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Š. NEC̆ASOVÁ, M. RAMASWAMY, A. ROY, AND A. SCHLÖMERKEMPER

Abstract. In this work, we study the motion of a rigid body in a bounded domain which is filled with a compressible

isentropic fluid. We consider the Navier-slip boundary condition at the interface as well as at the boundary of the

domain. This is the first mathematical analysis of a compressible fluid-rigid body system where Navier-slip boundary
conditions are considered. We prove existence of a weak solution of the fluid-structure system up to collision.
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1. Introduction

Let Ω ⊂ R3 be a bounded smooth domain occupied by a fluid and a rigid body. Let the rigid body S(t) be a
regular, bounded domain and moving inside Ω. The motion of the rigid body is governed by the balance equations for
linear and angular momentum. We assume that the fluid domain F(t) = Ω \ S(t) is filled with a viscous isentropic
compressible fluid. We also assume the Navier-slip boundary conditions at the interface of the interaction of the fluid
and the rigid body as well as at ∂Ω. The fluid occupies, at t = 0, the domain F0 = Ω \ S0, where the initial position
of the rigid body is S0. In equations (1.4)–(1.9), ν(t, x) is the unit normal to ∂S(t) at the point x ∈ ∂S(t), directed
to the interior of the body. In (1.3) and (1.4)–(1.5), gF and gS are the specific body forces. Moreover, α > 0 is a
coefficient of friction. Here, the notation u ⊗ v is the tensor product of two vectors u, v ∈ R3 and it is defined as
u ⊗ v = (uivj)16i,j63. In the equations, ρF and uF represent respectively the mass density and the velocity of the
fluid, and the pressure of the fluid is denoted by pF .

We assume that the flow is in the barotropic regime and we focus on the isentropic case where the relation between
pF and ρF is given by the constitutive law:

pF = aFρ
γ
F , (1.1)

with aF > 0 and the adiabatic constant γ > 3
2 , which is a necessary assumption for the existence of a weak solution

of compressible fluids (see for example [9]).
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As it is common, we set

T(uF ) = 2µFD(uF ) + λF div uF I,

where D(uF ) = 1
2

(
∇uF +∇u>F

)
denotes the symmetric part of the velocity gradient, ∇u>F is the transpose of ∇uF ,

λF and µF are the viscosity coefficients satisfying

µF > 0, 3λF + 2µF > 0.

The evolution of this fluid-structure system can be described by the following equations

∂ρF
∂t

+ div(ρFuF ) = 0, t ∈ (0, T ), x ∈ F(t), (1.2)

∂(ρFuF )

∂t
+ div(ρFuF ⊗ uF )− divT(uF ) +∇pF = ρFgF , t ∈ (0, T ), x ∈ F(t), (1.3)

mh′′(t) = −
∫

∂S(t)

(T(uF )− pF I)ν dΓ +

∫
S(t)

ρSgS dx, in (0, T ), (1.4)

(Jω)′(t) = −
∫

∂S(t)

(x− h(t))× (T(uF )− pF I)ν dΓ +

∫
S(t)

(x− h(t))× ρSgS dx, in (0, T ), (1.5)

the boundary conditions

uF · ν = uS · ν, for t ∈ (0, T ), x ∈ ∂S(t), (1.6)

(T(uF )ν)× ν = −α(uF − uS)× ν, for t ∈ (0, T ), x ∈ ∂S(t), (1.7)

uF · ν = 0, on (t, x) ∈ (0, T )× ∂Ω, (1.8)

(T(uF )ν)× ν = −α(uF × ν), on (t, x) ∈ (0, T )× ∂Ω, (1.9)

and the initial conditions

ρF (0, x) = ρF0
(x), (ρFuF )(0, x) = qF0

(x), ∀ x ∈ F0, (1.10)

h(0) = 0, h′(0) = `0, ω(0) = ω0. (1.11)

The Eulerian velocity uS(t, x) at each point x ∈ S(t) of the rigid body is given by

uS(t, x) = h′(t) + ω(t)× (x− h(t)), (1.12)

where h(t) is the position of the centre of mass and h′(t), ω(t) are the translational and angular velocities of the rigid
body.

The solid domain at time t is given by

S(t) = {h(t) + O(t)x | x ∈ S0} ,

where O(t) ∈ SO(3) is associated to the rotation of the rigid body:

O′(t)O>(t)x = ω(t)× x ∀ x ∈ R3, O(0) = I.

Observe that O′O> is skew-symmetric as OO> = I. The initial velocity of the rigid body is given by

uS(0, x) = uS0 := `0 + ω0 × x, x ∈ S0. (1.13)

Here the mass density ρS of the body satisfies the following transport equation

∂ρS
∂t

+ uS · ∇ρS = 0, t ∈ (0, T ), x ∈ S(t), ρS(0, x) = ρS0(x), ∀ x ∈ S0. (1.14)
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Moreover, m is the mass of the solid and J(t) is the moment of inertia tensor of the solid calculated with respect to
h(t). We express h(t), m and J(t) in the following way:

m =

∫
S(t)

ρS dx, (1.15)

h(t) =
1

m

∫
S(t)

ρS x dx, (1.16)

J(t) =

∫
S(t)

ρS
[
|x− h(t)|2I− (x− h(t))⊗ (x− h(t))

]
dx. (1.17)

In the remainder of this introduction, we present the weak formulation of the system, discuss our main result regarding
the existence of weak solutions and put it in a larger perspective.

1.1. Weak formulation. We derive a weak formulation with the help of multiplication by appropriate test functions
and integration by parts along with the application of the boundary conditions. Due to the presence of the Navier-slip
boundary condition, the test functions will be discontinuous across the fluid-solid interface. We introduce the set of
rigid velocity fields:

R(Ω) =
{
ζ : Ω→ R3 | There exist V, r, a ∈ R3 such that ζ(x) = V + r × (x− a) for any x ∈ Ω

}
. (1.18)

For any T > 0, we define the test function space VT as follows:

VT =


φ ∈ C([0, T ];L2(Ω)) such that there exist φF ∈ D([0, T );D(Ω)), φS ∈ D([0, T );R(Ω))

satisfying φ(t, ·) = φF (t, ·) on F(t), φ(t, ·) = φS(t, ·) on S(t) with

φF (t, ·) · ν = φS(t, ·) · ν on ∂S(t), φF (t, ·) · ν = 0 on ∂Ω for all t ∈ [0, T ]

 , (1.19)

where D denotes the set of all infinitely differentiable functions that have compact support. We multiply equation
(1.3) by a test function φ ∈ VT and integrate over F(t) to obtain

d

dt

∫
F(t)

ρFuF · φF −
∫
F(t)

ρFuF ·
∂

∂t
φF −

∫
F(t)

(ρFuF ⊗ uF ) : ∇φF +

∫
F(t)

(T(uF )− pF I) : D(φF )

=

∫
∂Ω

(T(uF )− pF I)ν · φF +

∫
∂S(t)

(T(uF )− pF I)ν · φF +

∫
F(t)

ρFgF · φF . (1.20)

We use the identity (A×B) · (C ×D) = (A · C)(B ·D)− (B · C)(A ·D) to have

T(uF )ν · φF = [T(uF )ν · ν](φF · ν) + [T(uF )ν × ν] · (φF × ν),

T(uF )ν · φS = [T(uF )ν · ν](φS · ν) + [T(uF )ν × ν] · (φS × ν).

Now by using the definition of VT and the boundary conditions (1.6)–(1.9), we get∫
∂Ω

(T(uF )− pF I)ν · φF = −α
∫
∂Ω

(uF × ν) · (φF × ν), (1.21)

∫
∂S(t)

(T(uF )− pF I)ν · φF = −α
∫

∂S(t)

[(uF − uS)× ν] · [(φF − φS)× ν] +

∫
∂S(t)

(T(uF )− pF I)ν · φS . (1.22)

Using the rigid body equations (1.4)–(1.5), equation (1.14) and Reynolds’ transport theorem, we obtain∫
∂S(t)

(T(uF )− pF I)ν · φS = − d

dt

∫
S(t)

ρSuS · φS +

∫
S(t)

ρSuS ·
∂

∂t
φS +

∫
S(t)

ρSgS · φS . (1.23)
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Thus by combining the above relations (1.20)–(1.23) and then integrating from 0 to T , we have

−
T∫

0

∫
F(t)

ρFuF ·
∂

∂t
φF −

T∫
0

∫
S(t)

ρSuS ·
∂

∂t
φS −

T∫
0

∫
F(t)

(ρFuF ⊗ uF ) : ∇φF +

T∫
0

∫
F(t)

(T(uF )− pF I) : D(φF )

+ α

T∫
0

∫
∂Ω

(uF × ν) · (φF × ν) + α

T∫
0

∫
∂S(t)

[(uF − uS)× ν] · [(φF − φS)× ν]

=

T∫
0

∫
F(t)

ρFgF · φF +

T∫
0

∫
S(t)

ρSgS · φS +

∫
F(0)

(ρFuF · φF )(0) +

∫
S(0)

(ρSuS · φS)(0). (1.24)

Definition 1.1. Let T > 0, and let Ω and S0 b Ω be two regular bounded domains of R3. A triplet (S, ρ, u) is a
bounded energy weak solution to system (1.2)–(1.11) if the following holds:

• S(t) b Ω is a bounded domain of R3 for all t ∈ [0, T ) such that

χS(t, x) := 1S(t)(x) ∈ L∞((0, T )× Ω). (1.25)

• u belongs to the following space

UT =


u ∈ L2(0, T ;L2(Ω)) such that there exist uF ∈ L2(0, T ;H1(Ω)), uS ∈ L2(0, T ;R)

satisfying u(t, ·) = uF (t, ·) on F(t), u(t, ·) = uS(t, ·) on S(t) with

uF (t, ·) · ν = uS(t, ·) · ν on ∂S(t), uF · ν = 0 on ∂Ω for a.e t ∈ [0, T ]

 .

• ρ > 0, ρ ∈ L∞(0, T ;Lγ(Ω)) with γ > 3/2, ρ|u|2 ∈ L∞(0, T ;L1(Ω)), where

ρ = (1− 1S)ρF + 1SρS , u = (1− 1S)uF + 1SuS .

• The continuity equation is satisfied in the weak sense, i.e.

∂ρF
∂t

+ div(ρFuF ) = 0 in D′([0, T )× Ω), ρF (0, x) = ρF0
(x), x ∈ Ω. (1.26)

Also, a renormalized continuity equation holds in a weak sense, i.e.

∂tb(ρF ) + div(b(ρF )uF ) + (b′(ρF )− b(ρF )) div uF = 0 in D′([0, T )× Ω), (1.27)

for any b ∈ C([0,∞)) ∩ C1((0,∞)) satisfying

|b′(z)| 6 cz−κ0 , z ∈ (0, 1], κ0 < 1, |b′(z)| 6 czκ1 , z > 1, −1 < κ1 <∞. (1.28)

• The transport of S by the rigid vector field uS holds (in the weak sense)

∂χS
∂t

+ div(uSχS) = 0 in (0, T )× Ω, χS(0, x) = 1S0(x), x ∈ Ω. (1.29)

• The density ρS of the rigid body S satisfies (in the weak sense)

∂ρS
∂t

+ div(uSρS) = 0 in (0, T )× Ω, ρS(0, x) = ρS0(x), x ∈ Ω. (1.30)

• Balance of linear momentum holds in a weak sense, i.e. for all φ ∈ VT the relation (1.24) holds.
• The following energy inequality holds for almost every t ∈ (0, T ):

E(t) +

t∫
0

∫
F(τ)

(
2µF |D(uF )|2 + λF |div uF |2

)
+ α

t∫
0

∫
∂Ω

|uF × ν|2

+ α

t∫
0

∫
∂S(τ)

|(uF − uS)× ν|2 6
t∫

0

∫
F(τ)

ρFgF · uF +

t∫
0

∫
S(τ)

ρSgS · uS + E0. (1.31)
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where E(t) and E0 are given by

E(t) =

∫
F(t)

1

2
ρF |uF |2 +

∫
S(t)

1

2
ρS |uS |2 +

∫
F(t)

aF
γ − 1

ργF , E0 =

∫
F0

1

2

|qF0
|2

ρF0

+

∫
S0

1

2
ρS0 |uS0 |2 +

∫
F0

aF
γ − 1

ργF0
(1.32)

Remark 1.2. We stress that in the definition of the set UT (in Definition 1.1) the function uF on Ω is a regular
extension of the velocity field uF from F(t) to Ω, see (5.10)–(5.11). Correspondingly, uS ∈ R denotes a rigid extension
from S(t) to Ω as in (1.12). Moreover, by the density ρF in (1.26), we mean an extended fluid density ρF from F(t)
to Ω by zero, see (5.16)–(5.17). Correspondingly, ρS refers to an extended solid density from S(t) to Ω by zero.

Remark 1.3. In (1.26), the initial fluid density ρF0
on Ω represents a zero extension of ρF0

(defined in (1.10)) from
F0 to Ω. Correspondingly, ρS0 in equation (1.30) stands for an extended initial solid density (defined in (1.14)) from
S0 to Ω by zero. Obviously, qF0 refers to an extended initial momentum from F0 to Ω by zero and uS0 ∈ R denotes a
rigid extension from S0 to Ω as in (1.13).

Remark 1.4. We note that our continuity equation (1.26) is different from the corresponding one in [7]. We have to
work with uF instead of u because of the Navier boundary condition. The reason is that we need the H1(Ω) regularity
of the velocity in order to achieve the validity of the continuity equation in Ω. Observe that u ∈ L2(0, T ;L2(Ω)) but
the extended fluid velocity has better regularity, in particular, uF ∈ L2(0, T ;H1(Ω)), see (5.10)–(5.11).

Remark 1.5. In the weak formulation (1.24), we need to distinguish between the fluid velocity uF and the solid velocity
uS . Due to the presence of the discontinuities in the tangential components of u and φ, neither ∂tφ nor D(u), D(φ)
belong to L2(Ω). That’s why it is not possible to write (1.24) in a global and condensed form (i.e. integrals over Ω).

Remark 1.6. Let us mention that in the whole paper we assume the regularity of domains Ω and S0 as C2+κ, κ > 0.
However, we expect that our assumption on the regularity of the domain can be relaxed to a less regular domain like
in the work of Kukučka [26].

1.2. Discussion and main result. The mathematical analysis of systems describing the motion of a rigid body in a
viscous incompressible fluid is nowadays well developed. The proof of existence of weak solutions until a first collision
can be found in several papers, see [3, 4, 18, 24, 33]. Later, the possibility of collisions in the case of a weak solution
was included, see [8, 32]. Moreover, it was shown that under Dirichlet boundary conditions collisions cannot occur,
which is paradoxical with respect to real situations; for details see [20, 22, 23]. Neustupa and Penel showed that under
a prescribed motion of the rigid body and under Navier-type of boundary conditions collision can occur [29]. After
that Gérard-Varet and Hillairet showed that to construct collisions one needs to assume less regularity of the domain
or different boundary conditions, see e.g. [15, 16, 17]. In the case of very high viscosity, under the assumption that
rigid bodies are not touching each other or not touching the boundary at the initial time, it was shown that collisions
cannot occur in finite time, see [10]. For an introduction we refer to the problem of a fluid coupled with a rigid body
in the work by Galdi, see [13]. Let us also mention results on strong solutions, see e.g. [14, 34, 35].

A few results are available on the motion of a rigid structure in a compressible fluid with Dirichlet boundary
conditions. The existence of strong solutions in the L2-framework for small data up to a collision was shown in [1, 31].
The existence of strong solutions in the Lp setting based on R-bounded operators was applied in the barotropic case
[21] and in the full system [19].

The existence of a weak solution, also up to a collision but without smallness assumptions, was shown in [5].
Generalization of this result allowing collisions was given in [7]. The weak-strong uniqueness of a compressible fluid
with a rigid body can be found in [25]. Existence of weak solutions in the case of Navier boundary conditions is not
available yet; it is the topic of this article.

For many years, the no-slip boundary condition has been the most widely used given its success in reproducing the
standard velocity profiles for incompressible/compressible viscous fluids. Although the no-slip hypothesis seems to be
in good agreement with experiments, it leads to certain rather surprising conclusions. As we have already mentioned,
the most striking one being the absence of collisions of rigid objects immersed in a linearly viscous fluid [20, 22].

The so-called Navier boundary conditions, which allow for slip, offer more freedom and are likely to provide a
physically acceptable solution at least to some of the paradoxical phenomena resulting from the no-slip boundary
condition, see, e.g. Moffat [28]. Mathematically, the behavior of the tangential component [u]tan is a delicate issue.
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The main result of our paper (Theorem 1.7) asserts the local-in-time existence of a weak solution for the system
involving the motion of a rigid body in a compressible fluid in the case of Navier boundary conditions at the interface
with the solid and at the outer boundary. It is the first result in the context of rigid body-compressible fluid interaction
in the case of Navier type of boundary conditions. Let us mention that the main difficulty which arises in our problem
is the jump in the velocity through the interface boundary between the rigid body and the compressible fluid. This
difficulty cannot be resolved by the approach introduced in the work of Desjardins, Esteban [5], or Feireisl [7] since they
consider the velocity field continuous through the interface. Moreover, the techniques in the works by Gérard-Varet,
Hillairet [16] and Chemetov, Nečasová [2] cannot be used directly as they are in the incompressible framework. Our
weak solutions have to satisfy the jump of the velocity field through the interface boundary.

Our idea is to introduce a novel approximate scheme which combines the theory of compressible fluids introduced
by P. L. Lions [27] and then developed by Feireisl [9] to get the strong convergence of the density (renormalized
continuity equations, effective viscous flux, artificial pressure) together with ideas from Gérard-Varet, Hillairet [16]
and Chemetov, Nečasová [2] concerning a penalization of the jump. We remark that such type of difficulties do not
arise for the existence of weak solutions of compressible fluids without a rigid body neither for Dirichlet nor for Navier
type of boundary conditions.

We emphasize the main issues that arise in the analysis of our system and the novel methodology that we adapt to
deal with it:

• It is not possible to define a uniform velocity field as in [5, 7] due to the presence of a discontinuity through
the interface of interaction. This is the reason why we introduce the regularized fluid velocity uF and the solid
velocity uS and why we treat them separately.

• We introduce approximate problems and recover the original problem as a limit of the approximate ones.
In fact, we consider several levels of approximations; in each level we ensure that our solution and the test
function do not show a jump across the interface so that we can use several available techniques of compressible
fluids (without body). In the limit, however, the discontinuity at the interface is recovered. The particular
construction of the test functions is a delicate and crucial issue in our proof of Proposition 5.1.

• Recovering the velocity fields for the solid and fluid parts separately is also a challenging issue. We introduce
a penalization in such a way that, in the last stage of the limiting process, this term allows us to recover the
rigid velocity of the solid, see (5.8)–(5.9). The introduction of an appropriate extension operator helps us to
recover the fluid velocity, see (5.12)–(5.13).

• Since we consider the compressible case, our penalization with parameter δ > 0, see (2.3), is different from the
penalization for the incompressible fluid in [16].

• Due to the Navier-slip boundary condition, no H1 bound on the velocity on the whole domain is possible. We
can only obtain the H1 regularity of the extended velocities of the fluid and solid parts separately. We have
introduced an artificial viscosity that vanishes asymptotically on the solid part so that we can capture the H1

regularity for the fluid part (see step 1 of the proof of Theorem 1.7 in Section 5).
• We have already mentioned that the main difference with [16] is that we consider compressible fluid whereas

they have considered an incompressible fluid. We have encountered several issues that are present due to the
compressible nature of the fluid (vanishing viscosity in the continuity equation, recovering the renormalized
continuity equation, identification of the pressure). One important point is to see that passing to the limit
as δ tends to zero in the transport for the rigid body is not obvious because our velocity field does not
have regularity L∞(0, T, L2(Ω)) as in the incompressible case see e.g. [16] but L2(0, T, L2(Ω)) (here we have√
ρu ∈ L∞(0, T, L2(Ω)) only). To handle this problem, we apply Proposition 3.5 in the δ-level, see Section 5.

Next we present the main result of our paper.

Theorem 1.7. Let Ω and S0 b Ω be two regular bounded domains of R3. Assume that for some σ > 0

dist(S0, ∂Ω) > 2σ.
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Let gF , gS ∈ L∞((0, T ) × Ω) and the pressure pF be determined by (1.1) with γ > 3/2. Assume that the initial data
(defined in the sense of Remark 1.3) satisfy

ρF0
∈ Lγ(Ω), ρF0

> 0 a.e. in Ω, ρS0 ∈ L∞(Ω), ρS0 > 0 a.e. in S0, (1.33)

qF0
∈ L

2γ
γ+1 (Ω), qF0

1{ρF0
=0} = 0 a.e. in Ω,

|qF0
|2

ρF0

1{ρF0
>0} ∈ L1(Ω), (1.34)

uS0 = `0 + ω0 × x ∀ x ∈ Ω with `0, ω0 ∈ R3. (1.35)

Then there exists T > 0 (depending only on ρF0
, ρS0 , qF0

, uS0 , gF , gS , dist(S0, ∂Ω)) such that a finite energy weak
solution to (1.2)–(1.11) exists on [0, T ). Moreover,

S(t) b Ω, dist(S(t), ∂Ω) >
3σ

2
, ∀ t ∈ [0, T ].

Remark 1.8. We want to mention that in the absence of rigid body, the existence of at least one bounded energy weak
solution for compressible fluid with Navier-slip on the outer boundary has been stated in [30, Theorem 7.69]. This is
the same class of regularity as the fluid part in our main result.

Remark 1.9. We can establish the existence result Theorem 1.7 in the case when the frictional coefficients for the
outer boundary and the moving solid are not the same. Precisely, we can replace (1.7) and (1.9) by the following
boundary conditions:

(T(uF )ν)× ν = −α1(uF − uS)× ν, for t ∈ (0, T ), x ∈ ∂S(t),

(T(uF )ν)× ν = −α2(uF × ν), on (t, x) ∈ (0, T )× ∂Ω,

where α1 > 0, α2 > 0 are the frictional coefficients for the rigid body and the outer boundary respectively.

The outline of the paper is as follows. We introduce three levels of approximation schemes in Section 2. In Section 3,
we describe some results on the transport equation, which are needed in all the levels of approximation. The existence
results of approximate solutions have been proved in Section 4. Section 4.1 and Section 4.2 are dedicated to the
construction and convergence analysis of the Faedo-Galerkin scheme associated to the finite dimensional approximation
level. We discuss the limiting system associated to the vanishing viscosity in Section 4.3. Section 5 is devoted to the
main part: we derive the limit as the parameter δ tends to zero.

2. Approximate solutions

In this section, we present the approximate problems by combining the penalization method, introduced in [16],
and the approximation scheme developed in [12] along with a careful treatment of the boundary terms of the rigid
body to solve the original problem (1.2)–(1.11). There are three levels of approximations with the parameters N, ε, δ.
Let us briefly explain these approximations:

• The parameter N is connected with solving the momentum equation using the Faedo-Galerkin approximation.
• The parameter ε > 0 is connected with a new diffusion term ε∆ρ in the continuity equation together with a

term ε∇ρ∇u in the momentum equation.
• The parameter δ > 0 is connected with the approximation in the viscosities (see (2.8)) together with a

penalization of the boundary of the rigid body to get smoothness through the interface (see (2.3)) and together
with the artificial pressure containing the approximate coefficient, see (2.7).

At first, we state the existence results for the different levels of approximation schemes and then we will prove these
later on. We start with the δ-level of approximation via an artificial pressure. We are going to consider the following
approximate problem: Let δ > 0. Find a triplet (Sδ, ρδ, uδ) such that

• Sδ(t) b Ω is a bounded, regular domain for all t ∈ [0, T ] with

χδS(t, x) := 1Sδ(t)(x) ∈ L∞((0, T )× Ω) ∩ C([0, T ];Lp(Ω)), ∀ 1 6 p <∞. (2.1)

• The velocity field uδ ∈ L2(0, T ;H1(Ω)), and the density function ρδ ∈ L∞(0, T ;Lβ(Ω)), ρδ > 0 satisfy

∂ρδ

∂t
+ div(ρδuδ) = 0 in D′([0, T )× Ω). (2.2)
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• For all φ ∈ H1(0, T ;L2(Ω)) ∩ Lr(0, T ;W 1,r(Ω)), where r = max
{
β + 1, β+θ

θ

}
, β > max{8, γ} and θ = 2

3γ − 1

with φ · ν = 0 on ∂Ω and φ|t=T = 0, the following holds:

−
T∫

0

∫
Ω

ρδ
(
uδ · ∂

∂t
φ+ uδ ⊗ uδ : ∇φ

)
+

T∫
0

∫
Ω

(
2µδD(uδ) : D(φ) + λδ div uδI : D(φ)− pδ(ρδ)I : D(φ)

)

+ α

T∫
0

∫
∂Ω

(uδ × ν) · (φ× ν) + α

T∫
0

∫
∂Sδ(t)

[(uδ − P δSuδ)× ν] · [(φ− P δSφ)× ν] +
1

δ

T∫
0

∫
Ω

χδS(uδ − P δSuδ) · (φ− P δSφ)

=

T∫
0

∫
Ω

ρδgδ · φ+

∫
Ω

(ρδuδ · φ)(0), (2.3)

where PδS is defined in (2.9) below.
• χδS(t, x) satisfies (in the weak sense)

∂χδS
∂t

+ P δSu
δ · ∇χδS = 0 in (0, T )× Ω, χδS |t=0 = 1S0 in Ω. (2.4)

• ρδχδS(t, x) satisfies (in the weak sense)

∂

∂t
(ρδχδS) + P δSu

δ · ∇(ρδχδS) = 0 in (0, T )× Ω, (ρδχδS)|t=0 = ρδ01S0 in Ω. (2.5)

• Initial data are given by

ρδ(0, x) = ρδ0(x), ρδuδ(0, x) = qδ0(x), x ∈ Ω. (2.6)

Above we have used the following quantities:

• The specific body force is defined as

gδ = (1− χδS)gF + χδSgS .

• The artificial pressure is given by

pδ(ρ) = aδργ + δρβ , with aδ = aF (1− χδS), (2.7)

where aF > 0 and γ and β are exponents (by abuse of notation) and they satisfy γ > 3/2, β > max{8, γ}.
• The viscosity coefficients are given by

µδ = (1− χδS)µF + δ2χδS , λδ = (1− χδS)λF + δ2χδS so that µδ > 0, 2µδ + 3λδ > 0. (2.8)

• The orthogonal projection onto rigid fields, P δS : L2(Ω)→ L2(Sδ(t)) ∩R(Sδ(t)), is such that, for all t ∈ [0, T ]
and u ∈ L2(Ω), we have P δSu ∈ R and it is given by

P δSu(t, x) =
1

mδ

∫
Ω

ρδχδSu+

(Jδ)−1

∫
Ω

ρδχδS((y − hδ(t))× u) dy

× (x− hδ(t)), ∀x ∈ Ω, (2.9)

where hδ, mδ and Jδ are defined as

hδ(t) =
1

mδ

∫
R3

ρδχδSx dx, mδ =

∫
R3

ρδχδS dx,

Jδ(t) =

∫
R3

ρδχδS
[
|x− hδ(t)|2I− (x− hδ(t))⊗ (x− hδ(t))

]
dx.

Remark 2.1. The penalization which we apply in our case is different from that in [7]. We do not use the high viscosity
limit but our penalization contains an L2 penalization (see (2.3)), which is necessary because of the discontinuity of
the velocity field through the fluid-structure interface. Moreover, we consider a penalization of the viscosity coefficients
(2.8) together with the additional regularity of the pressure, see (2.7). This approach is completely new.
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A weak solution of problem (1.2)–(1.11) in the sense of Definition 1.1 will be obtained as a weak limit of the solution
(Sδ, ρδ, uδ) of system (2.1)–(2.6) as δ → 0. The existence result of the approximate system reads:

Proposition 2.2. Let Ω and S0 b Ω be two regular bounded domains of R3. Assume that for some σ > 0

dist(S0, ∂Ω) > 2σ.

Let gδ = (1− χδS)gF + χδSgS ∈ L∞((0, T )× Ω) and

δ > 0, γ > 3/2, β > max{8, γ}. (2.10)

Further, let the pressure pδ be determined by (2.7) and the viscosity coefficients µδ, λδ be given by (2.8). Assume that
the initial conditions satisfy

ρδ0 ∈ Lβ(Ω), ρδ0 > 0 a.e. in Ω, ρδ01S0 ∈ L∞(Ω), ρδ01S0 > 0 a.e. in S0, (2.11)

qδ0 ∈ L
2β
β+1 (Ω), qδ01{ρδ0=0} = 0 a.e. in Ω,

|qδ0|2

ρδ0
1{ρ0>0} ∈ L1(Ω). (2.12)

Let the initial energy

Eδ[ρδ0, q
δ
0] =

∫
Ω

(
1

2

|qδ0|2

ρδ0
1{ρδ0>0} +

aδ(0)

γ − 1
(ρδ0)γ +

δ

β − 1
(ρδ0)β

)
:= Eδ0

be uniformly bounded with respect to δ. Then there exists T > 0 (depending only on Eδ0 , gF , gS , dist(S0, ∂Ω)) such
that system (2.1)–(2.6) admits a finite energy weak solution (Sδ, ρδ, uδ), which satisfies the following energy inequality:

Eδ[ρδ, qδ] +

T∫
0

∫
Ω

(
2µδ|D(uδ)|2 + λδ|div uδ|2

)
+ α

T∫
0

∫
∂Ω

|uδ × ν|2 + α

T∫
0

∫
∂Sδ(t)

|(uδ − P δSuδ)× ν|2

+
1

δ

T∫
0

∫
Ω

χδS |uδ − P δSuδ|2 6
T∫

0

∫
Ω

ρδgδ · uδ + Eδ0 . (2.13)

Moreover,

dist(Sδ(t), ∂Ω) > 2σ, ∀ t ∈ [0, T ],

and the solution satisfies the following properties:

(1) For θ = 2
3γ − 1, s = γ + θ,

‖(aδ)1/sρδ‖Ls((0,T )×Ω) + δ
1

β+θ ‖ρδ‖Lβ+θ((0,T )×Ω) 6 c. (2.14)

(2) The couple (ρδ, uδ) satisfies the identity

∂tb(ρ
δ) + div(b(ρδ)uδ) + [b′(ρδ)ρδ − b(ρδ)] div uδ = 0, (2.15)

a.e. in (0, T )× Ω for any b ∈ C([0,∞)) ∩ C1((0,∞)) satisfying (1.28).

In order to prove Proposition 2.2, we consider a problem with another level of approximation: the ε-level approxima-
tion is obtained via the continuity equation with dissipation accompanied by the artificial pressure in the momentum
equation. We want to find a triplet (Sε, ρε, uε) such that we can obtain a weak solution (Sδ, ρδ, uδ) of the system
(2.1)–(2.6) as a weak limit of the sequence (Sε, ρε, uε) as ε→ 0. For ε > 0, the triplet is supposed to satisfy:

• Sε(t) b Ω is a bounded, regular domain for all t ∈ [0, T ] with

χεS(t, x) := 1Sε(t)(x) ∈ L∞((0, T )× Ω) ∩ C([0, T ];Lp(Ω)), ∀ 1 6 p <∞. (2.16)

• The velocity field uε ∈ L2(0, T ;H1(Ω)) and the density function ρε ∈ L∞(0, T ;Lβ(Ω)) ∩ L2(0, T ;H1(Ω)),
ρε > 0 satisfy

∂ρε

∂t
+ div(ρεuε) = ε∆ρε in (0, T )× Ω,

∂ρε

∂ν
= 0 on ∂Ω. (2.17)
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• For all φ ∈ H1(0, T ;L2(Ω)) ∩ Lβ+1(0, T ;W 1,β+1(Ω)) with φ · ν = 0 on ∂Ω, φ|t=T = 0, where β > max{8, γ},
the following holds:

−
T∫

0

∫
Ω

ρε
(
uε · ∂

∂t
φ+ uε ⊗ uε : ∇φ

)
+

T∫
0

∫
Ω

(
2µεD(uε) : D(φ) + λε div uεI : D(φ)− pε(ρε)I : D(φ)

)

+

T∫
0

∫
Ω

ε∇uε∇ρε · φ+ α

T∫
0

∫
∂Ω

(uε × ν) · (φ× ν) + α

T∫
0

∫
∂Sε(t)

[(uε − P εSuε)× ν] · [(φ− P εSφ)× ν]

+
1

δ

T∫
0

∫
Ω

χεS(uε − P εSuε) · (φ− P εSφ) =

T∫
0

∫
Ω

ρεgε · φ+

∫
Ω

(ρεuε · φ)(0). (2.18)

• χεS(t, x) satisfies (in the weak sense)

∂χεS
∂t

+ P εSu
ε · ∇χεS = 0 in (0, T )× Ω, χεS |t=0 = 1S0 in Ω. (2.19)

• ρεχεS(t, x) satisfies (in the weak sense)

∂

∂t
(ρεχεS) + P εSu

ε · ∇(ρεχεS) = 0 in (0, T )× Ω, (ρεχεS)|t=0 = ρε01S0 in Ω. (2.20)

• The initial data are given by

ρε(0, x) = ρε0(x), ρεuε(0, x) = qε0(x) in Ω,
∂ρε0
∂ν

∣∣
∂Ω

= 0. (2.21)

Above we have used the following quantities:

• The specific body force is defined as

gε = (1− χεS)gF + χεSgS . (2.22)

• The artificial pressure is given by

pε(ρ) = aεργ + δρβ , with aε = aF (1− χεS), (2.23)

where aF , δ > 0, and the exponents γ and β satisfy γ > 3/2, β > max{8, γ}.
• The viscosity coefficients are given by

µε = (1− χεS)µF + δ2χεS , λε = (1− χεS)λF + δ2χεS so that µε > 0, 2µε + 3λε > 0. (2.24)

• P εS : L2(Ω)→ L2(Sε(t)) ∩R(Sε(t)) is the orthogonal projection onto rigid fields; it is defined as in (2.9) with
χδS replaced by χεS .

Remark 2.3. Above, the triplet (Sε, ρε, uε) should actually be denoted by
(
Sδ,ε, ρδ,ε, uδ,ε

)
. The dependence on δ is

due to the penalization term
(

1
δ

T∫
0

∫
Ω

χεS(uε − P εSuε) · (φ − P εSφ)
)

in (2.18) and in the viscosity coefficients µε, λε in

(2.24). To simplify the notation, we omit δ here.

In Section 4.2 we will prove the following existence result of the approximate system (2.16)–(2.21):

Proposition 2.4. Let Ω and S0 b Ω be two regular bounded domains of R3. Assume that for some σ > 0,

dist(S0, ∂Ω) > 2σ.

Let gε = (1 − χεS)gF + χεSgS ∈ L∞((0, T ) × Ω) and β, δ, γ be given as in (2.10). Further, let the pressure pε be
determined by (2.23) and the viscosity coefficients µε, λε be given by (2.24). The initial conditions satisfy, for some
ρ, ρ > 0,

0 < ρ 6 ρε0 6 ρ in Ω, ρε0 ∈W 1,∞(Ω), qε0 ∈ L2(Ω). (2.25)
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Let the initial energy

Eε[ρε0, q
ε
0] =

∫
Ω

(
1

2

|qε0|2

ρε0
1{ρε0>0} +

aε(0)

γ − 1
(ρε0)γ +

δ

β − 1
(ρε0)β

)
:= Eε0

be uniformly bounded with respect to δ and ε. Then there exists T > 0 (depending only on Eε0, gF , gS , dist(S0, ∂Ω))
such that system (2.16)–(2.21) admits a weak solution (Sε, ρε, uε), which satisfies the following energy inequality:

Eε[ρε, qε] +

T∫
0

∫
Ω

(
2µε|D(uε)|2 + λε|div uε|2

)
+ δεβ

T∫
0

∫
Ω

(ρε)β−2|∇ρε|2 + α

T∫
0

∫
∂Ω

|uε × ν|2

+ α

T∫
0

∫
∂Sε(t)

|(uε − P εSuε)× ν|2 +
1

δ

T∫
0

∫
Ω

χεS |uε − P δSuε|2 6
T∫

0

∫
Ω

ρεgε · uε + Eε0 . (2.26)

Moreover,

dist(Sε(t), ∂Ω) > 2σ, ∀ t ∈ [0, T ],

and the solution satisfies

∂tρ
ε, ∆ρε ∈ L

5β−3
4β ((0, T )× Ω),

√
ε‖∇ρε‖L2((0,T )×Ω) + ‖ρε‖Lβ+1((0,T )×Ω) + ‖(aε)

1
γ+1 ρε‖Lγ+1((0,T )×Ω) 6 c, (2.27)

where c is a positive constant depending on δ but independent of ε.

To solve the problem (2.16)–(2.21), we need yet another level of approximation. The N -level approximation is
obtained via a Faedo-Galerkin approximation scheme.

Suppose that {ek}k>1 ⊂ D(Ω) with ek · ν = 0 on ∂Ω is a basis of L2(Ω). We set

XN = span(e1, . . . , eN ).

XN is a finite dimensional space with scalar product induced by the scalar product in L2(Ω). As XN is finite
dimensional, norms on XN induced by W k,p norms, k ∈ N, 1 6 p 6∞ are equivalent. We also assume that⋃

N

XN is dense in
{
v ∈W 1,p(Ω) | v · ν = 0 on ∂Ω

}
, for any 1 6 p <∞.

Such a family XN has been constructed in [11, Theorem 11.19, page 460].
The task is to find a triplet (SN , ρN , uN ) satisfying:

• SN (t) b Ω is a bounded, regular domain for all t ∈ [0, T ] with

χNS (t, x) := 1SN (t)(x) ∈ L∞((0, T )× Ω) ∩ C([0, T ];Lp(Ω)), ∀ 1 6 p <∞. (2.28)

• The velocity field uN (t, ·) =
N∑
k=1

αk(t)ek with (α1, α2, . . . , αN ) ∈ C([0, T ])N and the density function ρN ∈

L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)), ρN > 0 satisfies

∂ρN

∂t
+ div(ρNuN ) = ε∆ρN in (0, T )× Ω,

∂ρN

∂ν
= 0 on ∂Ω. (2.29)
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• For all φ ∈ D([0, T );XN ) with φ · ν = 0 on ∂Ω, the following holds:

−
T∫

0

∫
Ω

ρN
(
uN · ∂

∂t
φ+ uN ⊗ uN : ∇φ

)
+

T∫
0

∫
Ω

(
2µND(uN ) : D(φ) + λN div uN I : D(φ)− pN (ρN )I : D(φ)

)
T∫

0

∫
Ω

ε∇uN∇ρN · φ+ α

T∫
0

∫
∂Ω

(uN × ν) · (φ× ν) + α

T∫
0

∫
∂SN (t)

[(uN − PNS uN )× ν] · [(φ− PNS φ)× ν]

+
1

δ

T∫
0

∫
Ω

χNS (uN − PNS uN ) · (φ− PNS φ) =

T∫
0

∫
Ω

ρNgN · φ+

∫
Ω

(ρNuN · φ)(0). (2.30)

• χNS (t, x) satisfies (in the weak sense)

∂χNS
∂t

+ PNS u
N · ∇χNS = 0 in (0, T )× Ω, χNS |t=0 = 1S0 in Ω. (2.31)

• ρNχNS (t, x) satisfies (in the weak sense)

∂

∂t
(ρNχNS ) + PNS u

N · ∇(ρNχNS ) = 0 in (0, T )× Ω, (ρNχNS )|t=0 = ρN0 1S0 in Ω. (2.32)

• The initial data are given by

ρN (0) = ρN0 , uN (0) = uN0 in Ω,
∂ρN0
∂ν

∣∣∣
∂Ω

= 0. (2.33)

Above we have used the following quantities:

• The specific body force is defined as

gN = (1− χNS )gF + χNS gS . (2.34)

• The artificial pressure is given by

pN (ρ) = aNργ + δρβ , with aN = aF (1− χNS ), (2.35)

where aF , δ > 0 and the exponents γ and β satisfy γ > 3/2, β > max{8, γ}.
• The viscosity coefficients are given by

µN = (1− χNS )µF + δ2χNS , λN = (1− χNS )λF + δ2χNS so that µN > 0, 2µN + 3λN > 0. (2.36)

• PNS : L2(Ω) → L2(SN (t)) ∩ R(SN (t)) is the orthogonal projection onto rigid fields; it is defined as in (2.9)
with χδS replaced by χNS .

Remark 2.5. Actually the triplet
(
SN , ρN , uN

)
above should be denoted by

(
Sδ,ε,N , ρδ,ε,N , uδ,ε,N

)
. The dependence

on δ and ε is due to the penalization term

(
1
δ

T∫
0

∫
Ω

χNS (uN − PNS uN ) · (φ− PNS φ)

)
, the viscosity coefficients µN , λN

and the artificial dissipative term (ε∆ρ). To simplify the notation, we omit δ and ε here.

A weak solution (Sε, ρε, uε) to the system (2.16)–(2.21) is obtained through the limit of (SN , ρN , uN ) as N → ∞.
The existence result of the approximate solution of the Faedo-Galerkin scheme reads:

Proposition 2.6. Let Ω and S0 b Ω be two regular bounded domains of R3. Assume that for some σ > 0,

dist(S0, ∂Ω) > 2σ.

Let gN = (1 − χNS )gF + χNS gS ∈ L∞((0, T ) × Ω) and β, δ, γ be given by (2.10). Further, let the pressure pN be
determined by (2.35) and the viscosity coefficients µN , λN be given by (2.36). The initial conditions are assumed to
satisfy

0 < ρ 6 ρN0 6 ρ in Ω, ρN0 ∈W 1,∞(Ω), uN0 ∈ XN . (2.37)
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Let the initial energy

EN (ρN0 , q
N
0 ) =

∫
Ω

(
1

ρN0
|qN0 |21{ρ0>0} +

aN (0)

γ − 1
(ρN0 )γ +

δ

β − 1
(ρN0 )β

)
:= EN0

be uniformly bounded with respect to N, ε, δ. Then there exists T > 0 (depending only on EN0 , gF , gS , ρ, ρ, dist(S0, ∂Ω))

such that the problem (2.28)–(2.33) admits a solution (SN , ρN , uN ) and it satisfies the energy inequality:

EN [ρN , qN ] +

T∫
0

∫
Ω

(
2µN |D(uN )|2 + λN |div uN |2

)
+ δεβ

T∫
0

∫
Ω

(ρN )β−2|∇ρN |2 + α

T∫
0

∫
∂Ω

|uN × ν|2

+ α

T∫
0

∫
∂SN (t)

|(uN − PNS uN )× ν|2 +
1

δ

T∫
0

∫
Ω

χNS |uN − PNS uN |2 6
T∫

0

∫
Ω

ρNgN · uN + EN0 .

Moreover,

dist(SN (t), ∂Ω) > 2σ, ∀ t ∈ [0, T ].

We prove the above proposition in Section 4.1.

3. Isometric propagators and the motion of the body

In this section, we state and prove some results regarding the transport equation that we use in our analysis. We
mainly concentrate on the following equation:

∂χS
∂t

+ div(PSuχS) = 0 in (0, T )× R3, χS |t=0 = 1S0 in R3, (3.1)

where PSu ∈ R(Ω) is given by

PSu(t, x) =
1

m

∫
Ω

ρχSu+

J−1

∫
Ω

ρχS((y − h(t))× u) dy

× (x− h(t)), ∀ (t, x) ∈ (0, T )× R3. (3.2)

In [16, Proposition 3.1], the existence of a solution to (3.1) and the characterization of the transport of the rigid body
have been established with constant ρ in the expression (3.2) of PSu. Here we deal with the case when ρ is evolving.
We start with some existence results when the velocity field and the density satisfy certain regularity assumptions.

Proposition 3.1. Let u ∈ C([0, T ];D(Ω)) and ρ ∈ L2(0, T ;H2(Ω))∩C([0, T ];H1(Ω)). Then the following holds true:

(1) There is a unique solution χS ∈ L∞((0, T )× R3) ∩ C([0, T ];Lp(R3)) ∀ 1 6 p <∞ to (3.1). More precisely,

χS(t, x) = 1S(t)(x), ∀ t > 0, ∀ x ∈ R3.

If the isometric propagator ηt,s, associated to PSu is defined by

∂ηt,s
∂t

(y) = PSu(t, ηt,s(y)), ∀ (t, s, y) ∈ (0, T )2 × R3, ηs,s(y) = y, ∀ y ∈ R3, (3.3)

then

(t, s) 7→ ηt,s ∈ C1([0, T ]2;C∞loc(R3)),

Moreover, we also have S(t) = ηt,0(S0).
(2) Let ρ01S0 ∈ L∞(R3). Then there is a unique solution ρχS ∈ L∞((0, T )×R3)∩C([0, T ];Lp(R3)), ∀ 1 6 p <∞

to the following equation:

∂(ρχS)

∂t
+ div((ρχS)PSu) = 0 in (0, T )× R3, ρχS |t=0 = ρ01S0 in R3. (3.4)
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Proof. Following [16, Proposition 3.1], we observe that proving existence of solution to (3.1) is equivalent to establishing
the well-posedness of the ordinary differential equation

d

dt
ηt,0 = US(t, ηt,0), η0,0 = I, (3.5)

where US ∈ R is given by

US(t, x) =
1

m

∫
S0

ρ(t, ηt,0(y))1Ωu(t, ηt,0(y)) dy+

J−1

∫
S0

ρ(t, ηt,0(y))1Ω((ηt,0(y)− h(t))× u(t, ηt,0(y))) dy

×(x−h(t)).

According to the Cauchy-Lipschitz theorem, equation (3.5) admits the unique C1 solution if US is continuous in (t, η)
and uniformly Lipschitz in η. Thus, it is enough to establish the following result analogous to [16, Lemma 3.2]: Let
u ∈ C([0, T ];D(Ω)) and ρ ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)). Then the function

M : [0, T ]× Isom(R3) 7→ R, M(t, η) =

∫
S0

ρ(t, η(y))1Ω(η(y))u(t, η(y))

is continuous in (t, η) and uniformly Lipschitz in η over [0, T ]. Observe that the continuity in the t-variable is obvious.
Moreover, for two isometries η1 and η2, we have

M(t, η1)−M(t, η2)

=

∫
S0

ρ(t, η1(y))1Ω(η1(y))(u(t, η1(y))− u(t, η2(y))) +

∫
S0

ρ(t, η1(y))(1Ω(η1(y))− 1Ω(η2(y)))u(t, η2(y))

+

∫
S0

(ρ(t, η1(y))− ρ(t, η2(y)))1Ω(η2(y))u(t, η2(y)) := M1 +M2 +M3.

As ρ ∈ L2(0, T ;H2(Ω))∩C([0, T ];H1(Ω)), the estimates of the terms M1 and M2 are similar to [16, Lemma 3.2]. The
term M3 can be estimated in the following way:

|M3| 6 C‖ρ‖L∞(0,T ;H1(Ω))‖u‖L∞(0,T ;L2(Ω))‖η1 − η2‖∞.

This finishes the proof of the first part of Proposition 3.1. The second part of this Proposition is similar and we skip
it here. �

Next we prove the analogous result of [16, Proposition 3.3, Proposition 3.4] on strong and weak sequential continuity
which are essential to establish the existence result of the Galerkin approximation scheme in Section 4.1. The result
obtained in the next proposition is used to establish the continuity of the fixed point map in the proof of the existence
of Galerkin approximation.

Proposition 3.2. Let ρN0 ∈ W 1,∞(Ω), let ρk ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)) be the solution
to

∂ρk

∂t
+ div(ρkuk) = ∆ρk in (0, T )× Ω,

∂ρk

∂ν
= 0 on ∂Ω, ρk(0, x) = ρN0 (x) in Ω,

∂ρk0
∂ν

∣∣
∂Ω

= 0. (3.6)

uk → u strongly in C([0, T ];D(Ω)), χkS is bounded in L∞((0, T )× R3) satisfying

∂χkS
∂t

+ div(P kSu
kχkS) = 0 in (0, T )× R3, χkS |t=0 = 1S0 in R3, (3.7)

and let {ρkχkS} be a bounded sequence in L∞((0, T )× R3) satisfying

∂

∂t
(ρkχkS) + div(P kSu

k(ρkχkS)) = 0 in (0, T )× R3, ρkχkS |t=0 = ρN0 1S0 in R3, (3.8)
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where P kS : L2(Ω)→ L2(Sk(t))∩R(Sk(t)) is the orthogonal projection onto rigid fields with Sk(t) b Ω being a bounded,
regular domain for all t ∈ [0, T ]. Then

χkS → χS weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)), ∀ 1 6 p <∞,

ρkχkS → ρχS weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)), ∀ 1 6 p <∞,

where χS and ρχS are satisfying (3.1) and (3.4) with initial data 1S0 and ρN0 1S0 , respectively. Moreover,

P kSu
k → PSu strongly in C([0, T ];C∞loc(R3)),

ηkt,s → ηt,s strongly in C1([0, T ]2;C∞loc(R3)).

Proof. As {uk} converges strongly in C([0, T ];D(Ω)) and {ρkχkS} is bounded in L∞((0, T )×R3), we obtain that P kSu
k

is bounded in L2(0, T ;R). Thus, up to a subsequence,

P kSu
k → uS weakly in L2(0, T ;R). (3.9)

Here, obviously P kSu
k ∈ L1(0, T ;L∞loc(R3)), div(P kSu

k) = 0 and uS ∈ L1(0, T ;W 1,1
loc (R3)) satisfies

uS
1 + |x|

∈ L1(0, T ;L1(R3)).

Moreover, {χkS} is bounded in L∞((0, T ) × R3), χkS satisfies (3.7) and {ρNχkS} is bounded in L∞((0, T ) × R3), ρkχkS
satisfies (3.8). As we have verified all the required conditions, we can apply [6, Theorem II.4, Page 521] to obtain

χkS converges weakly- ∗ in L∞((0, T )× R3), strongly in C([0, T ];Lploc(R
3)) (1 6 p <∞),

ρkχkS converges weakly- ∗ in L∞((0, T )× R3), strongly in C([0, T ];Lploc(R
3)) (1 6 p <∞).

Let the limit of χkS be denoted by χS , it satisfies

∂χS
∂t

+ div(uS χS) = 0 in (0, T )× R3, χS |t=0 = 1S0 in R3.

Let the weak limit of ρkχkS be denoted by ρχS ; it satisfies

∂(ρχS)

∂t
+ div(uS ρχS) = 0 in (0, T )× R3, ρχS |t=0 = ρN0 1S0 in R3.

We follow the similar analysis as for the fluid case explained in [30, Section 7.8.1, Page 362] to conclude that

ρk → ρ strongly in Lp((0, T )× Ω), ∀ 1 6 p <
4

3
β with β > max{8, γ}, γ > 3/2.

The strong convergences of ρk and χkS help us to identify the limit:

ρχS = ρχS .

Using the convergences of ρkχkS and uk in the equation

P kSu
k(t, x) =

1

mk

∫
Ω

ρkχkSu
k +

(Jk)−1

∫
Ω

ρkχkS((y − hk(t))× uk) dy

× (x− hk(t)),

and the convergence in (3.9), we conclude that

uS = PSu.

The convergence of the isometric propagator ηkt,s follows from the convergence of P kSu
k and equation (3.3). �

We need the next result on weak sequential continuity to analyze the limiting system of Faedo-Galerkin as N →∞
in Section 4.2. The proof is similar to that of Proposition 3.2 and we skip it here.
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Proposition 3.3. Let us assume that ρN0 ∈W 1,∞(Ω) with ρN0 → ρ0 in W 1,∞(Ω), ρN satisfies (3.6) and

ρN → ρ strongly in Lp((0, T )× Ω), 1 6 p <
4

3
β with β > max{8, γ}, γ > 3/2.

Let {uN , χNS } be a bounded sequence in L∞(0, T ;L2(Ω))×L∞((0, T )×R3) satisfying (3.7). Let {ρNχNS } be a bounded
sequence in L∞((0, T )× R3) satisfying (3.8). Then, up to a subsequence, we have

uN → u weakly- ∗ in L∞(0, T ;L2(Ω)),

χNS → χS weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)), ∀ 1 6 p <∞,

ρNχNS → ρχS weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)), ∀ 1 6 p <∞,

where χS and ρχS satisfying (3.1) and (3.4), respectively. Moreover,

PNS u
N → PSu weakly- ∗ in L∞(0, T ;C∞loc(R3)),

ηNt,s → ηt,s weakly- ∗ in W 1,∞((0, T )2;C∞loc(R3)).

At the level of the Galerkin approximation, we have boundedness of
√
ρNuN in L∞(0, T ;L2(Ω)) and ρN is strictly

positive, which means that we get the boundedness of uN in L∞(0, T ;L2(Ω)). So, we can use Proposition 3.3 in
the convergence analysis of the Galerkin scheme. In the case of the ε-level for the compressible fluid, we have
boundedness of

√
ρεuε in L∞(0, T ;L2(Ω)) but ρε is only non-negative. On the other hand, we establish boundedness

of uε in L2(0, T ;H1(Ω)). We need the following result for the convergence analysis of the vanishing viscosity limit in
Section 4.3.

Proposition 3.4. Let ρε0 ∈W 1,∞(Ω) with ρε0 → ρ0 in Lβ(Ω), ρε satisfies

∂ρε

∂t
+ div(ρεuε) = ∆ρε in (0, T )× Ω,

∂ρε

∂ν
= 0 on ∂Ω, ρε(0, x) = ρε0(x) in Ω,

∂ρε0
∂ν

∣∣
∂Ω

= 0.,

and
ρε → ρ weakly in Lβ+1((0, T )× Ω), with β > max{8, γ}, γ > 3/2. (3.10)

Let {uε, χεS} be a bounded sequence in L2(0, T ;H1(Ω))× L∞((0, T )× R3) satisfying

∂χεS
∂t

+ div(P εSu
εχεS) = 0 in (0, T )× R3, χεS |t=0 = 1S0 in R3, (3.11)

and let {ρεχεS} be a bounded sequence in L∞((0, T )× R3) satisfying

∂

∂t
(ρεχεS) + div(P εSu

ε(ρεχεS)) = 0 in (0, T )× R3, ρεχεS |t=0 = ρε01S0 in R3, (3.12)

where P εS : L2(Ω) → L2(Sε(t)) is the orthogonal projection onto rigid fields with Sε(t) b Ω being a bounded, regular
domain for all t ∈ [0, T ]. Then up to a subsequence, we have

uε → u weakly in L2(0, T ;H1(Ω)),

χεS → χS weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)) (1 6 p <∞),

ρεχεS → ρχS weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)) (1 6 p <∞),

with χS and ρχS satisfying (3.1) and (3.4) respectively. Moreover,

P εSu
ε → PSu weakly in L2(0, T ;C∞loc(R3)),

ηεt,s → ηt,s weakly in H1((0, T )2;C∞loc(R3)).

Proof. As {uε} is a bounded sequence in L2(0, T ;H1(Ω)) and {ρεχεS} is bounded in L∞((0, T )× R3), we obtain that
{P εSuε} is bounded in L2(0, T ;R). Thus, up to a subsequence,

P εSu
ε → uS weakly in L2(0, T ;R). (3.13)

Here, obviously P εSu
ε ∈ L1(0, T ;L∞loc(R3)), div(P εSu

ε) = 0 and uS ∈ L1(0, T ;W 1,1
loc (R3)) satisfies

uS
1 + |x|

∈ L1(0, T ;L1(R3)).
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Moreover, {χεS} is bounded in L∞((0, T ) × R3), χεS satisfies (3.11) and {ρεχεS} is bounded in L∞((0, T ) × R3), ρεχεS
satisfies (3.12). As we have verified all the required conditions, we can apply [6, Theorem II.4, Page 521] to obtain

χεS converges weakly- ∗ in L∞((0, T )× R3), strongly in C([0, T ];Lploc(R
3)) (1 6 p <∞),

ρεχεS converges weakly- ∗ in L∞((0, T )× R3), strongly in C([0, T ];Lploc(R
3)) (1 6 p <∞).

Let the limit of χεS be denoted by χS ; it satisfies

∂χS
∂t

+ div(uS χS) = 0 in R3, χS |t=0 = 1S0 in R3.

Let the limit of ρεχεS be denoted by ρχS ; it satisfies

∂(ρχS)

∂t
+ div(uS ρχS) = 0 in (0, T )× R3, ρχS |t=0 = ρ01S0 in R3.

The weak convergence of ρε and strong convergence of χεS help us to identify the limit:

ρχS = ρχS .

Using the convergences of ρεχεS and uε in the equation

P εSu
ε(t, x) =

1

mε

∫
Ω

ρεχεSu
ε +

(Jε)−1

∫
Ω

ρεχεS((y − hε(t))× uε) dy

× (x− hε(t)),

and the convergence in (3.13), we conclude that

uS = PSu.

The convergence of the isometric propagators ηεt,s follows from the convergence of P εSu
ε and equation (3.3). �

In the limit of uδ, we can expect the boundedness of the limit only in L2(0, T ;L2(Ω)) but not in L2(0, T ;H1(Ω)).
That is why we need a different sequential continuity result, which we use in Section 5.

Proposition 3.5. Let ρδ0 ∈ Lβ(Ω) with ρδ0 → ρ0 in Lγ(Ω), let ρδ satisfy

∂ρδ

∂t
+ div(ρδuδ) = 0 in (0, T )× Ω, ρδ(0, x) = ρδ0(x) in Ω,

and

ρδ → ρ weakly in Lγ+θ((0, T )× Ω), with γ > 3/2, θ =
2

3
γ − 1. (3.14)

Let {uδ, χδS} be a bounded sequence in L2(0, T ;L2(Ω))× L∞((0, T )× R3) satisfying

∂χδS
∂t

+ div(P δSu
δχδS) = 0 in (0, T )× R3, χδS |t=0 = 1S0 in R3, (3.15)

and let {ρδχδS} be a bounded sequence in L∞((0, T )× R3) satisfying

∂

∂t
(ρδχδS) + div(P δSu

δ(ρδχδS)) = 0 in (0, T )× R3, ρδχδS |t=0 = ρδ01S0 in R3, (3.16)

where P δS : L2(Ω) → L2(Sδ(t)) is the orthogonal projection onto rigid fields with Sδ(t) b Ω being a bounded, regular
domain for all t ∈ [0, T ]. Then, up to a subsequence, we have

uδ → u weakly in L2(0, T ;L2(Ω)),

χδS → χS weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)) (1 6 p <∞),

ρδχδS → ρχS weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)) (1 6 p <∞),

with χS and ρχS satisfying (3.1) and (3.4) respectively. Moreover,

P δSu
δ → PSu weakly in L2(0, T ;C∞loc(R3)),

ηδt,s → ηt,s weakly in H1((0, T )2;C∞loc(R3)).
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Proof. As {uδ} is a bounded sequence in L2(0, T ;L2(Ω)) and {ρδχδS} is bounded in L∞((0, T ) × R3), we obtain that
{P δSuδ} is bounded in L2(0, T ;R). Thus, up to a subsequence,

P δSu
δ → uS weakly in L2(0, T ;R). (3.17)

Here, obviously P δSu
δ ∈ L1(0, T ;L∞loc(R3)), div(P δSu

δ) = 0 and uS ∈ L1(0, T ;W 1,1
loc (R3)) satisfies

uS
1 + |x|

∈ L1(0, T ;L1(R3)).

Moreover, {χδS} is bounded in L∞((0, T ) × R3), χδS satisfies (3.15) and {ρδχδS} is bounded in L∞((0, T ) × R3), ρδχδS
satisfies (3.16). Now we can apply [6, Theorem II.4, Page 521] to obtain

χδS converges weakly- ∗ in L∞((0, T )× R3), and strongly in C([0, T ];Lploc(R
3)) (1 6 p <∞),

ρδχδS converges weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)) (1 6 p <∞).

Let the weak limit of χδS be denoted by χS . Then it satisfies

∂χS
∂t

+ div(uS χS) = 0 in (0, T )× R3, χS |t=0 = 1S0 in R3,

Let the limit of ρδχδS be denoted by ρχS ; it satisfies

∂(ρχS)

∂t
+ div(uS ρχS) = 0 in (0, T )× R3, ρχS |t=0 = ρ01S0 in R3.

From (3.14), we know that

ρδ → ρ weakly in Lγ+θ((0, T )× Ω), with γ > 3/2, θ =
2

3
γ − 1.

The weak convergence of ρδ to ρ and strong convergence of χδS to χS help us to identify the limit:

ρχS = ρχS ,

Using the convergences of ρδχδS and uδ in the equation

P δSu
δ(t, x) =

1

mδ

∫
Ω

ρδχδSu
δ +

(Jδ)−1

∫
Ω

ρδχδS((y − hδ(t))× uδ) dy

× (x− hδ(t)),

and the convergence in (3.17), we conclude that
uS = PSu.

The convergence of the isometric propagator ηδt,s follows from the convergence of P δSu
δ and equation (3.3). �

4. Existence proofs of approximate solutions

In this section, we present the proofs of the existence results of the three approximation levels. We start with the
N -level approximation in Section 4.1 and the limit as N → ∞ in Section 4.2, which yields existence at the ε-level.
The convergence of ε → 0, considered in Section 4.3, then shows existence of solutions at the δ-level. The final limit
problem as δ → 0 is the topic of Section 5.

4.1. Existence of the Faedo-Galerkin approximation. In this subsection, we construct a solution (SN , ρN , uN )
to the problem (2.28)–(2.33). First we recall a known maximal regularity result for the parabolic problem (2.29):

Proposition 4.1. [30, Proposition 7.39, Page 345] Suppose that Ω is a regular bounded domain and assume ρ0 ∈
W 1,∞(Ω), ρ 6 ρ0 6 ρ, u ∈ L∞(0, T ;W 1,∞(Ω)). Then the parabolic problem (2.29) admits a unique solution in the
solution space

ρ ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω))

and it satisfies

ρ exp

− τ∫
0

‖ div u(s)‖L∞(Ω) ds

 6 ρ(τ, x) 6 ρ exp

 τ∫
0

‖ div u(s)‖L∞(Ω) ds

 (4.1)
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for any τ ∈ [0, T ].

Proof of Proposition 2.6. The idea is to view our Galerkin approximation as a fixed point problem and then apply
Schauder’s fixed point theorem to it. We set

BR,T = {u ∈ C([0, T ];XN ), ‖u‖L∞(0,T ;L2(Ω)) 6 R},

for R and T positive which will be fixed in Step 3.
Step 1: Continuity equation and transport of the body. Given u ∈ BR,T , let ρ be the solution to

∂ρ

∂t
+ div(ρu) = ε∆ρ in (0, T )× Ω,

∂ρ

∂ν
= 0 on ∂Ω, ρ(0) = ρN0 , 0 < ρ 6 ρN0 6 ρ, (4.2)

and let χS satisfy
∂χS
∂t

+ PSu · ∇χS = 0, χS |t=0 = 1S0 , (4.3)

and
∂

∂t
(ρχS) + PSu · ∇(ρχS) = 0, (ρχS)|t=0 = ρN0 1S0 , (4.4)

where PSu ∈ R and it is given by (3.2).
Since ρN0 ∈W 1,∞(Ω), u ∈ BR,T in (4.2), we can apply Proposition 4.1 to conclude that ρ > 0 and

ρ ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)).

Moreover, by Proposition 3.1 we obtain

χS ∈ L∞((0, T )× Ω) ∩ C([0, T ];Lp(Ω)), ∀ 1 6 p <∞,
ρχS ∈ L∞((0, T )× Ω) ∩ C([0, T ];Lp(Ω)), ∀ 1 6 p <∞.

Consequently, we define

µ = (1− χS)µF + δ2χS , λ = (1− χS)λF + δ2χS so that µ > 0, 2µ+ 3λ > 0,

g = (1− χS)gF + χSgS , p(ρ) = aργ + δρβ with a = aF (1− χS).

Step 2: Momentum equation. Given u ∈ BR,T , let us consider the following equation satisfied by ũ : [0, T ] 7→ XN :

−
T∫

0

∫
Ω

ρ
(∂ũ
∂t
· ej + (u · ∇ej) · ũ

)
+

T∫
0

∫
Ω

(
2µD(ũ) : D(ej) + λ div ũI : D(ej)− p(ρ)I : D(ej)

)

+

T∫
0

∫
Ω

ε∇ũ∇ρ · ej + α

T∫
0

∫
∂Ω

(ũ× ν) · (ej × ν) + α

T∫
0

∫
∂SN (t)

[(ũ− PS ũ)× ν] · [(ej − PSej)× ν]

+
1

δ

T∫
0

∫
Ω

χS(ũ− PS ũ) · (ej − PSej) =

T∫
0

∫
Ω

ρg · ej , (4.5)

where ρ, χS are defined as in Step 1. We can write

ũ(t, ·) =

N∑
i=1

gi(t)ei, ũ(0) = uN0 =

N∑
i=1

∫
Ω

u0 · ei

 ei.

The coefficients {gi} of ũ satisfy the ordinary differential equation,

N∑
i=1

ai,jg
′
i(t) +

N∑
i=1

bi,jgi(t) = fj(t), gi(0) =

∫
Ω

uN0 · ei, (4.6)
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where ai,j , bi,j and fj are given by

ai,j =

T∫
0

∫
Ω

ρeiej ,

bi,j =

T∫
0

∫
Ω

ρ(u · ∇ej) · ei +

T∫
0

∫
Ω

(
2µD(ei) : D(ej) + λ div eiI : D(ej)

)
+

T∫
0

∫
Ω

ε∇ei∇ρ · ej

+ α

T∫
0

∫
∂Ω

(ei × ν) · (ej × ν) + α

T∫
0

∫
∂S(t)

[(ei − PSei)× ν] · [(ej − PSej)× ν] +
1

δ

T∫
0

∫
Ω

χS(ei − PSei) · (ej − PSej),

fj =

T∫
0

∫
Ω

ρg · ej +

T∫
0

∫
Ω

p(ρ)I : D(ej).

Observe that the positive lower bound of ρ in Proposition 4.1 guarantees the invertibility of the matrix (ai,j(t))16i,j6N .
We use the regularity of ρ (Proposition 4.1), of χS and of the propagator associated to PSu (Proposition 3.1) to conclude
the continuity of (ai,j(t))16i,j6N , (bi,j(t))16i,j6N , (fi(t))16i6N . The existence and uniqueness theorem for ordinary
differential equations gives that system (4.6) has a unique solution defined on [0, T ] and therefore equation (4.5) has
a unique solution

ũ ∈ C([0, T ];XN ).

Step 3: Well-definedness of N . Let us define a map

N : BR,T → C([0, T ], XN )

u 7→ ũ,

where ũ satisfies (4.5). Since we know the existence of ũ ∈ C([0, T ];XN ) to the problem (4.5), we have that N is
well-defined from BR,T to C([0, T ];XN ). Now we establish the fact that N maps BR,T to itself for suitable R and T .

We fix

0 < σ <
1

2
dist(S0, ∂Ω).

Given u ∈ BR,T , we want to estimate ‖ũ‖L∞(0,T ;L2(Ω)). We have the following identities via a simple integration by
parts:

t∫
0

∫
Ω

ρũ′ · ũ = −1

2

t∫
0

∫
Ω

∂ρ

∂t
|ũ|2 +

1

2
(ρ|ũ|2)(t)− 1

2
ρ0|u0|2, (4.7)

T∫
0

∫
Ω

ρ(u · ∇)ũ · ũ = −1

2

T∫
0

∫
Ω

div(ρu)|ũ|2, (4.8)

∫
Ω

∇(ργ) · ũ =
γ

γ − 1

∫
Ω

∇(ργ−1) · ρũ = − γ

γ − 1

∫
Ω

ργ−1 div(ρũ) =
1

γ − 1

d

dt

∫
Ω

ργ − εγ

γ − 1

∫
Ω

ργ−1∆ρ

=
1

γ − 1

d

dt

∫
Ω

ργ + εγ

∫
Ω

ργ−2|∇ρ|2 > 1

γ − 1

d

dt

∫
Ω

ργ .

(4.9)

Similarly, ∫
Ω

∇(ρβ) · ũ =
1

β − 1

d

dt

∫
Ω

ρβ + εβ

∫
Ω

ρβ−2|∇ρ|2. (4.10)
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We multiply equation (4.5) by gj , add these equations for j = 1, 2, ..., N , use the relations (4.7)–(4.10) and the
continuity equation (4.2) to obtain the following energy estimate:

∫
Ω

(1

2
ρ|ũ|2 +

a

γ − 1
ργ +

δ

β − 1
ρβ
)

+

T∫
0

∫
Ω

(
2µ|D(ũ)|2 + λ|div ũ|2

)
+ δεβ

T∫
0

∫
Ω

ρβ−2|∇ρ|2 + α

T∫
0

∫
∂Ω

|ũ× ν|2

+α

T∫
0

∫
∂S(t)

|(ũ−PS ũ)× ν|2 +
1

δ

T∫
0

∫
Ω

χS |ũ−PS ũ|2 6
T∫

0

∫
Ω

ρg · ũ+

∫
Ω

(
1

2

ρN0
|qN0 |2

1{ρ0>0} +
a

γ − 1
(ρN0 )γ +

δ

β − 1
(ρN0 )β

)

6
√
ρT

(
1

2ε̃
‖g‖2L∞(0,T ;L2(Ω)) +

ε̃

2
‖√ρũ‖2L∞(0,T ;L2(Ω))

)
+

∫
Ω

(
1

2

ρN0
|qN0 |2

1{ρ0>0} +
a

γ − 1
(ρN0 )γ +

δ

β − 1
(ρN0 )β

)
. (4.11)

An appropriate choice of ε̃ in (4.11) gives us

‖ũ‖2L∞(0,T ;L2(Ω)) 6
4ρ

ρ
T 2‖g‖2L∞(0,T ;L2(Ω)) +

4

ρ
EN0 ,

where ρ and ρ are the upper and lower bounds of ρ. In order to get ‖ũ‖L∞(0,T ;L2(Ω)) 6 R, we need

R2 >
4ρ

ρ
T 2‖g‖2L∞(0,T ;L2(Ω)) +

4

ρ
EN0 . (4.12)

We also need to verify that for T small enough and for any u ∈ BR,T ,

inf
u∈BR,T

dist(S(t), ∂Ω) > 2σ > 0 (4.13)

holds. We can write S(t) = ηt,0(S0) with the isometric propagator ηt,s (see equation (3.3) for the precise definition)
associated to the rigid field PSu = h′(t) + ω(t)× (y − h(t)). From [16, Proposition 4.6, Step 2], we conclude: proving
(4.13) is equivalent to establishing the following bound:

sup
t∈[0,T ]

|∂tηt,0(t, y)| < dist(S0, ∂Ω)− 2σ

T
, t ∈ [0, T ], y ∈ S0. (4.14)

Using equation (3.3), we have

|∂tηt,0(t, y)| = |PSu(t, ηt,0(t, y))|.
The expressions

PSu(t, x) = h′(t) + ωi(t)× (x− h(t)), x ∈ R3

and

ηt,0(t, y) = h(t) + O(t)(y) where O(t) ∈ SO(3), y ∈ S0,

along with the isometric property of the propagator ηt,0 yield the following:

|PSu(t, ηt,0(t, y))| = |h′(t) + ω(t)× (ηt,0(y)− ηt,0(0))| 6 |h′(t)|+ |ω(t)||ηt,0(y)− ηt,0(0)| = |h′(t)|+ |ω(t)||y|.
Furthermore, if ρ is the upper bound of ρ, then for u ∈ BR,T

|h′(t)|2 + J(t)ω(t) · ω(t) =

∫
S(t)

ρ|PSu(t, ·)|2 6
∫
Ω

ρ|u(t, ·)|2 6 ρR2 (4.15)

for any R and t ∈ (0, T ). As J(t) is congruent to J(0), they have the same eigenvalues and we have

λ0|ω(t)|2 6 J(t)ω(t) · ω(t),

where λ0 is the smallest eigenvalue of J(0). Observe that for t ∈ [0, T ], y ∈ S0,

|h′(t)|+ |ω(t)||y| 6
√

2(|h′(t)|2 + |ω(t)|2|y)|2)1/2 6
√

2 max{1, |y|}(|h′(t)|2 + |ω(t)|2)1/2

6 C0

(
|h′(t)|2 + J(t)ω(t) · ω(t)

)1/2
,

(4.16)
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where C0 =
√

2 max{1,|y|}
min{1,λ0}1/2

. Thus, with the help of (4.15)–(4.16) and the relation of R in (4.12), we can conclude that
any

T <
dist(S0, ∂Ω)− 2σ

C0|ρ|1/2[ 4ρ
ρ T

2‖g‖2L∞(0,T ;L2(Ω)) + 4
ρE

N
0 ]1/2

, (4.17)

satisfies the relation (4.13). Thus, we choose T satisfying (4.17) and fix it. Then we choose R as in (4.12) to conclude
that N maps BR,T to itself.

Step 4: Continuity of N . We show that if a sequence {uk} ⊂ BR,T is such that uk → u in BR,T , then N (uk) →
N (u) in BR,T . As span(e1, e2, ..., eN ) is a finite dimensional subspace of D(Ω), we have uk → u in C([0, T ];D(Ω)).
Given {uk} ⊂ BR,T , we have that ρk ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)) is the solution to (4.2),
χkS is bounded in L∞((0, T ) × R3) satisfying (4.3) and {ρkχkS} is a bounded sequence in L∞((0, T ) × R3) satisfying
(4.4). We apply Proposition 3.2 to obtain

χkS → χS weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)), ∀ 1 6 p <∞,

P kSu
k → PSu strongly in C([0, T ];C∞loc(R3)),

ηkt,s → ηt,s strongly in C1([0, T ]2;C∞loc(R3)).

We use the continuity argument as in Step 2 to conclude

aki,j → ai,j , bki,j → bi,j , fkj → fj strongly in C([0, T ]),

and so we obtain

N (uk) = ũk → ũ = N (u) strongly in C([0, T ];XN ).

Step 5: Compactness of N . If ũ(t) =
N∑
i=1

gi(t)ei, we can view (4.6) as

A(t)G′(t) +B(t)G(t) = F (t),

where A(t) = (ai,j(t))16i,j6N , B(t) = (bi,j(t))16i,j6N , F (t) = (fi(t))16i6N , G(t) = (gi(t))16i6N . We deduce

|g′i(t)| 6 R|A−1(t)||B(t)|+ |A−1(t)||F (t)|.

Thus, we have

sup
t∈[0,T ]

(
|gi(t)|+ |g′i(t)|

)
6 C.

This also implies

sup
u∈BR,T

‖N (u)‖C1([0,T ];XN ) 6 C.

The C1([0, T ];XN )-boundedness of N (u) allows us to apply the Arzelà-Ascoli theorem to obtain compactness of N in
BR,T .

Now we are in a position to apply Schauder’s fixed point theorem to N to conclude the existence of a fixed point
uN ∈ BR,T . Then we define ρN satisfying the continuity equation (2.29) on (0, T ) × Ω, and χNS = 1SN is the
corresponding solution to the transport equation (2.31) on (0, T ) × R3. It only remains to justify the momentum
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equation (2.30). We multiply equation (4.5) by ψ ∈ D([0, T )) to obtain:

−
T∫

0

∫
Ω

ρN
(∂uN
∂t
· ψ(t)ej + (uN · ∇(ψ(t)ej)) · uN

)
+

T∫
0

∫
Ω

ε∇uN∇ρN · (ψ(t)ej) + α

T∫
0

∫
∂Ω

(uN × ν) · (ψ(t)ej × ν)

+

T∫
0

∫
Ω

(
2µND(uN ) : D(ψ(t)ej) + λN div uN I : D(ψ(t)ej)− pN (ρN )I : D(ψ(t)ej)

)

+ α

T∫
0

∫
∂SN (t)

[(uN − PNS uN )× ν] · [(ψ(t)ej − PNS ψ(t)ej)× ν] +
1

δ

T∫
0

∫
Ω

χS(uN − PNS uN ) · (ψ(t)ej − PNS ψ(t)ej)

=

T∫
0

∫
Ω

ρNgN · ψ(t)ej , (4.18)

We have the following identities via integration by parts:

T∫
0

ρN
∂uN

∂t
· ψ(t)ej = −

T∫
0

∂ρN

∂t
uN · ψ(t)ej −

T∫
0

ρNuN · ψ′(t)ej − (ρNuN · ψej)(0), (4.19)

∫
Ω

ρN (uN · ∇(ψ(t)ej)) · uN = −
∫
Ω

div(ρNuN )(ψ(t)ej · uN )−
∫
Ω

ρN (uN · ∇)uN · ψ(t)ej . (4.20)

Thus we can use the relations (4.19)–(4.20) and continuity equation (2.29) in the identity (4.18) to obtain equation
(2.30) for all φ ∈ D([0, T );XN ). �

4.2. Convergence of the Faedo-Galerkin scheme and the limiting system. In Proposition 2.6, we have already
constructed a solution (SN , ρN , uN ) to the problem (2.28)–(2.33). In this section, we establish Proposition 2.4 by
passing to the limit in (2.28)–(2.33) as N →∞ to recover the solution of (2.16)–(2.21), i.e. of the ε-level approximation.

Proof of Proposition 2.4. If we replace φ by uN in (2.30), then as in (4.11), we derive

EN [ρN , qN ] +

T∫
0

∫
Ω

(
2µN |D(uN )|2 + λN |div uN |2

)
+ δεβ

T∫
0

∫
Ω

(ρN )β−2|∇ρN |2 + α

T∫
0

∫
∂Ω

|uN × ν|2

+ α

T∫
0

∫
∂SN (t)

|(uN − PNS uN )× ν|2 +
1

δ

T∫
0

∫
Ω

χNS |uN − PNS uN |2 6
T∫

0

∫
Ω

ρNgN · uN + EN0 , (4.21)

where

EN [ρN , qN ] =

∫
Ω

(1

2
ρN |uN |2 +

aN

γ − 1
(ρN )γ +

δ

β − 1
(ρN )β

)
.

Following the idea of the footnote in [30, Page 368], the initial data (ρN0 , u
N
0 ) is constructed in such a way that

ρN0 → ρε0 in W 1,∞(Ω), ρN0 u
N
0 → qε0 in L2(Ω)

and∫
Ω

(
1

2
ρN0 |uN0 |21{ρN0 >0} +

aN

γ − 1
(ρN0 )γ +

δ

β − 1
(ρN0 )β

)
→
∫
Ω

(
1

2

|qε0|2

ρε0
1{ρε0>0} +

aε

γ − 1
(ρε0)γ +

δ

β − 1
(ρε0)β

)
as N →∞.

(4.22)
Precisely, we approximate qε0 by a sequence qN0 satisfying (2.37) and such that (4.22) is valid. It is sufficient to take

uN0 = PN (
qε0
ρε0

), where by PN we denote the orthogonal projection of L2(Ω) onto XN . Proposition 2.6 is valid with
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these new initial data and we have existence of a solution (SN , ρN , uN ). The construction of ρN and (4.1) imply that
ρN > 0. Thus the energy estimate (4.21) yields that up to a subsequence

(1) uN → uε weakly-∗ in L∞(0, T ;L2(Ω)) and weakly in L2(0, T ;H1(Ω)),
(2) ρN → ρε weakly-∗ in L∞(0, T ;Lβ(Ω)),
(3) ∇ρN → ∇ρε weakly in L2((0, T )× Ω).

We follow the similar analysis as for the fluid case explained in [30, Section 7.8.1, Page 362] to conclude that

• ρN → ρε in C([0, T ];Lβweak(Ω)) and ρN → ρε strongly in Lp((0, T )× Ω), ∀ 1 6 p < 4
3β,

• ρNuN → ρεuε weakly in L2(0, T ;L
6β
β+6 ) and weakly-∗ in L∞(0, T ;L

2β
β+1 ).

We also know that χNS is a bounded sequence in L∞((0, T )×R3) satisfying (2.31) and {ρNχNS } is a bounded sequence
in L∞((0, T )× R3) satisfying (2.32). We use Proposition 3.3 to conclude

χNS → χεS weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)), ∀ 1 6 p <∞, (4.23)

with χεS satisfying (2.19) along with (2.16). Thus, we have recovered the transport equation for the body (2.19). From
(4.23) and the definitions of gN and gε in (2.34) and (2.22), it follows that

gN → gε weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)) ∀ 1 6 p <∞. (4.24)

These convergence results make it possible to pass to the limit N →∞ in (2.29) to achieve (2.17). Now we concentrate
on the limit of the momentum equation (2.30). The four most difficult terms are:

AN (t, ek) =

∫
∂SN (t)

[(uN − PNS uN )× ν] · [(ek − PNS ek)× ν], BN (t, ek) =

∫
Ω

ρNuN ⊗ uN : ∇ek,

CN (t, ek) =

∫
Ω

ε∇uN∇ρN · ek, DN (t, ek) =

∫
Ω

(ρN )βI : D(ek), 1 6 k 6 N.

To analyze the term AN (t, ek), we do a change of variables to rewrite it in a fixed domain and use the convergence
results from Proposition 3.2 for the projection and the isometric propagator:

PNS u
N → P εSu

ε weakly- ∗ in L∞(0, T ;C∞loc(R3)),

ηNt,s → ηεt,s weakly- ∗ in W 1,∞((0, T )2;C∞loc(R3)).

We follow a similar analysis as in [16, Page 2047–2048] to conclude that AN converges weakly in L1(0, T ) to

A(t, ek) =

∫
∂Sε(t)

[(uε − P εSuε)× ν] · [(ek − P εSek)× ν].

We proceed as explained in the fluid case [30, Section 7.8.2, Page 363–365] to analyze the limiting process for the other
terms BN (t, ek), CN (t, ek), DN (t, ek). The limit of BN (t, ek) follows from the fact [30, Equation (7.8.22), Page 364]
that

ρNuN ⊗ uN → ρεuε ⊗ uε weakly in L2(0, T ;L
6β

4β+3 (Ω)). (4.25)

To get the limit of CN (t, ek), we use [30, Equation (7.8.26), Page 365]:

ε∇uN∇ρN → ε∇uε∇ρε weakly in L2(0, T ;L
5β−3
4β (Ω)),

and the limit of DN (t, ek) is obtained by using [30, Equation (7.8.8), Page 362]:

ρN → ρε strongly in Lp(0, T ; Ω), 1 6 p <
4

3
β. (4.26)

Thus, using the above convergence results for BN , CN , DN and the fact that⋃
N

XN is dense in
{
v ∈W 1,p(Ω) | v · ν = 0 on ∂Ω

}
for any p ∈ [1,∞),
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we conclude the following weak convergences in L1(0, T ):

BN (t, φN )→ B(t, φε) =

∫
Ω

ρεuε ⊗ uε : ∇φε,

CN (t, φN )→ C(t, φε) =

∫
Ω

ε∇uε∇ρε · φε,

DN (t, φN )→ D(t, φε) =

∫
Ω

(ρε)βI : D(φε).

Thus we have achieved (2.18) as a limit of equation (2.30) as N →∞. Hence, we have established the existence of a
solution (Sε, ρε, uε) to system (2.16)–(2.21). Now we establish energy inequality (2.26) and estimates independent of
ε:

• The weak convergence of ρN |uN |2 in (4.25) and strong convergence of ρN in (4.26) ensures that, up to a
subsequence,∫

Ω

(1

2
ρN |uN |2 +

aN

γ − 1
(ρN )γ +

δ

β − 1
(ρN )β

)
→
∫
Ω

(1

2
ρε|uε|2 +

aε

γ − 1
(ρε)γ +

δ

β − 1
(ρε)β

)
in D′((0, T )). (4.27)

• Due to the weak lower semicontinuity of convex functionals, the weak convergence of uN in L2(0, T ;H1(Ω)),
the strong convergence of χNS in C([0, T ];Lp(Ω)) and the strong convergence of PNS in C([0, T ];C∞loc(R3)), we
obtain

T∫
0

ψ

∫
Ω

(
2µε|D(uε)|2 + λε|div uε|2

)
6 lim inf

N→∞

T∫
0

ψ

∫
Ω

(
2µN |D(uN )|2 + λN |div uN |2

)
, (4.28)

T∫
0

ψ

∫
Ω

χεS |uε − P δSuε|2 6 lim inf
N→∞

T∫
0

ψ

∫
Ω

χNS |uN − PSuN |2, (4.29)

where ψ is a smooth non-negative function on (0, T ).
• Using the fact that ∇ρN → ∇ρ strongly in L2((0, T ) × Ω) (by [30, Equation (7.8.25), Page 365]), strong

convergence of ρN in (4.26) and Fatou’s lemma, we have

T∫
0

ψ

∫
Ω

(ρε)β−2|∇ρε|2 6 lim inf
N→∞

T∫
0

ψ

∫
Ω

(ρN )β−2|∇ρN |2. (4.30)

• For passing to the limit in the boundary terms, we follow the idea of [16]. We introduce the extended velocities
UN , UNS to whole R3 associated to EuN , PNS u

N respectively. They are defined by:

EuN (t, ηNt,0(y)) = JηNt,0

∣∣∣
y
UN (t, y), PNS u

N (t, ηNt,0(y)) = JηNt,0

∣∣∣
y
UNS (t, y)

where E : H1(Ω) → H1(R3) is the extension operator and JηNt,0 is the Jacobian matrix of ηNt,0. According to

[16, Lemma A.2], we have the weak convergences of UN , UNS to Uε, UεS in L2(0, T ;H1
loc(R3)). These facts

along with the lower semicontinuity of the L2-norm yield

T∫
0

ψ

∫
∂Sε(t)

|(uε − P εSuε)× ν|2 =

T∫
0

ψ

∫
∂S0

|(Uε − UεS)× ν|2

6 lim inf
N→∞

T∫
0

ψ

∫
∂S0

|(UN − UNS )× ν|2 = lim inf
N→∞

T∫
0

ψ

∫
∂SN (t)

|(uN − PSuN )× ν|2. (4.31)
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In the above, the first and the last equality in (4.31) follows from the change of variables formula. Similar
arguments also help us to obtain

T∫
0

ψ

∫
∂Ω

|uε × ν|2 6 lim inf
N→∞

T∫
0

ψ

∫
∂Ω

|uN × ν|2. (4.32)

• Regarding the term on the right hand side of (4.21), the weak convergence of uN in L2(0, T ;H1(Ω)), the strong
convergence of ρN in (4.26) and the strong convergence of gN in (4.24) yield

T∫
0

ψ

∫
Ω

ρNgN · uN →
T∫

0

ψ

∫
Ω

ρεgε · uε, as N →∞. (4.33)

We can obtain the following differential form of energy inequality by using the above results (4.27)–(4.33):

d

dt
Eε[ρε, qε] +

∫
Ω

(
2µε|D(uε)|2 + λε|div uε|2

)
+ δεβ

∫
Ω

(ρε)β−2|∇ρε|2

+ α

∫
∂Ω

|uε × ν|2 + α

∫
∂Sε(t)

|(uε − P εSuε)× ν|2 +
1

δ

∫
Ω

χεS |uε − P δSuε|2 6
∫
Ω

ρεgε · uε in D′((0, T )). (4.34)

Since, Eε[ρε, qε] ∈ L∞((0, T )), we can apply the if and only if relation between differential and integral form of energy
inequality as stated in [30, Equation (7.1.27)-(7.1.28), Page 317]. Hence, we have established energy inequality (2.26):

Eε[ρε, qε] +

T∫
0

∫
Ω

(
2µε|D(uε)|2 + λε|div uε|2

)
+ δεβ

T∫
0

∫
Ω

(ρε)β−2|∇ρε|2

+ α

T∫
0

∫
∂Ω

|uε × ν|2 + α

T∫
0

∫
∂Sε(t)

|(uε − P εSuε)× ν|2 +
1

δ

T∫
0

∫
Ω

χεS |uε − P δSuε|2 6
T∫

0

∫
Ω

ρεgε · uε + Eε0 , (4.35)

where

Eε[ρε, qε] =

∫
Ω

(
1

2

|qε|2

ρε
+

aε

γ − 1
(ρε)γ +

δ

β − 1
(ρε)β

)
.

We obtain as in [30, Equation (7.8.14), Page 363]:

∂tρ
ε, ∆ρε ∈ L

5β−3
4β ((0, T )× Ω).

Regarding the
√
ε‖∇ρε‖L2((0,T )×Ω) estimate in (2.27), we have to multiply (2.17) by ρε and integrate by parts to

obtain

1

2

∫
Ω

|ρε(t)|2+ε

T∫
0

∫
Ω

|∇ρε(t)|2 =
1

2

∫
Ω

|ρε0|2−
1

2

T∫
0

∫
Ω

|ρε|2 div uε 6
1

2

∫
Ω

|ρε0|2+
√
T‖|ρε‖2L∞(0,T ;L4(Ω))‖div uε‖L2(0,T ;L2(Ω)).

Now, the pressure estimates ‖ρε‖Lβ+1((0,T )×Ω) and ‖ρε‖Lγ+1((0,T )×Ω) in (2.27) can be derived by means of the test
function φ(t, x) = ψ(t)Φ(t, x) with Φ(t, x) = B[ρε −m] in (2.18), where

ψ ∈ D(0, T ), m = |Ω|−1

∫
Ω

ρε,
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and B is the Bogovskii operator related to Ω (for details about B, see [30, Section 3.3, Page 165]). After taking this
special test function and integrating by parts, we obtain

T∫
0

ψ

∫
Ω

(
aε(ρε)γ + δ(ρε)β

)
ρε =

T∫
0

ψ

∫
Ω

(
aε(ρε)γ + δ(ρε)β

)
m+

T∫
0

2ψ

∫
Ω

µεD(uε) : D(Φ) +

T∫
0

ψ

∫
Ω

λερε div uε

−m
T∫

0

ψ

∫
Ω

λε div uε +

T∫
0

ψ

∫
Ω

ε∇uε∇ρε · Φ + α

T∫
0

ψ

∫
∂Sε(t)

[(uε − P εSuε)× ν] · [(Φ− P εSΦ)× ν]

+
1

δ

T∫
0

ψ

∫
Ω

χεS(uε − P εSuε) · (Φ− P εSΦ) +

T∫
0

ψ

∫
Ω

ρεgε · Φ. (4.36)

We see that all the terms can be estimated as in [30, Section 7.8.4, Pages 366–368] except the penalization term. Using
Hölder’s inequality and bounds from energy estimate (2.26), the penalization term can be handled in the following
way

T∫
0

ψ

∫
Ω

χεS(uε − P εSuε) · (Φ− P εSΦ) 6 |ψ|C[0,T ]

 T∫
0

∫
Ω

χεS |(uε − P εSuε)|2
1/2

‖Φ‖L2((0,T )×Ω) 6 C|ψ|C[0,T ], (4.37)

where in the last inequality we have used ‖Φ‖L2(Ω) 6 c‖ρε‖L2(Ω) and the energy inequality (2.26). Thus, we have an
improved regularity of the density and we have established the required estimates of (2.27).

The only remaining thing is to check the following fact: there exists T small enough such that if dist(S0, ∂Ω) > 2σ,
then

dist(Sε(t), ∂Ω) > 2σ > 0 ∀ t ∈ [0, T ]. (4.38)

It is equivalent to establishing the following bound:

sup
t∈[0,T ]

|∂tηt,0(t, y)| < dist(S0, ∂Ω)− 2σ

T
, y ∈ S0. (4.39)

We show as in Step 3 of the proof of Proposition 2.6 that (see (4.13)–(4.16)):

|∂tηεt,0(t, y)| 6 |(hε)′(t)|+ |ωε(t)||y − hε(t)| 6 C0

∫
Ω

ρε|uε(t)|2
1/2

, (4.40)

where C0 =
√

2 max{1,|y|}
min{1,λ0}1/2

. Moreover, the energy estimate (4.35) yields

d

dt
Eε[ρε, qε] +

∫
Ω

(
2µε|D(uε)|2 + λε|div uε|2

)
6
∫
Ω

ρεgε · uε 6 Eε[ρε, qε] +
1

2γ1

(
γ − 1

2γ

)γ1/γ
‖gε‖2γ1

L
2γ
γ−1 (Ω)

,

with γ1 = 1− 1
γ , which implies

Eε[ρε, qε] 6 eTEε0 + CT‖gε‖2γ1L∞((0,T )×Ω). (4.41)

Thus, with the help of (4.39) and (4.40)–(4.41), we can conclude that for any T satisfying

T <
dist(S0, ∂Ω)− 2σ

C0

[
eTEε0 + CT‖gε‖2γ1L∞((0,T )×Ω)

]1/2 ,
the relation (4.38) holds. This completes the proof of Proposition 2.4. �
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4.3. Vanishing dissipation in the continuity equation and the limiting system. In this section, we prove
Proposition 2.2 by taking ε → 0 in the system (2.16)–(2.21). In order to do so, we have to deal with the problem of
identifying the pressure corresponding to the limiting density. First of all, following the idea of the footnote in [30,
Page 381], the initial data (ρε0, q

ε
0) is constructed in such a way that

ρε0 > 0, ρε0 ∈W 1,∞(Ω), ρε0 → ρδ0 in Lβ(Ω), qε0 → qδ0 in L
2β
β+1 (Ω)

and ∫
Ω

(
|qε0|2

ρε0
1{ρε0>0} +

a

γ − 1
(ρε0)γ +

δ

β − 1
(ρε0)β

)
→
∫
Ω

(
|qδ0|2

ρδ0
1{ρδ0>0} +

a

γ − 1
(ρδ0)γ +

δ

β − 1
(ρδ0)β

)
as ε→ 0.

More precisely, let (ρδ0, q
δ
0) satisfy (2.11)–(2.12); then, following [30, Section 7.10.7, Page 392], we can find ρε0 ∈

W 1,∞(Ω), ρε0 > 0 by defining

ρε0 = Kε(ρδ0) + ε,

where Kε is the standard regularizing operator in the space variable. Then our initial density satisfies

ρε0 → ρδ0 strongly in Lβ(Ω).

We define

qε0 =

{
qδ0

√
ρε0
ρδ0

if ρδ0 > 0,

0 if ρδ0 = 0.

From (2.12), we know that

|qε0|√
ρε0
∈ L2(Ω).

Due to a density argument, there exists hε ∈W 1,∞(Ω) such that∥∥∥∥∥ qε0√
ρε0
− hε

∥∥∥∥∥
L2(Ω)

< ε.

Now, we set qε0 = hε
√
ρε0, which implies that

qε0 → qδ0 in L
2β
β+1 (Ω),

and

Eε0 → Eδ0 .

Proof of Proposition 2.2. The estimates (2.26) and (2.27) help us to conclude that, up to an extraction of a subse-
quence, we have

uε → uδ weakly in L2(0, T ;H1(Ω)), (4.42)

ρε → ρδ weakly in Lβ+1((0, T )× Ω), weakly- ∗ in L∞(0, T ;Lβ(Ω)), (4.43)

(ρε)γ → (ρδ)γ weakly in L
β+1
γ ((0, T )× Ω), (4.44)

(ρε)β → (ρδ)β weakly in L
β+1
β ((0, T )× Ω), (4.45)

ε∇ρε → 0 strongly in L2((0, T )× Ω) (4.46)

as ε → 0. Below, we denote by
(
ρδ, uδ, (ρδ)γ , (ρδ)β

)
also the extended version of the corresponding quantities in

(0, T )× R3.
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Step 1: Limit of the transport equation. We obtain from Proposition 2.4 that ρε satisfies (2.17), {uε, χεS} is a

bounded sequence in L2(0, T ;H1(Ω)) × L∞((0, T ) × R3) satisfying (2.19) and {ρεχεS} is a bounded sequence in
L∞((0, T )× R3) satisfying (2.20). Thus, we can use Proposition 3.4 to conclude that up to a subsequence:

χεS → χδS weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)) (1 6 p <∞), (4.47)

ρεχεS → ρδχδS weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)) (1 6 p <∞), (4.48)

with χδS and ρδχδS satisfying (2.4) and (2.5) respectively. Moreover,

P εSu
ε → P δSu

δ weakly in L2(0, T ;C∞loc(R3)). (4.49)

Hence, we have recovered the regularity of χδS in (2.1) and the transport equations (2.4) and (2.5) as ε→ 0.
Step 2: Limit of the continuity and the momentum equation. We follow the ideas of [30, Auxiliary lemma 7.49] to

conclude: if ρδ, uδ, (ρδ)γ , (ρδ)β are defined by (4.42)–(4.45), we have

• (ρδ, uδ) satisfies:

∂ρδ

∂t
+ div(ρδuδ) = 0 in D′([0, T )× R3). (4.50)

• For all φ ∈ H1(0, T ;L2(Ω)) ∩ Lr(0, T ;W 1,r(Ω)), where r = max
{
β + 1, β+θ

θ

}
, β > max{8, γ} and θ = 2

3γ − 1

with φ · ν = 0 on ∂Ω and φ|t=T = 0, the following holds:

−
T∫

0

∫
Ω

ρδ
(
uδ · ∂

∂t
φ+ uδ ⊗ uδ : ∇φ

)
+

T∫
0

∫
Ω

(
2µδD(uδ) : D(φ) + λδ div uδI : D(φ)−

(
aδ(ρδ)γ + δ(ρδ)β

)
I : D(φ)

)

+ α

T∫
0

∫
∂Ω

(uδ × ν) · (φ× ν) + α

T∫
0

∫
∂Sδ(t)

[
(uδ − P δSuδ)× ν

]
·
[
(φ− P δSφ)× ν

]

+
1

δ

T∫
0

∫
Ω

χδS(uδ − P δSuδ) · (φ− P δSφ) =

T∫
0

∫
Ω

ρδgδ · φ+

∫
Ω

(ρδuδ · φ)(0). (4.51)

• The couple (ρδ, uδ) satisfies the identity

∂tb(ρ
δ) + div(b(ρδ)uδ) + [b′(ρδ)ρδ − b(ρδ)] div uδ = 0 in D′([0, T )× R3), (4.52)

with any b ∈ C([0,∞)) ∩ C1((0,∞)) satisfying (1.28).
• ρδ ∈ C([0, T ];Lp(Ω)), 1 6 p < β.

We outline the main lines of the proof of the above mentioned result. We prove (4.50) by passing to the limit ε→ 0 in
equation (2.17) with the help of the convergence of the density in (4.43), (4.46) and the convergence of the momentum
[30, Section 7.9.1, page 370]

ρεuε → ρδuδ weakly- ∗ in L∞(0, T ;L
2β
β+1 (Ω)), weakly in L2(0, T ;L

6β
β+6 (Ω)). (4.53)

We obtain identity (4.51), corresponding to the momentum equation, by passing to the limit in (2.18). To pass to the
limit, we use the convergences of the density and the velocity (4.42)–(4.45) and of the transport part (4.47)–(4.49)
along with the convergence of the product of the density and the velocity (4.53) and the convergence of the following
terms [30, Section 7.9.1, page 371]:

ρεuεiu
ε
j → ρδuδiu

δ
j weakly in L2(0, T ;L

6β
4β+3 (Ω)), i, j = 1, 2, 3,

ε(∇ρε · ∇)uε → 0 weakly in L
5β−3
4β ((0, T )× Ω).

Since, we have already established the continuity equation (4.50) and the function b ∈ C([0,∞)) ∩ C1((0,∞)) satis-
fies (1.28), the renormalized continuity equation (4.52) follows from the application of [30, Lemma 6.9, page 307].
Moreover, the regularity of the density ρδ ∈ C([0, T ];Lp(Ω)), 1 6 p < β follows from [30, Lemma 6.15, page
310] via the appropriate choice of the renormalization function b in (4.52) and with the help of the regularities of
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ρδ ∈ L∞(0, T ;Lβloc(R3)) ∩ C([0, T ];Lβloc(Ω)), uδ ∈ L2(0, T ;H1
loc(R3)). Hence we have established the continuity equa-

tion (2.2) and the renormalized one (2.15).

Step 3: Limit of the pressure term. In this step, our aim is to identify the term
(

(ρδ)γ + δ(ρδ)β
)

by showing that

(ρδ)γ = (ρδ)γ and (ρδ)β = (ρδ)β . To prove this, we need some compactness of ρε, which is not available. However,
the quantity (ρε)γ + δ(ρε)β − (2µ + λ)ρεdivuε, called “effective viscous flux”, possesses a convergence property that
helps us to identify the limit of our required quantity. We have the following weak and weak-∗ convergences from the
boundedness of their corresponding norms [30, Section 7.9.2, page 373]:

ρεdivuε → ρδdivuδ weakly in L2(0, T ;L
2β

2+β (Ω)), (4.54)

(ρε)γ+1 → (ρδ)γ+1 weakly- ∗ in [C((0, T )× Ω)]′, (4.55)

(ρε)β+1 → (ρδ)β+1 weakly- ∗ in [C((0, T )× Ω)]′. (4.56)

We apply the following result regarding the ”effective viscous flux” from [30, Lemma 7.50, page 373]: Let uδ, ρδ, (ρδ)γ ,

(ρδ)β , (ρδ)γ+1, (ρδ)β+1, ρδdivuδ be defined in (4.42)–(4.45), (4.54)–(4.56). Then we have

(ρδ)γ+1 ∈ L
β+1
γ+1 ((0, T )× Ω), (ρδ)β+1 ∈ L1((0, T )× Ω), (4.57)

(ρδ)γ+1 + δ(ρδ)β+1 − (2µ+ λ)ρδdivuδ = (ρδ)γρδ + δ(ρδ)βρδ − (2µ+ λ)ρδdivuδ a.e. in (0, T )× Ω. (4.58)

Using the above relation (4.57) and an appropriate choice of the renormalization function in (4.52), we deduce the

strong convergence of the density as in [30, Lemma 7.51, page 375]: Let ρδ, (ρδ)γ , (ρδ)β , (ρδ)γ+1, (ρδ)β+1 be defined
in (4.43)–(4.45), (4.54)–(4.55). Then we have

(ρδ)γ = (ρδ)γ , (ρδ)β = (ρδ)β a.e. in (0, T )× Ω.

In particular,

ρε → ρδ strongly in Lp((0, T )× Ω), 1 6 p < β + 1. (4.59)

Thus, we have identified the pressure term in equation (4.51). Hence, we have recovered the momentum equation (2.3)
and we have proved the existence of a weak solution (Sδ, ρδ, uδ) to system (2.1)–(2.6). It remains to prove the energy
inequality (2.13) and the improved regularity for the density (2.14).

Step 4: Energy inequality and improved regularity of the density. Due to the convergences

ρεuεiu
ε
j → ρδuδiu

δ
j weakly in L2(0, T ;L

6β
4β+3 (Ω)), i, j = 1, 2, 3,

ρε → ρδ strongly in Lp((0, T )× Ω), 1 6 p < β + 1,

we have ∫
Ω

ρε|uε|2 →
∫
Ω

ρδ|uδ|2 weakly in L2(0, T ),

∫
Ω

(
(ρε)γ + δ(ρε)β

)
→
∫
Ω

(
(ρδ)γ + δ(ρδ)β

)
weakly in L

β+1
β (0, T ).

In particular,∫
Ω

(
ρε|uε|2 +

aε

γ − 1
(ρε)γ +

δ

β − 1
(ρε)β

)
→
∫
Ω

(
ρδ|uδ|2 +

aδ

γ − 1
(ρδ)γ +

δ

β − 1
(ρδ)β

)
weakly in L

β+1
β (0, T ).

Due to the weak lower semicontinuity of the corresponding L2 norms, the weak convergence of uε in L2(0, T ;H1(Ω)),
the strong convergence of ρε in Lp((0, T ) × Ω), 1 6 p < β + 1, the strong convergence of χεS in C([0, T ];Lp(Ω)) and
the strong convergence of P εS in C([0, T ];C∞loc(R3)), we follow the idea explained in (4.28)–(4.33) to pass to the limit
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as ε→ 0 in the other terms of inequality (4.34) to obtain

d

dt
Eδ[ρδ, qδ] +

∫
Ω

(
2µδ|D(uδ)|2 + λδ|div uδ|2

)
+ α

∫
∂Ω

|uδ × ν|2 + α

∫
∂Sδ(t)

|(uδ − P δSuδ)× ν|2

+
1

δ

∫
Ω

χδS |uδ − P δSuδ|2 6
∫
Ω

ρδgδ · uδ in D′((0, T )). (4.60)

Since, Eδ[ρδ, qδ] ∈ L∞((0, T )), we can apply the relation between differential and integral form of energy inequality as
stated in [30, Equation (7.1.27)-(7.1.28), Page 317] to establish the energy inequality (2.13).

To establish the regularity (2.14), we use an appropriate test function of the type

B

(ρδ)θ − |Ω|−1

∫
Ω

(ρδ)θ


in the momentum equation (2.3), where B is the Bogovskii operator. The detailed proof is in the lines of [30, Section
7.9.5, pages 376-381] and the extra terms can be treated as we have already explained in (4.36)–(4.37). Moreover, we
follow the same idea as in the proof of Proposition 2.4 (precisely, the calculations in (4.38)–(4.41)) to conclude that
there exists T small enough such that if dist(S0, ∂Ω) > 2σ, then

dist(Sδ(t), ∂Ω) > 2σ > 0 ∀ t ∈ [0, T ]. (4.61)

This settles the proof of Proposition 2.2. �

5. Proof of the main result

We have already established the existence of a weak solution (Sδ, ρδ, uδ) to system (2.1)–(2.6) in Proposition 2.2.
In this section, we study the convergence analysis and the limiting behaviour of the solution as δ → 0 and recover a
weak solution to system (1.2)–(1.11), i.e., we show Theorem 1.7.

Proof of Theorem 1.7. Step 0: Initial data. We consider initial data ρF0
, qF0

, ρS0 , qS0 satisfying the conditions (1.33)–

(1.35). In this step we present the construction of the approximate initial data (ρδ0, q
δ
0) satisfying (2.11)–(2.12) so that,

in the limit δ → 0, we can recover the initial data ρF0
and qF0

on F0. We set

ρ0 = ρF0
(1− 1S0) + ρS01S0 ,

q0 = qF0
(1− 1S0) + ρS0uS01S0 .

Similarly as in [30, Section 7.10.7, Page 392], we can find ρδ0 ∈ Lβ(Ω) by defining

ρδ0 = Kδ(ρ0) + δ, (5.1)

where Kδ is the standard regularizing operator in the space variable. Then our initial density satisfies

ρδ0 → ρ0 strongly in Lγ(Ω). (5.2)

We define

qδ0 =

{
q0

√
ρδ0
ρ0

if ρ0 > 0,

0 if ρ0 = 0.
(5.3)

From (1.34), we know that

|qδ0|√
ρδ0
∈ L2(Ω).

Due to a density argument, there exists hδ ∈W 1,∞(Ω) such that∥∥∥∥∥ qδ0√
ρδ0
− hδ

∥∥∥∥∥
L2(Ω)

< δ.
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Now, we set qδ0 = hδ
√
ρδ0, which implies that

qδ0 → q0 in L
2γ
γ+1 (Ω)

and
Eδ[ρδ0, q

δ
0]→ E[ρ0, q0].

Next we start with the sequence of approximate solutions ρδ, uδ of the system (2.1)–(2.6) (Proposition 2.2). Since
the energy Eδ[ρδ0, q

δ
0] is uniformly bounded with respect to δ, we have from inequality (2.13) that

‖
√
ρδuδ‖2L∞(0,T ;L2(Ω)) + ‖ρδ‖2L∞(0,T ;Lγ(Ω)) + ‖

√
2µδD(uδ)‖2L2((0,T )×Ω) + ‖

√
λδ div uδ‖2L2((0,T )×Ω)

+
1

δ
‖
√
χδS
(
uδ − P δSuδ

)
‖2L2((0,T )×Ω) 6 C, (5.4)

with C independent of δ.
Step 1: Recovery of the transport equation for body. Since {uδ, χδS} is a bounded sequence in L2(0, T ;L2(Ω)) ×

L∞((0, T )× R3) satisfying (2.4), we can apply Proposition 3.5 to conclude that: up to a subsequence, we have

uδ → u weakly in L2(0, T ;L2(Ω)),

χδS → χS weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)) (1 6 p <∞), (5.5)

with
χS(t, x) = 1S(t)(x), S(t) = ηt,0(S0),

where ηt,s ∈ H1((0, T )2;C∞loc(R3)) is the isometric propagator. Moreover,

P δSu
δ → PSu weakly in L2(0, T ;C∞loc(R3)), (5.6)

ηδt,s → ηt,s weakly in H1((0, T )2;C∞loc(R3)).

Also, we obtain that χS satisfies

∂χS
∂t

+ div(PSuχS) = 0 in Ω, χS(t, x) = 1S(t)(x).

Now we set
uS = PSu (5.7)

to recover the transport equation (1.29). Note that we have already recovered the regularity of χS in (1.25).
Observe that the fifth term of inequality (5.4) yields√

χδS
(
uδ − P δSuδ

)
→ 0 strongly in L2((0, T )× Ω). (5.8)

The strong convergence of χδS and the weak convergence of uδ and P δSu
δ imply that

χS (u− uS) = 0. (5.9)

To analyze the behaviour of the velocity field in the fluid part, we introduce the following continuous extension operator:

Eδu(t) :
{
u ∈ H1(Fδ(t)), u · ν = 0 on ∂Ω

}
→ H1(Ω). (5.10)

Let us set
uδF (t, ·) = Eδu(t)

[
uδ(t, ·)|Fδ

]
. (5.11)

We have
{uδF} is bounded in L2(0, T ;H1(Ω)), uδF = uδ on Fδ, i.e. (1− χδS)(uδ − uδF ) = 0. (5.12)

Thus, the strong convergence of χδS and the weak convergence of uδF → uF in L2(0, T ;H1(Ω)) yield that

(1− χS) (u− uF ) = 0. (5.13)

By combining the relations (5.9)–(5.13), we conclude that the limit u of uδ satisfies u ∈ L2(0, T ;L2(Ω)) and there
exists uF ∈ L2(0, T ;H1(Ω)), uS ∈ L2(0, T ;R) such that u(t, ·) = uF (t, ·) on F(t) and u(t, ·) = uS(t, ·) on S(t).

Step 2: Recovery of the continuity equations. We recall that ρδχδS(t, x) satisfies (2.5), i.e.

∂

∂t
(ρδχδS) + P δSu

δ · ∇(ρδχδS) = 0, (ρδχδS)|t=0 = ρδ01S0 .
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We proceed as in Proposition 3.5 to conclude that

ρδχδS → ρχS weakly- ∗ in L∞((0, T )× R3) and strongly in C([0, T ];Lploc(R
3)) (1 6 p <∞), (5.14)

and ρχS satisfies
∂

∂t
(ρχS) + PSu · ∇(ρχS) = 0, (ρχS)|t=0 = ρS01S0 .

We set
ρS = ρχS (5.15)

and use the definition of uS in (5.7) to conclude that ρS satisfies:

∂ρS
∂t

+ div(uSρS) = 0 in (0, T )× Ω, ρS(0, x) = ρS0(x)1S0 in Ω.

Thus, we recover the equation of continuity (1.30) for the density of the rigid body.
We introduce the following extension operator:

Eδρ(t) :
{
ρ ∈ Lγ+θ(Fδ(t))

}
→ Lγ+θ(Ω),

given by

Eδρ(t)
[
ρδ(t, ·)|Fδ

]
=

{
ρδ(t, ·)|Fδ in Fδ(t),
0 in Ω \ Fδ(t).

(5.16)

Let us set
ρδF (t, ·) = Eδρ(t)

[
ρδ(t, ·)|Fδ

]
. (5.17)

From estimates (2.13), (2.14), (5.12) and the definition of ρδF in (5.17), we obtain that

uδF → uF weakly in L2(0, T ;H1(Ω)), (5.18)

ρδF → ρF weakly in Lγ+θ((0, T )× Ω), θ =
2

3
γ − 1 and weakly- ∗ in L∞(0, T ;Lβ(Ω)), (5.19)

(ρδF )γ → ργF weakly in L
γ+θ
γ ((0, T )× Ω), (5.20)

δ(ρδF )β → 0 weakly in L
β+θ
β ((0, T )× Ω). (5.21)

Next, we follow the ideas of [30, Auxiliary lemma 7.53, Page 384] to assert: if uF , ρF , ρ
γ
F are defined by (5.18)–(5.20),

we have

• (ρF , uF ) satisfies:
∂ρF
∂t

+ div(ρFuF ) = 0 in D′([0, T )× R3). (5.22)

• The couple (ρF , uF ) satisfies the identity

∂tb(ρF ) + div(b(ρF )uF ) + [b′(ρF )ρF − b(ρF )] div uF = 0 in D′([0, T )× R3), (5.23)

for any b ∈ C([0,∞)) ∩ C1((0,∞)) satisfying (1.28) and the weak limits b(ρF ) and [b′(ρF )ρF − b(ρF )] div uF
being defined in the following sense:

b(ρδF )→ b(ρF ) weakly- ∗ in L∞(0, T ;L
γ

1+κ1 (R3)),

[b′(ρδF )ρδF − b(ρδF )] div uδF → [b′(ρF )ρF − b(ρF )] div uF weakly in L2(0, T ;L
2γ

2+2κ1+γ (R3)).

We outline the main idea of the proof of the asserted result. We use the strong convergence of density in weaker space
and weak convergence of velocity to obtain the convergence of the momentum [30, Section 7.10.1, equation (7.10.7),
page 383]

ρδFu
δ
F → ρFuF weakly- ∗ in L∞(0, T ;L

2γ
γ+1 (R3)), weakly in L2(0, T ;L

6γ
γ+6 (R3)). (5.24)

We derive (5.22) by letting δ → 0 in equation (2.2) with the help of the convergence of the density in (5.19) and
the convergence of momentum in (5.24).

Recall that when we pass to the limit ε → 0, we do have ρδF ∈ L2((0, T ) × Ω). But in this step, we do not have
ρF ∈ L2((0, T ) × Ω). So, it is not straightforward to obtain the renormalized continuity equation. Observe that
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this difficulty is not present in the case of γ > 9
5 as in that case, ρF ∈ Lγ+θ((0, T ) × Ω) ⊂ L2((0, T ) × Ω) since

γ + θ = 5
3γ − 1 > 2 for γ > 9

5 .

We use equation (2.15) and [30, Lemma 1.7] to establish that {b(ρδF )} is uniformly continuous in W−1,s(Ω) with

s = min
{

6γ
6κ1+6+γ , 2

}
, where the function b ∈ C([0,∞)) ∩ C1((0,∞)) satisfies (1.28). We apply [30, Lemma 6.2,

Lemma 6.4] to get

b(ρδF )→ b(ρF ) in C([0, T ];L
γ

1+κ1 (Ω)),

b(ρδF )→ b(ρF ) strongly in Lp(0, T ;W−1,2(Ω)), 1 6 p <∞.

The above mentioned limits together with (5.18) help us to conclude

b(ρδF )uδF → b(ρF )uF weakly in L2
(

0, T ;L
6γ

6κ1+6+γ (Ω)
)
.

Eventually, we obtain (5.23) by taking the limit δ → 0 in (2.15).
Step 3: Recovery of the renormalized continuity equation. By the method of an effective viscous flux with an appro-

priate choice of functions [30, Lemma 7.55, page 386], we establish boundedness of oscillations of the density sequence
and we have an estimate for the amplitude of oscillations [30, Lemma 7.56, page 386]:

lim sup
δ→0

T∫
0

∫
Ω

[Tk(ρδF )− Tk(ρF )]γ+1 6

T∫
0

∫
Ω

[
ργFTk(ρF )− ργFTk(ρF )

]
,

where Tk(ρF ) = min{ρF , k}, k > 0, are cut-off operators and Tk(ρF ), ργFTk(ρF ) stand for the weak limits of Tk(ρδF ),
(ρδF )γTk(ρδF ). This result allows us to estimate the quantities

sup
δ>0
‖ρδF1{ρδF>k}‖Lp((0,T )×Ω), sup

δ>0
‖Tk(ρδF )− ρδF‖Lp((0,T )×Ω),

‖Tk(ρF )− ρF‖Lp((0,T )×Ω), ‖Tk(ρF )− ρF‖Lp((0,T )×Ω) with k > 0, 1 6 p < γ + θ.

Using the above estimate and taking the renormalized function b = Tk in (5.23), after several computations we obtain,

the following statement [30, Lemma 7.57, page 388]: Let b ∈ C([0,∞)) ∩ C1((0,∞)) satisfy (1.28) with κ1 + 1 6 γ+θ
2

and let uF , ρF be defined by (5.18)–(5.19). Then the renormalized continuity equation (1.27) reads

∂tb(ρF ) + div(b(ρF )uF ) + (b′(ρF )− b(ρF )) div uF = 0 in D′([0, T )× Ω).

So far, we have recovered the transport equation of the body (1.29), the continuity equation (1.26) and the renormalized
one (1.27). It remains to prove the momentum equation (1.24) and establish the energy inequality (1.31).

Step 4: Recovery of the momentum equation. Notice that the test functions in the weak formulation of momentum
equation (1.24) belong to the space VT (the space is defined in (1.19)), which is a space of discontinuous functions.
Precisely,

φ = (1− χS)φF + χSφS with φF ∈ D([0, T );D(Ω)), φS ∈ D([0, T );R),

satisfying

φF · ν = 0 on ∂Ω, φF · ν = φS · ν on ∂S(t).

Whereas, if we look at the test functions in momentum equation (2.3) in the δ-approximation, we see that it involves
an Lp(0, T ;W 1,p(Ω))-regularity. Hence we approximate this discontinuous test function by a sequence of test functions
that belong to Lp(0, T ;W 1,p(Ω)). The idea is to construct an approximation φδS of φ without jumps at the interface
such that

φδS(t, x) = φF (t, x) ∀ t ∈ (0, T ), x ∈ ∂Sδ(t), (5.25)

and

φδS(t, ·) ≈ φS(t, ·) in Sδ(t) away from a δϑ neighborhood of ∂Sδ(t) with ϑ > 0. (5.26)

In the spirit of [16, Proposition 5.1], at first, we give the precise result regarding this construction and then we will
continue the proof of Theorem 1.7.
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Proposition 5.1. Let φ ∈ VT and ϑ > 0. Then there exists a sequence

φδ ∈ H1(0, T ;L2(Ω)) ∩ Lr(0, T ;W 1,r(Ω)), where r = max

{
β + 1,

β + θ

θ

}
, β > max{8, γ} and θ =

2

3
γ − 1

of the form

φδ = (1− χδS)φF + χδSφ
δ
S (5.27)

that satisfies for all p ∈ [1,∞):

(1) ‖χδS(φδS − φS)‖Lp((0,T )×Ω)) = O(δϑ/p),

(2) φδ → φ strongly in Lp((0, T )× Ω),
(3) ‖φδ‖Lp(0,T ;W 1,p(Ω)) = O(δ−ϑ(1−1/p)),

(4) ‖χδS(∂t + P δSu
δ · ∇)(φδ − φS)‖L2(0,T ;Lp(Ω)) = O(δϑ/p),

(5) (∂t + P δSu
δ · ∇)φδ → (∂t + PSu · ∇)φ weakly in L2(0, T ;Lp(Ω)).

We give the proof of Proposition 5.1 at the end of this section. Next we continue the proof of Theorem 1.7.
Step 4.1: Linear terms of the momentum equation. We use φδ (constructed in Proposition 5.1) as the test function

in (2.3). Then we take the limit δ → 0 in (2.3) to recover equation (1.24). Let us analyze the passage to the limit in
the linear terms. To begin with, we recall the following convergences of the velocities of the fluid part and the solid
part, cf. (5.18) and (5.6):

(1− χδS)uδF = (1− χδS)uδ, uδF → uF weakly in L2(0, T ;H1(Ω)),

uδS = P δSu
δ, uS = PSu, uδS → uS weakly in L2(0, T ;C∞loc(R3)).

Let us start with the diffusion term 2µδD(uδ) : D(φδ) + λδ div uδI : D(φδ) in (2.3). We write

T∫
0

∫
Ω

2µδD(uδ) : D(φδ) =

T∫
0

∫
Ω

(
2µF (1− χδS)D(uδF ) + δ2χδSD(uδ)

)
: D(φδ)

=

T∫
0

∫
Ω

2µF (1− χδS)D(uδF ) : D(φF ) + δ2

T∫
0

∫
Ω

χδSD(uδ) : D(φδ).

The strong convergence of χδS to χS and the weak convergence of uδF to uF imply that

T∫
0

∫
Ω

2µF (1− χδS)D(uδF ) : D(φF )→
T∫

0

∫
Ω

2µF (1− χS)D(uF ) : D(φF ).

We know from (5.4), definition of µδ in (2.8) and Proposition 5.1 (with p = 2 case) that

‖δχδSD(uδ)‖L2((0,T )×Ω) 6 C, ‖φδ‖L2(0,T ;H1(Ω)) = O(δ−ϑ/2).

These estimates yield that∣∣∣∣∣∣δ2

T∫
0

∫
Ω

χδSD(uδ) : D(φδ)

∣∣∣∣∣∣ 6 δ‖δχδSD(uδ)‖L2((0,T )×Ω)‖D(φδ)‖L2(0,T ;L2(Ω)) 6 Cδ
1−ϑ/2. (5.28)

If we consider ϑ < 2 and δ → 0, we have

δ2

T∫
0

∫
Ω

χδSD(uδ) : D(φδ)→ 0.

Hence,
T∫

0

∫
Ω

(
2µδD(uδ) : D(φδ) + λF div uF I : D(φδ)

)
→

T∫
0

∫
F(t)

(
2µFD(uF ) + λF div uF I

)
: D(φF )
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as δ → 0. Next we consider the boundary term on ∂Ω in (2.3). The weak convergence of uδF to uF in L2(0, T ;H1(Ω))
yields

T∫
0

∫
∂Ω

(uδ × ν) · (φδ × ν) =

T∫
0

∫
∂Ω

(uδF × ν) · (φF × ν)→
T∫

0

∫
∂Ω

(uF × ν) · (φF × ν) as δ → 0.

To deal with the boundary term on ∂Sδ(t) we do a change of variables such that this term becomes an integral on the
fixed boundary ∂S0. Then we pass to the limit as δ → 0 and afterwards transform back to the moving domain. Next,
we introduce the notation rδS = P δSφ

δ to write the following:

T∫
0

∫
∂Sδ(t)

[(uδ − P δSuδ)× ν] · [(φδ − P δSφδ)× ν] =

T∫
0

∫
∂Sδ(t)

[(uδF − uδS)× ν] · [(φδF − rδS)× ν]

=

T∫
0

∫
∂S0

[(UδF − U δS)× ν] · [(ΦδF −RδS)× ν],

where we denote by capital letters the corresponding velocity fields and test functions in the fixed domain. By
Proposition 5.1 we have that φδ → φ strongly in L2(0, T ;L6(Ω)). Hence we obtain, as in Proposition 3.5, that

rδS → rS = PSφ strongly in L2(0, T ;C∞loc(R3)).

Now using [16, Lemma A.2], we obtain the convergence in the fixed domain

RδS → RS strongly in L2(0, T ;H1/2(∂S0)).

Similarly, the convergences of uδF and uδS with [16, Lemma A.2] imply

UδF → UF , U
δ
S → US weakly in L2(0, T ;H1(Ω)).

These convergence results and going back to the moving domain gives

T∫
0

∫
∂Sδ(t)

[(uδ − P δSuδ)× ν] · [(φδ − P δSφδ)× ν] =

T∫
0

∫
∂S0

[(U δF − U δS)× ν] · [(ΦδF −RδS)× ν]

→
T∫

0

∫
∂S0

[(UF − US)× ν] · [(ΦF −RS)× ν] =

T∫
0

∫
∂S(t)

[(uF − uS)× ν] · [(φF − φS)× ν].

The penalization term can be estimated in the following way:∣∣∣∣∣∣1δ
T∫

0

∫
Ω

χδS(uδ − P δSuδ) · (φδ − P δSφδ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣1δ
T∫

0

∫
Ω

χδS(uδ − P δSuδ) · ((φδ − φS)− P δS(φδ − φS))

∣∣∣∣∣∣
=

∣∣∣∣∣∣1δ
T∫

0

∫
Ω

χδS(uδ − P δSuδ) · (φδS − φS)

∣∣∣∣∣∣ 6 δ−1/2 1

δ1/2

∥∥∥∥√χδS (uδ − P δSuδ)∥∥∥∥
L2((0,T )×Ω)

∥∥∥∥√χδS(φδS − φS)

∥∥∥∥
L2(0,T ;L2(Ω)))

6 Cδ−1/2+ϑ/2, (5.29)

where we have used the estimates obtained from (5.4) and Proposition 5.1. By choosing ϑ > 1 and taking δ → 0, the
penalization term vanishes. Note that we also need ϑ < 2 in view of (5.28).



MOTION OF A RIGID BODY IN A COMPRESSIBLE FLUID WITH NAVIER-SLIP BOUNDARY CONDITION 37

Step 4.2: Nonlinear terms of the momentum equation. In this step, we analyze the following terms:

T∫
0

∫
Ω

ρδ
(
uδ · ∂

∂t
φ+ uδ ⊗ uδ : ∇φδ

)
=

T∫
0

∫
Ω

ρδF (1− χδS)uδF ·
∂

∂t
φF +

T∫
0

∫
Ω

ρδF (1− χδS)uδF ⊗ uδF : ∇φF

+

T∫
0

∫
Ω

ρδχδS(∂t + uδS · ∇)φδ · uδ (5.30)

The strong convergence of χδS to χS and the weak convergence of ρδuδF to ρFuF (see (5.24)) imply

T∫
0

∫
Ω

ρδF (1− χδS)uδF ·
∂

∂t
φF →

T∫
0

∫
Ω

ρF (1− χS)uF ·
∂

∂t
φF as δ → 0. (5.31)

We use the convergence result for the convective term from [30, Section 7.10.1, page 384]

ρδF (uδF )i(u
δ
F )j → ρF (uF )i(uF )j weakly in L2(0, T ;L

6γ
4γ+3 (Ω)), ∀i, j ∈ {1, 2, 3},

to pass to the limit in the second term of the right-hand side of (5.30):

T∫
0

∫
Ω

ρδF (1− χδS)uδF ⊗ uδF : ∇φF →
T∫

0

∫
Ω

ρF (1− χS)uF ⊗ uF : ∇φF . (5.32)

Next we consider the third term on the right-hand side of (5.30):

T∫
0

∫
Ω

ρδχδS(∂t + uδS · ∇)φδ · uδ =

T∫
0

∫
Ω

ρδχδS(∂t + uδS · ∇)(φδ − φS) · uδ +

T∫
0

∫
Ω

ρδχδS∂tφS · uδ

+

T∫
0

∫
Ω

ρδχδS(uδS · ∇)φS · uδ =: T δ1 + T δ2 + T δ3 .

We write

T δ1 =

T∫
0

∫
Ω

ρδχδS(∂t + uδS · ∇)(φδ − φS) · (uδ − P δSuδ) +

T∫
0

∫
Ω

ρδχδS(∂t + uδS · ∇)(φδ − φS) · P δSuδ.

We estimate these terms in the following way:∣∣∣∣∣∣
T∫

0

∫
Ω

ρδχδS(∂t + uδS · ∇)(φδ − φS) · (uδ − P δSuδ)

∣∣∣∣∣∣
6 ‖ρδχδS‖L∞((0,T )×Ω)‖χδS(∂t + P δSu

δ · ∇)(φδ − φS)‖L2(0,T ;L6(Ω))
1

δ1/2

∥∥∥∥√χδS (uδ − P δSuδ)∥∥∥∥
L2((0,T )×Ω)

δ1/2,

∣∣∣∣∣∣
T∫

0

∫
Ω

ρδχδS(∂t + uδS · ∇)(φδ − φS) · P δSuδ
∣∣∣∣∣∣

6 ‖ρδχδS‖L∞((0,T )×Ω)‖χδS(∂t + P δSu
δ · ∇)(φδ − φS)‖L2(0,T ;L6(Ω))‖P δSuδ‖L2((0,T )×Ω),

where we have used ρδχδS ∈ L∞((0, T ) × Ω) as it is a solution to (2.5). Moreover, by Proposition 5.1 (with the case
p = 6), we know that for ϑ > 0

‖χδS(∂t + P δSu
δ · ∇)(φδ − φS)‖L2(0,T ;L6(Ω)) = O(δϑ/6).
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Hence,
T δ1 → 0 as δ → 0. (5.33)

Observe that

T δ2 =

T∫
0

∫
Ω

ρδχδS∂tφS · (uδ − P δSuδ) +

T∫
0

∫
Ω

ρδχδS∂tφS · P δSuδ.

Now we use the following convergences:

• the strong convergence of
√
χδS
(
uδ − P δSuδ

)
→ 0 in L2((0, T )× Ω) (see the fifth term of inequality (5.4)),

• the strong convergence of χδS to χS (see the convergence in (5.5)),
• the weak convergence of ρδχδSP

δ
Su

δ to ρχSPSu (see the convergences in (5.14) and (5.6)),

to deduce

T δ2 →
T∫

0

∫
S(t)

ρχS∂tφS · PSu as δ → 0.

Recall the definition of uS in (5.7) and the definition of ρS in (5.15) to conclude

T δ2 →
T∫

0

∫
S(t)

ρS∂tφS · uS as δ → 0. (5.34)

Notice that

T δ3 =

T∫
0

∫
Ω

ρδχδS(uδS · ∇)φS · uδ =

T∫
0

∫
Ω

ρδχδS(uδS ⊗ uδS) : ∇φS =

T∫
0

∫
Ω

ρδχδS(uδS ⊗ uδS) : D(φS) = 0. (5.35)

Eventually, combining the results (5.31)–(5.35), we obtain

T∫
0

∫
Ω

ρδ
(
uδ · ∂

∂t
φ+ uδ ⊗ uδ : ∇φ

)
→

T∫
0

∫
F(t)

ρFuF ·
∂

∂t
φF +

T∫
0

∫
S(t)

ρSuS ·
∂

∂t
φS +

T∫
0

∫
F(t)

(ρFuF ⊗ uF ) : ∇φF .

Step 4.3: Pressure term of the momentum equation. We use the definition of φδ

φδ = (1− χδS)φF + χδSφ
δ
S ,

to write
T∫

0

∫
Ω

(
aδ(ρδ)γ + δ(ρδ)β

)
I : D(φδ) =

T∫
0

∫
Ω

[
aF (1− χδS)(ρδF )γ + δ(1− χδS)(ρδF )β

]
I : D(φF ),

where we have used the fact that div φδS = 0. Due to the strong convergence of χδS to χS and the weak convergence
of (ρδF )γ , (ρδF )β in (5.20), (5.21) we obtain

T∫
0

∫
Ω

aF (1− χδS)(ρδF )γI : D(φF )→
T∫

0

∫
Ω

aF (1− χS)(ρF )γI : D(φF ) as δ → 0,

and
T∫

0

∫
Ω

δ(1− χδS)(ρδF )βI : D(φF )→ 0 as δ → 0.

In order to establish (1.24), it only remains to show that ργF = ργF . This is equivalent to establishing some strong
convergence result of the sequence ρδF . Let {ρδF} be the sequence and ρF be its weak limit from (5.19). We have the
following strong convergence of density [30, Lemma 7.60, page 391]:

ρδF → ρF in Lp((0, T )× Ω), 1 6 p < γ + θ.
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This immediately yields ργF = ργF . Thus, we have recovered the weak form of the momentum equation.
Step 5: Recovery of the energy estimate. We derive from (2.13) that

∫
Ω

(
ρδ|uδ|2+

aF
γ − 1

(1−χδS)(ρδF )γ+
δ

β − 1
(ρδF )β

)
+

T∫
0

∫
Ω

(
2µF (1−χδS)|D(uδF )|2+λF (1−χδS)|div uδF |2

)
+α

T∫
0

∫
∂Ω

|uδ×ν|2

+ α

T∫
0

∫
∂Sδ(t)

|(uδ − P δSuδ)× ν|2 6
T∫

0

∫
Ω

ρδgδ · uδ +

∫
Ω

(
|qδ0|2

ρδ0
1{ρδ0>0} +

a

γ − 1
(ρδ0)γ +

δ

β − 1
(ρδ0)β

)
.

To see the limiting behaviour of the above inequality as δ tends to zero, we observe that the limit as δ → 0 is similar
to the limit ε→ 0. Hence we obtain the energy inequality (1.31).

Step 6: Rigid body is away from boundary. It remains to check that there exists T small enough such that if
dist(S0, ∂Ω) > 2σ, then

dist(S(t), ∂Ω) >
3σ

2
> 0 ∀ t ∈ [0, T ]. (5.36)

Let us introduce the following notation:

(U)σ =
{
x ∈ R3 | dist(x,U) < σ

}
,

for an open set U and σ > 0. We recall the following result [16, Lemma 5.4]: Let σ > 0. There exists δ0 > 0 such that
for all 0 < δ 6 δ0,

Sδ(t) ⊂ (S(t))σ/4 ⊂ (Sδ(t))σ/2, ∀ t ∈ [0, T ]. (5.37)

Note that condition (5.37) and the relation (4.61), i.e., dist(Sδ(t), ∂Ω) > 2σ > 0 for all t ∈ [0, T ] imply our required
estimate (5.36). Thus, we conclude the proof of Theorem 1.7. �

It remains to prove Proposition 5.1. The main difference between Proposition 5.1 and [16, Proposition 5.1] is the time
regularity of the approximate test functions. Since here we only have weak convergence of uδ in L2(0, T ;L2(Ω)), accord-
ing to Proposition 3.5 we have convergence of ηδt,s in H1((0, T )2;C∞loc(R3)). In [16, Proposition 5.1], they have weak con-

vergence of uδ in L∞(0, T ;L2(Ω)), which yields higher time regularity of the propagator ηδt,s in W 1,∞((0, T )2;C∞loc(R3)).

Proof of Proposition 5.1. The proof relies on the construction of the approximation φδS of φS so that we can avoid the
jumps at the interface for the test functions such that (5.25)–(5.26) holds.

The idea is to write the test functions in Lagrangian coordinates through the isometric propagator ηδt,s so that we

can work on the fixed domain. Let ΦF , ΦS and ΦδS be the transformed quantities in the fixed domain related to φF ,
φS and φδS respectively:

φS(t, ηδt,0(y)) = Jηδt,0

∣∣∣
y
(ΦS(t, y)), φF (t, ηδt,0(y)) = Jηδt,0

∣∣∣
y
ΦF (t, y) and φδS(t, ηδt,0(y)) = Jηδt,0

∣∣∣
y
ΦδS(t, y), (5.38)

where Jηδt,0 is the Jacobian matrix of ηδt,0. Note that if we define

Φδ(t, y) = (1− χδS)ΦF + χδSΦδS ,

then the definition of φδ in (5.27) gives

φδ(t, ηδt,0(y)) = Jηδt,0

∣∣∣
y
(Φδ(t, y)). (5.39)

Thus, the construction of the approximation φδS satisfying (5.25)–(5.26) is equivalent to building the approximation
ΦδS so that there is no jump for the function Φδ at the interface and the following holds:

ΦδS(t, x) = ΦF (t, x) ∀ t ∈ (0, T ), x ∈ ∂S0,

and
ΦδS(t, ·) ≈ ΦS(t, ·) in S0 away from a δϑ neighborhood of ∂S0 with ϑ > 0.

Explicitly, we set (inspired by [16, Pages 2055-2058]):

ΦδS = ΦδS,1 + ΦδS,2, (5.40)
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with
ΦδS,1 = ΦS + χ(δ−ϑz) [(ΦF − ΦS)− ((ΦF − ΦS) · ez)ez] , (5.41)

where χ : R→ [0, 1] is a smooth truncation function which is equal to 1 in a neighborhood of 0 and z is a coordinate
transverse to the boundary ∂S0 = {z = 0}. Moreover, to make ΦδS divergence-free in S0, we need to take ΦδS,2 such
that

div ΦδS,2 = −div ΦδS,1 in S0, ΦδS,2 = 0 on ∂S0.

Observe that, the explicit form (5.41) of ΦδS,1 yields

div ΦδS,2 = −div ΦδS,1 = −χ(δ−ϑz) div [(ΦF − ΦS)− ((ΦF − ΦS) · ez)ez] . (5.42)

Thus, the expressions (5.41)–(5.42) give us: for all p <∞,

‖ΦδS,1 − ΦS‖H1(0,T ;Lp(S0)) 6 Cδ
ϑ/p, (5.43)

‖ΦδS,1 − ΦS‖H1(0,T ;W 1,p(S0)) 6 Cδ
−ϑ(1−1/p), (5.44)

and

‖ΦδS,2‖H1(0,T ;W 1,p(S0)) 6 C‖χ(δ−ϑz) div [(ΦF − ΦS)− ((ΦF − ΦS) · ez)ez] ‖H1(0,T ;Lp(S0)) 6 Cδ
ϑ/p. (5.45)

Using the decomposition (5.40) of ΦδS and the estimates (5.43)–(5.44), (5.45), we obtain

‖ΦδS − ΦS‖H1(0,T ;Lp(S0)) 6 Cδ
ϑ/p,

‖ΦδS − ΦS‖H1(0,T ;W 1,p(S0)) 6 Cδ
−ϑ(1−1/p).

Furthermore, we combine the above estimates with the uniform bound of the propagator ηδt,0 in H1(0, T ;C∞(Ω)) to
obtain ∥∥∥Jηδt,0 |y(ΦδS − ΦS)

∥∥∥
H1(0,T ;Lp(S0))

6 Cδϑ/p, (5.46)∥∥∥Jηδt,0 |y(ΦδS − ΦS)
∥∥∥
H1(0,T ;W 1,p(S0))

6 Cδ−ϑ(1−1/p). (5.47)

Observe that due to the change of variables (5.38) and estimate (5.46):

‖χδS(φδS − φS)‖Lp((0,T )×Ω)) 6 C‖Jηδt,0 |y(ΦδS − ΦS)‖Lp((0,T )×S0) 6 Cδ
ϑ/p. (5.48)

Since

‖φδ − φ‖Lp((0,T )×Ω)) 6 ‖(χδS − χS)φF‖Lp((0,T )×Ω)) + ‖χδS(φδS − φS)‖Lp((0,T )×Ω)) + ‖(χδS − χS)φS‖Lp((0,T )×Ω)),

using the strong convergence of χδS and the estimate (5.48), we conclude that

φδ → φ strongly in Lp((0, T )× Ω).

We use estimate (5.44) and the relation (5.39) to obtain

‖φδ‖Lp(0,T ;W 1,p(Ω)) 6 δ
−ϑ(1−1/p).

Moreover, the change of variables (5.38) and estimate (5.46) give

‖χδS(∂t + P δSu
δ · ∇)(φδ − φS)‖L2(0,T ;Lp(Ω)) 6 C

∥∥∥∥ ddt
(
Jηδt,0

∣∣∣
y
(ΦδS − ΦS)

)∥∥∥∥
L2(0,T ;Lp(S0))

6 C
∥∥∥Jηδt,0 |y(ΦδS − ΦS)

∥∥∥
H1(0,T ;Lp(S0))

6 Cδϑ/p.

(5.49)

The above estimate (5.49), strong convergence of χδS to χS in C(0, T ;Lp(Ω)) and weak convergence of P δSu
δ to

PSu weakly in L2(0, T ;C∞loc(R3)), give us

(∂t + P δSu
δ · ∇)φδ → (∂t + PSu · ∇)φ weakly in L2(0, T ;Lp(Ω)),

where
φδ = (1− χδS)φF + χδSφ

δ
S and φ = (1− χS)φF + χSφS .

�
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[25] O. Kreml, Š. Nečasová, and T. Piasecki, Weak-strong uniqueness for the compressible fluid-rigid body interaction, J. Differential

Equations, 268 (2020), pp. 4756–4785.
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