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Highlights

Mesoscopic simulations of inertial drag enhancement and polymer
migration in viscoelastic solutions flowing around a confined array
of cylinders

David Nieto Simavilla, Marco Ellero

e A mesoscopic model fluid combining SDPD particles and FENE springs
to mimic viscoelastic behavior is presented.

e The transition from viscous to inertial drag around a confined array
of periodically spaced cylinders is investigated with a simple model for
inertial and viscous drag.

e Polymeric migration away from the wake of the cylinders is investi-
gated.
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Abstract

We study the flow around a periodic array of cylinders using a mesoscopic
viscoelastic fluid that mimics polymeric solutions. We model our fluid em-
ploying a novel mesoscopic method based on Smoothed Dissipative Parti-
cle Dynamics and FENE springs. We characterize the static and dynamic
properties of our model solutions and compare the results with theoretical
predictions based on the Zimm model. After rheological characterization of
the modeled solutions, we simulate the flow around a confined array of cylin-
ders. The balance between inertia and elasticity in our simulations is studied
using a wide range of Reynolds (Re) and Weissenberg (Wi) numbers. We
find that increasing the flow rate reduces the drag coefficient on the cylinder
up to a critical Re corresponding to a minimum. Thereafter, inertia becomes
dominant and we encounter drag enhancement for all the solutions studied,
including the Newtonian solvent. With the use of simple model for the vis-
cous and inertial contributions to drag, we conclude that inertial effects are
driving the increase in the drag experienced by the cylinder. In our simu-
lations, we also observe migration of polymer chains away from the channel
walls and in the wake of the cylinder. We conclude that stress gradients in-
duced by the curvature of streamlines and convection of the depleted layers
at the walls as the principal mechanisms driving the migration of chains. We
find the extent of the migration correlates well with the viscoelastic Mach
number (Ma=+/ReWi) suggesting both elastic and inertial effects play a role

Preprint submitted to Journal of Non-Newtonian Fluid Mechanics March 18, 2022



in this phenomenon.

Keywords: mesoscopic simulations, viscoelasticity, flow around a cylinder

1. Introduction

In contrast to Newtonian fluids, the viscoelastic properties of polymer
solutions result in complex behavior when the polymer chains immersed in
the fluids orient and stretch giving rise to additional contributions to the
stress. One of the phenomena observed in the flow of polymer solutions is the
presence of instabilities that resemble turbulent flow at low Reynolds number
(Re) [1]: a balance between inertia and viscous forces. Extensive research has
focused on the study of inertia-less flows using theory to predict elasticity-
driven chaotic flow structures [2], or experimental observations focused on
elastic turbulence at very low Re numbers in contraction flows [3, 4], cross-slot
flows [5], flow around a cylinder [6, 7], and flow around arrays of periodically
spaced cylinders [8, 9]. The last two geometries are particularly interesting
since they constitute a classic example of a mixed flow with strong shear
in the gap between the cylinder and the walls and extensional (compression)
flow at the stagnation point in the front (wake) of the cylinder [10]. Although
some studies have identified flow curvature and large deformation rates as the
key conditions for inducing this kind of instabilities [11], Pan et al. showed
that the flow of polymer solutions becomes unstable at sufficiently high rates
no matter the type of flow [12].

In polymeric solutions the elasticity of the fluid is often characterized
through the Weissenberg number (Wi): the ratio of the polymer relaxation
time and the characteristic time for the experiment. At high Wi the elastic-
ity becomes important whereas at low Wi, Newtonian-like viscous behavior
is observed. However, it is often the case that Wi is increased by raising the
flow rate, and therefore, it also results in an increase of the Re number. At
higher Re numbers, inertial effects become also important and it has been
suggested that the relevant dimensionless quantity is the elasticity number
El=Wi/Re [13]: a ratio between the polymer relaxation time and the charac-
teristic viscous time. In these studies, the traditional chaotic motion observed
in turbulence is replaced by a different form of disordered flows termed as
Elasto-Inertial Turbulence (EIT) [14, 15, 16]. In the elasto-inertial regime,
Nolan and coworkers have investigated the flow around a single cylinder in a
microfluidics channel of aqueous solutions of polyacrylamide by particle im-



age velocimetry [17]. This work shows how vortex separation is suppressed in
viscoelastic fluids and a long wake downstream of the cylinder takes place due
to elasticity and the longer relaxation time of polymers. In spite of the ex-
tensive research investigating polymer induced instabilities at low Reynolds
numbers, numerical studies exploring elastic and elasto-inertial turbulence
at moderate Reynolds numbers is limited [18].

Another interesting phenomena observed in dilute polymeric solutions
is the migration or separation of chains induced by flow. This phenomena
results in a non-homogeneous polymer concentration in the fluid domain.
Polymer migration has been proposed as a driving mechanism for DNA sep-
aration using a spinning cone geometry [19]. This mechanism for DNA sepa-
ration via migration was confirmed using a similar geometry by MacDonald
and Muller [20]. Recently, the conformation of individual DNA molecules in
flow through an array of cylinders has been investigated experimentally [21].
This study found dead zones — areas where a depletion of DNA molecules is
observed — that form upstream of cylinders at a viscoelastic Mach number
Ma=+vReWi ~ 1. The formation of dead zones is explained by strong con-
formational fluctuations related to the stretching and recoiling of molecules.
Shi et al. [22] examined upstream and downstream instabilities that occur
for highly confined and bounded viscoelastic flows around a cylinder using
Boger fluids. Their study reports the onset of downstream instabilities at
Ma=1 that are caused by a disturbance of the base flow by traveling elastic
waves. Upstream instability, which depends on both the geometry and the
fluid, was only observed at Ma~ 10 and resulted in a significantly increased
flow resistance. A linear array of cylinders was later investigated at moder-
ate Ma numbers [23]. In this geometry, instabilities developed downstream
of the cylinders and grew upstream until — at sufficiently high Ma — a vortex
was created.

An exhaustive analysis of the possible mechanisms leading to polymer
migration in confined geometries was proposed by Jiang et al. [24]:

1. Wall exclusion from layers with a size comparable to the polymer gyra-
tion radius R,. Under this mechanism the depletion layer will be larger
for longer and flexible polymers.

2. Sieving of chains due to narrow section of the geometry limiting the
passing of polymer molecules. This effect is most important at Wi< 1
when the chains remain unstretched.

3. Migration due to hydrodynamic interactions with the wall. For Wi< 10



this effect has been shown to be small and very slow at driving poly-
mer migration [24]. However, it has been shown that long contraction
regions can results in significant migration due to this mechanism [25],
with the migration mechanism scaling as WiZ.

4. Streamline-curvature-induced (SCI) migration: Polymers traveling along
curved streamlines migrate towards the center of curvature due to the
induced stress gradient. At Wi> 1, dominant curvature induced mi-
gration has been confirmed experimentally [19, 20] and the rate of mi-
gration has been found to be proportional to Wi2.

5. Depletion-convection-induced (DCI) migration. Depleted layers (i.e.,
created near the wall by Mechanism 1) grow through convective trans-
port driven by a diffusion imbalance. This mechanism becomes dom-
inant at large Péclet (Pe): when advective transport overcomes mass
diffusion.

The effectiveness of each mechanism needs to be evaluated depending on the
geometry, the equilibrium polymer size R, and the dimensionless numbers
Re, Pe and Wi [24]. All mechanisms can be relevant in confined geometries
(i.e., when R, and geometry size are comparable). SCI has been shown to
govern polymer migration towards the center of curvature in Taylor-vortex
flow [26], Taylor-Couette flow [27], and eccentric Taylor-Couette flow [28].
In all these studies SCI is the most relevant mechanism once moderate Wi
numbers are reached. The specific Wi threshold for migration seems to be
dependent on the gradient number Gd (a measure of confinement) and the
ratio of the Pe and Wi numbers characterizing the flow constriction.

In this study, we present a particle-based mesoscopic model for dilute
polymer solutions to study flow around a periodic array of confined cylin-
ders. Fluid particles are modeled using the Smoothed Dissipative Particle
Dynamics (SDPD) method. To introduce viscoelasticity, we form chains link-
ing some of the particles using FENE springs. We perform flow simulation
over a wide range of Reynolds and Weissenberg numbers by manipulating the
flow rate and the polymer relaxation time. We model three different chain
lengths (N=25, 50 and 100 particles) to obtain a wide dynamic response and
access low-to-moderate regimes in the Re and Wi numbers. First, we present
a detailed characterization of the physical parameters of our model including
polymer size and diffusion coefficients. We use single chain stretching and
relaxation to determine the polymeric characteristic relaxation time. We sub-
ject our model to Reverse Poiseuille Flow to characterize the shear rheology



of the model solutions. Our solutions mimic a cross model for the viscosity
as a function of the shear rate: a shear thinning transition between plateaus.
Finally, we study the flow through a periodic array of confined cylinders. We
introduce a simple model to analyze the viscous and inertial contributions
to the drag experienced by the cylinders as a function of the characteristic
dimensionless numbers. We analyze the migration of chains in our confined
geometry and evaluate the primary mechanisms leading to migration. We
link the extend of migration with the inertial (Re) and elastic (Wi) effects
and find good correlation between the magnitude of the migration and the
corresponding viscoelastic Mach number (Ma).

2. Simulation methods

2.1. Smoothed Dissipative Particle Dynamics (SDPD)

In contrast to traditional DPD or SPH methods, SDPD incorporates fluc-
tuations in a particle-based Lagrangian discretization of Navier-Stokes (N-S)
equations [29]. The method presents an important key difference: SDPD
is compliant with the GENERIC formalism. As a result, the method re-
spects the first and second law of thermodynamics and the incorporation
of thermal fluctuations leads to the correct equilibrium probability distribu-
tion given by Einstein’s formula [29]. In addition, SDPD model parameters
are directly connected to the physical parameters (density, speed of sound
and viscosity) of the simulated system making it possible to give a physical
interpretation of the simulation results[30].

In SDPD, the fluctuating N-S equations are discretized to a set of stochas-
tic differential equations for the position r;, velocity v; and entropy S; of a
set of discrete Nsppp particles[29]. In the present manuscript, we consider
only the mass and momentum balances since we are working with isothermal
flows. The evolution of the particles position and momentum are given by

dr;

i . 1
dv;

i E 9

where Fj is the force acting on each SDPD particle that can be split on its
conservative (c), dissipative (d), random (r) and external (e) contributions
(e, Fi=>_; (FS + F + F};) + Fy). Note that all force contributions with



the exception of the external the result of the sum of pair interaction in
between fluid particles. Each contribution is given by

. pi p. ~
Fy=-Y" [d_ + d_} Pty °
o=
d EJ
Fj == [ayvy + by (vy; - €i;)es)] dd )
j i
Fj =) [AydW;; + 5 t(dWi)| - e (5)
j
where Ty =T — T, Uy = U; — Vj, €5 = T'ij/rij and Tij = ’T'i - rjl- The

particle density is calculated as d; = 1/V; = Zj Wi;, where Wy = W (45, rc)
is a normalized kernel function of finite support r.. Following previous work
using SDPD particles we have adopted Lucy kernel [31]:

g = 4 e (1082) (1=2) s (©)
ne 0 if r/re > 1

To facilitate the discretization of the N-S equations, it is useful to define the
function Fj; = —W'(r;,7c)/ri;, where the prime denotes the derivative with
respect 7;5. In Eq. (3) above the pressure p; is given by Tait’s equation of

state [32]:
wen[ (2 1]

where pg, po and v parameters are chosen to minimize density variations
(< 5%) by choosing a sufficiently large speed of sound ¢; = \/poy/po. A
background pressure p,, = 0.7 ensures positive pressure across the domain
for the range of deformation rates studied, which provides numerical stability
[31]. For all our simulations with choose a time step At = 0.003 given by
the shorter time scale in the Courant-Friedrich-Lewy condition dt. = dx/32¢;
and o0t, = da®/16n [33, 34]. In Eq. (4), a;; = 5n/3 — ¢ and b;; = 5(¢ + n/3)
are friction coefficients given by the shear n and bulk ¢ viscosities. In Eq.
(5), the amplitudes of the thermal noises A;; and B;; are chosen to satisfy



the Fluctuation-Dissipation Theorem:

r F 1/2
Aij = 4]{ZBTCLin3j (8)
- ~ 1/2
Lij
Bij = 4]€BT (sz — aij/?)) (9)
d;d,

For the random contribution to the force in Eq. (5), dW;; is a matrix of inde-
pendent increments of the Wiener process and dW; its traceless symmetric
part. For additional details on the SDPD model and its implementation the
reader is referred to [29, 30].

2.2. Polymer chains

To introduce viscoelasticity into our model, we form polymer chains
by linking solvent-like particles with Finite Extensible Non-linear Elastic
(FENE) springs [35]:

Hr..
F.EENE — %) 10
“ 1- ("nij/rma,x)2 ( )

where H = bkgT/r2,. is the spring elastic constant, r;; is vector connecting
to consecutive particles forming a bond in the polymer chain, r,,, = 1.4dx is
the limit value for the extensibility of the spring and b a scale factor balancing
elastic and thermal forces acting on the particles. Note that polymer topology
is preserved thanks to the choice of a small maximum bond length relative to
the average inter-particle distance dx = 1 (i.e., bond crossing is prevented).
Under these conditions the system quickly equilibrates to a bond length [ ~
0.6dx which is roughly 40% of the limit extensibility. The equilibrium value
of [ is not strongly affected by the flow conditions in the study. This method
for generating chains of SDPD particles have been shown to reproduce the
right scaling for static properties and diffusion coefficient of single polymer
chains [36]. For solutions constructed in this way with NV, polymer chains
of N particles each we define the effective polymer concentration as w =
N,N/Nsppp (i.e., the number of particles connected by FENE springs divided
by the total number of particles in the system Ngppp). A summary of the
parameters for the SDPD particles and spring constants in the simulated
solutions is included in Table 1.



Table 1: Polymer solutions model parameters.

A first group gives the SDPD particle

parameters. The second group includes the two FENE spring constants. The third group
summarizes the dimensionless parameter space in this study.

Parameter Description Value
dx average inter-particle distance 1.0

p density 1.0
m particle mass 1.0
s solvent viscosity 5.0

Cs speed of sound 10
Db background pressure 0.7

h smoothing length 3dx
kgT thermal energy 1.0

b FENE-P spring constant 1000
T max max. extensibility radius 1.4dx
Re = VR /v Reynolds number 0.2 -20
Wi = V1,/Req Weissenberg number 0.2 — 350
Sc=v/D Schmidt number ~ 1400
EI = Wi/Re Elasticity Index 0.3 - 27
Ma = vVReWi Viscoelastic Mach number 0.2 - 60
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Figure 1: (a) Initial random configuration for the 30dz x 30dx x 30dz system with chains
N=50 and polymer concentration of w=0.1.(b) Relaxation of a stretched chain (N=>50 and
w=0.1) averaged over five independent simulations. The solid line represents a fit to a
single exponential decay with polymeric relaxation time 7, = 76.6 = 10.1. The position
of representative examples of a fully stretched and a coiled equilibrium configuration are
indicated by the black arrows.

2.3. Static properties and polymeric relaxzation times

To characterize the SDPD model fluid a number of measurements in a
system of 30 x 30 x 30 particles in the absence of flow is performed. Ini-
tial configurations are generated through random sampling using a Gaussian
cumulative distribution function for the position of the particles. Chains
are grown sequentially through a self-avoiding random walk [37] that is con-
strained to the structural parameters in Table 1. An example of a random
initial configuration for chains N=50 and polymer concentration w=0.1 is
shown in Figure la. Using this approach avoided the large simulation times
needed to equilibrate initial configurations generated over a regular lattice
that limited simulation to relatively short chains (N< 25) [36].

First, the solvent diffusion coefficient of a system with no chains is deter-
mined from the ensemble average of the mean-squared displacement (MSD)
as a function of time:

MSD = 6Dt (11)

From the slope of the data in the inset to Figure 2, we find D = 0.0072.
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Figure 2: Left axis: Equilibrium gyration radius (red circles) as a function of the chain
length N. The red solid line is a power law Ry oc N¥ with exponent v = 0.63. Right axis:
polymer relaxation time (blue) as a function of the chain length N. The blue solid line
is a power law 7, oc N3 with v = 0.62. The inset shows the mean-squared displacement
(MSD) for pure solvent. The solid line shows MSD= 0.043t.

Using Stokes-Einstein relation, we can estimate the hydrodynamic radius for
each particle in a chain as r, = kg7 /6D = 1.48. This result is consistent
with the SDPD particles’ cutoff radius r. = h = 3dxr = 3.0. In addition,
we find a Schmidt number Sc= v/D ~ 1400, which ensures that momentum
diffusion is much faster than mass diffusion as expected for real fluids [38].
The resulting high Sc values are feature of the SDPD method, which has an
arbitrary viscosity as a model input and therefore allows direct control over
the Sc number [39].

Next, we consider systems with a small concentration of particles w = 0.1.
By tracking the ensemble average of the gyration radius of all the chains in
the system we determine its equilibrium value in 100,000 time steps. Figure
2 (left axis) shows a power law relationship R, oc N” between the gyration
radius as a function of the number of particles per chain N. The black solid
line indicates an exponent v = 0.63 & 0.05, which is about 7% above the
asymptotic value for a self-avoiding random walk v = 0.588 [40]. Finally, we
study the relaxation dynamics of individual chains. By pulling at both ends of
a chain using forces F' = 420, we increase the radius of gyration of the chain

10



to roughly twice its equilibrium value. Once steady state has been reached,
we cease the force separating both ends and track the time that the radius of
gyration takes to relax back to its equilibrium value. The averaged relaxation
dynamics of five independent runs are then fitted using a single exponential
decay (See Figure 1b). A similar approach has been used experimentally
to establish relaxation dynamics of single polymer chains [41]. Figure 2
(right axis) shows a power law relation between the polymer’s relaxation
time 7, and the chain length N. Using the Zimm model (7, o N*"), we find
v = 0.62 4+ 0.06, which is in good agreement with the analysis of the radius
of gyration. Agreement with the Zimm model indicates a full description of
the hydrodynamic interaction between particles in a chain. In contrast, the
Rouse model (7, o« N**1)] which does not account for HI between particles
in a chain results in a much lower v, inconsistent with the dependence of
the gyration radius on N, and previous work on similar polymer solutions
including theoretical [42] and simulation studies modeling mesoscopic fluids
43, 36].

2.4. Rheometric flow measurements

We calculate the shear viscosity according to its definition n = 7, /%
where 7., is the shear stress and 7 the shear rate. To determine the stress,
we followed the Irving-Kirkwood-like methodology proposed by Thompson
et al.[44, 45] to estimate the stress-per-atom (or in our case per particle)
in MD simulations using LAMMPS [46]. This method accounts for all the
interactions between particles to provide a measure of the stress tensor of a
particle ¢:

éﬁ = —mvévg — éﬁ (12)

where a and [ take the values x, y and z. The first term in Eq. 12 corre-
sponds to the kinetic energy contribution for each particle. The second term
W tesults from the virial contribution due to particle interactions, which
in our model are given by SDPD hydrodynamic and FENE bond interactions
computed as

L . .

éﬁ _ 5 Z(Tiaﬂﬁmr + TTLQFS;H>

n=1

Ny
1 bond bond
+3 ;(%Fiﬁo + P FPg) (13)
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In Eq. (13), the first sum accounts for each pair interaction with particle
positions 7; and 7,. The forces FP*" and FP¥* are resulting from the pairwise
interaction with Ny particle neighbours in the kernel support. The second
sum includes the bond interactions F°"d and FP°"d through Ny, bonds. Note
that in our model N}, = 0 for solvent particles and, since we work with linear
polymer chains, N, = 1 (chain ends) or N}, = 2 (backbone particles).

2.5. Reverse Poiseuille Flow (RPF)

We simulate two parallel Poiseuille flows in opposing directions driven
by uniform body forces [47]. This method has the singular advantage of
avoiding the need of fixed walls, where boundary conditions like no slip need
to be imposed [48]. The flow is simply imposed by dividing the simulation
domain in two halves and applying a uniform external force in the z-direction
F*© = (F¢,0,0). In the first half of the domain F¢ = ¢ and in the second half

F? = —g. In this way, the shear stress imposed in the domain is:

_— {gn(Ly/4 —y) ify<L,/2 (14)

gn(y —3L,/4) ify>L,/2.

where n is the number density. Note that the stress in Eq. (14) is dependent
on the system length, the imposed force and the number density, but most
significantly independent of the solvent viscosity. As a result, the same stress
profile is common to all solutions, included the pure solvent with no chains.
This presents the opportunity of checking the flow dynamics (as shown in
Figure 3a) by comparing it to Eq. (14) with the computed stress.

In our simulations, we follow a start-up protocol where the driving force
is turn on suddenly after the thermalization of the system. Thereafter, we
track the stress, the velocity profile and the conformation tensor of the chains
in the system to establish when steady state is reached. For the analysis of
the viscosity, we consider only steady-state flow conditions. To provide a
stress measurement that is macroscopically relevant, the local per particle
stress is averaged over space dividing the domain in 100 bins or slabs over
the y-direction with roughly Ny, ~ 400 particles/bin. The stress profiles
presented in Figure (3a) are the result of further averaging the stress for
each bin in time (i.e., an averages of every N; = 1000 time steps for each bin
is given with a timestep At = 0.003):

12
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(a) (b)
Figure 3: (a) Imposed shear stress for reverse Poiseuille flow 7, as a function of the y-
coordinate. Points correspond to the stress measured in simulations with different chains
lengths and concentrations: solvent (green), N = 100 and w = 1.0 (green), N = 50
and w = 1.0 (orange),N = 100 and w = 0.5 (purple), N = 50 and w = 0.5 (brown), and
N =50 and w = 0.75 (pink). The black solid line corresponds to Eq. (14) for g = 0.005.(b)
Velocity profiles for the same polymer solutions in (a). The inset sketch shows a xy-plane
view the N = 25 and w = 0.5 system, with the arrows showing the direction of flow,
solvent particles in blue and polymer (or bonded) particles in pink.

Nt Nbpin

o t) = thlvbm Y s, (15)

n=1m=1

In Figure 3, we show the stress and corresponding velocity profiles for
systems of N = 100 and N = 50 chains at a number of concentrations.
In Figure 3a, we show for all the systems the calculated stress corresponds
with the theoretical profile given by Eq. (14). For power law fluids (i.e.,
n = Kk3P) an analytical expression can be found for the velocity [47] that is
characterized by a flattening of the parabolic profile given for the Poiseuille
flow for Newtonian fluids (See Figure 3b). However, the rheological response
of our model fluids is more complex than the observed for power law fluids.
For example, we will observe a plateau at high and low shear rates connected
by a power-law-like response at intermediate Wi. In Figure 3b we also include
the parabolic velocity profile that is expected for the pure solvent:

) =V [1- (127) | (16
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Figure 4: Shear viscosity of solutions as a function of the Weissenberg number for different
polymer concentration (indicated by the legend). Viscosity has been normalized by the
solvent viscosity 7. Solutions of chains N = 25 (N = 50) are represented by squares
(circles).

where the peak velocity is given by V.. = gnLi /32n. As a result of the
increased viscosity due to the polymeric stress, the velocity profile of solutions
(w > 0) peak at lower values. The flattening of the velocity profile in the
regions of lower shear rate is a direct result of shear thinning behavior of
the solution. These departures from the parabolic velocity profile have been
treated in detail in a recent study using the SDPD method [36] using an
slightly different parameter space (Sc=770). From the velocity profiles in
Figure 3b, we can extract the shear rate profile as 4 = 0v,/0y. To that
end, we numerically differentiate the velocity profiles and thereafter apply a
Savitzky-Golay filter [49, 50] following the same method described by Baker
et al. in a similar fluid using DPD particles [48]. Then we use the definition
of shear viscosity to compute its values as a function of the shear rate (i.e.,
N = Tzy/7), Where we take the imposed stress profile to reduce uncertainty.
Figure 4 presents the viscosity as a function of the Weissenberg number
for polymer solutions of N = 25 and N = 50 with concentration ranging
between w = 0.0 (solvent) and w = 1.0. The zero shear viscosity plateau is
not unequivocally observed for either system, with the exception of the higher
concentrations w = 0.75 and w = 1.0 for N=25, where a trend towards a

14



plateau can be noticed. The results presented for the flow around a train
of cylinders in the following sections correspond to a concentration w =
0.5 (brown symbols in Figure 4). For this specific concentration and for
N=25, we can estimate a zero shear viscosity that is roughly twice the solvent
viscosity. To calculate Wi, we have used the polymer relaxation time from
single chain stretching experiments in Figure 2 with 7,(N = 25) = 34.1 £ 6,
To(N = 50) = 76.6 £ 10.1 and 7,(N = 100) = 171 = 20.3.

2.6. Flow around an array of confined cylinders

Figure 5 shows a schematic of the simulated mesoscopic domain (90 x
66 x 20) for the flow around an array of confined cylinders. The walls and
the cylinder are formed by fix particles regularly spaced at a distance dx =
1, where no penetration of solvent or polymer particles is allowed. The
distance in between the walls is H = 60dx, each wall thickness is 3dx and
the cylinder radius is .y = 15dz. Using these dimensions the cylinder covers
half of the channel width and the distance between the center of consecutive
cylinders, due to the periodicity of the boundaries, is 6 Ry as in a previous
studies of viscoelastic flow around an array of cylinders [51, 52, 53]. The
key differentiation with these studies is that viscoelasticity was previously
modeled by introducing a viscoelastic constitutive equation for the stress
(i.e., using Oldroyd-B model [54] for the polymeric stress and the evolution of
the conformation tensor as a property the fluid particles). Here, we present a
bottom-up mesoscopic model to introduce viscoelasticity using a force based
approach. The boundaries are fixed in the y-direction and periodic in the
z- and z-directions. Flow is induced by applying an homogeneous force
though the fluid domain. To ensure no negative pressure in the domain, the
background pressure is set to p, = 0.7 in Eq. (7). This value is selected by
progressively increasing py, while monitoring the pressure in a square region
(5dx) x L, x (5dx) in the wake of cylinder for the fastest flow scenarios in
the study.

For the calculation of the the Reynolds and Weissenberg numbers, we

have considered the average of the velocity field ¥ in the outlet region with
a width Ry

_ /)?7Rcy1 Wi — Vv

Re
s 1:{cyl

T (17)

Both of these dimensionless numbers are controlled through the imposed flow
rate. For a fix flow rate the ratio between the two (ElI=Wi/Re) is fixed. Our

15



Figure 5: Sketch of the simulation domain (L,=90,L,=66 and L,=20) with a centered
cylinder of Ry = 15. Wall and cylinder particles are fixed and colored in grey, solvent
particles are represented in blue, backbone chain particles are colored pink and chain ends
are colored in yellow.
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simulations cover a wide range in Re (Wi) space and include start-up and
cessation of flow but for the current study we focus on the steady-state flow
around the periodic array of cylinders. The space for the dimensionless pa-
rameters in our simulations is far from the very low Re regime for elastic
wave instabilities between obstacles [55]. However, at moderate Re numbers
Varshney et al. [56] highlight importance of inertia on the stability of vis-
coelastic flow in a wide range of Wi, Re and their ratio EI=Wi/Re. For high
elasticity fluids a complete re-laminarization is found for Re order unity -
in contrast to well known drag reduction in turbulent flow. This effect can
be explained by finite polymer extensibility and suppression of vorticity at
high Wi. In our results however, we observe laminar flow in all simulations
including the solvent system in the absence of polymer chains.

3. Results and Discussion

3.1. Inertial drag enhancement

By measuring the drag force Fp experienced by the cylinder, we are able
to compute the drag coefficient
Fp

Cp = 18
P Rcylﬁns ( )

Figure 6 shows Cp as a function of the Wi number. We show the drag co-
efficient for solutions of model polymers with N=25, 50 and 100 particles
per chain at a concentration w=0.5. We find drag increase at different Wi
numbers depending on the chain length. Our results show an initial drag
reduction that can be explained by the decrease in shear viscosity with in-
creasing shear rate (i.e., shear thinning) as the flow driving force is increased
[57]. All three systems show a minimum, and thereafter a sharp increase in
the drag coefficient. A direct numerical simulation study of flow around a
cylinder in 3D of an Oldroyd B fluid has shown laminar flow at moderate
Re number in the presence of elastic effects [18]. In that study, for Re< 100
only drag enhancement is found and for larger Re a drag reduction regime
precedes the elastic drag enhancement. A second drag reduction regime is
expected at much higher Re.

To explain the lack of correlation between the transition to drag enhance-
ment that we observe in Figure 6 and Wi (i.e., the onset of drag enhancement
seems to be independent of the elasticity in the solutions), we look at two
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Figure 6: Drag coefficient Cp as a function of the Weissenberg number for system with
a polymer concentration w = 0.5 and chain lengths of N = 25 (red), N = 50 (blue) and
N = 100 (green). The colored arrows represent the onset of drag enhancement in the
different systems.
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contributions to the drag coefficient: viscous and inertial. For this analysis,
we look at the force required to flow through viscous media and the force
required to displace the fluid along the path of a moving cylinder [58]:

Fy = CR2,my (19)
Fy = C'pRLA? (20)

These are often referred to as viscous and inertial drag forces. Here, we
remark that the most conventional definition of the drag force is given by
(20) or equivalently Fyg o< pv?A, where A is a characteristic area. This is
often the choice for the characterization of the drag at high Re and results on
the drag being inversely proportional to Re in the laminar regime. Instead,
we have chosen the viscous drag definition given by (19) as our study is
limited to a range from low (but finite) to moderate Re. Note that using
this definition Cp is expected to be constant in the low Re regime and that
Re « Fi/Fy. Now, we can consider the drag force given by adding both
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Figure 7: Total drag coefficient (green) with its viscous (red) and inertial (blue) contri-
butions. The viscous contribution has been shifted along the z-axis by doubling (dotted)
and halving (dashed) the polymer relaxation time 7, in Eq. (22). The inset shows how all
curves for the drag coefficient collapse when plotted as a function of the Reynolds number.
Also included in the inset is the qualitative behavior of a Newtonian solvent (black solid
line)

contributions in (19) and (20).

_ k+FEy

C*
b Rcyl Uns

(21)
In order to provide an analytical solution to equation 21, we need a rheo-
logical constitutive equation for the viscosity as a function of shear rate. To
that end, we model the viscosity n(%) in Eq. (19) using the cross-model [59],
which qualitatively resembles the viscosity curves in Figure 4:

To — Ms

T+ () =

77('7) =1ns+

In Figure 7, we show the total drag coefficient and its contributions as
predicted by Eqns. (19)—(22). This figure resembles quite well the simulation
results with the onset of drag enhancement shifting to higher shear rates
(or Wi numbers) as the characteristic polymer relaxation time 7, increases.
According to Eq. (21), the viscous contribution to the drag force will shift
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Figure 8: Drag coefficient as a function of the Re number. We use the same markers and
color coding as in Figure 6. In addition we include the pure solvent results (black). The
arrow shows the onset of drag enhancement at Re~ 5.

with the polymeric relaxation time while the inertial contribution will remain
unaltered. This is demonstrated by the dashed and dotted lines in Fig. 7
for the viscous (red) and total (green) drag coefficient. We find further
evidence of the drag enhancement being the result of inertia, if we look at
C} coeflicient predictions as a function of the Re number. As shown in the
inset to Fig. 7, all curves for different 7, collapse into one. When we look
at our simulation results in Figure 8, we observe that for the simulation
data all curves also collapse into one suggesting that the increase in the drag
coefficient is driven by inertia. The onset of drag enhancement appears at the
same Reynolds number for all data sets (Re~ 5), including the pure solvent
simulation results. For the solvent (no chains in the system), Newtonian
behavior for Cp is observed with a progressive increase in the drag as inertia
becomes dominant (See model prediction in the inset to Figure 7).

In addition to the analysis of the drag coefficients we have look at the
velocity fields for the critical cases in the drag curves. Figure 9 shows the
velocity magnitude (v = y/v2 + v2) field for the minimum and maximum in
the drag curves at Re=4.7 and Re=16.3 respectively. We observe a clear shift
of the maximum magnitude of the velocity towards the outlet of the channel
for the highest Re as a result of inertial effects. However, we do not observe
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significant fluctuations in the magnitude of the velocity profiles. Haward et
al. have reported the development of vertically asymmetric flow (i.e., by
comparing to top and bottom halves of the domain) beyond a first critical
Weissenberg number Wi,; = 60 and time dependent turbulent-like flow after
a second critical Weissenberg number Wi, = 130 [60]. In our simulations
however, we only find horizontal asymmetry between the front and the back of
the cylinders and the flow remains time independent up to Wi= 98. In their
work, inertial effects are negligible and the blockage ratio (2R/H = 0.1) is
much lower than in our simulations, where 2R/H = 0.5. Simulation work on
the symmetry and stability of flow around a single cylinder using the Phan-
Thien-Tanner (PTT) model for viscoelasticity has also shown the critical Wi
to increase with the ratio of the solvent to the total viscosity ratio 5 =1, /n
[61] and the blockage ratio [62]. Similar qualitative behavior is observed
with the inclusion of additional cylinders downstream in the channel [63].
As shown in Figure 4, at a concentration w = 0.5 we have § ~ 0.5. The
absence of vertical asymmetry in our simulations can be explained by the
high § (i.e., vertically asymmetric flow might develop at higher Wi numbers
that were not accessible by our simulation).

05 25 105

—
0.4 /— %x 2.0

S =

(a) (b) (c)
Figure 9: Analysis of the velocity field for N = 50 and w = 0.5: (a) Wi= 0.0 (Re= 0.0),
(b) Wi= 28 (Re=4.7) and (c) Wi= 98 (Re= 16.3). Streamlines are shown as black arrows.
In the absence of flow (a), only small thermal fluctuations in the velocity are observed.
(b) and (c) show the velocity field at the state with the minimum and maximum drag in
Figure 8. Note the different colorbar scale for each figure.

3.2. Polymer migration

In addition to the inertia-driven drag enhancement, our simulations of the
flow around an array of cylinders show chain migration throughout the range
of Re (Wi) studied. Polymer migration has been shown to increase with Pe
and Re in confined Poiseuille flow using Dissipative Particle Dynamics [64].
In our simulations, polymer chains migrate towards the center streamlines
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(i.e., away from the channel walls) in the inlet/outlet regions. We also find a
depleted area of near zero polymer concentration in the wake of the cylinder.
The migration of chains is most significant at the stagnation point in the
wake of the cylinder (see Figure 11). Note that no cavitation is found in this
area since solvent particles are always present and the fluid density remains
constant. However, the presence of migration and its magnitude does not
simply follow either Re or Wi. We observe that the extend of migration is
also dependent on the polymer’s length N. Furthermore, we do not observe
the creation of depletion zones [21] upstream of the cylinder, instead polymer
concentration is increased around the cylinder front and the first half of the
domain (See Figure 13f). Polymer (DNA molecules) migration — driven by
the curvature of streamlines — has been observed in shear dominated flows
in a cone-plate geometry by MacDonald et al. [20]. This study observed
an increase in the concentration of chains close to 200% near the apex of
the cone after long times under steady shear. To separate the effect of the
possible mechanisms leading to migration in our simulations, we analyze the
different regimes where depletion of chains are observed.

First, we look at the equilibrium distribution of chains in our simulation
in the absence of flow in Figure 10 (a)-(c). We observe depletion near the
channel and cylinder walls. The depleted areas are more apparent when we
look at the density the center of mass of chains p. in Figure 10 (d)-(f). As
an additional indicator we look a the average chain conformation throughout
the domain. We define the conformation tensor

N,

1 P
c= qiq; 23
Npas Z 23)

7
where N}, is the number of polymer chains in a given domain and g; is the
end-to-end vector of each chain in the domain. Figures 10 (g)-(i) shows the
equilibrium trace of the conformation tensor for system with N=25, 50 and
100. Note that as expected, the average values are around tr(c.q)=2, since we
are representing a 2D projection in the xy-plane. However, the distribution
of the trace becomes less homogeneous as N increases due to: (1) the relative
small number of chains (i.e., from N=25 to N=100 we go from an average
N, ~ 20 to only 5), and (2) the exclusion near the wall and the cylinder that
is discussed later as migration mechanism 1.

A detailed depiction of flow-induced migration of chains over the range
in the dimensionless numbers space in this study is presented in Figure 11.
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Figure 10: Equilibrium chain distribution around a cylinder for N=25 (a), N=50 (b) and
N=100 (c) using the same color coding for the particles as in Fig. 5. For these three
systems: (d)-(f) Show a 10 frame average of the number density of the center of mass of
chains p. for the same equilibrium configurations. In this plots wall exclusion of the order
R, increasing with NNV is observed. And (g)-(i) show a 10 frame average of the equilibrium
trace of the conformation tensor c.
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(c) N=50/Re=2.1/Wi=12.5/Ma=5.1

(b) N=25/Re=2.5/Wi=2.1/Ma=2.3

) N=25/Re=0/Wi=0/Ma=0

(g) N=25/Re=12.7/Wi=11.8/Ma=12.2 (h) N=50/Re=9.7/Wi=58/Ma=23.7 (i) N=100/Re=8.1/Wi=283/Ma=48
Figure 11: Chain distribution examples for flow around a cylinder for N=25, N=50,
N=100. We have used the same color coding for the particles as in Fig. 5 and reduced
the solvent particles display size to better visualize migration effects.
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Notably, as we explore systems formed with chains of different length (al-
though the concentration is kept constant w=0.5), we observe that Re and
Wi numbers do not capture the onset or the extend of migration. For exam-
ple in Figure 11f the Reynolds number (Re=4.7) is lower than in Figure 11d
(Re=6.5), but we observe more migration in the former. The alternative case
is shown in Figure 11f displaying more migration with Wi=28 than that of
Figure 11e where Wi=54. This suggest that inertia or elasticity alone cannot
explain the growth of the depleted areas. Instead, we observe that the extend
of migration increases with the viscoelastic Ma= v/ ReW1i from Ma=0 (a) to
Ma=48 (i) in Figure 11. Note that Wi is strongly dependent on N through
the polymer relaxation time 7,,. This strong dependence is what allows us
to separate between inertial (Re) and elastic (Wi) effects. We conclude that
neither Re nor Wi alone can predict the extent of migration in our system
but rather a combination of the two through the viscoelastic Ma. We can
rewrite the viscoelastic Mach number as Ma=,/7,7,/7;, where the relevant
time scales in the flow are represented: the viscous time 7, = R, /v, the
polymer relaxation time 7, and the flow characteristic time 7 = Ry/v. In
this way, Ma represents a balance between the geometric mean of viscous and
polymeric relaxation times and the flow characteristic time given by the flow
rate. Ma has been used to study the elastic waves induced by coil stretch-
ing at moderate Re and by streamline curvature at low Re in flow around
cylinders [53, 12]. Furthermore Ma>1 has been correlated with downstream
instabilities [22]. In our simulation we observe stable laminar flow (See Figure
9) with polymer migration throughout the range 1<Ma<48.

The transport of polymers in complex confined geometries is not fully
understood [65]. We analyze our results in view of the migration mecha-
nisms recently proposed by Jiang et al. in periodic contraction geometries
[24]. First mechanism to consider is near-the-wall exclusion from layer with a
size of the order of the equilibrium molecular size R,. We observe this effect
in regions of the upper and lower wall and surrounding the cylinder even in
the initial equilibrium configurations. As shown by Figure 10, this effect is
more pronounced as the polymer size increases (i.e., larger depleted regions
are observed close to the walls and the cylinder in the absence of flow). For
N =100 in Figures 10 (c) and (f), the density of chains p. on the top and
bottom of the cylinder is strongly affected by this exclusion mechanism re-
sulting in a non-homogeneous chain density field at equilibrium. This volume
exclusion effect on the distribution of chains in the fluid domain can be ex-
plained by a transition from weak to moderate confinement as for N=100 the
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2R, ~ 10 becomes comparable to the gap between the cylinder and the wall
[65]. Figures 10 (g), (h) and (i) show the trace of the conformation tensor
averaged over 10 frames separated by 1000 timesteps each for N=25, 50 and
100 respectively. Note that near-the-wall exclusion affects the equilibrium
distribution of the chain conformation tensor in Figure 10 (g)-(i) through
the stretching of chains due to confinement but also through poor statistics
in areas with low chain density leading to large fluctuations.

The second mechanism to consider is the sieving of chains through the
contraction. This mechanism is only relevant when Wi< 1 [24] (i.e., polymer
chains have not been significantly deformed). However at Wi<1, we do not
observe a significant degree of migration beyond the depletion due to wall
exclusion already present at equilibrium.

Next, we consider the kinetic theory for dilute polymer solutions given
by Ma and Graham [66]. Using a spring dumbbell model the flux of polymer
chains 7 is given by

5= petoo — V- (peDicpu) + M : T+ %c V'V, (24)

where p. is the center of mass number density of chains, v, is the bulk
fluid velocity field, M the migration third order tensor[65], T the polymer
stress tensor and c is the conformation tensor. Convection (first term) and
diffusive transport (second term) can not produce an inhomogeneous polymer
concentration field [66]. The third and fourth terms correspond with the third
and fourth mechanisms described below respectively.

The third mechanism — migration of deformed chains due to HI with the
walls — has been shown to be important in geometries with long contractions|25,
24]. The coupling between chain deformation and HI with the walls has been
shown to drive polymers towards the center of straight channels [67, 68, 65,
64]. However, Jiang et al. showed that in a short periodic contraction ge-
ometry — close in length and blockage ratio to our array of cylinders — this
mechanism is weak up to a Wi=30 [24].

Finally, we consider the two remaining mechanisms able to explain our re-
sults: Streamline-Curvature-Induced (SCI) and Depletion-Convection-Induced
(DCI) migration. Both SCI and DCI mechanisms are characteristic of con-
fined geometries and dependent on Wi. In our simulations the polymer size
Ry ~ 2—5 and the radius of the cylinder Ry = 15. We highlight that for the
polymer sizes and the geometry gap in our simulations the Gradient number
Gd= \/%Rg/RCyl varies from 0.1 to 0.2. This appears to be comparable to
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the Gd=0.16 in Jiang et al.’s study in a contraction geometry.

In the fourth mechanism SCI, polymer chains traveling along curved
streamlines migrate towards the center of curvature due to stress gradients.
As indicated by the last term in Eq. 24, this mechanism is only relevant if the
second derivative of the flow field is not negligible over the span of a polymer
chain. SCI has been confirmed experimentally at Wi> 1 [19, 20] and the rate
of migration has been found to be proportional to Wi%. As in the array of
periodic square contractions in Jiang et al.’s study, our geometry presents a
change of sign in the streamline curvature that could drive migration away
from the stagnation point at the wake of the cylinder.

In contrast the fifth mechanism, DCI migration, results from the con-
vective transport of a depleted layer near the wall in the contraction region
(originally present due exclusion) towards the wider chamber [25]. In DCI,
a gradient of velocity between layers with different polymer concentration
creates a diffusion imbalance: chains traveling in faster flow layers lack the
time to diffuse towards slower flow layers, while slower layers become more
and more depleted in the wider slow areas. DCI has been applied in the
separation of red blood cells from plasma in a constriction geometry [69]. As
in Jiang et aQZ.’s study, we take DCI to be characterized by a Peclét number

Pepcr = where Lq is a characteristic depletion thickness layer and

d
Dy )
D, is the Cé)n]%(éll" of mass diffusion coefficient of the polymer chain. The char-
acteristic time is given by mpcr = A/Q, where @ is the flow rate per unit
depth and A = H(L,/2 — R.y) is the area of the wide section of the channel
behind the cylinder. We have seen that at equilibrium Lq ~ R, and for a
Rouse chain we approximate L3/D,, ~ 7%7,. DCI mechanism has been found
to become dominant as the ratio between Pepcr and Wi numbers increases

25, 24]. This ratio can be approximated as:

Pepcr w2 Riyl
~ — 2
Wi 3 A (25)

We find Pepcr/Wi=0.4, which is twice the ratio in contraction geometry in
Jiang et al. study (Pepc;/Wi=0.2) [24], where SCI is established as the
driving mechanism for migration. We highlight that for a slightly higher
Pepcr/Wi ratio of 0.8 Ortiz et al. find DCI contributions to migration to be
significant and it is possible that both mechanisms are contributing to the
observed migration process. Qualitatively, it can be argued that a strong
SCI migration will thin the depletion layer near the cylinder wall due to the
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Figure 12: Dimensionless parameter spaces for the simulations presented in this study:
(a) Wi-Re and (b) El-Ma. Datasets with the same markers and color as in Figure 6.
The black solid (dashed) line shows El=0.9 (E1=27). The grey area shows Re> 5 where
drag enhancement is observed. The pink and purple solid lines represent Ma=1 and Ma=5
respectively. Migration is observed in all simulations with Ma>1 and its extend progresses
with increasing Ma.

polymer alignment and stretching near the wall [24] (See Figures 11 and 13).
This could potentially reduce the effect of DCI migration and, as a result,
make SCI the dominant mechanism driving migration. The significant deple-
tion at the wake of the cylinder agrees with description and characteristics
of SCI due to the curvature of streamlines in that region. The modeling
for SCI (also known as stress-gradient-induced) polymer migration in con-
fined dilute solutions using continuum theory has been recently applied to
Taylor-Couette flow [27] and flow between rotating eccentric cylinders [28].
These studies were limited to Wi< 1.6 but already found migration towards
the inner cylinder with near zero concentration at the outer cylinder wall.
In our simulations, we also find migration toward the symmetry axis of the
streamlines due to curvature as in [28]. However, we find the depletion at
the wake of the cylinder correlates with the viscoelastic Ma and not the Wi
if systems with different chain lengths (and polymer relaxation times) are
studied. On the other hand, the moderate depletion near the walls in the
wider flow regions could be attributed to DCI. Note that since migration is
already significant for simulations below the critical Re=5, we can separate
it from the inertia-induced drag increase discussed in the previous section.
In Figure 12, we look at the Wi-Re and El-Ma space covered in our
simulations. The Elasticity number (El= Wi/Re = 7,/7,) considers the
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polymeric relaxation time 7, and the viscous time 7, = ngl /v. El has been
used as an indicator for the transition between elastic, elasto-inertial and
inertial regimes in polymeric solutions subjected to flow [1, 10]. In Figure
12a, we move on a line of constant El for each system with a fixed chain
length by increasing the fluid’s flow rate. We observe no correlation between
drag enhancement and El. Instead drag enhancement triggered at Re> 5
due to the fluid’s inertia (grey area shown in Figure 12a), as the model
presented in Section 3.1 suggests. Shi et al. presented a map for El-Ma to
discriminate curvature driven instabilities in confined flows that resulted in
non-homogeneous polymer concentration (i.e., migration). We have included
that representation in Figure 12b. Both maps show the onset of polymer
migration with a critical viscoelastic Mach number Ma=1 (pink solid lines
in Figure 12). As discussed above, we find strong correlation between the
extension of the polymer depleted area at the wake of the cylinder and Ma.
We have included Ma=5 (purple) in both maps in Figure 12 to give an
idea of how increasing the Ma number translates on each map. Note that
Wi=Ma?/Re and as a result, in Figure 12a for a fixed Ma number we have
Wi to be inversely proportional to Re. The analysis of either of these maps
shows a clear separation between the two phenomena encountered: drag
enhancement and polymer migration. However, for sufficiently large Re both
regions Ma>1 and Re>5 overlap.

In Figure 13 we show the density of chains for the velocity profiles in
Figure 9. Note that the density of chains near the wall and on the wake of
the cylinder goes down to zero in regions whose size increases roughly with
Re, Wi and Ma numbers (i.e., once we fix the chain length N=>50 the trends
with these three dimensionless numbers are equivalent).

Figure 13 focuses on the system with N=50 at equilibrium (Re=0) and
at the minimum (Re=4.7) and maximum (Re=16.3) in the drag curve in
Figure 8. These states correspond with the same shown in Figure 9 for
the velocity fields. For Re=0 in (a), we observe small fluctuations around
the expected value tr(ceq)=2. For Re=4.7 in (b), we observe significantly
larger values of the trace of ¢ up to ~12 with the most stretched chains
found on top and below the cylinder. The asymmetry in the stretching
(top to bottom) might be explained by the reduced chain density with slight
differences between the top and the bottom of the cylinder (See Figure 13
(e)). As the flow rate is further increased (Re=16.3), the significant stretching
above and below the cylinder in the contraction region shifts downstream and
the most stretched chains are found in the wake of the cylinder. Note that in
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Figure 13: Trace of the conformation tensor tr(c) for N = 50 and w = 0.5 with Re=0.0
(Ma=0.0) (a), Re=4.7 (Ma=11.5) (b) and Re=16.3 (Ma=23.7) (c). The density of the
center of mass of chains for flow around a cylinder for the same states are shown in (d), (e)
and (f). The polymer depleted areas and asymmetry front to back increase progressively
as the flow rate is increased. Trace and density panels result from the average over 10
frames separated by 1000 timesteps each.
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this region very few chains are present (see Figure 13 (f)). Also noteworthy
is the development strong asymmetry between the front and back of the
cylinder while the top to bottom symmetry is recovered. This shift towards
the back of the cylinder follows the velocity field in Figure 9 (c¢). In Figure
13 (b) and (c) we observe regions by the walls where chains are also more
stretched. This effect is coupled with polymer migration and the reduced
number of chains in these regions of the domain make it hard to draw strong
conclusions. Note the velocity fields in Figure 9 do not show the effect of
stretching or the top/bottom asymmetry observed for tr(c) in Figure 13 (b).
An analysis of the stretching and recoiling of chains in this regime would be
the subject of future work.

4. Conclusions

We have introduced a bottom-up mesoscopic model for viscoelastic poly-
meric solutions that mimics real fluid behavior. We present an exhaustive
characterization of the of the static and dynamic properties of the fluid and
validated the results with theoretical predictions based on the Zimm model.
The rheological characterization of our model fluid subjected to Reverse
Poiseuille flow shows a cross model behavior with shear thinning separated
by two plateau regions. Finally, we simulate the flow around a confined array
of periodic cylinders at moderate Re numbers. We find a small reduction in
drag up to Re=5 and thereafter an inertia dominated regime with steep drag
enhancement. To explain these results, we consider a simple model for the
inertial and viscous contributions to the drag. Most experimental work on
dilute solutions past obstacles, contraction flows or porous media have work
in the inertia-less regime (very low Re) making direct comparison with our
results impossible. We can compare our results for the drag to simulation
work by Xiong et al. [18] at moderate values for Re and Wi using direct
numerical simulations. They find Newtonian drag at low Re, drag enhance-
ment at moderate Re. A drag reduction region at large Re is also found but
we did not explore Re> 20.

In our simulations, we also observe migration of polymer chains away from
the channel walls and in the wake of the cylinder. We discuss five possible
mechanisms contributing to migration and highlight Streamline-Curvature-
Induced (SCI) and Depletion-Convection-Induced (DCI) migration as the
main mechanisms driving the creation of polymer depleted areas in the flow.
These two mecanisms are controlled by the ratio between the Pepcr and the
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Wi numbers. However, we find that the extent of the migration correlates well
with the viscoelastic Mach number (Ma=+v/ReWi) suggesting both elastic and
inertial effects play a role in this phenomenon and that additional mechanisms
might be needed to describe migration in confined geometries at moderate Re
numbers. An analysis of the conformation of chains in these systems shows
a coupling with the migration of chains and strong asymmetry between the
from and the back of the cylinder.
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