V)
Therefore
1 aMkz ’o 2
3/ 5 (x,y,z)d(x,y) §25/ Qr(x',y',z) — Qk(s, t,z)d(s, t)| d(x,y)+
Ay | 9X A1/21 A13/2
anz o / anz !
+9/ x',y,z)d(x,y) +4 x,y,z)d(x,y).
R (x,y',z)d(x,y) Y (v, z)d(x,y)
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Using now the change of variables (x',y") = T(x,y), we obtain

2
dx,y) = | ———— —1)d( ¥
9= (T 1))
and since (x,y’) € A13/2, we get 1 > 2 1> 1, which implies
' CVEEEGE
auk 2 ? ro !
/ - (x,y,z)d(x,y) < 75/ Qr(x', v, 2) ][ (s,t,z)d(s, t)| d(«',y")+
Aijpn | OX 13/2 Ay 3/2
30, 12
v [ a2 @y ey
A3/ ox A1s) 4

For the first term from the right hand side from the last inequality we can apply the Poincaré

inequality, since Qk(+,-,z) € H'(A13/2), for any z € (—z9,zo). Therefore

/Al /2,1

0Qk
<75-Cp(A13/2) / <’
A13/2 ox’

2

Qx|
oy’

2
(< ,2) + 1

(xcy',z>)d<x',y’>+
2
(x',y,z)d(x,y),

k 0k

d
[ |
A13/2

where Cp(A;3/2) is the Poincaré constant for the two dimmensional domain A; 3,,. Hence,

(v () + 12

A13/2

there exists c; > 0, independent of zy, such that:

a 2
/ vy <o [ (|5
A1/ A13/2 X

Integrating now with respect to z € (—zg,zp), we get:

[ 15 wadtan <o [ (
A A1,3/2

1/2,1
i ‘

Using now the fact that % e CO (Bifo) and that %(x, y,z) =0if 0 < /a2 + 12 < %, then

Ak |?

(', y,z) + o

o (¥,,2) ).

2

Qx|
ay’

Qx|
ox’

(xy2) +

) y',z>)d<xcy',z> =

auk 2
ox

< al|VQlZ, 0
LZ(A1921) LZ(A1,3/2)

we can write:

oug |
dx

< ClHVQkHLz )

LZ(BTO) 13/2
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In a similar fashion, %, Iu e o (Bifo), where
ay " 0z

Y @' (Vx2+y?) - (Qk(x’,y’,z) -7 Qk(s,t,z)d(s,t)>—
1,3/2

2 d
_iago(\/m) <(—§k( Y, Z)>
ouy 2
a A= (2 ) e (),

with

12(By°)
and

(V) S o)t
(1,2 = | HO-oWFTPN L, Gt ), for

1,3/2

o) 1
s, t,z)d(s,t), for 0 < y/x24+1y2 < =
], Grsbaden eros R

since Q € C® (Al s /2) and Aj 3/, is independent of z, so we can move the derivative under the

< /x2+y? <1

I\J\H

integral.

Then for any (x,y,z) € Aio/z 1, we have:

L naon < ol [ 22 v
2 A1y, aZ ’ ' - L=(R) A1y 0z o '
2
2 dQk
+11— 9| / ][ —=(s,t,z)d(s, t)| d(x,y)
11— ol PO
an2 o o 37 16 / anZ ’o ’o
< — | (x,y,z)d(x,y") + — - —| (x',y,z)d(x,
[ o 6w+ g [ G Wataaay)
and integrating with respect to z € (—zp, z9), we obtain
duy 2 24 90k 2 I I
L5 wadtnn < (2 50 ) [ |52 @vde ),
A1/2,1 1,32
For any (x,y,z) € B® with 0 < y/x? 4+ 2 < % we have:
duy |* 16 a0 I?
Ouy Ok ro I
) < g [ (%8| W)
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which implies

A [*

5, | (v, 2)d(x,y)

? 4
(% y,2)d(xy) < 5

/BI/Z

and from here we obtain that
8uk 2

5], = (3+ 25 ) IV Qi

Now we prove that we can control H”kHLZ(Bjo) with HQkHLZ(Ajg/Z)' For any (x,y) € A1/21,

9z

A13/2

we have:

P (xy,2) < o2+ )1y, P + (1= 932 +2))

which implies

2

Qx(s, t,z)d(s, t)

A13/2

: / 2 2 3 16 / 200 1
" u x, ,Z d .x, S 1 - 00 T X Vi /Z d x/ +
2 Auas ’ k‘ ( Yy ) ( y) H GDHL (R) 41 2572 Ao ‘Qk‘ < y ) ( y)

Hlloliea [ QP 2d)
A1/

Using the same change of variables, the same bounds for ¢ and for 1 — ¢ and integrating

with respect to z € (—z¢,zp), we get:

2
Il < (24 o ) 124l
For any (x,y) € By, we have:
2
|”k‘2(x,]/zz) = Qk(sr t,Z)d(S, t)
A13/2

which implies
5 2
HukHLz(mX(*Zo,zo)) < ﬁHQkHB(_A;%/Z)’

hence

]3/

e, < (3+ g ) IQuMoc

Combining all the relations that we have obtained, we see that for any k > 1 we have:
o u, € HY(B});

3
° HukHLZ(BfO) < CZHQkHLZ(AioMZ), where Cy = 34+ ﬁ;

HV“kHLZ ) <63HVQkHL2 o , Where c3 = max {/c1, ¢}
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Now, if we repeat the same argument (as the one used in order to achieve the L? control
between uy and Q) for the functions (uy — u), for any k > 1, we get:

[ “HLZ ) < ca| Qi — QHL2 (A ,)
and since Qx — Q strongly in H' (A}, ,), hence in L*( A%, ,), we obtain that u; — u strongly
in L2(B7).

Because Qr — Q strongly in H' (AT, ,), then (Qx)i>1 is a bounded sequence in H' (A}, ,)
and using the inequalities proved before, we get that (1)1 is a bounded sequence in H!(B;°),
therefore there exists a subsequence (uy,);>1 which has the property that uy, — uo, with
uy € HY(B}). From here, we have the following convergences in L?(B}°): ug, — ug and
U, — U, S0 U = U a.e. in Bi°. However, since uy € H'(B°), we obtain that u € H'(B}°) with
Vu = Vg a.e. in B}".

Let i, : Bfo — R be the function defined as:

\/#yz ¢/ (Va2 y?) - <Q(X’,y/,2) — Q(S,t,z)d(s,t)>+

+((\/;7yjyz)3—1) (VX2 - (gg(x Y, Z))

_(\/;xi_fyz):*qo(\/m)(gf/(x v, z) for—<\/m<1

0, for0 < /x2+y? <

A13/2

iy(x,y,z) =

for every z € (—zp,20).

Using the same argument as before (we only control the L? norm), we can see that:

LZ(BTO) S C3HVQk B VQHLZ(‘AT%/Z)

and since VQi — VQ strongly in L*(A{% ,), we obtain that — o

ox
at the same time, we have %L;k — gz weakly in L2(B}’), hence gz = 1, a.e. in L>(B}°) and

aaL;k — gz strongly in L?(B}°). Applying the same argument, we finally prove that Vi, — Vu
strongly in L2(B}°).

In the end, we see that:

% s @1, strongly in L?(B7). But

IVl 20y < [V = Vit 2520y + [V ]| 250,
<|[[Vu- v”kHLZ(zﬁO) + C3HVQkHL2(A§3/Z)

< [V = Vil oo + el VQe = VI 2 ) + €3l VR 20

13/2
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Because Vi — Vu strongly in L?(B]°) and because VQ, — VQ strongly in Lz(.Ai?S /2), we

conclude that

IVl 250y < 3l VIl 2

13/2

O]

Now we transform in several steps the sets B7° and A}’ ,, from the previous lemma into the

corresponding regions related to QO and N/, that is, B}’ into P;"",

and A% , into a parallelepiped with an interior hole, surrounding P:"",

Q) (the hole is exactly the “connecting parallelepiped” P:™).

Let T : R? — R3 be the transformation defined as:

0,0,2)
Va2 2, \/x2—|—y Zarctan 2, z)
— VX2t 2, ——\/x2+y arctanz

Va2 arctang VX2 + 2, z>

Ta(x,y,z) =

:n»»

with the inverse

VxZ+y2 arctan; —\/x2—|—y2,z>

which is included in N,

which is included in

ifx=y=0,

if ly| <x, x>0,
if ly| < —x, x <0,
if |x| <y, y>0,

if |x|] < -y, y <0,

ifn=¢=0,

) if ¢ <[], 5 #0.

(0,0,2)
Tz_l(C,W,Z) = (CCOS ZE ,¢ sin Z% Z> if 7] < |¢], ¢ #0,
<;7 sng,iycos 45
More specifically, To(x,y,z) = (A2(x,y),

z), where A; is, according to [52], a bi-Lipschitz

continuous map that maps, in R?, the unit ball into the unit cube and the Jacobian of A,

is constant almost everywhere in R2. Hence, the transformation T is bi-Lipschitz and the

Jacobian of T is constant almost everywhere in R3.
In our case, we have: Tp(B}’) = (—1,1)% x
(—1,1)2) X (—Zo,Zo).

(—ZO,ZO) and Tz(.A13/2) = ((—3/2,3/2)2\

Let u € H'(B{"), Q € H'(A}%,,) and the constant ¢ > 0 such that HVMHLZ 2y <

cIVQll i,
we obtain that the functions i := u o T

H(((-3/2,3/2)2\ (~1,1)2) x

€ H'((—1,1)2 x

be given the previous lemma, constant which is independent of z. Then

(—20,20)) and Q := Qo T,
(—z0,20)) and that there exists constants ¢; and cj, which are

also independent of zp, but dependent on the constants given by the Jacobians of T, and T, ?,

such that:

112
cjll quLZ(Tz(B

5 112
(o)) < HVuHLZ(B;o) < CIHV“HLZ(TZ(B?))
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and

<112 2 <112
CJ‘HVQHLZ(TQ(A%/Z)) = HVQHLZ(A?M) < CIHVQHU(TZ(AZO )

1,3/2

Hence, the inequality HVMH 12(B) < CHVQH L2(A5, ) implies that there exists a constant co,
also independent of zg, such that: /

HVﬁHLz(TZ(Bjﬂ)) < COHVQHB(TZ(AZO N

1,3/2

Now if we use the transformation Ts(x,y,z) = &*(x,y,z) and denote u := iio T; ' and
Q:=QoT;!, we get:

2 .—a

_ — 112 ~112 =112 —112
€ “HV“HLZ((TSOD)(B?)) = HV”HLZ(TZ(B?)) = C%HVQHLZ(TZ(A ) = Cof HVQHLZ((TgoTZ)(B?))

20
1,3/2
which implies that

1Vtll 2 romsysi0y) < 0l VRN r2(ryomsy -

re — e*
80(

Since the constant ¢y is independent of the choice of zp, we can have zy =

The final change of variables is based on the mapping Ty : R® — R® defined as: Ty(x,vy,z) =

<23;, qu, ;) , where p, g and r are from relation (2.2.4). In this way, if we translate the origin
into the center of the parallelepiped P¢"™, we obtain that (Tyo T3 0 Tp)(B*) = P™ and we
denote by R:" the set (Tyo T30 Tz)(.Ai?3 /), which is the box contained in Q) (for e small
enough) that “surrounds” P7".

The transformation T} is bi-Lipschitz and applying the same arguments as before, we obtain
that there exists a function u € H'(P7™) (u can be seen as # o (T, !)) such that u = Q on the

“contact” faces T" of P7™ and an e-independent constant ¢ > 0 such that

HquLZ(Pﬁ"") < CHVQHLZ(R?”’)'

Since the objects R¢™ are pairwise disjoint (if we look only at the boxes surrounding the
“connecting parallelepipeds” with centers in )?), repeating the same argument for every other
“connecting parallelepiped” of this type (with centers in )?) and then repeating the same
argument for all the others “connecting parallelepipeds” from N (that is, with centers in );),
we obtain u € H'(Q, UNJ,S)) an extension of Q € H'(Q), Sy) such that:

u=Qin ()
u = QonoN/

HVLIHLZ(QSUN’ET) < CHVQHLZ(QS)‘
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Let Q) = Q. UN/. We want now to construct a function v : N° — Sy such that v = u
on d(), and that there exists a constant ¢ > 0, independent of ¢ such that HVUHLZ( NS) <
CHVLIHLZ(QQ)'

But in the case of the family NS, these “inner parallelepipeds” are pairwise disjoint for

¢ small enough, therefore we can construct v in each Cé, for every i € 1,N; and control,

independent of ¢, VZ)HLZ(C,-) with HquLZ(’Pi)’ where R. is the “surrounding” box for ci

constructed in the same way as R¢"".

Lemma 2.7.2. Leta,b € R witha <b,let B, = {x e R*| |x| < a} and let A,;, = B, \ B,.
Let u € H! (Al,Z/ So). Then the function v : By — Sy defined as

P(V22+ 2 +22) u(<\/x2+2yﬁ - 1) (x,y,z)>+

+1— (VTP T 2) f u(&,n, D)d(E 1, 7),

v(x,y,z) = Az

for < JAEPFE <1
][ u(&,n,7)d(&,n,7), for 0 < \/m <!
A1,3/2 2

is from H! (B1,S0), where ¢ € C® ( (;, 2)) is the following bump function defined as

—_

_ P {4_ (29—1)4(3—29)}’ e (ii)

(o) = 13
0, Vp € R\ (2,2

the product ¢(p) u represents product between a scalar and a Q-tensor and ][ represents

the average integral sign. Moreover, there exists a constant ¢ > 0 such that: HthLZ By =

cf[ue| 12(Ays)5) for any t € {x,y,z}, where v; represents the partial derivative of v with respect
to t, and:

IVollzs,) < cllVulliza,,,,)-

Remark 2.7.2. Lemma 2.7.2 is just a different version of Lemma 2.7.1. The proof follows the

same steps as in Lemma 2.7.1.

Now if we use instead of T, the transformation Az, from [52], which is a bi-Lipschitz
mapping that transforms the unit ball into the unit cube, and then the transformations T3 and

T4 as before, we end up with the function v being an extension of u that satisfies:

v € HY(CY)
v = u on dC}

IVoll 2 < ellVull 2
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Because the objects R are pairwise disjoint for ¢ small enough, we construct therefore an
extension v € H'(Q, Sy) of u € HY(Q, Sp) such that:

v=uin Q. =0v=QinQ;and v = Q on AN,
v =uondNS =0v=QondNS
Vol ) < el Vil ey < E1VQI 2oy

So we have v € Hl(Q), v =Qin Q,, v = Q on dN; and there exists an e-independent

constant such that:

HVUHLZ(Q) < CHVQHLZ(OS)'

2.7.4 INTEGRATED ENERGY DENSITIES

In this subsection, we present two propositions that are used in order to prove that using

relation (2.3.2), that is:

2
Fun(Q) = /a £(Q)do,

then by using, for example, the choice of the surface energy density defined in (2.3.8), which is:

100(Qu) = § (0 ~a)w- @) = (= 0) (- @) +2(¢ ~ v Q) ),

we can obtain the corresponding homogenised functional defined in (2.3.9), that is:
2
wom (Q) = (' —a) tr(Q%) — (b — b) r(Q°) + (' — ¢) (tr(Q%))".

More specifically, Proposition 2.7.4 treats the case of the classical quartic polynomial in
the scalar invariants of Q for the bulk energy, defined in (2.1.2), where the choice of the surface
energy density is in (2.3.8), and the more general version of it, defined in (2.3.4), with the surface
energy density defined in (2.3.16). Both cases have all of the terms from the picked surface energy
densities of the form v - Q¥v, with k > 2. Proposition 2.7.5 treats only the Rapini-Papoular case,
where the surface energy density is defined in (2.3.12).

Proposition 2.7.4. For any k € N, k > 2 and for a fixed matrix Q € &y, we have:

tr(QF) = ;/ac (v-Qtv)do,

where dC is defined in (2.2.3) and v is the exterior unit normal to dC.
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Tk 12k 13k
Proof. Let Q = | go1x o2k Gosx |- According to (2.2.3), we have dC = C* U CY U C*. We

i3k 432k q33k
compute first the intergral for C*, on which v = (+1,0,0)":

/X (v-Qfv)de = /X ((£1,0,0)" - (£q116 £q210 £q314) 7 )do = /CX grixdo = 2gq1 4,

since C has length 1.

In the same way, we obtain:

/cy (v QkV)dU = 2qy») and /cz (v- Qk(xo)v)da = 24334,
from which we obtain

/ (v-Qfv)do = 2tr(Q").
aC

For the Rapini-Papoular case, we prove that:

Proposition 2.7.5. For a fixed matrix Q € Sy, we have:

6tr(Q?) + 4 — / (Q — Q,)2do,

oC

where dC is defined in (2.2.3), Q, = v ® v — I3/3, v represents the exterior unit normal to dC

and I3 is the 3 x 3 identity matrix.

Proof. First of all, we can see that tr(Q — Q,)? = tr(Q?) — tr(QQ,) — tr(Q,Q) + tr(Q?).
+1
According to (2.2.3), we have dC = C,UC, UC,. On C*, we have v = 0 and

2/3 0 0 2\? 1\? 1\* 2
Q, = 0 -1/3 0 . Then tr(Q?) = () + (— > + (— > = —. We also
0 0 -1/3

obtain tr(Q?) = % on CY and C*. Therefore:

/ tr(Q%)de = 6- 2_ 4,
ac 3

where the constant 6 comes from the total surface of the cube C.
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q11 g12 713
Let Q= [g12 g 923 . Using the computations done earlier for Q, on C*, C¥

q13 423 —4q11 — {422
and C*, we get:

3 3 3
[ (@0 +(QQ)dr =2~ Ty Mz utam) o,

/X (tr(Q,Q) + tr(QQy))do = 2(2{111 2 W) =211

3 3 3

/CZ (tr(Q,Q) + tr(QQy))do = 2( — % — % - W) = —2q11 — 2q.

Combining the last three relations, we get that

/a | ((Q,Q) +(QQ.)de =0,

from which the conclusion follows, with the observation that the constant 6 in front of tr(Q?)
appears from the total surface of the cube C, which has the length equal to 1. O

Remark 2.7.3. The constant 4 from Proposition 2.7.5 is neglected when we are studying the
asymptotic behaviour of the minimisers of the functional (2.3.13), since adding constants do

not influence the form and the existence of the possible minimisers.



ERROR ESTIMATES FOR RUGOSITY
EFFECTS

Abstract:

We consider a nematic liquid crystal, described by a quadratic free energy in the Landau-de
Gennes model, contained in a two-dimensional slab with one periodic oscillating boundary,
with the amplitude described by a small parameter ¢ > 0. We consider the case in which
these fine-scale boundary oscillations may be replaced, in the limit as ¢ — 0, by an effective
homogenised surface energy on a flat boundary, as in [31]. The focus in this chapter is to obtain
error estimates for how fast the solutions of the rugose problem converge to the homogenised

one, by using duality arguments in L? spaces, for any p € [2,+).

Joint work with J. M. Taylor and A. D. Zarnescu. This chapter is part of the preprint
[31], which has been accepted for publishing in Communications in Contemporary

Mathematics.
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3.1 INTRODUCTION OF THE PROBLEM

Consider an /-periodic slab domain in two-dimensions, which represents the typical geometry

of liquid crystal experiments, given explicitly as
Q' ={(x,y) eR*:¢/(x') <y <R},

in which ¢ : R — R is an ¢-periodic function and let 9Q)' = F:p, U T7,, where we denote Fip, =
X, p(x")):x' € R} and T, = {(x/,R") : ¥’ € R}. We consider a toy model, representative of

R y 1%
paranematic systems as in [17, 49, 72], over Q' € Sym,(2) = {A € R>*?: AT = A, Tr(A) = 0}.

We consider solutions that respect the symmetry of the domain, that is, Q" € W2(QY/,Sym,(2))

loc

such that Q'(x" + 4,y') = Q'(x',y’) for almost every x’, . The free energy per periodic cell,
C(Y, is to be given as

2
do(x').

/

(A E 12 gl /12 ! / Wo
FQ)=| FIVQP+3IQPdx"dy' + [ =
caY caqy

1
Q' —s; <v®v—2l>

Here CQY = {(x,y') e R?: ¢/(x') <y < R, 0 <x' < (}, ¢ >0, CoQY = CT{VUCF%,

with CI'y, = {(x", ¢/ (x')) : ¥ € [0,£)} and CT = {(x,R) : x" € [0,4)}, wy > 0, 55 € R and

v is the exterior normal. We may non-dimensionalise the system by considering variables
192 ! ¢

(vy) = FEy), Qy) = FQW.Y), F = haF e = i w = it R = ¥R,

P(x) = ¢'(x') to give
o-(vor-3)

2

“ do(x),

F(Q) = [ 1VQP +clQPdxdy+ [ 2

a0 2

with CQ) now rescaled as
Q={(xy):0<x<2m, ¢p(x) <y <R}

Moreover, we can write 0Q) = T'y, UTg, where I'y = {(x,y) : x € [0,27), y = ¥(x)} and
I'r ={(x,R) : x € [0,271) }, so that we have:

F(Q) = [ IVQP +eQPdrdy+ [ Q- Qyl*doit [ 5210 Quf dow,

Ty
with Qy = vy @ vy — %I and Qr = Vg ® Vg — %I, where vy and vy are the outward normals to

I'y and T'g.

3.2 TECHNICAL ASSUMPTIONS AND MAIN RESULT

Assumption 3.2.1. Let ¢ > 0. We assume that ¢.(x) = ¢- ¢(x/¢), where ¢ : R — R is a C?
2m-periodic function with ¢ > 0.



3.2 TECHNICAL ASSUMPTIONS AND MAIN RESULT

Let Q. = {(x,y) : x € [0,271), ¢¢(x) <y < R} with oscillating boundary I'c = {(x, p¢(x)) :
x € [0,27)} and we are interested in studying the following free energy functional:

F(Q) = [ IVQF +elQPdvdy+ [ 5100l doct [ 10— 0l o, (21)

with Qg =V QU — %I and Qr = VR ® Vg — %I, where v, and vy are the outward normals to I,
and I'g.

We also consider the limit domain
Qo ={(x,y):x€0,2m), 0 <y <R}

with 90y = T'p UTg, where I'y = {(x,0) : x € [0,27)}.

Remark 3.2.1. Using Assumption 3.2.1, we obtain that (), C () for all ¢ > 0 and that O, — Q)

as e — 0.
Tx T'x
+ Q. + 4 20 4
T. Ty
(a) The oscillating domain Q). (b) The limit domain Q).

Remark 3.2.2. In the next sections, we write the first derivative of ¢ as ¢'. Moreover, we write

@l and [[¢'[|co instead of HGDHLM([O,Zn)) and HGD/”LW([O,Zn))-
Assumption 3.2.2. We assume that:

1 x !
0<e= o <glls' 5, withk € N*, k> [[glc - .

Remark 3.2.3. Using Assumption 3.2.2, we obtain that {(x,y) | x € [0,27), y € (R/2,R)} C Q,,
which tells us that the oscillations of I'; have an amplitude lower than half of the height of the

domain Q).

Remark 3.2.4. Using Assumption 3.2.1, the arclength parameter of the curve I'; can be described
as the function 7, : R — R, defined as:

— \/1+( \/1 ¢'(t/¢))?, vt € R (3.2:2)

and we obtain that:

1< 7:(t) < /14 ¢||2, Vt €R. (3.2.3)
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Moreover, the outward normal v, to I'; has the following form:

1 1
Ve 1= ve(x) = ¢(x),—1)=
oM | 1+ (¢/(x/¢))

(¢'(x/e), 1), (3.2.4)

for all x € [0,2m).

Definition 3.2.1. Let 9, g1, g2 : R — R be real functions defined as

(¢'(h)* -1

B ; L o
mo(t) = Y1+ (P (1) silt) = 2(1+ (¢'(1)%) sll)= 2(1+ (¢'())°)
forall t € R and let 7, G1, G, € R be defined as:
1 27T 1 27 1 27
7= i Yo(t) dt, Gi:= 2 J, g1(t)ro(t) dt and Gy := 27r/0 82(t)70(t) dt.

g1(x/€)  ga(x/e)

Remark 3.2.5. Since Q¥ = v, ® v, — 11, then Q?(x) =

>, forall x € [0,2m).

Moreover, ¢, G; and G, are constants and ¢ > 1.

1 (G G
Definition 3.2.2. Let w,r := ywy and = — .
3 ef = YWo Qef y (Gz _Gl)
Remark 3.2.6. In this simplified model, w, £ € R is constant and, since v > 1, we have Wef = Wo

(also observed in [31, Section 3.2]). Moreover, Q. € Sym,(2) is a constant Q-tensor.
Proposition 3.2.1. We have 7¢(-) = v and 7¢(-)Q2(-) = vQ.f in L*([0,27)), as ¢ — 0.

Proof. Since ¢ and ¢’ are 27t-periodic, according to Assumption 3.2.1, and ¢! € IN*, according
to Assumption 3.2.2, then the functions o, 170 and g>7o are also 27t-periodic, which implies
that yo(-/¢€), (g1-70)(-/€) and (g2 70)(-/¢) tend to v, G1 and, respectively, Gy, as € — 0 (see
for instance [35, Lemma 9.1]). This implies the conclusion. O]

Definition 3.2.3. Let Q, be a minimiser of the functional ;. This implies that Q, verifies the

following Euler-Lagrange equations:

( —AQe + Qe =0 in Q)
0Q:  wo wo o _
v, + 7Q£ = 7Q8 onT; (3.2.5)
0Q:  wo . W

{ 9vg + 7Q£ = TQR on I'g.

Remark 3.2.7. We prove in Section 3.3 that there exists a unique Q. € W2?((),) solution of
(3.2.5), forany 1 < p < +oco.



3.3 REGULARITY OF Q¢ AND Qo

Definition 3.2.4. Let vp(-,0) = (0, —1) be the outward normal of I'g. We consider the following
PDE:

—AQo+cQp =0 in Qp;

0Qo | Wef Wef

E + Qo= > Qer onTop; (3.2.6)
9 + @Q = @Q onT

g 2 <07 2R R:

Remark 3.2.8. In Section 3.3, we prove that we have a unique Qy € W27 () solution of (3.2.6),
for any p € (1, 4c0).

Remark 3.2.9. Under these assumptions, as a consequence of [31, Theorem 1.1], we have
Qe L Qo, that is, the rugose convergence in the sense from [31, Definition 2.5]. To be more
specific, let p € (1,00), D € R? such that Q; C Qy CC D and we formally denote by Ep the
extension by 0in D \ Qg or D \ Q.. We say that Q. € W#(Q),) converges to Qp € W*(Q)y) in a
rugose sense, denoted Q. & Qo, if for any U CC Q). we have Qf‘u — QO’U weakly in WP (U)
and if EpQ, — EpQp and EpVQ, — EpVQp weakly in L?(D). However, in this simplified
case, we can obtain quantitative estimates, which are presented in the main theorem of this

chapter:

Theorem 3.2.1. For any p € (2, 4+0), there exists an e-independent constant C such that:

p-1
r

Qo — Qell2() <C-e v, (3-2.7)

where the constant C depends on ¢, wo, p, ||¢l|e, [|¢']lco, Qo and [|Qollwie(cy)-

Remark 3.2.10. The constant C from Theorem 3.2.1 can actually be chosen of the following

form:

C =max{1, || L VP} - \/1+¢'|2 - C(wo,c, p, Do, Qo),

where C(wy, ¢, p, o, Qo) is an e-independent constant depending only on wy, ¢, p, Qp and

Qo llwre(ay)-

3.3 REGULARITY OF Q. AND Qg

In this section, we prove that there exists a unique solution Q. of (3.2.5) and a unique solution
Qo of (3.2.6), with Q. € W??(Q),) and Qo € WP (), for any p € (1, +0).

Remark 3.3.1. It is easy to see that problems (3.2.5) and (3.2.6) admit solutions from W2(Q))
and W'2(Q,) by using, for example, direct methods, such as in [37], or the approach via
Lax-Milgram theorem for elliptic problems, such as in [44] or [53].
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Definition 3.3.1. We denote by ®,,,, the polar coordinates transform:
q)polar(x,y) = (ycosx,ysinx), ¥(x,y) € [0,271) x (0,R),

by @, the following translation:

Pu(x,y) = (x,y+2R), V(x,y) € [0,27) x (0, R)
and let & : Oy — P(Qp) be defined as & = Py, 0 Pyy. We define

U =DP(Qe) and Uy = D(O).

Definition 3.3.2. For any 4,b € R with a,b > 0, we denote

Agp ={(ycosx,ysinx) | x € [0,27), y € (a,b)}.

Remark 3.3.2. The transformation ® : ()9 — Uy is smooth and bi-Lipschitz. Moreover, using
Assumption 3.2.1, we have that U, is a bounded open domain from R? with a C?> boundary

and, using Assumption 3.2.2, we have that Asg/23r C Us C Uy = Ar3r.
In order to prove that Q. and Qp admit W27 regularity, we use [53, Theorem 2.4.2.6]:

Theorem 3.3.1. Let () be a bounded open subset of R", with a clt boundary. Let a;; and b; be
uniformly Lipschitz functions in Q) and let a; be bounded measurable functions in (). Assume
that aij = aji, 1 <1i,j < n and that there exists & > 0 with

n
Y aij(x)6ig; < —alg)?
ij=1
for all & € R" and almost every x € Q). Assume in addition that a9 > B > 0 a.e. in Q and that

boby =bo ) _bv) >0, b, #0
j=1

on T = 9Q. Then for every f € LF(Q) and every ¢ € W!~/PP(T), there exists a unique
u € W2P(Q), which is a solution of

n n
Z Di(ai,iju) + Z a;Dju + apu = f in )
ij=1 i=1

n
Tr( b;Dju + b0u> =g onTl
j=1

where Tr is the trace operator.

Corollary 3.3.1. For any p € (1, +), there exists a unique Q. € W>?((),) which solves the
problem (3.2.5).

The proof of this corollary can be found in Section 3.6. In a similar way, we can show that:



3.4 SOME INTEGRAL INEQUALITIES

Corollary 3.3.2. For any p € (1,+00), there exists a unique Qy € W?¥(Q)) which solves the
problem (3.2.6).

Remark 3.3.3. Using the method of separation of variables, one can find that Qp is of the form:
QO<X,y) :Cl .ey\ﬁ_kcz.e*y\/?j,
where ¢; and ¢; are two constant Q-tensors that can be found from:
w w w
o (L) te [ L+ve Zief'Qef;
2 2 2
CleR\/E<a;O+\/E>+CzeR\ﬁ<Z;O—\/E):Z;OQR

3.4 SOME INTEGRAL INEQUALITIES

Definition 3.4.1. Let p € (1,+). Let us consider the trace operator Tr : W'P(Q)y) —
W1=1/PP(30)). We denote Cy,(p, () the constant given by the trace inequality, that is:

ITe () lwi-1np a0y < Cer(P, Qo) - wllwro(y), Yoo € WH(Qo).

Remark 3.4.1. For notation simplicity, we choose to write v(+,0) instead of [Tr(v)] ‘ro(-,O),
whenever v € WP (Qy).

Definition 3.4.2. We consider the following bilinear functional on W'2(Q),) x W2(Q,):

ag(u,v):/Q (Vu-Vv—i—au-v)d(x,y)—i—u;O(/u'vdag—l—/r u-vdUR>,
€ H R

for any u,v € W2(Q).

Remark 3.4.2. For notation simplicity, whenever we choose v € W'2(Q)), we write a(-,v)

instead of a.(+,v|q,)-
The goal of this section is to prove the following proposition:

Proposition 3.4.1. Let p € (2, +0). Then there exists an ¢-independent constant C; such that:

p-t
|2:(Qo — Qe 0)| < Croe 7 - [[vllwinq,), ¥ © € WH(Qo).

Remark 3.4.3. In Section 3.6, we prove that a.(-,v) is well-defined for all v € WP(Qy).

Moreover, in order to obtain Proposition 3.4.1, we split a,(Qo — Qe, v) into several parts, which

are presented in the following definition.
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Definition 3.4.3. Let v € W7 (Q)y). We denote:
11:—/ (VQO-VZ)+C~Q0-0)d(x,y),
QO\QS

w 21
Iy = —20/0 (v(x, ep(x/e)) —v(x,0)) - QY(x) - 7¢(x) dx,

wo 27

= [ (Qulxeg(x/0) - ol ep(r/e) ~ Qulx,0) - 0(x,0)) - 7e(x) i,

27T
In = u;O/O v(x,0) - <')’Qef - ')’s(x)Qg(x>> dx,

wo 27
Iyp = ——

> Qo(x,0) - v(x,0) - (fy - 'yg(x)) dx.

Proposition 3.4.2. We have
a¢(Qo — Qe,v) = L1 + Ii + Iy + Is1 + Ip, ¥V 0 € WP (Q). (3-4-1)

Remark 3.4.4. The proof of Proposition 3.4.2 can be found in Section 3.6. Before proving

Proposition 3.4.1, we obtain first estimates for each of the integrals from Definition 3.4.3.

Proposition 3.4.3. Let p € (1,+o0). Then for any v € W#(Q)), we have:

p1

L] < Ci-e7 - [ollwirna,, Yo € WP (Qy),

where
Il:_/ (VQo-Vo+c-Qo-v)d(x,y).
QO\Qe
and
p1
Ci = 27t|lelle) 7 - [|Qollwre () - max{c, 1}. (3.4.2)

Proof. We apply Holder inequality with coefficients p and p’ = Pp:

-1

L] s/ IVQo - Vo| +¢|Qo- o] d(x,y)
Qo\Qg

v 1/9 ) 1/p
d 7 * 7
= (/QO\Q£ |VQO‘ (x y)> </QO\QS ‘vv} d(x y)> *

, 1/p' 1/p
. p . P
ver( [0l amn) e (f, ol acn)

17y
<0\ Q| 7 (HVQOHL“’(QO\QS) NIVl ragnae) € 1Qoll e g\ - ||UHLP(QO\QS)>-
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We have:

21 re(x/e)
]QO\QE‘:/ 1dx:/ / 1dy dx
0\ o Jo

27
= / ep(x/e) dx < e- 27| @||co-
0

In the end, we obtain that:

p-1
L] < Ci-e7 - [[vllwie a0,

where

r—1
P

G = 27llle) 7 - [1Qollwree () - max{e, 1}.

For the integrals I>; and I3;, from Definition 3.4.3, we prove first the following lemma:
Lemma 3.4.1. Let 1 < g < p < 400 and w € WP (Q)y). Then:

27 1/q =
([ letepte/e) - w@mol dx) < Copee [Veliaar  G43)

with
pg 21
Coq = (270) 7 [lolles” - (3-4-4)
Proof. We prove the result first for C1(Q)) functions.
Let w € C}(Qy). Then we have the following inequality:

dw

ep(x/e)
[l eplx/e) —wix )| <[5

(x,t)‘ dt,

for any x € [0,271].
We apply Holder inequality with exponents g and g4’ = qzl:

eq(x/e) q 1/q ep(x/e) (-1)/q
lw(x,e@(x/e)) —w(x,0)| < / a—w(x, t)| dt / 19/ q¢
0 dy 0
ep(x/e) q
= wlxeplx/e) ~w(x 01 < [T (egl/e) " f;;%x,t) d,
0

hence

d

27 21 re(x/e) (4-1) w q
/ lw(x,ep(x/e)) —w(x,0)]7dx < / / (ep(x/e)) @(x,t) dt dx.
0 o Jo
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Let now k = Z > 1. We apply Holder inequality with exponents k and k' = Kk %

to obtain:

/OM e/ el O = </2”/ e (ep(x/¢)) (49— )L‘?dt dx>’”,

(/2”/ el

ath)

p—q

27T Pi—q p q
<e 7 (/0 (p(x/e)) ”dx> IVeliona,
(p=1)

q(p—1) anp=2)
<e 7 -glle” - (27m)

p=q
4 ||vaLP (Q\ Q)"

In the end, we get
27 1/q p—
([ ot cotere) —wx0fdr) < Cope™ - [V@lvianan,
0
with C; from (3.4.4). We conclude the proof by a classical density argument, using the
embeddings C!(Qg) < WP(Qq) — L1(3QY). O

Proposition 3.4.4. Let p € (1,+0). For any v € W'?(Q)), we have

p-1
(1| < Cor-e 7 - [[v][wirap\00)

where

Iy = —% 2n(v(x,eq)(x/fz)) —0(x,0)) - Q2 (x) - 7e(x) dx

0

and

Cn = Y2 ool - 1+ IR (345)

Proof. Letl <g<pandq = qzl Then:

27 >
|| < /0 |o(x,ep(x/€)) —v(x,0)| - QY(x) - \/1+ (¢'(x/¢)) ' dx

< </027r lo(x,e(x/€)) — U(X,O)}q dx)l/q.

27T q/ 1/q/
. ( / z dx>
0

\WI

QU(x) -/ 1+ (¢'(x/e))
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hence
2 1/
|[wol

|| < </02n ‘v(x,scp(x/s)) — v(x,O)‘q dx)

(8" () )
Vi (/OZH‘U(X,E(P(X/S))_v(xf())‘qu)l/q' (/OZH(\/W)[/ dx>

1/q

2
27T
S\f-(zn)w- 1+pr’||%o'(/o \U(xfsfp(x/e))—U(X'O)‘qu> '

where we have used (3.2.3) and that |Q?(x)| = \2@, for all x € [0,2m).

1/4'

IN

We apply now Lemma 3.4.1, with the constant C;; from (3.4.4), in order to obtain:

p-1
[

|| < Cor-e7 - HVUHU’(QO\Qg)-

with

jwol V2 et jwo| V2 1
Ca = "0V )T 141191 Cog = 22 rtlglle) T 1+ 1R

Proposition 3.4.5. Let p € (2, +o0). For any v € WP(Q)y), we have:

p-1
11l < Car-e 7 - [[o]lwiray)

where

27
b =20 [ (ol eg(/2)) ol (/) - Qo(x,0) 0(x,0)) - 7ilx) di
and
G = L [ g1 el 7 - Qi - (100177 Corlp, ) 1), (3.4

Proof. Letl <g<pandq = qzl
Using (3.2.3), we have:

27
|u30||l31| <y/1+ ||g0/||§<,/0 }(QO'Z))(x,eq)(x/e)) — (Qo-v)(x,O)‘ dx
27
< J1H1I9]2- ( | e epteren] - ol eptx/e) — o(x,0) dx)+
27T
NN/EPTY ( [ lotx0)] - 1Qu(x,q(/e)) - Qu(x,0) dx)
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SO

‘w20||131| < \/m
([ antespterant” ax) ™ ( [7 pecotere oot ar) s
+ (/02” [o(x,0)/" dX)l/p~ </02n 1Q0(x,ep(x/€)) — Qo(x,0)| dx>1/p>

where we have applied Holder inequality with exponents g and g’ for the first term and with
exponents p and p’ for the second one.

For the first term, we apply Lemma 3.4.1 and use the L®(Q)y) bounds for Qo in order to
obtain that:

</02n |Q0(x,sgo(x/£))‘q' dx> 1/q _ </027I \v(x,sqo(x/ﬁ)) B v(x,O)\q dx>1/q -

/ r=q el
< OMT N Qollisy) - )7 - llglld &7 - [IVOllranay)
p=t p=1
< (@rllolleo) 7 - 1Qolle(a)) ~€ 7 - lI2llwinay)

since () \ Q. C Oy.
For the other term, we see that we can apply Lemma 3.4.1 with exponents p’ and p, since
p > 2 implies that 1 < p’ < p, in order to obtain:

</027r |v(x,0)" dx>1/p- (/OM |Qo(x,e9(x/€)) — Qo(x,0) ' dx>1/p/ <

. 1/]9 p;p/ p-1 p1
<([reran) @0 el 7 9@l
0

p-1 p1
< (@7ll@lle) 7 - IV Qoll () - 1907 - Cer(p, D)) €7 - [[0llwrn ()

where we use Definition 3.4.1 and the fact that, if 1 < p’ < p, then £ p_;f L < % = % = ijl.
In the end, we obtain that:

p-1
[B1] < Ca1-e 7 - [[o]lwiray)

where

|wol

p-1
Cor = L1419/ - 2tlglle) T 1Qllwim(ay - (100177 - Car(p, Qo) +1).

Let us now prove the following lemma.
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Lemma 3.4.2. Let us consider the case in which Assumption 3.2.2 holds. Let p € (2, +c0),
w € WYP(Q)y), V be a Banach space and b : R — V a 27-periodic function such that
b € L*([0,2m)), for which we write ||b||« instead of [|b[|1«([o,2))- Then:

p—1

27
/0 w(x,0)(B—b(x/e)) dx| < Cs-e7 - [lwllwiriay)

27 2p-2
whereB—/ ) dt and Cs = (270)°7 - [[Bl|es - Cr(p, Q).

Proof. From Assumption 3.2.2, we have that e 7! = 2k € IN*. We write then:

27 2k—1 p(j+1)e2m
/ w(x,0)(B—b(x/¢)) dx =) / w(x,0)(B—b(x/¢)) dx
0 ]

j=0 je- 27T

1 2k=1 p(+De2m p2m 2k=1 p(j+1)e2m
-y / / w(x0p(t) dt ax— 1 x,0)b(x/e) dx
0 .

2m je2m je-2m

(3-4.7)

Using the change of variables x = x’ 4 je - 271, we obtain:

2k—=1 p(j+1)e2m 2k—1 /i
2/ w(x,0)b(x/€) dx = 2/ (x' + je- 27, 0)b<x+]527r> dx’
je

j=0 Jje2m €

and, since the function b is 27r-periodic and j € IN, we can rewrite the last equality as:

2k—=1 p(j+1)e-2m 2k—1 pe2m
) / w(x,0)b(x/e) dx = ) w(x' +je-27m,0)b(x'/e) dx’.
]

j=0 je-27T j=0 70

Using now the change of variables x’ = ¢t, we get:
2%k=1 p(j+1)e2n 2%-1 27
) / w(x,0)b(x/e) dx =) e-w(et+ je-27m,0)b(t) dt.
j=0 je-2m i—=0 /0

Since

1 (j+1)e2m
£= — 1 dx,
2m je2m

then (3.4.7) becomes:

/Om w(x,0)(B—b(x/e)) dx ! ZkZl/](j+l)g'2n/()2n w(x,0)b(t) dt dx—

27[ i je- 27

1 2k=1 p(+le2n r2m
= / / w(et + je - 27,0)b(t) dt dx
2m je2m 0

1 2k=1 p(j+1)e2m  p27
T on )y / / (w(x,0) — w(et + je-27,0)) - b(t) dt dx.
0

je2m
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Then

<

27
/0 w(x,0)(B —b(x/¢)) dx

€27

1 2k=1 p(j+1)e2m  p27
< 5r L / / |w(x,0) — w(et 4 je - 271,0)| - |b(t)| dt dx
J 0

- ]l %=

(j+1e2m  p2m
w(x,0) — w(et 4 je-27,0)| dt dx.
o [, [ w0 -t 2no)

We apply now the change of variables t' = ¢t + je - 271 and drop the primes to obtain:

27
/0 w(x,0)(B —b(x/¢e)) dx

dt dx.

- HbHOOZkil/(j+1)e-2n/(j+l)g.2n }a)(x,O)—aJ(t,O)]
B j

2m e-27T €

j=0 Jje2m

Then:

%=1 p(j+D)e2n p(j+1)e2r
) / / el |w(x,0) — w(t0)| dt dx =
j=0 Jje2n je2m

:%f/””“ffﬁmhkwnm—wmmyme—aﬂﬂmdx
j=0 Jje2m je2m ‘(X,O) — (¢, O)} €

2k—1 (j+D)e2m  p(j+1)e2m 0) — w(t,0 p 1/p
<) [(/ / 0 0) = w 2,‘ dtdx> :

j=0 je2m je-2m \(x, 0) — (t, 0)‘

(+1)e2m (127 | — t\p, 1/p
je-2m je2m ev

where we have applied Holder inequality with exponents p and p’. Since |x — t| < e- 27, for
any x,t € [je-2m, (j + 1)e - 27|, we obtain:

2k=1 p(j+1)e2n  p(j+1)e2n
) / / e |w(x,0) — w(t,0)| dt dx <
j j

=0 .27 27T
, . 2%-1 (i+De2m r(i41)e27 [g5(x,0) — w(t,0)]” Yr
< (m)r 2 Y (/ / |w(x,0) —w( ;‘ dt dx>
=0 je2r je2m ‘(X, O) - (t’ 0)‘

) 2%kl (j+1)e2m  p2rm —w(t.0)? 1/p
< (27.[)1+2/P . 82/}7 . Z (/ / ‘ZU(X, 0) ZU( ,027| dt dX) )
i=0 je-2m 0 ‘(X,O) — (t, 0)|

Let us denote now:

B (j+l)e2m  p27 ‘w(x,()) — w(t,O)‘p dtde Vi 0.1 2k—1
ri= p x, Vje{01,...,2k—1}.
je2m 0 ‘(x’ 0> N <t’ 0)}




3.4 SOME INTEGRAL INEQUALITIES

We have that r; > 0, for all j € {0,1,...,2k —1}. The function R > x — x1/? is concave

since p € (2, +00), therefore we have the Jensen inequality:
2k—1 2k=1 N\ 1/p
1/p 1
Zr]. §2k-<2k2rj> .
j=0 j=0

Since 2k = ¢! and

2k—1 1/p 2 p2m |w (t 0)‘? 1/p
<] 0 r]> </ / |x—t!7’ a dx) < lewliwverr),

due to the fact that the left hand side of the last inequality represents the Gagliardo seminorm
defined on the space W'~1/P#(T';), we obtain that

2%k=1 p(j+1)e2n p(j+1)e2n
) / / e Jw(x,0) — w(t,0)] dt dx <
j j

j=0 je-27T je-27T

3p-2 2p-2

<@u) 7 e (20wl
w2 w2 g1
<@m) e r T wllwe v

3p—2 L
<@m) v e - flwllwi-vee )

Using Definition 3.4.1, we obtain that:

p=

27T
/O w(x,0) (B —b(x/¢)) dx| < Cs-€7 - @]l wiren

with

= (27) 7 - [[blles - Cir(p, Q)-

Proposition 3.4.6. Let p € (2, +o0). For any v € WP(Qy) we have:

E
2| < Ca2-e 7 - [[0]lwinay)

where

and

w 2p=2
Ci =0 o)™ 1 91 Crlp, ) - Qi 548)
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Proof. Let v € WP(Q)). Since Qp € W¥*(Q)), we have that Qp-v € WP(Qy). We apply
Lemma 3.4.2 for w = Qp - v and b = 7, since v.(x) = yo(x/¢), with V = R. In this way, we
obtain that:

w, 2p—2 p=1
] < 200 0% il - Cu(p, ) -7

2 ’ ||Q0 "UHWLp(Qo)'

Using now that [|70/[c = /1 + [[¢'[|%;, and that [|Qo - 0[lw1r () < [[Qollwr~(a) - I2llwrr (), We
obtain the conclusion. O

Proposition 3.4.7. Let p € (2, +o0). For any v € WP(Qy) we have:

p—1

2| < Cop-e7 - [0l wir(aag)

where
27T
=" [T o0 (12 - 1) d

and

wo|V?2 2p-2
CZZ:W-(ZM 71+ l9'11% - Cir(p, o). (3-4.9)

Proof. Let v € W'"P(Q)g). We apply Lemma 3.4.2 for w = v and b(t) = 7 (t) (gl(t) gz(t))> ,

g2(t) —gi(t
forall t € R, with V = Sym,(2). In this way, we have:

w 2p=2
1l < 200 2m) " e - Cop, 20) -

p1
P HUHWLP(QO)-

1
Since g3(t) + g3(t) = v forallt € R, and ||70]|l = /1 + ||¢']|%, we obtain the conclusion. []
We are now able to prove Proposition 3.4.1.

Proof of Proposition 3.4.1. We combine (3.4.1) with Propositions 3.4.3 to 3.4.7 to obtain the con-

clusion, with, for example,
Cr=C1 +Cy1 +C31 + C2o + C3o,

where these constants are defined in (3.4.2), (3.4.5), (3.4.6), (3.4.8) and (3.4.9). O

Remark 3.4.5. We can actually choose C; of the following form:

Cr = max{1 ||@| &P} - \/1+ |9 |12 - C(wo, ¢, p, D, Qo),

where C(wo, ¢, p, o, Qo) is an e-independent constant depending only on wy, ¢, p, Qo and Q.
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3.5 PROOF OF THE ERROR ESTIMATE

The goal in this section would be to place instead of v in the right-hand side of the inequal-
ity from Proposition 3.4.1 something that depends on (Qp — Q;), such that we can obtain
Theorem 3.2.1.

Throughout this section, we fix p € (2, +00) and let u, := Qp — Q.

Remark 3.5.1. The function u, solves the following PDE:

—Au,e + cu, =0, in Q)
Ju
871/88 + —ug e, on I
aug wo .
O Tug =0, onTIy
where g, = % + = (Qo —QY). Since Te C O, we have no problems with defining g.. By

Corollaries 3.3.1 and 3.3.2, we also have that u, € W2?(Q),) and g. € W'=1/PP(T,), for any
1<p < +oo.

We would like now to prove the following proposition (to be compared with Proposi-

tion 3.4.1):
Proposition 3.5.1. There exists an e-independent constant Cy such that:

P

|a:(Qo — Qe v)| < Co T [ollwr () Vo € WHP(Q).

In order to do so, we need to construct an extension operator E, : WP (Q,) — WP (Qy)
such that E.w = w in Q for any w € W'P(Q),), with the operator E, bounded uniformly in
e. For this, we adapt the bi-Lipschitz maps ®, and ®,! from [31, Equations (57) and (58)] to
this simplified model, where these transformations are only between (), and ()y. In order to

construct the desired extension, we introduce the following notation.

€[0,2m), y € <—R8(P(X/E),R>}.

Definition 3.5.1. Let O] = {(x, ) R—ep(x/e)

Remark 3.5.2. Using Assumption 3.2.2, it is easy to see that ()] is well defined, since
R —ep(x/e) >0, for all x € [0,2).

Definition 3.5.2. We define @, : ()] — () as

D, (x,y) = (x,y . R_ng/g) + eqo(x/s)), V(x,y) € Of
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and ®;1: 0 — QF as

R(y —ep(x/2))
R —ep(x/e)

O (x,y) = (x, ), V(x,y) € Q.
Remark 3.5.3. We have ®,(Q)y) = Q, and, using Assumption 3.2.2, we can prove the following

sequence of inclusions:
{(x,y) | x€[0,2m), y € (R/2,R)} C Q. C Oy C O] C {(x,y) | x € [0,27), y € (—R,R)}.

Proposition 3.5.2. @, defines a family of C? uniformly bi-Lipschitz maps between () and Q.
Moreover, there exists an e-independent constant C such that:

C<1_>1 : HwHWLP(QS) < HCDHWLP(QO) < Co- H“JHWLF’(QS)I (3.5.1)

for all w € W'"P(Q,), where @ = w o q)g]00, and

Co' - llwllwiriay) < [@]lwiras) < Co - lwllwirqy), (3-5-2)
for all w € W'P(Qy), where @ = w o ..

Proof. Since ¢ € C2, then @, € C2. Moreover, since the definition of ®, from Definition 3.5.2
is based on [31, Equation (57)], then one can argue similarly as in [31, Proposition 2.5] to
obtain that ®, and its inverse are Lipschitz with Lipschitz constants independent of e. More
specifically, using the bound

R

0<e llgle <5

from Assumption 3.2.1, we can obtain that

od od
—£ < 1/ 112 —£ < €
‘ B (x,y)‘ < max{2R, 1} 14 |l¢'||3 and ' 3y (x,y)‘ <1, V(x,y) €Qf,

which implies that ®, is Lipschitz with its Lipschitz constant bounded e-independent. In the
same way, the first order derivatives of @, ! can be bounded ¢-independent (using the same
bound as above for ¢). To obtain the constant Ce, we use the same e-independent bounds
for the first order derivatives of ®, and ®;! when we apply chain rule in @ = w o ®, with
w € WLP(Qy). O

Remark 3.5.4. If we were to define E.w = w o &, ‘ ay for any w € WP(Q), then we would
not have had E.w = w inside of (), so we need the more sophisticated extension that will be
provided in Definition 3.5.3 below.
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Corollary 3.5.1. Let O := {(x,y) | x € [0,271), y € (=R, R)} and let T : W'P(Qp) — WP ()

the following extension operator:

Teo(x,y) = w(x,y), ify € (0,R);
' w(x,—y), ify € (—R,0);

for any w € WP(Q)). Then there exists an e-independent constant Ceyx¢(p, Q) > 0 such that:
ITw|lwir(ay) < Cext (9, Q) - |l@llwinay), ¥ @ € WH(Qy).

Remark 3.5.5. The proof is a simple exercise which consists of applying the method of
extending a Sobolev function by reflection against a flat boundary, illustrated in [44] for
WP (Q)p) functions.

Definition 3.5.3. Let E. : W7 (Q),) — WP(Qy) defined as

-1
od)g >,
0Of

for any w € WP(Q). In this way, E.w = w in Q);, for any w € WLP(Q).

Ecw := ((T(w o @S‘QO))

Proposition 3.5.3. There exists an e-independent constant C,,; such that:
HEs‘UHWLP(QO) < Cext - HC‘JHWLP(QS)/ Vwe Wl'p(ﬂe)~

Proof. Let w € W'P(Q)) and @ = w o P q,- Since the transformation & ! is bi-Lipschitz with

its constants bounded e-independent, then, using (3.5.2):

-1
O

where in the last inequality we use that T@

= CdleTd)HWW(QZ)’
WLP(Qx)

IEwlnsan = | ( (70)

WP (Qp) 05

is a restriction of T@ from (). Then:

1
||ESWHWW(QO) < C$1|‘T‘D’|WW(QZ) < Cq_>1 * Cext(p, Qo) - ||(I]||WLP(QO)/

where we have used Corollary 3.5.1. Since @ = w o ®; ‘ 00’ then, using (3.5.1), we obtain:

HES‘UHWLP(QO) < Cext(p, Qo) - HWHWLP(Qg)'

Therefore, we can actually choose Ceyt = Cext(p, Qo) given by Corollary 3.5.1. O

Proof of Proposition 3.5.1. Let v € WYP(Q). Then E;v € W () and we can apply Proposi-
tion 3.4.1 to obtain:

p=2
4

|ae(ue, Eev)| < Cp-e v - HEEUHWLP(QO)-
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Using Definition 3.5.3 and Proposition 3.5.3, we obtain:

-1
‘ag(ug,vﬂ < (Cr - Cext) e Hval,p(QE).

O]

Corollary 3.5.2. There exists a unique solution v, € W??((),) that solves the following PDE:

—Ave + cve = g, in Q)
Jdu, Wy
v, T re=0onle (3:53)
Jdv wo
au; +5 . =0, on Ty
where u, = Qp — Q..
Proof. The proof follows the same steps as in Corollary 3.3.1. O
Proposition 3.5.4. The function v, satisfies the following inequality:
sHl(Qs)— i B ,_ : ellL2(O 5.
[[e < min{c™%, e} - a2 (3-5.4)
where c is the positive constant from the bulk energy defined in (3.2.1).
Proof. Let w € W'P(Q),). Since —Av, + cve = u, in Q, we have:
/ ue-wd(x,y) = / (— Ave + cve) - w d(x,y)
Qe e
00,
= [ (Voe-Vw+cve-w) d(x,y) — — - w do;
o) a0, Ve
wo wo
:/ (cvs-w+va-Vw)d(x,y)+z/vg-wdag+2 ve - w dog
€ € rR
Taking w = u,, we obtain:
ae(ue, ve) = / (Cus Ve + Vg - va) d(x,y) + ZZO/ Ue - Ve doe + % Ue - ve dog
€ T I'r
= [luell 2, )- (3.55)
Taking w = v,, we obtain:
wO
clloellZzia,) + 1Voelt ) + 5 2o, + HvsHLz (Te) /Q e - Ve dx.

Now we can see that

wo
cllvellfzia,) < cllvellizia,) + 1Voell 2, + 5 10elf2@a,) < Nl
(Qe) (Qe) (Qe) 2 (90%)

Q) [ve HLZ(QS)
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which implies that [[ve]|;2(q,) < ¢ - e[| 12(,)- In the same way,

wo
||Vv€||%2(0€) < CHUSH%Z(QS) + ||Vve||%2(gs) + 7||U€||%2(BQE) <

< ””EHLZ(Qg)HUEHLZ(QS) <c ' HusH%Z(QS)

using the last inequality proved. This implies that || Vve||;2(q,) < ¢7V/2 - [|lue||12(q,)- In the end,
we obtain that:

[oell 1y < min{e™2, 71} el 2

O]

Definition 3.5.4. Let T, := v, o O] 0, ° &1, where @, is introduced in Definition 3.5.2 and ®
in Definition 3.3.1. Since ®(Q)y) = (), then Q, = ((D‘“"Qo o ®-1) (Up).

Corollary 3.5.3. We have that o, € W2?(Uy), for any p > 2.

Proof. Since v, € W*?((),), @, and ® are bi-Lipschitz with ® € C?(Q)y) and ®~! smooth, we
obtain the conclusion. O

Remark 3.5.6. Using Definition 3.5.4, we can see that 7, solves a PDE of the form:

LT, + T, = T, in Uy

Vo, - 1] + %@ =0, on ®(Ty) (3-5.6)

Vo, I+ %@ =0, on ®(Tg)

where £ is an uniformly elliptic operator, I; € C!(®(Ty)), I, € CY(®(Tr)) and u; := u o
q)f‘oo o®~1 € W2P(Uy).

Proposition 3.5.5. There exists an e-independent constant Cy., (o) such that 7. satisfies the
following inequality:

%ell 12(240) < Creg(Uo) - (I1£%ellr2uap) + 110ell enr2ausy) + 10ell ) ) -

Proof. We apply [53, Theorem 2.3.3.2], since all the required conditions are satisfied. O
We can now prove the main result of this chapter.

Proof of Theorem 3.2.1. We apply first Proposition 3.5.1 with v, € W2P(Q)):

p=1
||MSH%2(QS) = (e, ve) < Co-e 7 - HvsHWLP(QS)/
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where we also use (3.5.5). We apply now Proposition 3.5.2:

p1 1
r P |ve 0 D¢
3 SQO

etz < Co-e 7 - lloelwina, < (Co-Co) - wir )

We now use the compact embedding W2?2(Q)) << W? () to obtain:

r—1
T oo,

HuEH%Z(QE) < (CO Co - Cemb(QO)) "€ ‘QOHWZrz(QO)’

where C,,,, () is the constant given by the compact embbeding used.
Recalling Definition 3.3.1, it is easy to see that there exists Cp,5, > 0, which is e-independent,

such that:
C;Z)llaerHWZfz(Qo) < Hw °© q)_luwz,Z(uO) < Cpolm’Hw”WZrz(Qo)l Vwe WZ’Z(QO)' (3-5-7)

In this way, we have:

1

r=2 —
HuEH%Z(Qg) <Coe 7 - [ellwez (g,

where C(/) = C() : Ccp : Cemb(QO) : Cpolar-
We apply now Proposition 3.5.5:

p—1

HMSH%Z(QJ < (C6 ’ Creg(Z/{O)) er (HﬁESHLZ(Z/{O) + H@HHW(BZJO) + H@HHl(uo))-

Using (3.5.6) and the trace inequality for the trace operator Tr : H'(Up) — H'/2(dldy), we
get:
p-1 _ _ _
H“£Hi2(os) < (C6 : Creg(u())) e (H”S - CUSHLZ(Z/IO) +(1+ Ctr(UO))HvSHHl(uo))
p-1 _ _ _
(Co- Creg(Uo)) - & 7 - (el 2@ + € 10ell 224y + (1 + Cir(Uo)) - [1Pell 11 24))

IN

and, using (3.5.7), we obtain:

p—1

HuSH%Z(Qg) < (C(/) ’ Crgg(uo) ) C;ollar) e
: (H”E Oq)g’QOHLZ(Qg) ach Hvs OCDS}QOHLZ(QO) + (1+ Ci(Uo)) - HUS OCDE‘QOHHl(QO))'

Using Proposition 3.5.2, we get:

p=t
||u€H%2(QS) < (C(/) - Creg(Up) - Cpl 'Cq_>1) e b

polar
(el + ¢ lvellizga,) + (1 + Cor(Uo)) - 10ell () -
and then, using Proposition 3.5.4, we obtain:

p—1

HugHLz(Qe) < (Co - Comp(Q) - Creg(Uo)) - <2+ (14 Cw(Up)) -min{c‘l/z,c_1}> er,
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for any p > 2. O

3.6 APPENDIX

In this section, we prove Corollary 3.3.1, that a.(Q. — Qo, v) is well-defined for any v € W7 (Q))
and then we prove Proposition 3.4.2.

Proof of Corollary 3.3.1. We consider Q. : U — Sym,(2) such that:

Qe(x,y) = QS(CID(x,y)), V(x,y) € Q,

and we denote (%,7) = ®(x,y) and (x,y) = (& 1(%,9), D, 1 (%,79)).
Then Q, solves a PDE of the following form:

2 2
Y Di(a;iD;Qc) + Y aiDiQe + cQe = 0, in U;
=1 i=1

2
~ wo ~ wn ~
bDiQe + 5 Qe = Q! on (T); (3.6.1)
i=1

MN

~ ’(,UO ~ ’(,UO ~
bZiDiQS + 7Q£ = TQR, on (D(FR).

1

I
—_

where D; = i and D, = i We have that a;; € C*(Ue) with:

ox oy
=2 -~
I R S S A
a1 aip _ Yy 24+ y"Z *Y 72 +2y~2
daz1 dn f? . fg —3?2 _ y~
24 gz X2 4 92

The coefficients a; are also from C*®(U,) with:

(611) - (f + Dyan + D2ﬂ21>
a2)  \§+ Diany + Daan
The coefficients by; are from C!(®(T,)) and can be obtained explicitly from VQ; v, =
Y2, b;;D;Q;. In the same way, by; are from C!(®(T'g)) and can be obtained explicitly from
VQ:-(0,1) = Y2, byD;Qc. Moreover, Q0 = Q2o @' and Qg = Qr o @ 1. Since Q¥ € C!(T,)
and ® is a smooth bi-Lipschitz transformation, then Q% € C!(®(T,)) which implies that
QY € WHI=1/P(®(T,)). In the same way, Qr € WV1—1/7(d(TR)).

Therefore, we can apply Theorem 3.3.1 to obtain that there exists a unique solution

QY € W2P(U,) of the problem (3.6.1). Using now that ® is smooth, we obtain that there
exists a unique solution Q, € W?(Q)) of the problem (3.2.5). O

Let p € (1,+) and v € W'P(Qy). We recall that Q. C Qy, for all ¢ > 0, hence we
also have that U}Q € WP(Q,). Applying Corollary 3.3.1 and Corollary 3.3.2 with exponent
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p = p;l € (1,400), we obtain that Q. € WLPI(QE) and that Qy € Wl"”’(Qo). Using

Definition 3.4.2, it is easy to see that a,(Q. — Qp, v) is well-defined.

Proof of Proposition 3.4.2. In the following paragraphs, we fix p € (1,+o0) and v € WP(Qy).

We recall now that Q, solves weakly (3.2.5), which is the following PDE:

( —AQ: +¢cQ: =0 in ()
E)Q wo wo
v T2 Q=g only
0Q:  wo . W

vz + st = TQR on I'g.

Then, using the integration by parts formula, we get:

0 :/ (= AQ:+¢Q:) v d(x,y)
Q,

8Q€ dO'g— aQ8 dO_R
T, 81/8 T'r aVR

_ /Q (VQ: - Vo + Q. -v) d(x,y) —

2

:/ (VQg-Vv+cQg-v)d(x,y)+u;()/(QE—QS)-vd(TE+%/ (Qe — Qr) - v dog
r r

€ € R

w, w,
:ae(Q&U)_zo/r Qg'UdUe—TO - Qg - v dog,
€ R

according to Definition 3.4.2. Hence

w, w
1e(Qe,v) = 20/F QSU doe + 70 . Qr - v dog.
€ R

(3.6.2)

For Qp, we remind the reader that it solves weakly 3.2.6, which is the following PDE:

—AQo+cQo =10 in Qy;

aQO Wef _ Wef .
ETS + 5 Qo= TQef on T'o;

0Q0  wo . _ Wo
E + 7Q0 = 7QR on FR.
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Then, using the previous PDE and the integration by parts formula, we get:
0= /Q (—AQO +¢Qp) - v d(x,y)
0
9Qo 9Qo
= VQo-Vo+cQp-v)d(x,y) — | —— - -vdop— — vdo
/Oo (VQo Qo -v) d(x,y) L A L R
Wef
= /Q (VQ() -Vo+4cQp - U) (x y) / (Qo — Qef) v dop+
0
w
+70 (Qo— Qr) -vdog
I'r
Wes
= a¢(Qo, ) +/ (VQo-Vo+cQo-v) d(x,y) + / (Qo — Qef) - v dog—
QO\QS 2
0 Wo
P [ ovvan- [ a-vde,
Iy 2 Jr,

where we have used Definition 3.4.2. Using (3.6.2), we obtain that:

a¢(Qo,v) — a¢(Qe, v) = —/ (VQo-Vo+cQo-v) d(x,y) — QO v do,—

QO\QS
We f

w
- /FO(QO_Qef)'UdUO+20 FEQO'Ud‘TE

Using Definition 3.4.3, we already notice that:

ae(QO — Q¢ ) =1 - Qg v doe —

w
zef (Qo — Qe) 'Ud00+70 Qo - v dos.
To T
(3.6.3)

We recall here that I = {(x,ep(x/¢)) | x € [0,2n)}, To = {(x,0) | x € [0,27)} and
I'r ={(x,R) | x € [0,27)}. Then:

2

wo/ QY. vdag—/ Q%(x) - v(x,ep(x/e)) - ve(x) dx,

/ Qo—Qef) v doy = a;O (Qo(x,O) ,)/_Qef")’) -v(x,O) dx,

0

wef

and

wo wy [T

5 Qo vdo, = 70 i Qo(x,ep(x/e)) - v(x, ep(x/e)) - ve(x) dx,

where we have used (3.2.2), (3.2.4) and Remark 3.2.5.
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Using the previous equalities in (3.6.3), we obtain that:

wo 27

Q= Q) = h = [ (o ep(x/e)) —o(x,0)) - 7e(x) - QU(x) d—

2r 27
0(,0) - 75(x) - Q) d+ 5 [ 0(x,0) 7 Qup =

_ %o
2 Jo
wo 21 wo 27
2/ Qo(x,0) -v(x,0) -y dx + 2/, Qo(x,ep(x/e)) - v(x,ep(x/e)) - ye(x) dx.
We see now that the second integral from the right-hand side from the last equality is I,
according to Definition 3.4.3, and that the next two terms generate Iy, according to the same

definition as before. Hence:

1:(Qo — Qe,v) = It + Iy + Io+

27
+ 9 [ (ol eplase)) ol e9(x/e) = Qul,0)-0(x,0)) - 75(x) e+
wo 27T wo 27T
+ > ; Qo(x,0) - v(x,0) - ye(x) dx — > ; Qo(x,0) -v(x,0) - 7y dx.

The last equality proves (3.4.1).



HOMOGENISED ELASTIC TERMS
FOR AN OSEEN-FRANK TYPE OF
ENERGY IN R?

Abstract:

We consider a general formulation for an Oseen-Frank type of elastic energy in a two
dimensional setting for a periodically perforated domain, with isolated holes. We impose
sufficient conditions such that, for a sequence u. of critical points that generate low enough
energy states, we can apply the lifting procedure and write u, = ¢'#: over the entire perforated
domain. We study then the scalar homogenisation problem for the phases ¢. and we prove
that we are under the same settings from [34]. By applying [34, Theorem 2.1], we obtain a local
L? convergence result for the phases ¢. and we prove that the same L? local convergence result

holds for the initial S!-valued homogenisation problem.

Joint work with G. Canevari and A. D. Zarnescu.
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4.1 INTRODUCTION OF THE PROBLEM

Nematic liquid crystals are materials for which their particles are elongated rods that, while
being in the nematic state, have the local tendency to align to a preferred direction. There
are various theories used to describe the orientation of these particles such as Oseen-Frank,
Leslie-Ericksen or Landau-de Gennes and the reader can refer to, for example, [73] or [76]. In
the Oseen-Frank theory, for the case in which the domain is () C R3, the order parameter is a
vector field n : QO — 2, usually called the director, which assigns to each point of the domain
the preferred direction of alignment. One of the most common choices of an Oseen-Frank

energy is of the type:
Efn] = / W(n, Vn) dV,
0
where

2W(n, Vn) :=K; (div n)2 + Kz (n - curl n)2 + K3|n x curl n‘2+
+ (Kz 4 Ky) (tr(Vn)? — (div n)?),

where the K;’s are called Frank’s elastic constants: K; is the splay constant, K; the twist constant,
K3 the bend constant and K4 := Kj + K4 is the saddle-splay constant. Moreover, they satisfy

the Ericksen inequalities, as presented earlier in Section 1.2:
Ki >0 Ky, >0, K3 >0, Kr > |K4|, 2K;1 > Ky + Ky,

(see, for example, [43]).
In this chapter, we consider an energy functional which generalizes the one of from the

Oseen-Frank theory, written above, but for a 2-dimensional case (2 C R2:
E[n] = / Ki(n)(div n)2 + K»(n) (div n) (curl n) + K3(n) (curl n)2 dx + ;1/ (n- ng)2 dx,
Q Q

where the elastic coefficients are not necessarily constants anymore and we have also added
a new term, in which y is a positive constant and ny € S! is fixed. For u = 0, we impose
conditions on Kj, K, and K3 such that E[n] > 0, for all n € S!, and E[n] = 0 for any n constant.
The term containing y also tries to mimic, in a very simplified fashion, an external constant
magnetic field applied to the nematic liquid crystal, hence there is a competition between
minimizing the elastic energy of the material and the desire to align perpendicular to the
magnetic field.

Starting from this type of energy functional, we analyse the following homogenisation
problem: having a nematic liquid crystal with elastic coefficients x1, x>, k3 (for simplicity, we
assume they are of class C?), we would like to obtain, through homogenisation with colloidal
inclusions, another material, which behaves also like a nematic liquid crystal, but now with

new elastic coefficients - xj, x5 and x3. For this, we consider the case in which we perforate
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the domain () in a periodic fashion, where the holes mimic the presence of another material.

The periodicity and the size of the holes are comparable to a small parameter ¢ > 0, which
will tend to 0, and we denote the union of all the holes with T; and the perforated domain
as Q.= O\ T.. Moreover, we assume that the holes do not touch 0Q). More details about our
assumptions on the perforations can be found in Section 4.2. Since our goal in this chapter
is to generate new elastic coefficients, we neglect any sort of typical surface energy (such as
Rapini-Papoular, for example) and we impose, for simplicity, that u = (1,0) on 9Q). That having

been said, we consider the energy functional F, : V. — [0, +c0) defined as
Fe(u) = / k1 (u) (curl u)2 + 2 (u) (curl u) (div u) + x3(u) (div u)2 +u(u- ﬁ)z dx, (4.1.1)
Q,

for any u € H!(Q);), where V, = {u € H(Q;S!) : u = (1,0) on 9Q}.

This setting already gives rise to some interesting challenges. First, having a function u
in H'(Q,;S!), there exists an extension Ecu € H'(Q;R?) as long as the holes are sufficiently
regular, but not necessarily in H!(();S!). Secondly, we can not expect a priori that there is
a function ¢ € H'(Qg;R) such that u = (cos ¢, sin ¢). In order to overcome these issues, we

make use of various results from [21] that give us connections between the topological degree

of a function, the possibility of extending an S!-valued function and the existence of a lifting ¢.

The main assumption of our work is based on the fact that we can have low enough energy
states of the material such that there exists a sequence (uz.;)€>O C HY(Q,;S!) of critical points
of F; with the property that their topological degree computed on the boundary of each of the
holes must be 0. This will imply that we have a lifting function ¢, € H'(Q;R) and we can
turn the S!-valued homogenisation problem into a scalar one. If one were to work without this
assumption, then it is possible to prove that such a lifting exists, but only locally in ).

The scalar homogenisation problem obtained represents a particular case of the work done
in [34] and is of the form:

—div(A(pe)Voe) = B(pe, Voe)  in Qe
Al(pe)Vee:-v=0 on 9T, (4.1.2)
¢e =0 on 0()

where A is a matrix-valued function depending on one parameter which contains all the
information related to the initial elastic coefficients and % has quadratic growth in the second
variable and it depends on the derivative of A, namely A’. The homogeneous Dirichlet boundary
condition on 9Q) comes from imposing u, = (1,0) on dQ). The main result from [34] states
that there exists ¢ € H}(Q) N L®(Q) such that Egp: — ¢p weakly in L?(Q)) (where Ej is the
extension by 0 in the holes) and that it solves the following PDE:

(4.1.3)

—diV(Ao((po)VgDo) = <@()(gl)o, VQD()) in Q)
@ =0 on 00}

where Ap and % are the homogenised components obtained from A and Z.
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When deriving the homogenised energy functional for $'-valued functions, we prove in
Proposition 4.3.6 that % has a similar dependency of A as the connection between % and
A’.In this way, we are able to say that ug = (cos @, sin @) is a critical point of the following
homogenised energy functional Fy : Vo — [0, +00):

Fo(u) = /Q «7 (u) (curl u)2 + 13 (u) (curl u) (div u) + 3 (u) (div u)2 + Gop(u - ﬁ)z dx, (4.1.4)

where 6 represents the volume fraction between the nematic liquid crystal part and the periodic
cell and Vo = {u € HY(();S') : u = (1,0) on 9Q2}. Moreover, «;, x; and x5 are the new elastic
coefficients for the homogenised material and they are introduced in Definition 4.3.9.

We want now to obtain a connection between u, and ugy. In [33], the authors were able
to prove that the solutions @ of (4.1.2) are uniformly bounded in V; = {¢ € H'(Q,) : ¢ =
0 on 0Q2}. Then, by [5, Lemma 2.3], we obtain a local convergence result in the interior (2, that

is, for any w open such that w C (), we have

lpe — @ollr2(.nw) — 0, as e — 0.

on a subsequence of ¢.. Since cos and sin are Lipschitz functions, we are able to prove that,

again, on a subsequence of u,, we have:
for any open set w such that w C (), we have lirr(} [ue —wo |l 2(0,nwisty = O
e— 4

As stated in [34], one should not expect strong convergence of ¢; to ¢g in LZ(Q), nor
almost everywhere in (). However, if we were to consider the initial elastic coefficients as being

constants, then we have
||§Dg — ¢0HL2(Q€) — 0, as € — 0,

since our problem is a particular case of [36], in which they consider holes that are isolated
in each cell, or, by some extent, this can be seen as [5, Theorem A.1], where they consider the
more generalised situation of connected holes. Moreover, one could prove in a very similar
fashion as in [5, Appendix] that we can extend the local convergence result up to the boundary
of (), since we impose homogeneous Dirichlet boundary conditions.

We are also able to describe the dependency between the initial elastic coefficients x; and
the homogenised ones «;, using the same corrector matrix as in, for example, [14, 15, 34, 39, 40].
Hence, by computing two solutions on the cell problem, we are able to compute the new elastic
coefficients, depending on the initial ones. This, of course, raises the problem of obtaining
bounds for how big or how small one could obtain these new elastic coefficients, depending
on our choices of holes and initial coefficients. At the same time, the inverse problem is also
interesting from the physical point of view: given desired elastic properties, how should one
choose the perforations such that, in the limit, a given nematic liquid crystal would achieve
those effective properties? Both situations represent interesting directions that the author would

like to pursue.
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At the same time, the reader should also consult, for example, the works of [8] or [20]. In
[8], the authors consider the case of manifold valued Sobolev spaces and they are able to obtain

a I'-convergence result with respect to strong LP-topology for an energy functional in which the

integrand is Carathéodory, 1-periodic in the first variable, but with lower p-bounds a.e. in RV.

However, in the case of periodic holes, we are not able to impose such condition. Moreover, the
integrand considered is of the form f(x/e, Vu), while our case would be represented by an

integrand of the type f(x/¢,u, Vu). In [20], the author considers a more general integrand, one

in which the dependency on u is included, but now in the case of real valued Sobolev spaces.

Also, the integrand is considered to have lower p-bounds a.e. in RYN, which is in conflict with
our choice of perforations. Nevertheless, we do believe that a I'-convergence result is possible
in our case, but this is beyond the scope of this work which should be seen as a preliminary
result in this direction.

This chapter is organised as follows: we first present all of our assumptions, we then
formulate our main result, we study the consequent scalar homogenisation problem obtained
using the lifting procedure and then we present all the necessary information such that we are
able to prove the main result. All the other intermediate results can be found in Section 4.5.

In Section 4.2, we present the general assumptions related to the domain chosen, the
properties of the holes, the properties of the initial coefficients and the main assumption which

implies the existence of a lifting. The proofs of the intermediate results from this section can be

found in Subsection 4.5.1. In the end of Section 4.2, we present the main result of this chapter.

In Section 4.3, we explore the scalar problem obtained via the lifting granted in the previous
section. We present all the necessary conditions such that we are able to apply [34, Theorem
2.1]. The proofs of the results presented here can be found in Subsection 4.5.2. A more detailed
look at the cell problem can be found in Subsection 4.5.3, where we prove that the solutions of
the cell problem exist and they depend in a differentiable way with respect to the nonlinear
coefficients given by A.

In Section 4.4, we first present the connection between the first order derivative of the
homogenised matrix Ag and the forcing term %y. The proof of this result can be found in
Subsection 4.5.4, where we use all of the properties proved in Subsection 4.5.3. Then, we present
the connection between the initial coefficients x; and the homogenised ones «;, for which, once
again, the proof can be found in Subsection 4.5.5. In the end of Section 4.4, we prove the main

result of this chapter.

4.2 GENERAL ASSUMPTIONS AND MAIN RESULT

Assumption 4.2.1. We assume that Q) C R? is a smooth, open, simply connected and bounded

set.

Remark 4.2.1. Throughout this chapter, we denote by S! the unit circle from R2.
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Assumption 4.2.2. Let Y = (0,1)? be the reference periodic cell. We assume that the reference
hole T C Y is of the form

NT .
T=T,
i=1

where T' is a compact, smooth and simply connected set, for any i € {1,2,..., Nr}, where
Nt € N*, and T"' N T = @, for any iy,ip € {1,2,...,Nr}.
Y\ T|

Y]
the nematic liquid crystal part and the periodic cell.

Definition 4.2.1. We denote by 6y = =|Y\ T| =1—|T| the volume fraction between

Definition 4.2.2. Lete >0, X, = {¢ € Z? | ¢(E+ Y) C O} and N, = card(X,). We define the
set of all holes with size of order ¢ contained in ) that do not touch dQ) by T, which can be

written as:
Nf NT . .
To= |J exe+T) = Je(xt+T),
xe€Xe j=1i=1

where x{; is the j-th element of X, and T! is the i-th component of T. We also use the notation ng
to describe the j-th individual periodic cell, described as &(x} + Y), and T;” to describe the i-th
component of j-th individual hole, where i € {1,2,...,Nr} and j € {1,2,..., N;}. We define

now the perforated domain as Q, = Q\ T,.

Remark 4.2.2. By the previous construction, the holes T¥' do not touch Q). Therefore, we have
0Q); = 02U IT..

We continue with the assumptions for y, u and «; (i € {1,2,3}) which are used in (4.1.1).
Assumption 4.2.3. We assume that u > 0 is a constant and that u € S' is also a constant.

Assumption 4.2.4. Let & > 0. We assume that xy, %2, k3 € C2(S!), x1(s) > &, x3(s) > a and
4(x1(s) —a) (x3(s) —a) —x3(s) > 0, for all s € S

Proposition 4.2.1. Let « and «1, k3, k3 be given by Assumption 4.2.4. Let s € 8! fixed. We denote
by fs,gs : R? — R? the functions defined as:

{fs(x,y) =R R EREr

8s(x,y) = K1(s)x* — ka(s)xy + x3(s)y?

Then fs(x,y) > a(x*> + y?) and gs(x,y) > a(x? +y?), for any (x,y) € R?, and the equality sign

is achieved only when x =y = 0.
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Proof. We have, by Assumption 4.2.4, that x1(s) > « and «3(s) > «, hence «;(s) —a > 0 and
k3(s) —a > 0. Then:

x1(8)x? + xa(s)xy + x3(s)y?
= a(x? +y%) + (k1(s) — ) x* + 12 (8)xy + (x3(s) — )y?
+

P
—~
\R
<
N—r
Il

Kz(S)

= o 2) ¢ (V) —wx) 2 (e —ax) - ()
! <2/—(<)) 4 'y>2 (0~ e %s(;)— 5) ¥

x2(s) 2 4(r(s) — @) (k3(s) — &) — 3(s)
NCOETS ) + OE B

:(x(x2+y2)+< K1(s) —a-x +

(4.2.1)

This implies that fs(x,y) > a(x? + y?), for any (x,y) € R2. Moreover, let (xg,y) € R? such
that fs(xo, o) = a(x3 + y3). Then, by (4.2.1), we must have y3 = 0, since 4(x1(s) — a) (x3(s) —
&) — x5(s) > 0. This also implies that xo = 0, since x1(s) —a > 0. For g5, the proof follows
the same steps, with the only remark that the second term from (4.2.1) is now the square of a

difference. n

Proposition 4.2.2. Under Assumption 4.2.4, one has that:
“Hqu%Z(QS) < Fe(u), Yu € H'(Q;S").
Proof. Letu € H! (Q; 81). We observe that:

u | (u-w)*dx>0.
Qe

Since for any x € (), we have curl u(x), div u(x) € R, we can write, using the same

notations as in Proposition 4.2.1:

F.(u) = /Q fu(x (curl u(x), div u(x)) dx.

By Proposition 4.2.1, for any x € ()., we have:

fux (curl u(x), div u(x)) > zx((curl u(x))2 + (div u(x))z).

At the same time, since u(x) € S!, we have:

|Vu(x)[* = (curl u(x))2 + (div u(x))z,

from which we conclude the proof. O
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Definition 4.2.3. Throughout this chapter, we use the following notations:
* Ve={uec H(QgS") : u=(1,0)onoQ};
e Vo= {uc H' (S : u=(1,0) onoQ};
e V.={p e H(Q:) : 9 =00n030};
* Ep:L%(Q) — L?(Q) the extension operator by 0 in T,.

The goal of the next paragraphs is to provide sufficient conditions such that, for a critical
point in u; € V; of F,, there exists a lifting ¢. € V; such that we can analyse the Sl-valued
homogenisation problem via a scalar homogenisation problem of the same type as in [34].

We first recall some definitions from [21]. For a given f € C(S!;S'), we construct the
function h : [0,27r] — S! defined as h(0) = f(e?). By [21, Lemma 1.1], the function & admits a
lifting ¥ € C([0,27];R), that is, h = ¢'¥. We define the degree of f as:

deg f := lP(ZT[)Z; $(0) €.
We recall that the definition of deg f does not depend on the choice of 1, by the uniqueness of
¥ (mod 277). The notion of degree can be extended for W7 (S!;S!) functions, for any p € (1, ),
by the same [21, Lemma 1.1]. Brezis and Nirenberg have extended the concept of degree also
for maps f € VMO(S!;S!), where VMO stands for the space of functions with vanishing
mean oscillations, and, as a consequence of the embedding W'/P7(S!) — VMO(S'), for any
p € (1,00), then deg f is well-defined also for W!/P#(S!;S!) functions, for any p € (1,), as
described in [21, Section 12.0]. There are various definitions of the topological degree of a
function, but, for our purposes, we only use the previous definition (this is motivated by [21,

Equations (12.23) and (12.24)], where the reader can consult more details).

Remark 4.2.3. Another way in which we can extend the concept of degree for H'/?(S';S!)
functions is the following. Let f € H!(S';S') and B, = {x € R? | |x| < r}, for any r > 0. By
a similar argument as in, for example, [18] or [19], there exists ¢ = ¢(f) > 0 and a function
¢ € H'(By \ B;_¢;S!) such that g|aB1 = f in the trace sense. Let now & : (1 —¢,1) x S! — S!
be defined as h(p,x) = g(px), for any x € S'. Then h € H'((1 —¢,1) x S!) and, by Fubini’s
theorem, we have /1(p, -) € H'(9B,) for almost any p € (1 —¢,1), hence we can define deg h(p, -).
By [21, Proposition 12.14], the function p — degh(p, -) is constant a.e. in (1 — ¢, 1). We define
this constant as degh and we introduce the degree of f as deg f = degh. Moreover, this

definition does not depend on the choice of g.

Let now U C R? be a bounded, smooth and simply connected open set. Let I' := 9U. By
the smooth Riemann mapping theorem (see, for example, [11, Theorem A and Corollary]),
there exists a diffeomorphism up to the boundary @ : U — B; with ®(I') = S!. For a given
f € HY2(T;S!), we then have f|.o® € H'/?(S!;S!), hence we define:

deg(f,T) :=deg (f o @)
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and this degree does not depend on the choice of ®. For more details, the reader can consult

[21, Subsection 12.8.5].

Definition 4.2.4. Let:
% = {ue V. : deg(u,dT) =0, Vi€ {1,2,...,Nr} and Vj € {1,2,...,Ne}},
and
G = {ueV, : Jg €V, such thatu = ¢'? a.e. in Qe }.

The following proposition shows the connection between the existence of a lifting for

functions in V, and the value of the topological degree on the boundary of each of the holes.

The proof can be found in Subsection 4.5.1 and it is based on various results from [21].
Proposition 4.2.3. We have ¢; = 6., for any ¢ > 0.
We are going to work under the following main assumption:

Assumption 4.2.5. Let 6 > 0. We assume there exists a sequence (ug)€>0 C V; of critical points
of F, described in (4.1.1), such that F,(u,) < 6, for any ¢ > 0.

Proposition 4.2.4. If 6 > 0 from Assumption 4.2.5 is small enough, then any critical point
u; € V, given by Assumption 4.2.5, satisfies u, € é; and, therefore, u, € €., for any € > 0.

The proof of Proposition 4.2.4 can be found in Subsection 4.5.1.
Remark 4.2.4. We can always choose y > 0 such that there are critical points u, € V; of F, with
F¢(u,) < é. For this, let v, € V., a minimiser for F, and let u;(x) = (1,0), for all x € Q). Then
u ’ q. € Ve Since v, is a minimiser of F,, then:

Flve) < Fewlo) =p [ ((10)-0) dx < il < e,

since u € S! and T, # @. Therefore, the conclusion follows by choosing u < & - || L.

Theorem 4.2.1 (Main result). Under Assumptions 4.2.1 to 4.2.5, if (ug) C V, is a sequence

e>0
of critical points of F, given by Assumption 4.2.5, where F; is introduced in (4.1.1), then there

exists uy € Vy a critical point of Fy, described in (4.1.4), such that, along a subsequence, still

denoted with subscript &:

for any open set w such that w C ), we have lirr(} [[ue — wol[r2(00, 81y = O (4.2.2)
E—

4.3 THE SCALAR PROBLEM

Let (ug)e>0 C V. be the sequence of critical points of F, given by Assumption 4.2.5. From

Proposition 4.2.4, there exists a sequence of functions (¢¢)e~0 C V; such that:

u(x) = (cos e(x),sin ge(x)), Vx € Q.
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Therefore, we obtain:

curl u; = cos ¢ aa(;;: + sin @, aaqog ,
div u; = —sin qog%qf: + cos (Psa(’;-

Definition 4.3.1. Let k;(t) = «;(cost,sint), for all t € Rand all i € {1,2,3}.

Remark 4.3.1. It is easy to see that k; is of class C2(R) and it is a 27-periodic function,
for any i € {1,2,3}. Moreover, by Assumption 4.2.4, we have ki(t) > «, k3(t) > a and
4(k1(t) — a)(ks(t) —a) —k5(t) > 0, for all t € R and a as in Assumption 4.2.4.

Definition 4.3.2. For any t € R, we define:

R(t) = (cost —sint) and K(f) — ( ki(t) kz(t)/2>'

sint cost kao(t)/2  ks(t)

2
Moreover, let A(t) = ( ; ) be such that, for any ¢ € IR, we have:

A(t) = R(t) - K(t) - R(~). (43.1)

Remark 4.3.2. The functions A,K : R — R**?2 and 4,b,c : R — R are 2m-periodic and of class
Cz(]R), since k1, k, k3 have these properties. Moreover, R : R — R2*2 is a smooth map with the
following properties: det(R(t)) = 1 and R™!(t) = R(—t), for all t € R.

Remark 4.3.3. By Definition 4.3.2, we have, for any ¢t € R:

a(t) = ky(t) cos®t — kp(t) costsint + ks(t) sin’¢,
b(t) =kq(t) - 2sintcost +ky(t) - (cos? t — sin? t) —ks(t) - 2sintcost,
c(t) = kq(t) sin® t + kp(t) cos t sin t + k3 (t) cos? t.

Proposition 4.3.1. We have that a(t)>a, c(t)>« and 4(a(t) — «)(c(t) — a) — b%(t) > 0, for all
t € R, where « is given by Assumption 4.2.4.

Proof. Lett € Rand s = (cost,sint) € S!. Then a(t) = gs(cost,sint) and c(t) = fs(sint,cost),
where fs and g are given by Proposition 4.2.1. Applying Proposition 4.2.1 yields:

a(t) = gs(cost,sint) > a(cos®t +sin’t) = a,
since for any ¢t € R, we have (cost,sint) # (0,0). In the same way, we have

c(t) = fs(sint,cost) > a(sin®t + cos® t) = a.
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For the last property, we see that:

(alt) — ) (e(t) — @) — ) =

det(
= det(R(t) - (K(t) — alb) - R(—t))
= det(R(t)) - det(K(t) — ally) - det(R(—t))
= det(K(t) — allp)
= () - )ks() o) - B
where we have used that I, = ((1) (1)>, R(t)R(—t) = I, det(R(t)) = det(R(—t)) =1, for all
t € R and Remark 4.3.1. O

Let

Fe(@e) = Fe((cos @¢, sin @) ) = Fe(ug).

Moreover, since u € S! is constant, by Assumption 4.2.3, let € R such that u = (cos @, sin ).

Then, we can write F; : V, — [0, +00) as:

29\’ 99 0 99\’
R(o) = [ oo (52) + @305 +cl) (52) dxrn [ cof (p—) ar
or (4.3.2)

Fe(qv)z/Q A(p)Ve-Vo dxw/n cos® (¢e — @) dx,

for any ¢ € V.
We prove in Subsection 4.5.6 that if u; € V; is a critical point of F, then ¢, € V; is a critical

point of F.. This implies that ¢ solves the following Euler-Lagrange equation:

a(Pe / 3§0e a(Pe a _
[ (s (00 (2) 400 20 g0 (W) Y- [ sin oo~ 7))y dxt
99e Y Ipe 0P g O dpe DY
+2/(2£a((Pg) 3% O + b( e )<8 3y + 3y ox +c(@e) =— 3y 3y dx=0, Vyp €V,
which can be rewritten as:
/Q A(@e)Vee - Vi + = ( "(@e) Ve - Voo gbdx—/ sm )1,0 dx =0, Yy € V..

(4-3-3)

Using the integration by parts formula, we get:

[ ot gt ac—= [ (a3 Jpaxt [ (ato) 5 v-e) )y,

125



126 HOMOGENISED ELASTIC TERMS FOR AN OSEEN-FRANK TYPE OF ENERGY IN ]RZ

hence

99,09 %, Py = [ (a2
/an((Pg) a ax +a (€D€)< ) lp+a((P€) a 2 110 dX - a0, (GD'S) a (V el) 110 dU'. (434)
Definition 4.3.3. We denote by L : H!(Q)) — H~1(Q) the following differential operator:

0? 0? 0?
Ly = alg) 55+ M@)5 0. +<(@)5 5

for any ¢ € H'(Q)).

By computing in the similar fashion for the other components from (4.3.3) as in (4.3.4), by
adding them together and by using the fact that since 0Q); = dQ U JdT; and ¢ € V; implies
¢ = 0 on 0(), we obtain:

/Q A(@e)V e - Vi + (A/((pg)Vng : V¢8)1P+L(/’e P dx:/a (A(G”E)V(Ps ) V)lp do.  (4.3.5)

€

Remark 4.3.4. We have:
div(A(pe)Ve) = A/((PE)V(Pe Ve + Lope.

Combining now (4.3.3), (4.3.5) and Remark 4.3.4, we obtain:

/ (div(A(pe) Voe)) 9 dx:/ (—1A (9c)V e - Ve + Vsm(Z(fPe—qt))))tpder (4-3-6)

€ €

+ /an (A(ge) Ve -v)yp do (4-3.7)

Definition 4.3.4. Let B, % : R x R?> — R be defined as B(t,&) = —%A’(t)é -¢ and

B(t,C)=—--A'(t)- C—I—fsm (2t — 29),
forallt € R and & € R?.
Remark 4.3.5. Using Remark 4.3.4, Definition 4.3.3 and Definition 4.3.4, we have:
div(A(@e)Vee) = Lo —2B(@c, V).

We can write now (4.3.6) as:

[ (div(A(9) Vo~ #(9. Vo) )y dx = | (Alp)Voe-v)pdo, e,

€ €
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so ¢, solves:

A(@e)Vepe-v=0 on 97T,
Qe = 0 on d(),

which is the same form presented in the introduction of this chapter, that is, (4.1.2).
We now present some properties of A, B and %, whose proofs can be found in Subsec-

tion 4.5.2.
Proposition 4.3.2. The function A : R — R?*? has the following properties:
(1) A is a 27-periodic C?(R) function;
(2) we have
A(DE- > algf, VE € R? VEER, (43.8)
where « is given by Assumption 4.2.4;

(3) there exists a constant C;(A) > 0, depending only on the L*(IR) norms of 4, b and ¢,
such that

|A(1E| < Ci(A)JE], VE € R?, Yt €R; (4-3.9)

(4) there exists a constant C;(A’) > 0, depending only on the L*(R) norms of 4/, b’ and ¢/,
such that

|A'(£)E] < C2(A)IE], ¥ € R?, Yt € R (4.3.10)
and

|(A(t) — A(s))Z| < Ca(A') - |t —s| ||, VE € R?, Vs, t €R; (4.3.11)

(5) there exists a constant C3(A”) > 0, depending only on the L*(IR) norms of a”, b" and ¢”,
such that

[(A'(t) — A'(s))¢| < C3(A")-|t—s|-|g], VE € R? Vs, t €R (4.3.12)
and

’(A(t)_A(S) _ A’(t))@" < C3(A")-|t—s|-|E|, VE € R?, Vs, t € R, s #t.  (4.3.13)

t—s

Proposition 4.3.3. The function % : R x R?> — R, defined in Definition 4.3.4, has the following
properties:
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(1) there exists a continuous increasing function d; : [0, +00) — [0, +00) such that d;(0) > 0

and

((t,8) — ()| < di([e) L+ 2]+ [7)|E — ], V&7 € B2, Vi € R;

(2) there exists a continuous increasing function d5 : [0, +00) — [0, +c0) such that d»(0) =0

and

|(t,8) — #(s,0)| < da(|t —s)(1+[¢[), V& € R?, Vs,t € R.

Remark 4.3.6. We are now under the hypothesis from [34]. In [33, Theorem 9.1], the authors

prove that there exists an e-independent constant C > 0 such that:
IV@elli20) < C and [[¢cl[1=(q,) < C.

We now move our attention to the cell problem and the homogenised matrix Ag for the

scalar problem. We proceed in the same fashion as in [34]:

Definition 4.3.5. For any fixed t € R, we define the homogenised matrix Ao(t) as:

Ao(t)¢ = Y\TA(t)(C— Vxe(x)) dx,

where ¢ € R? and x¢ is the unique solution of the following:

—div(A(t)Vxe) =0 inY\T

At)(E—Vxe)-v=0 ondT

X¢ is Y-periodic (4.3.14)

/ Xxe(x) dx = 0.
LI\ T

Remark 4.3.7. The existence of solutions x:(-,t) € H'(Y \ T) which are Y-periodic and with

zero average over Y \ T is studied in Subsection 4.5.3. We also prove there that the operator
t — xg(+,t) is continuous and Fréchet differentiable on RR. The differentiability of this operator

will become very useful for the proof of Proposition 4.3.6.

Definition 4.3.6. Let a, by, co, dp : R — R be the components of the homogenised matrix Ay,
that is, for any t € IR, we have:

N Elo(t) bo(t)
A“”‘(c@(t) do<t>>'

Remark 4.3.8. For { = e; = (1,0) and { = e> = (0, 1), we denote the respective xz functions as
X1 and xo.

Proposition 4.3.4. For any ¢ = (&1,02) € IR?, one has that Xe = Cix1 + &axo.



4.3 THE SCALAR PROBLEM

Proof. The proof is immediate, due to the linearity of the cell problem. O

Definition 4.3.7. For any t € R, we introduce the corrector C¢(-,t) € R**? as:

1 ox ox
Cé(x,t) = C(Sx,t), where C(x,t) = , VxeY\T.
Ix1 Ix2
W( 1)1 @( /1)

Proposition 4.3.5. For any t € R and ¢ € R?, one has that C(-,£) =& — Vxe (-, t)in Y\ T.
Proof. The proof is immediate due to Proposition 4.3.4. O

We have now presented all the notations and requirements such that we are able to apply

[34, Theorem 2.1] to our case and obtain that:

Theorem 4.3.1. There exists a subsequence of (gog)DO, still denoted with subscript ¢, a function
@o € HY(Q) NL®(Q) and a Carathéodory function % : R x R?> — R such that:

(i) Eope — Oppo weakly in L2(Q) and weakly* in L®(Q)),
(ii) Eo(#(9e, Ve) ) = Zo(go, Vo) in D'(Q)

where 6 is defined in Definition 4.2.1 and Eyp in Definition 4.2.3. The function ¢y is a solution

of the following problem:

—div(Ao(90) Vo) = Zo(¢o, Vo) inQ
@ =0 on 0Q)

which is exactly (4.1.3), where Ay is introduced in Definition 4.3.5 and the function % is given
by:

Z(t8) = [ B,Cu1E) dx

Y\T

for any (t,&) € R x IR?, where the corrector C(-, t) is introduced in Definition 4.3.7. Moreover
—div(A(Eo(pg)Engog) — —div(A(9o) Vo) strongly in H™1(Q).

In Subsection 4.5.4, the reader can find the proof of the following proposition:
Proposition 4.3.6. For any (t,¢) € R x R?, we have that:

By(t, &) = —%Aé(t)é . §+907V sin(2t — 2¢),

where 0y denotes the volume fraction and it is described in Definition 4.2.1.

Let us now introduce the following definition, based on Definition 4.3.6:
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Definition 4.3.8. We denote by Lo : H'(Q)) — H1(Q) the following differential operator:

02 92 92
Log = ao(9) 5.5+ (bole) +co(9) 5 o0 +dol@) 5.5, Vo € H'(Q).

We recall now at the beginning we started with ¢, being a critical point of F.. Then, when
deriving the PDE that ¢, solves, we have made Remark 4.3.5, which gave us a connection
between B and L, introduced in Definition 4.3.4 and Definition 4.3.3. Proposition 4.3.6 gives us

the same equation:

div(Ao(90)V@0) = Logo — (2%0(t,&) — fopesin(2(po — 7)) ),
which is the key for the next corollary.

Corollary 4.3.1. The function ¢y, given by Theorem 4.3.1, is a critical point of the following

energy functional:

2 2
o) = o) (52) + tolo) +aale) 525 + dolp) (52 ) +ouncos? (9 7) .

(4.3.15)

We would like, before proving the main result of this chapter, to describe the technique to

generate the energy functional for the S'-valued problem. First of all, let us recall (4.3.1):
A(t) = R(H)K(t)R(—t), Vt € R.
In order to obtain the homogenised matrix Ky, we should use the same relation as before.
Definition 4.3.9. We define the homogenised matrix Ko : R — R?*? as
Ko(t) := R(—t)Ap(t)R(t), Vt € R,

where R is introduced in Definition 4.3.2 and Ay in Definition 4.3.5. We denote the components
of Ky as k(l), kgl, kgz, kg : R — R, that is:

A 80
Kalt) = <k§z<t> 1521<t>> TR

Let x], x5, %5 : S! — R be such that, for any t € R, we have:

x5 (cost,sint) = kJ(t), x3(cost,sint) = k3, (t) + k,(t) and x(cost,sint) = k3(¢t).

The proof of the following proposition that describes the connection between the initial

matrix of elastic coefficients, K, and the homogenised one, Ky, can be found in Subsection 4.5.5.



4.4 PROOF OF THE MAIN RESULT
Proposition 4.3.7. One has that Ko(t) = K(t) - Co(t), where

Co(t) = R(—1) - ( Y\TC(x,t) dx> “R(t), Vt € R.

4.4 PROOF OF THE MAIN RESULT

We now prove the main result of this chapter.

Proof of Theorem 4.2.1. Let ug = (cos ¢o, sin ¢p), where ¢y is given by Theorem 4.3.1. Since
@0 € H}(QY), then ug € V,.
Since ¢y is a critical point of (4.3.15), then, using Definition 4.3.9, one could prove, by a

similar argument as in Subsection 4.5.6, that ug € V is a critical point of:

Fo(ug) = / x7 (up) (curl u())2 + x5 (ug) (curl o) (div up) + x3 (uo) (div uo)zdx-i-
0
+/90y(u0 -ﬁ)z dx,
0

where «7, 5 and 3 are introduced in Definition 4.3.9.

We prove now (4.2.2). By [33, Theorem 9.1], we have that (q)E)DO is uniformly bounded

in H'(Q,), with the constant independent of ¢ (as previously mentioned in Remark 4.3.6).

By Theorem 4.3.1, there exists a subsequence, with subscript still denoted by ¢, such that
Eoge — Oppo weakly in L?(Q)). Then this subsequence is uniformly bounded in H'(Q)) with

the same e-independent constant, hence, by [5, Lemma 2.3], there exists a sub-subsequence, with

subscript still denoted by ¢, and a function ¢y € L?(Q)) such that Eqpe — 6p¢p weakly in L?(Q)).

By the uniqueness of weak limits, we have ¢y = ¢g. Moreover, by the same lemma, (Eo qog)€>0 is

“compact” in the following sense: for any sequence . € L2(Q)) such that Egipe — 6oty weakly
in L2(Q) and for any function ¢ € D(Q)), we have:

/ (qugl[Jg dx — / 904)(p01[)0 dx.
Q, Q
By [5, Remark 2.4], we also have that:

| pe — §00”L2(ngw) —0

as ¢ — 0 for any open set w satisfying w C Q).

Since cosine is a Lipschitz function with constant 1, we have:

2 2
OSHCOSQOg—COSgO()H%z(ngU):/Qﬁ | cos ¢ — cos ¢y dxg/(m | e — @o|” dx — 0,
el 1w eMw
hence

|| cos e — cos @o | 12(0nw) — 0 ase— 0
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and, in a similar fashion:
| sin e — sin @o|| 12(, ) —> 0 @s e — 0.
Since u; = (cos @, sin @) and ug = ( cos o, sin ¢y ), we obtain:
[[ue — woll12(00, sty — 0 as e = 0,

for any open set w such that w C Q. O

4.5 APPENDIX

4.5.1 PROOFS FOR THE GENERAL ASSUMPTIONS SECTION
In this subsection, we use the following notations. Let r, 71,72 > 0 be three real positive numbers
such that 7y < rp. Then:

* B, represents the ball of radius r in IR?, that is, the set {x € R? | |x| < r};

* 0B, represents the circle of radius r in R?, that is, the set {x € R? | |x| =r};

o A, , represents the two dimensional annulus with radii r and R given by A,, ;,, = By, \ By,.
Proof of Proposition 4.2.3. Let us remark first that since TV is a compact, smooth and simply
connected set, for any i € {1,2,...,Nr} and for any j € {1,2,..., N;}, then by the smooth Rie-
mann mapping theorem, there exists a diffeomorphism that transforms T.’ into By. Therefore,
we can assume w.l.o.g. that 9T;” is S'.

Let us prove first that 4, C %.. Let u € %.. Since u € V,, then lI|aTi,j € Hl/z(aTé’j; 81).
Applying [21, Proposition 12.2], we have that:

deg(u,aTé’j) =0 & JEuc Hl(Tgi'j; S!) such that EYu = u on 9T/,
Therefore, we can extend the function u € H!(Q);S!) to a function Ecu € H'(Q;S!), where

u(x), if x € Qe

Ecu(x) =< .
E/u(x), ifxec T/, Vi, j.

Since () is a bounded, smooth and simply connected domain from R?, using [21, Corollary
5.1, there exists a function ¢ € H'(Q) such that:

Ecu(x) = (cos(@(x)),sin(¢(x))), Vx € Q.
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Let us denote by Tryq : H!(Q);S!) — HY 2(90); S') the trace operator. Since u € V,, then
Trapqu = (1,0), hence TrynE.u = (1,0). But this implies that:

(1,0) = Tran ( cos ¢, sin @).

This implies that qo‘aﬂ € H'2(00);27tZ). We recall here that since Q) is a bounded, smooth
and simply connected open set in IR?, then, by the smooth Riemann mapping theorem, 9Q) can
be identified with S! by a diffeomorphism. In this case, we apply [21, Corollary 6.2] and we
obtain that the only functions from H'/?(9Q);27tZ) are constants. Hence, there exists a constant
m € 2nZ such that ¢| 5o = m on d€). Therefore, there exists ¢:= ¢ — m which is in V, (we have
$|, = Paa —m = 0) such that u = (cos ¢, sin ¢) in Q. Therefore, u € Ge.

Let us prove now that 6. C €. Letu € € and ¢ € V; such that u = e? a.e. in Q..

Since ¢ is a real-valued function, we can extend ¢ to a function E.¢ € H}(Q) by using, for
example, the harmonic extension operator in each of the holes. Therefore, there exists an
extension E; : H'(Q;S!) — H!(();S!) such that Ecu = u in Q.. This implies that we can
extend u‘aTé‘,,‘ e HY Z(aT;"f ;S1) in each of the holes Tgi’j . Using once again [21, Proposition 12.2],

we obtain that deg(u,aTgi’j ) =0, for any i, j, hence u € €. O
We present now the following auxiliary result:

Lemma 4.5.1. Let 0 < r; < rp and u € H!(A,,,,;S!). Then the following inequality holds:

27 - | deg(u,dB,,)|*- ln<:2> < / |Vul|? dx.
1

rl/rz

Proof. Letv: (ry,r2) x [0,271] — S! such that

v(p,6) = u(pe?).

Let us prove first that there exists a lifting for v. Since u € H'(A,, ,,;S'), then v € H'((r,72) X
(0,277);S'). We know that (r1,72) x (0,277) is a bounded, open and simply connected set in IR?,
but it is not smooth, hence we can not apply, for example, [21, Corollary 5.1]. However, by [52,
Remark 2], there exists A, : R? — R? a bi-Lipschitz transformation in that maps the unit ball
into (0,1)2. We can transform (r1,72) x (0,27) in a smooth way into (0,1)? and we denote this
diffeomorphism by ®. Then v o q;al : (0,1)2 — Sl and, hence, v := v o @51 oAy : By — Sl
Since @ is a diffeomorphism and A; is a bi-Lipschitz transformation, then we have that
v € H'(By;S!). Now By is a bounded, smooth and simply connected domain in R? so, by
[21, Corollary 5.1], there exists a lifting ¢ € Hl(Bl;IR) such that v = ¢/?. We define now
@ : (r1,12) x (0,271) = Ras ¢ = go A, o ®p and we see that ¢ € H'((r1,72) x (0,27)) such

that v = ¢!?. Hence, we can write:

v(p,0) = (cos ¢(p,0),sin ¢(p,0)).
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By the same arguments from Remark 4.2.3, we actually have:

,27T) — ,0
deg (u,9B,,) = (o )Zn 9. 0)

where the right hand side is a constant from Z (by using, for example, [21, Proposition 12.14]).

Using now the chain rule and the polar change of variables, we have:

2

27 ov
/A,l, ‘Vu‘ dx-/ / < |30 )pd@dp
27
/ / a—v do dp =
27 2
_ -1|9¢
_/n /0 0 89‘ de dp,

where we have used that v(p,0) = (cos ¢(p,0),sin ¢(p,0)). By using Holder inequality, we

T 2
/ \vu}zdx>/2p—1.1 799 4 dp =
A ) B 71 27-[ O 89

1,
1 [

— 2
=5 ), 0 lele 27 — 9o, 0 dp =

get:

2 [
=27 - |deg(u,8Br1)‘ / p—l dp =

=27 | deg(u,&Brl)‘ ln<r2>.
"

O]

In the following paragraphs, we want to construct a neighbourhood Pé’j of each hole Té’j
contained in ), and a diffeomorphism i . Pé’j — Agpe with the determinant of its Jacobian
bounded by an e-independent constant.

For this, let us recall first that T’ represents the i-th component of T and, by assumption
Assumption 4.2.2, T! is a compact, bounded, smooth and simply connected set in R2. By
the tubular neighbourhood theorem (see, for example, [56, Theorem 6.17]), there exists a
neighbourhood U’ of 9T’ such that it is diffeomorphic with (—1,1) x S'. If we denote by @' :
(—1,1) x S! — U’ the diffeomorphism given by the tubular neighbourhood theorem, we also
have ®(0,S!) = 9T'. At the same time, we can choose r; > 1, for any i € {1,2,...,Nr}, such
that ®1((0,1/r;,) x S) N®2((0,1/r;,) x S) = @, for any iy,i> € {1,2,..., Ny} with iy = i,.
More simply said, we can choose restrictions of ®' such that the neighbourhoods of dT' that lie
in Y (the unit periodic cell, that is (0,1)?) are mutually disjoint. Let P' = ®((0,1/r;) x S!).

Let now @ : Ajp — (0,1) x S! be defined as ®(x) = (|x| — 1,x). We define ¥' : A;, — P
as ¥’ := ® o ® and it is easy to see that ¥’ is a diffeomorphism that transforms Aj 5 into P'.

We consider now the following notation. For any j € {1,2,...,N;} (j is an index for the

number of periodic cells constructed in (), we denote by 7; : R* — R? the following smooth
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map: T]'(X) =x-+ xé, where x{; is the center of the j-th periodic cell. Moreover, let ®; : R? — R?
the following smooth contraction: ®,(x) = ex.

By the previously introduced notations, we construct Pgi’j = ;0 1']-(Pi), for any i €
{1,2,...,Nr} and any j € {1,2,...,N.}. It is easy to see that Pgi’j is a neighbourhood of

8Té’j that is contained in ).. We now prove the following proposition.

Proposition 4.5.1. Leti € {1,2,...,N7r} and j € {1,2,..., N:}. We define ¥/ : A, — Pé'j as
IIIi/j(x) = ((‘I)S o Tjo ‘Fi o q);l) (X), Vx € A€,2£-

Then ¥/ is a diffeomorphism such that det]; ; can be bounded from above by an ¢-independent

constant, where J; ; is the Jacobian of Yij, Moreover, we have ¥/ (0Be) = a:r;"f .

Proof. Since ®; is a smooth contraction over R?, Tj is a translation with a constant over R? and
Yiisa diffeomorphism, then YiJj is also a diffeomorphism.

Let x € 0B,. Then ®;!(x) € 9By, which implies that Yo ®;!(x) € OT'. Applying now T;
and ®., we obtain that ¥*/(x) € 9T,”.

At the same time, we have det]p, = €2, det Jg =1 and det]q);] = ¢72. Since ¥ was defined
e-independent, the proof is complete. Moreover, the previous computations show us that

textdet]; ; does not depend on j. O

Proof of Proposition 4.2.4. Let 6 > 0 and ue € V; be a critical point of F,, given by Assump-
tion 4.2.5, such that F¢(u,) < 6.

Since u, € H'(Q;S'), then u|. i € Hl/z(aTé’j;Sl) and u,| ;; € Hl(Pgi’j;Sl).

‘BTS ’Ps

pii o ¥, for anyi€ {1,2,...,Nr}and anyj € {1,2,...,N;}. Using

Proposition 4.5.1, we obtain that u? € H! (A2 St) and that:

Let us define u/ := u

deg(ug,aTgi’j) = deg(ué’j,aBS). (4.5.1)

We now apply Lemma 4.5.1 to u? on Ag e and we obtain:

27 - ‘deg(ui’j,aBa)f.ln% S/ }Vui'jlz dx.
Ae,Zs

Using now the change of variables Y%/ and the fact that the determinant of its Jacobian can be

bounded from above by an e-independent constant, let us say ¢; > 0, we obtain that:
27T - ‘ deg(u,g,ailﬂé’jﬂ2 In2<Y;- /-; |Vu6|2 dx,
pY

where we have also used (4.5.1).
Since the family any two P and P are mutually disjoint whenever i; # iy, then, by our

construction, also any two sets of the type P;’ are mutually disjoint. Moreover, since P;” is
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contained in ()., we obtain that U UNE P” C Q.. By denoting ¢ = max{/y,{2,...,{Nn, }, we
obtain:

Nr N

2mT-In2- ZZ]deg ug,aT] §£-/ ‘Vug‘z dx.
i= 1] Qs

Using Proposition 4.2.2, one has:
DCHVHEH%Z(QS < Fe(ug) <9

and therefore

Nt N; /
L L |degluedTN]" < oy 0

We recall now that deg(u,, E)Tsi’j ) € Z, for any i, j. Hence, for § > 0 small enough, we have:
deg(u,,dT.") =0, Vi € {1,2,...,Nr} and Vj € {1,2,...,N.},

which implies that u, € <., by Proposition 4.2.3. O

4.5.2 PROOFS FOR THE PROPERTIES OF A AND %A

This subsection contains the proofs of Proposition 4.3.2 and Proposition 4.3.3.

Proof of Proposition 4.3.2. (1) Since 4, b and ¢ are 27t-periodic functions of class C?(R), then A
has the same properties.

(2) For this, we use Proposition 4.3.1 and we proceed in a similar fashion as in Proposi-
tion 4.2.1. Let & € R? and t € R. Then:

A(H)E-E =a(t)& + b(t)E182 + c(H) &
= a|¢]* + (a(t) — a)&F + b(t)E182 + (c(t) — )3

2
=l ( “(”“’"@'l+zf<(:>)—a-éz> | () ) (e() — 1) ~1(1)

hence

A(DE-E > af¢*, VEER?, Vt€R.

(3) Let t € R and & € R?. Then:

|A(t)E)? = (a(£)& +0 t)52/2)2+ (b(t)'§1/2+c(t)(§2)2
= (a®(t) + b*(£) /4) 3T+ b(t) (a(t) +c(£)) G182 + (P (t) + b*() /4) &



4.5 APPENDIX
Since 2818 < &2 + &2, for any ¢ € R?, we can write:
JA(DE? < (a®(t) +b2(t)/4) &% + [b(t)|(a(t) +c(1)) (6T +E3) /2 + (P(1) + b*(t) /4) &3,
which implies
|A(1)E? < CFA)IGI,

where C;(A) can be chosen such that:

CH(A) = l|al| gy + 1B/ () /2 4 €l () + 1Bl () (1] o) + llellio(m))-

(4) Let t,s € R and ¢ € R?. Then:

|
alt) — a())& + (b(0) — b(s)&2/2) + ((0(8) — ()@ /2+ (e(t) — e(s))22)
)+ (b(5) = b(s))/4) @ + ((e(t) = () + (b(t) = b(5))*/4) &
+ (b(t) = b(5)) ((a() = a(s)) + (e(t) = c(s)) ) eada+
< (12" 1o gry + 10Ty 74) - 1t =51+ 61 + + (I [Fory + 16 1o (ry/4) - |t =51 G5+
A 16| o) (10 [ 1o ) + € 1o (wy) - 1E— 8- (83 4+ 85) /2 =

= [(aw) — A < c3a)-Je—sp- i,

where C;(A’) can be chosen such that:

C3(A") = [la'Foqm) + 11y /2 + 1€ oy + 18Nl zow ) (118 o) + 1€ Nl )-

For (4.3.10), one could mimic the arguments from proving (4.3.9) in order to obtain the

same constant C»(A’), since C1(A) and C»(A’) both have the same form, but one is depending
on a, b and c, while the other on a4/, ' and ¢’.

(5) By taking

C3(A") = lla" | Ty + 10" 1Ty /2 + " ooy + 10" o) (Nl [l oy + 1€ i), (4-5-2)

one can apply the same arguments from the proof of (4.3.11) in order to prove (4.3.12).

Since a € C! (R), for any t,s € R, with s # t, there exists, by the mean value theorem, a
point ps; between s and ¢ (either the interval (s, t) or the interval (¢,s)) such that:

a(t) —a(s) = d'(psp) - (t —s).
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At the same time, ' € C'(R), hence, by the mean value theorem, there exists gs; between ¢

and p;; such that:
a'(psp) —a'(t) = a"(qss) - (t = psyp),

which translates into

a(t) —a(s)

t—s - lll(t) = a//(qs,t) : (t — ps,t)-

Since p;; is between s and ¢, then |t — ps¢| < |t — s|. This implies that:

a(t) —a(s)

=2 ()] < 1o )=l < e gy = 453)

By deriving the same inequalities as in (4.5.3) for b and ¢, we then obtain:

(M2 ) -
(4= o) 5 (MG v}
N e ) )

_ ((au)t —alo) _a,(t)>2+ Lll(b(ti —ie) b,(t))2> 24
(

n <b(’f)_b(5) _ b’(t)) (‘”)_”(5) —d(n+ D) C’(f)>€1éz+

t—s

F(H(MOZED ) s () )

1
< (10 oy + 10 e ) 1= 5P+

Nihasy
2

t—s t—s

6 ey - (1" ey + e [y ) [t — s+

1
(316 By + 1 By ) -3 =P
< C(A") - g - [t —sP,
where C3(A”) is introduced in (4.5.2), which implies (4.3.13). O

Proof of Proposition 4.3.3. (1) Lett € R and &, 1 € R2. Then:

2:[B(t, ) — Bty =|—-A(H)E- T+ Aty -7
=[-A' (- ¢+A G- —ABE-n+A ()7l
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SO

2|%2(t,¢) — B(t,n)| < |A(H)G- (& —m)|+ A ()& —n) -1
< |AY(BE] - 1& =l + [A ()& = )] - []
< C(A") - [2] - 18 =l + C2(A") - 1S =l - [n|
< C(A) - (IE1+1n]) - 18 =nl < Co(AT) - (L+ (2] + [9]) - 1E =7l

We choose di(-) = %CQ(A,) and conclude the proof for the first part.
(2) Let s,t € R and & € IR?2. We have:

2|8(1,8) — B(s,8)| = |(A'(s) — A'(1)E - E—p(sin(2t — 2§) — sin(2s — 27)) |
< |(A'(s) = A'(1)E] - |§|+u!sm 2t - 2) —sin(2s — 29)|

< C3(A") - [t —s|- 151 +2p- [t — s

< (Ca(A") +2p) - [t —s|- (1+12]%),

where we have used (4.3.12).

We choose da (|t —s|) = = (C3(A”) + 2u) - |t — s| and we conclude the proof. O

N =

4.5.3 PROPERTIES OF THE CELL PROBLEM

Let us fix ¢ € R2. In the following paragraphs, we are interested in studying the dependency
between the parameters A(t), given by Definition 4.3.2, and the solutions x¢(-, f) given by the

cell problem:

2 2
a(t)aaxf(x,t) + b(f)gx)ac;(x,t) +c(t)aa;‘¢( £)=0 inY\T

(1) (= Vxe(x,t)) - v=0 on 0T

(4.5.4)
X¢ is Y-periodic

0= /Y\Txg(x,t) dx = (xe(-1)) -

Remark 4.5.1. On dT we impose a nonhomogeneous Neumann boundary condition that should
be understood in the same way as in [35, Section 4.5]. To be more specific, since t € R and
¢ € R? are fixed, we have div(A(t)Vxz) = 0in Y\ T. At the same time, we look for solutions

Xz in a subspace of H'(Y \ T), to be described later on, so we have A(f)Vyxz € (L*(Y\ T))Z.

This implies that

A()Vxe € H(Y\T; div) := {v e (I3(Y\T))? : divve I2(Y\T)}
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By [35, Proposition 3.47], we obtain that A(t)Vxz -v € H"1/2(dT U9Y). Then, by saying that
A(t)Vxg-v = A(t)¢ - v on 9T we mean:

< A()Vxe-v, > H-1/2(3T),H1/2(3T) = < A -v, ¢ > H-1/2(3T),H\/2(3T) Vi € H1/2(8T),

that is,

<AB)VXe v, >pa27),meen) = /aT (A(H)E-v)p do, v € H/2(IT),

since for any t € R and any & € R, we have A(t)¢-v € L2(3T).

Remark 4.5.2. On dY we impose a periodicity condition, that should be understood in the
following sense. First, let C3°(Y) the subset of C*(IR?) of Y-periodic functions. We then consider
CZ (Y \ T) the subset of Ci°(Y) obtained by a restriction on Y \ T. We then define Héer(Y \T)
the closure of C(Y \ T) for the H' norm.

Definition 4.5.1. We define:

HI(Y\T) = {Xengr(Y\T) (g = /Y\TX(X) dx:O}.

We also recall the Poincaré-Wirtinger inequality for the bounded connected open set Y \ T
with Lipschitz boundary and H}(Y \ T) functions:

Proposition 4.5.2. There exists a constant Cp(Y) > 0 such that:

X[z < CeONDIVAll20n 1)/
forall y € HY(Y\T).

The following proposition is a consequence of [53, Theorem 1.5.1.10], since 0Y and 9dT are
Lipschitz:

Proposition 4.5.3. Let Tr : H' (Y \ T) — H'/2(dY U9T) be the Sobolev trace operator. Then
there exists a constant C(Y \ T) such that

ITe(X) l2er\ 1)) < Crr(Y'\ T)HX”Hl(Y\T)r Vx e H(Y\T).
We now prove the following auxiliary result.

Lemma 4.5.2. Let t € R be fixed.
i) For any x, ¢ € Hj(Y \ T) such that div(A(t)Vx) € L?(Y \ T)?, we have:

< AVX VY >prgay), 2 ay) = 0. (4.5-5)

1 We assume this condition such that (4.5.5) has the sense from Remark 4.5.1
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ii) For any x, X, ¥ € Hi(Y \ T) such that
div(A(H)Vx+ A (H)Vx) € L*(Y\ T),
we have

< (A(t)VX + A,(t)vx) V, Y >p-120y),H12(0y) = 0. (4.5.6)

Proof. Let us fix t € R.
i) We prove first (4.5.5) for C°(Y \ T) functions. Hence, we assume x, ¢ € C3*(Y\ T). In
this case, we have (A(t)Vyx -v) € L?(9Y), hence:

<AMHVx-v, ¢ > H-1/2(3Y), HI/2(9Y) = /a (A(t)VX(x) v)l,b(x) do

Since x is Y-periodic and smooth, then &a)); and ‘ZX are smooth and 1-periodic. Since ¢ is also

assumed to be Y-periodic, (4.5.5) follows for this case.
Let us leave xy € C3(Y \ T) and let us assume now that ¢ € H}(Y \ T). Then, there exists a
sequence () -, C C°(Y'\ T) such that

n — ¥ strongly in Hy(Y\ T) as n — —+co.
Since the trace operator defined in Proposition 4.5.3 is continuous, we have:

Em |[§ = Wu| 1725y, = 0. (4.5.7)

n—+o00

At the same time, we still have (A(t)Vx - v) € L*(9Y), hence:

‘ <AMBOVX -V >hoanpy),me@ey) ‘ = '/BY (A(H)Vx(x)-v)p(x) do

/BY (A(t)v?((x) -1/) (1[J(x) — Pu(x) + ¢n(x)) do

<

/ (A(H)Vx - v)p, do
ay

+‘/BY (A VX -v)(§ = u) do
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Using (4.5.5) for x and ¢, we obtain:

<AMGVX -V, >h00y), 02 0Y) ‘ < ’/ay (AOVX V) (Y — pu) do

< (/BY }A(t)Vx-v\z d0)2</ay | —1,0\2 da>

) 2
< ([, 10V vP ao) =l

1/2

Since t and x are fixed, using (4.5.7), we obtain (4.5.5) also for the pair x € C°(Y \ T) and
Y € Hy(Y\T).

We assume now that x € H}(Y \ T) such that div(A(+)Vx) € L2(Y\ T) and ¢ € H} (Y \ T).
By the construction of Hy (Y \ T), there exists a sequence (x,) C C°(Y \ T) such that x, — x
strongly in H; (Y \ T), which implies:

Vxn — Vy strongly in L*(Y'\ T).

We recall that by our choice of x, we have, in the same fashion as in Remark 4.5.1, A(f)Vx €
H(Y \ T;div). At the same time, we also have A(t)Vx, € H(Y \ T;div). Using [35, Proposition
3.47], the map

ve H(Y\T;div) = v-ve H 2@y uar)

is linear and continuous. Thus:

;}g{}o HA(t) (VXH - VX) ’ VHH—I/Z(ay) =0. (458)
We recall here that:
V- vlig-2py) = sup HIPH;I}/Z(BY) / (v-v)y do|.
H1/2(3Y)\{0} Y

Since for any ¢ € Hi(Y \ T), we have y|, € H'2(9Y), then, by the previously proved
equalities:

HA(t)vXn 'VHH—I/Z(ay) =0. (4.5.9)

Combining now (4.5.8) and (4.5.9), we conclude the proof.

ii) We proceed in a similar fashion as for i). It is easy to see that if we assume that x, ¥ and
P are in C3°(Y \ T), then (4.5.6) holds, by a similar argument as in the proof of i) for smooth
functions.

For the case x,x € C3°(Y\ T) and ¢ € Hi(Y \ T), the same argument as in the case of i)
applies.
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Let now x, X, ¢ € Hy(Y\ T) and (x) (Xn),~, such that:

n>1’
Xn — x and X, — X strongly in H} (Y \ T),
which implies that
A()Vx, + A'()Vxu — A(t)Vx + A'(£)V strongly in (L2(Y\ T))®.
Once again, due to our choices of x, xu, X, X,,» we have:
(AT +A'(Bx) v, (AT, + A (D) -v € H ().

Using [35, Proposition 3.47], we obtain:

lim H (A(t)Xn + A'(f)?(n) ’ VHH*UZ(BY) = H (A(f)XJr A,(t))o ’ 1/HH*VZ(BY)I

n—o00

where we observe that the sequence under the limit is constant 0, since (4.5.6) holds for x,, X»
and any ¢ € HY (Y \ T). O

The variational formulation of (4.1.2) is the following:

/Y\TA(t)VXf; -V dx = < A(t)Vxe v, Y >pan@yoar),m2@yoar),

for any i € Hi(Y \ T) and we recall that the right hand side is well defined, by the trace

operator defined in Proposition 4.5.3. By Lemma 4.5.2 and Remark 4.5.1, we obtain that:

/ A(H)Vxe - Vi dx = / (A(DE-v)y do, Yy € HY(Y\ T). (4.5.10)
Y\T T

Definition 4.5.2. Let ¢ € R? be fixed. We define &/ : R x H}(Y\ T) x HY(Y\ T) — R and
f:RxHYY\T)— R as follows:

A3, 9) = /Y\TA(t)VX -V dx
and
flby) = [ (ame-v)pdo (45.17)

We recall that, for any ¢t € R and any ¢ € R?, we have (A(t)¢ -v) € L?(9T) and, for any
p € HY(Y\T), ¢|,, € HY2(9T), so (4.5.11) is well defined.

Proposition 4.5.4. For any ¢ € R, there exists a unique solution th € HY(Y\T) of (4.5.4).
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Proof. We first prove that, for any t € R, 4/(t,-,-) is a continuous coercive bilinear form on
Hi(Y\ T) and that f(t,-) is a bounded linear functional on Hj(Y \ T). The continuity of
4 (t,-,-) is given by:

exw]< [ 1405 [Tylacs ([ 140K dx)m( [ 1vef ax)

< Ci(A)-|Y\T[V? VXl - IVl
<G (A) - IYNTI2 - xlmon) - 19l enr),

1/2

for all x, € H(Y \ T), where we have used (4.3.9). Moreover, we have that:
VM < [ ABTx- Vidx= ot 0, ¥ HOAT), ¥R,
Y\T
due to (4.3.8). Using now Proposition 4.5.2, we obtain that:

Xl ey < < (1+CeM) IVl 20 1)-

Combining the last two inequalities, we obtain:

o
(1+C(Y))2HXHH1 nr) <9 (X X),
P

for all x € HE(Y\ T).

The continuity of f(t,-) is given by the following sequence of inequalities:

£t )] / ‘ (At do < (/ A() -v]zda)1/2</aT\¢(x)\2da>l/2

<Ci(A IaTll/2 19l 2ar) < Ci(A) - 18]~ 0TIVl 2 aruiay)
< C1(A) - 18] - [oTV? - Cr(Y\ T) - 1l e 1),

)-lgl-
iq
where Cr,(Y '\ T) is the constant given by Proposition 4.5.3 and we have used once again (4.3.9).

We are now under the hypothesis of the Lax-Milgram theorem, therefore, for any t € IR, the
equation:

A (tx9) = f(t ), Vp € Hy(Y\T)
admits a unique solution Xé € HY(Y\T). O

Definition 4.5.3. Let ¥ : R — Hy(Y \ T) be defined as ./'(t) = x%, where x% is given by
Proposition 4.5.4.

Proposition 4.5.5. The operator .7 is continuous.
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Proof. Letus fix t € R and let s € R. Then, for any ¢ € H}(Y \ T), by (4.5.10), XE and x; satisfy:

A()VxE- V dx = / (A(t)¢-v)y do, (4.5.12)
Y\T aT
and
/ A(s)Vxz - Vipdx = / (A(s)¢-v)yp do. (4.5.13)
Y\T T

Then, using (4.3.8) at the point s € R, we have that:

o[ Vxg = Vaglizpn < /Y \TA<S>(VX2—VXE) (Ve — V) dx =

= ASVt.Vt_VSd_/ A(S)VrS - (WAt — Vad) d
/Y\T (s)Vxe ( Xe Xg) X r (5) Vs ( X Xg) .
- /Y\TA(t)VXté (Ve = Vi) e +/ (As) = A1) Ve - (Ve — Vixg) dx—

Y\T

N /m (4(5) — AW) Vs (V2 = V) et [ ((A0) =462 0) (xf ) o,

oT

where the terms on 9T come from (4.5.12) and (4.5.13) for ¢ = Xé — X%- We estimate the last

two terms separately. First:

/Y\T (A(s) — A(t))Vxé. (vxé _ VXE) dx <

< (/Y\T ‘ (A(s) — A(t))VXé‘Z dx>1/2 | </y\T }vxé ) vxé‘z dx>1/z

< Co(A) -t =s| - [IVxEl iz - IVXE = VAR 2o,

where we have used (4.3.11).

Now, we move our attention to the term containing 0T
/a ((A(t) —A(s))@‘-v) (X )(5) do <

< (o= ane o) ([ b oo

1/2
< Cy(A) - |t—s|-[g|-[aT|""?- (/amy\xé—xé\zd‘f)

1/2 s
< (Caa') - le] - [T|"%) - [t = | - It = X3 2oy
1/2 s
< (Cr(Y\T)-Co(A') - |2 - o] ) = sl Dk = e ey

/
< (V1+G0) - Cr\T)-Cao(A) - [e] - oT[""?) - [t = 5| [Vt = Vil s

1/2

where we have used (4.3.11), Proposition 4.5.2 and Proposition 4.5.3.
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Let
M(A’,&Y,T) = max { (V14 G - Cr(Y\ T) - Ca(a)) - e - [T %), C (A’)}.
We have obtained that:

"‘HVXg VXgHLz y\T M(A',E,Y,T)- (1 + Hvxt§||L2(Y\T)) [t —s]- Hvxé - v?CEHLZ(Y\T)-
(4.5.14)

Since « > 0, then treating (4.5.14) as a quadratic function in ||V )(é — V)@H 12(y\T), We obtain:

0 < IVxt — Vxillzpn g < (‘X_l “M(A, Y, T) - (1+ |’VX€§’|L2(Y\T))> [t —s|.

If we fix t € R and let s — t, then Vx5 — V% strongly in L*(Y'\ T) by the previous
inequality. Using the Poincaré inequality from Proposition 4.5.2, we finally obtain that xz — th
strongly in H'(Y \ T) and, therefore, in H}(Y \ T). O

We now move our focus to proving that the operator .7 is differentiable. For this, we

analyse the following PDE:

div(A(t) Vs + A'(H)Vxe) =0 inY\T
(A(VY:+ A (HVxE) - v=A(t);-v ondT (4.5.15)
e € Hy(Y\T).

Remark 4.5.3. In the same fashion as in Remark 4.5.1, since
div(A(H) Vs + A'(H)VxE) =0 € L2 (Y\T),
then A(t)Vl[Jé + A’(t))(é € H(Y \ T;div), which implies that
(A(H)VyE+ A'(H)VxE) -v e H/2(0T).

The boundary condition on dT should then be interpreted, variationally, as the pairing between
H~Y2(3T) and H'/?(3T) functions.
At the same time, for any t € R and any ¢ € R, we have A’(t)¢ -v € L?>(3T). Then, the

variational formulation of (4.5.15) is the following:

/ (A() Ve + A'(HVxE) - Vi dx =

Y\T
=< (A()VYz + A (H)VXE) - v, ¥ >g126yar), B2 (v0aT)
=< (A(W)Vyp + A (H)VXE) -V, >p26m) me@n
=< A1) v, ¥ >par@r),meen

= /8T (A" (H)E-v)p do,
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for any ¢ € Hj(Y \ T), where we have used (4.5.6) for % and x. Therefore:

A()Vipe - Vi dx = /

—A'(H)VxE- Vi dx-l-/ (A'(H)E-v)y do, (4.5.16)
Y\T oT

Y\T
which can be written as:
A (t, e, ) = f(1, ),

where

f(tp) :/BT (A'(HE-v)y da+/ —A'(HVxk- Vi dx.

Y\T

Proposition 4.5.6. There exists a unique ¢z € Hy(Y \ T) that solves (4.5.15).

Proof. We mimic the arguments from the proof of Proposition 4.5.4, that is, for any t € R, we

apply Lax-Milgram theorem to get a unique y; € Hi(Y \ T) that solves:

A (t, 5 9) = f(t,9), Vi € Hy(Y\T).

Since all the properties of <7 have already been proved in Proposition 4.5.4, it is sufficient

to prove that f : HY(Y \ T) — R is a bounded linear functional. By Hélder inequality, we have:

<(fwosor ) ([ )"

| @z vy ao
oT

which implies

1/2

/a (A0E-v)ypdo

< C(A) - [E] - oT[ " Cr (YN T) - ¢l mys

where we have used (4.3.10) and the trace inequality from Proposition 4.5.3. Using once again

= </Y\T }A/(t)v?ftg‘z dx)1/2</y\T }sz dx)l/z

< Co(A) - IYNTIYZ I VxEllzon - 19l o),

(4.3.10), we have:

/ AV, - Vi dx
T

from which we conclude. O

We recall that an operator .7 : R — H(Y \ T) is Fréchet differentiable at a point ¢, € R if
there exists a bounded linear operator 7'[ty] : R — Hi(Y \ T) such that:

i 1.7 (to + ) — T (to) = T[] (W) iz o\ 1)

=0.
0<|h|—0 |h|

Proposition 4.5.7. The operator . : R — H}(Y \ T) is Fréchet differentiable on R. Moreover, for

any to € R, we have .%"'[to|(h) =h - 1;%0, for any h € R, where 1pé° is given by Proposition 4.5.6.
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Proof. Let us fix t € R and let s € R with s # t. Moreover, let x% and x; be the HE(Y\T)
functions given by Proposition 4.5.4 and let lpé given by Proposition 4.5.6.
We prove first that:

xg = (t—s)""(xt — x3) — 9k — O strongly in Hy(Y\ T) as s — t.

Using the coercivity property of </ (s, -, -) given by (4.3.8), one could write that:

| V& Iy < /Y LA ((t=97 (T2t = V) = V9t) - Vg dx =

:/ (t—s)TA(s) (VxE — Vx§) - thsdx—/ A(s) Vit - thsdx
Y\T Y\T

:/ (t—s)tA(s )Vxé thsdx—/ (t—s)"TA(s s)Vx; - V)(tsdx—
Y\T Y\T

+/ (A(H) ~ A@) Vg - Ve dx—/ A VE- Vg dx
Y\T r
Using (4.5.13), we obtain:
“HVX ||L2 Y\T
< [ =97 A0 v Vi ax— [ (497 (A2 ) dot
T T

—I—/Y\T(A(t) —A(s))leé . ngs dx+/y\T "(t )V)((: V)(ts dx — /aT (A(t)c;‘-v))(gs do

and then, by (4.5.16), we have:

)AL o) <
: /Y\T(t ~ AL Vg dxt /aT(t —5) L ((A(t) = A(5))E - v)x¥ do—
_/BT(t—s)‘l(A(t)é-u)ng da+/y\T(A(t) () Vgl Vi dxt
+/y\T (Ve Vg dx—/aT (A(1)E V)X do.

Using (4.5.12), we obtain that:

At Als
V3 e < [ (400 ”t A2 v Tt o

/<< f—s _A'(f)>C'V>x§'Sda+

+/ (5)) Ve - Vx© dx
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Now, using (4.3.13), we obtain:

/Y\T (A’(t) — ‘W)v% Vxg dx| <

t
2 1/2 ) 1/2
<(/ SR
Y\T Y\T

<A’(t) A - A(S)>vxé
< C3(A") - |t —=s| - VXt 2onT) - IVXE 200

t—s

and, by using the trace inequality from Proposition 4.5.3 and the Poincaré inequality from

Proposition 4.5.2, we also obtain:

[ (B a0 )ev)ai ao] <
<([](F= - am)e d(,-)”z ([ ‘2d0>1/z

t—s
< C3(A") - [t —s[-aT|"2-1g] - Crr(Y\ T) - Ix& I vy )

< ( 1+ CR(Y) - Cr(Y\T) - C3(A") - [2] - \3T\1/2> =] IVAE -

We also have, by (4.3.11):

[ (AW = ATy} Vi ax| <
Y\T

(] - a) ([ e

< C(A') - |t =] - Vel 2on ) - IVAE l2pn)-

1/2

Let us consider
M(A', A", E,Y, T, x& s) = max {Ca(A”) NVxEl 2oy, C2(A") - IVUEl 20 1)
1+ GY) - CrlY \T) - Ca(4”) [¢] - o2,
Therefore, we have:
“HVXgSHLZ (Y\T) = < M(A, A", Y, T, nglljg) t—s|- HVth'SHLZ(Y\T)/
which implies, since & > 0, that:

0 < [IVAZ 2y < M(A", A", &Y, T, xE, 9f) - |t —s|, Vs, €R, s # ¢

By using the Poincaré inequality from Proposition 4.5.2, we obtain that

Xé's — 0 strongly in Hy(Y\ T) fors — t, s # t. (4.5.17)
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Let tp € R fixed and .%"[to] : R — H}(Y \ T) defined as .%"[to](h) = h - gbg), forall h € R.

Then:
e 1.7 (to + h) = T (to) = 7" [to] (W) g3 v 1) ki 2" = X2 =192l r _
0<|h|—0 |h| 0<[h|—0 |h|
to+h to
. Xe  —X¢ t . to,to-+h
= lim |[|—=————= -9 = lim |[x>° =0,
0<|h|—=0 |h‘ 1/15 HL(Y\T) 0<|h|—0 H 4 HH’%(Y\T)

by (4.5.17). O

4.5.4 PROOF OF THE PROPERTY OF By
Throughout this subsection, we are going to use the following notation:
we(x,t) =¢-x— xe(x,t), vxe Y\ T, Vt € R.

Since xz(-,t) solves (4.3.14), we see that wg(-,t) € H'(Y \ T) and that it solves:

—div(A(t)Vwe(x,£)) =0, inY\T
A(t)Vwe(x, t) -v =0, on dT

which generates, after using Lemma 4.5.2, the following equality:
/ A(H)Vwe(x t) - Vp(x) dx = 0, Vi € HY(Y\ T). (45.18)
Y\T

Proof of Proposition 4.3.6. Lett € R and & € IR%. We recall first that:

Bo(t, &) = Y\T@(t,C(x,t)é) dx
- / S A(BC(DE - Clx e+ sin(2t - 29) dx
nr 2 2

— [ 5AWE - TxelD) - (€~ Vel t) dxr [\ T] sin(2t - 29)
Y\T

where we have used Proposition 4.3.5. Moreover, due to Definition 4.2.1, we have 6y = |Y \ T|,

hence, in order to conclude the proof, we would like to prove that:

Ay(HE-¢= o A'(H)Vwe(x, t) - Vwe(x, t) dx.

For this, we start from Definition 4.3.5:

Ag(t)E = Y\TA(t)(g — Vxe(x 1)) dx.
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Multiplying by ¢, we obtain:

(B¢ = / ) (& — Ve(x, 1) - € dx =

- / AW (E = Ve D) - (€ - Vaelot) dxt [ ABE - Vaelxn) - Vsl t) dx
Y\T Y

\T

= [ AW Vwelxt) - Vwe(x ) dx + / A(H)Vwe(x 1) - Vie(x £) dx
Y\T Y\T

- / A(H)Vwe(x t) - Vg (x, 1) dx,
Y\T
due to (4.5.18), since xz(-,t) € Hi(Y\ T). Let ] : R* — R be defined as:

J(h) = h( Y\TA(t+h)Vw§(x,t—|—h) -Vwe(x, t +h) dx)—

- (/m A() Vg (xt) - Vaog (1) dx) -

— A’ () Vwe(x, t) - Vwe(x, t) dx—
Y\T

0
—2/ A(D) 2 (Twe(x,1)) - Tug(x,1) dx,
Y\T
where we recall that
Jwg _ aXC ot d _ ¢
a5 (x,t) = 5 (x,t) = —pz(x) and $Vw¢(x,t) = =V (x),

a.e.in Y\ T, due to Proposition 4.5.7.

Since A(t) is symmetric, we can rewrite J(h) as:

T(h) = /m (; (A(t+ 1) — A(t)) — A’(t)) Vwg(x 1) - Vaog(x, t) dxt
+/y\TA(t—|—h)ng(x,t+h) : (;(VZUg(X,t—Fh) — Vwe(x,t)) —l—thé(x)) dx+
A(t + h) (}11 (ng(x, t+ ]’l) — ng(x, t)) + ngé(x)) . VZUg(X, t) dx—

(A(t+h) — A(t)) Ve (x, t +h) - Vipe(x) dx—

. (A(t+h) — A(t)) Ve (x, t) - Vpk(x) dx

= Ji(h) + J2(h) + Ja(h) + Ja(h) + J5(h) + J(h).

/
/
— A(t) (Vwg(x, t+h) = Vwg(x, 1)) - Vipp(x) dx—
/
/Y
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We have:
1J1(h)| < /Y\T ( A(t+h) — A(t ))—A’(t))ng(x,tJrh)'-wag(x,tJrh)\dx
g/mc;, (A") - |h] - |Vawg(x,t+h)|* dx = C3(A") - |h] - | Vg (-, 1) | 2201
< 5 -Co(A") - Jh]- (|f;|2 YAT]+ Ve Gt 1) e )-

where we have used (4.3.13). Due to Proposition 4.5.5, as h — 0, we have that xz(-,t +h) —
Xe(+, 1) strongly in Hy (Y \ T). Therefore, as h — 0, we have J;(h) — 0.

For the rest of the terms, we first remark that
Vwe(x, t+h) — Vwe(x, t) = Vxe(x, t +h) — Vxe(xt).

For J,(h), we apply Holder inequality and obtain:

) 1/2

[J2(h)| < </ |A(t +h)Vwe(x, t + h)| dx) :
Y\T

2 1/2
(Ll )
Y\T

1
< G A IVt o | (Te(e ) = Vi) = T

(Vwe(x, t +h) — Vwe(x, t)) + leé(x)

7

L2(Y\T)

where we have used (4.3.9). As I — 0, we have that xz(-,t +h) — xz(+,t) strongly in H} (Y \ T),
due to Proposition 4.5.5. At the same time, from Proposition 4.5.7 we also get that, as h — 0:

1 . 2
(h(V)(g(-,t—l— h) — Vxe(-,1) — leé) — 0 strongly in (L*(Y\ T))".
So, as h — 0, we obtain J»(h) — 0.
In a similar fashion we obtain that J3(h) — 0 as h — 0.

For J4(h) and Js(h), for s € {t,t + h}, we have, by applying Holder inequality:

<

/ (A(t+h) — A1) Vs (x,5) - Viph(x) dx
Y\T

N , A\ 12
_ . t
< </Y\T|(A(t+h) A(t)) Ve (x,s)]| dx) </Y\T|V1p§(x)‘ dx>
< Co(A) - | - [IVwe (-, 8) L2y - IVl 2y 1)

< Co(A) - 1] IVl - (18] YN T2+ [V (- 8) o)),
where we have used (4.3.11). If s = t + h, then as h — 0, we know from Proposition 4.5.5 that

Xe(+,t+h) = xz(-,t) strongly in Hi(Y \ T). Therefore, if i — 0, we also obtain that J4(i) — 0
and Js(h) — 0.
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For J5(h), we apply once again Holder inequality and (4.3.9) and we obtain:

Js(h)| < C1(A) - [[Vwe (-, t + 1) = Vwe (-, )l 2on ) - IV 2o ) =
= |Js(h)] < C1(A) - [IVxe(- t +h) = Ve Ol zengy - IVOEl 2o -

Due to Proposition 4.5.5, as h — 0, (Vxz (-, t +h) — Vxz(+,t)) — o strongly in (L*(Y '\ T))Z,
from which we also obtain that J5(h) — 0 as h — 0.
In this way, we have shown that J(h) — 0 as h — 0. At the same time, we have:

() = & (Ao(t +h) — Ao(1)§ -
—/Y\TA’(t)ng(x,t)-ng(x,t) dx—2/ Alt)

(Vwe(x, 1)) - Vwe(x, t) dx,
T

Sﬁ\w

which implies that, as & — 0, we have:

J(h) = AL()E- & — A'(H)Vwe(x, t) - Vwe(x, t) dx + 2 A()Vwg(x, t) - Vipe(x) dx
Y\T Y\T

where we have just replaced the term aatig(x, t) with (— Vii(x)) and we have used that
Ap € C%(R). Moreover, we recall that gbé € H}(Y \ T), hence, by using (4.5.18), we have:

/ A1) Vg (x, 1) - Vi (x) dx = 0.
Y\T
Therefore,
}lllg(l) J(h) = (H)E-¢— / (t)Vwe(x, t) - Vwe(x, t) dx,

from which we conclude. O

4.5.5 THE DEPENDENCY BETWEEN Ky AND K

Proof of Proposition 4.3.7. In order to express the relationship between Ky and K, we start by
obtaining a relationship between Ag and A. We recall that:

Ao(t)E = Y\TA(t) (&€ —Vxe) dx, V& € R%.

Let T = (cost,sint) and T+ = (—sint,cost). Computing Ag(t)T and Ag(t)T", one gets
that:

aXT aXTL
cost —sint cost —sint ox ox
Ao(t)- (€ =~ Y\ TIA®- (¢ -0 | ax
sint cost sint cost T | 9xr Ox.L

dy 9y
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which, by Proposition 4.3.4 and Definition 4.3.2, becomes:

e
Jdx  dx

Ao(H)R(t) = |[Y\T|A(t)R(t) — A(¢t) /Y\T ; ) - R(t) dx
X1 X2
dy 3y

which, by Definition 4.3.7, becomes:

Ao()R(t) = [Y\TIA(H)R(t) + A(t)/

. (C(x,t) - 112) “R(t) dx =

= Ao(HR(t) = A(t) - ( . Cx0) dx> “R()

and, by multiplying with R(—¢) on the left and writing I, = R(t) - R(—t), we obtain:

R(—t)Ag(H)R(t) = <R(—t) -A(t)R(t)) “R(—t) - ( Cx, 1) dx> “R(1).

Y\T

This concludes the proof. O

4.5.6 PROVING THAT @, IS INDEED A CRITICAL POINT OF F;

In this subsection, we prove the following used implication: if u, € V; is a critical point of
F,, then ¢, € V; is a critical point of F,, where we recall that V, and V; are introduced in
Definition 4.2.3, F¢ in (4.1.1) and F; in (4.3.2).

We proceed in a similar fashion as in [44, Theorem 5, p. 496].

Let us consider v € H} (Qg;R?) N L*(Q; R?). For T small enough, one has |u, + tv| # 0 in
¢, hence, we can define:

w(r) U+ TV
ue v

Since v = o on 0(), then we have that w(7) € V, for T small enough. Moreover, we have
w(0) = u; and w'(0) = v — (ue - v)u,.
Let

i (T) = / k1 (w (1)) (curl w(t))? dx.

€

Then

L) —1(0)) = / ("1<W<T>> - K1<w<0>>> (curl () det

T T

T

2 2
+/ Kl(w(o))(curlw(r)) — (curl w(0)) dx

€
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Locally, we can write w(7) = w(0) + ™w’(0) + 0(7?), hence, as T — 0, we have that

(curl w(T))2 — (curl w(O))2

- — (curl w(0)) (curl w'(0)).

At the same time, since « is of class CZ, we also have, as T — 0, that:

k1 (w(7)) i WO s Tx (w(0)) - w'(0)

and
(curl W(T))2 — (curl w(O))2.
Therefore, we obtain that:

i1(0) = / (V1 (w(0)) - w'(0)) (curl W(O))2 + 1x1(w(0)) (curl w(0)) (curl w'(0)) dx.

€

Proceeding in the same fashion for all of the other components of F,, we obtain that u,

solves the following equation:

0= / (Vi (ug) - w'(0)) (curl ug)2 dx -I-/ (Via(ue) - w'(0)) (curl ue) (div ue) dx+

€

—1—/0 (Viz(ue) - w'(0)) (div ug)2 dx + /Q 2 - x1(ug) (curl ug) (curl w'(0)) dx+
+ / Ko () ((curl u,) (div w'(0)) + (curl w’(0)) (div ug)) dx+

- /Qg 2 - x3(ue) (div ug) (div w'(0)) dx + /QS 2-p- (ue-u)(W'(0) ) dx (4.5.19)

At the same time, for T sufficiently small, we also have that w(t) € %, that is, w(T) can be

lifted, using F.(u,) < ¢ and Proposition 4.2.4. We know that u, = (cos Pe, SIN gog), with ¢, € V..
Let ®(7,v) € V; such that w(t) = (cos ®(t,v),sin®(7,v)). For T = 0, we have ®(0,v) = ¢.

Let
1
Py = ;(CD(T,V) — Q).
Since @, ©(7,V) € V;, then we also have ¢y € V,. This implies that we can write
w(T) = (cos(@e + Tipy), sin(@e + T¢y))
which implies that

w'(0) = ¢y ( — sin @, cos ¢¢) = Pyu;-.
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At the same time, we have
w(0) =v— (u-v)ue = (v-uy)u;

The last two relations show us that actually ¢y = v - u;.

Let us now deduce the equation for ¢, based on (4.5.19). We recall that:

curl u, = cos (pgaaq) + sin @, Bagog ’
. J@e Pe

div u, = —sin + cos .
£ 4)8 a qOS ay

The first integral of (4.5.19) becomes:

/Og (Vi (ue) - w'(0)) (curl ug)z dx — /

Qe

<(VK1 (ue) - ugl) (curl u£)2> Py dx
= /QE ((V;q(cos Pe,Sin @¢) - ((— sin @, cos ¢ ) ) (curl(cos @, sin gog))2> Py dx.
But since ki (t) = k1 (cost,sint), for any t € R, one obtains that
ky(t) = Vki(cost,sint) - (—sint,cost),
hence:

/ (Vi1 (ue) - w'(0)) (curl us)2 dx = / (k’l(q)g) (curl(cos @, sin q)g))2> Py dx

€ €

99\’ 9. 0 9
k’l(gog)<cos2 q)g<£;> + 2 cos ¢ smqogaq);';%—sm q)g( a(l;) >1pv dx.  (4.5.20)

Qe

For the second and third integrals from (4.5.19), we proceed in a similar fashion and obtain:
/ (Vi (ue) - w'(0)) (curl ug) (div ug) dx =
Qe
¢ . Qe 0
o Ky (@) < — COS @, sin qog< a;) + (cos? g — sin” ;) E)xgays> Py dx+
/ k5 (@e) - cos @ sin @ (%{;;) Py dx (4.5.21)
and

/Q (Vs (u) - w'(0)) (div ) dx =

2
/ K5 (e (sm Pe (&;q)g> — 2.cos @, sin @ %@s aaq;g + cos? ¢ (?;) )1,[)‘, dx. (4.5.22)
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For the next three integrals, we need to compute curl(w’(0)) and div(w’(0)). For a generic

scalar function f and a vector valued function u, we have:

curl(fu) = curl(fuy, fup) = a(g;lz) — a(fa[;l) =

duy  of owm _ of

:f8x+ ox W_ ay

= feurlu — Vf -ut,

where ut = (—uy,u;), and
, o _ 0(fur) | 9(fua) _
div(fu) = div(fuy, fup) = P + =
ouy of auz of
=f Y +u 1 +f +u Zay
= fdivu+Vf-u.
Then
curl w'(0) = curl(pyu) = pycurl ult — Vi, - (uﬁ)L
= Pydiv ue + Vipy - ug,
where we have also used that curl ut = div u and (uL)L = —u.
Also
div w/(0) = div(pyu;’) = pydiv uL + Vipy - u
= —ypycurl ue + Vpy - ug,
where we have used that div ut = —curl u.

This implies that:

/ 2-x1(ug) (curl ue) (curl w'(0)) dx = / 2 ky(ge) < — COS @ Sin @, (aa(sz) >4Jv dx+

€ QC

0@, 0 0
. 2 9P 0Pe Pe
+/Q£2 kl(gog)<(cos @e — sin q)g) ox dy +Cosq)gsm(pg< 8y> )l[)v dx+

. 99e Iy 99e Iy
—|—/Qg2 kl(q)g)<cos (pga o + CoS @ sin @, e By)dx+

gDSE)lIJV) dx

|  cosonsin 22y L o
—|—/Q€2 kl(gog)< COS @ Sin ¢ 3y ox + sin” ¢, 3y dy (4.5.23)
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We split the next integral from (4.5.19) into two parts:
30.\ 2
/ Ko (ue) ((curl u; ) (div w’(O)) dx = / ka(@e) ( — cos® @) (4&) Py dx+
Q; Q. ax

2
-l-/ kz(%)( 2cos ¢¢ smgogaa(PE aaq;g — sin? gpg(?;) ) -1y dx—+

e 0Py 0@e APy
/ ko (@e <—cosgogs1nqog a(P allJ +c (pg a(fc lp) dx+

dy
o 99 Iy 0@, Oy
+/Oek2(¢e)< sin® Pe 3y ox + COS @, sin @ 3y oy ) dx

and

2
[ ) ((eort w0) (v ) ax = [ ka(p) st g (5) e
Qe Q. ax
9@ 00, 00\ >
+/Q£ kz((pg)< 2C08q08811’1q05 aq) ag; —|—c052 q)e( a;’;) > 'l/Jv dx+
_ : ago& al/)V s a(Pe llJv
+/Q€ kz(%)( COS e sin ge— ==~ sin? ="~ 5% 3y dx+

9pe Oy 09: WYy
kz(q)g)<cos Pe—=— 3y o + COos @, sin @, 3y Iy ) dx

Qe

and by adding the two parts together we get:
/ Ko () <(curl u;) (div w'(0)) + (curl w'(0)) (div u£)> dx =
Q
¢ 2 09 2
e 2 ) e
/ ko (e ((sm Q¢ — COS (pg) <8x> + (cos P — sin qog) ( 3y > )gbv dx+
/ ko (@e < — 4 cos ¢, sin ¢, a;f; 99 ) Py dx+

qoﬁ wV . a(Ps awv
—l—/ k2(<p8)< 2.cos ¢, sin @, 3% Ox + (cos2 Pe — sin? qog) 3 8y> dx+

. qu l/)v QDS Py
/ ko (e <(cos Pe — sin? @¢) =— 2y ox +20S @ sin e —— o 8y>dx

(4.5.24)

For the term containing x3, we have:

/052-1(3(u£)(div u,) (div w'(0)) dx=/ 2-k3(qog)<cosqogsin(pg<

€

) 0P: 0@, .
—1—/022-k3(g08)<— (cosZgog—smzqoe) ox dy —cosqogsmq?g(

. QD lIJV GI)s l/)V
+/Qg2 kg((pe)(sm (’088 o cosq)gsmgoga 3y > dx+

. _ 0p: WYy 99e Iy
+/€2 kg(gog)( COS @ Sin @ 3y ox +c qog 3y ay > dx. (4.5.25)
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For the last integral from (4.5.19), we recall that u = (cos @, sin ¢), hence:
/ 2-p- (ue-u) (W(0)-u) dx =
= [ 2 (o) (s ) s
— [ ~2-u-cos(g. ~ @) sing. — ) -y dx

= /Q —usin (2(ge — 9)) iy dx,

which coincides with the last term from (4.3.3).

We want now to prove that Equations (4.5.20) to (4.5.25) generate (4.3.3). We only identify

2
the coefficients of <aa(f:> and aaqj: aal’l;v, since for all the others we can proceed in the same

2
way. For <aa§f:> , the coefficient is generated by Equations (4.5.20) to (4.5.25) and it is:

K)o g — Ky(90) <05 gesin g + s () sin? g
— 2k1(@¢) cos @ sin @ + ko (@e) ( — cos® @e + sin? @) + 2k3 (e ) cos @ sin @,

IPe aﬂ is generated only by

which is exactly a’(¢.), by Remark 4.3.3. The coefficient of 3% I

Equations (4.5.23) to (4.5.25) and it is:
2k (@) cos® e — 2ka (@) cos e sin e + 2k3 (¢ ) sin® ¢,

which is exactly 2a(¢.), by Remark 4.3.3. All the other terms can be identified in a similar
fashion, hence (4.3.3) is recovered, from which we conclude that if u, is a critical point of F,
then ¢ is a critical point of F;.
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