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1. Introduction

Gravity is the theory of (curved) spacetime. Its dynamical variable is spacetime itself,
and in fact one way to quantize it is to consider the metric gµν as the field to quantize and
proceed to build a quantum field theory, on an “ordinary” space. Despite some successes
this attempt has not been completely successful, quantum gravity is still an elusive theory.
The idea behind the Noncommutative Geometry approach [1–3] to Quantum Gravity is
that the object to quantize is spacetime itself, giving rise to a Quantum Spacetime. I will
concentrate on kinematics, describing the space by a noncommutative algebra, which can
be sometimes described by noncommuting coordinate functions. This is a rather minimal
approach which does not do justice to the noncommutative geometry programme, but it
will do for purposes of this paper.

Observers play a fundamental role in both general relativity and quantum mechanics.
Their role is however subtly different. There is a further ambiguity. Here by observer
in general relativity we do not mean a whole sets of clocks and rods (a reference frame),
but rather an observer located at a single event, which will be in relations with others.
In some sense the observer in this case is synonym with event. Observers are immersed
in spacetime, they are its fabric. In quantum mechanics an observer is separated from the
phenomenon it wants to describe. Sometime it is classical, i.e., follows different rules from
the event. This is not the place to enter the discussion of Schrödinger cats and Wigner
friends, it will suffice to notice that the observer is usually considered a classical objet.

The most famous noncommutative space is the one described by noncommuting
coordinates, whose commutator is constant. Sometimes it is called DFR (Doplicher, Freden-
hagen, Robers) [4] noncommutativity, or Moyal or Gronëwold-Moyal, who introduced the
deformed product [5,6] which generalizes this kind of noncommutativity. It also featured
in the famous article of Seiberg and Witten [7] on noncommutative geometry and strings. It
is described by the commutation relation:

[xµ, xν] = iθµν. (1)

with θ a constant tensor.
This is a spacetime replica of the quantum phase space canonical commutation rela-

tions, with h̄ replaced by θ. This meant that we could use all the experience and technology
acquired for quantum mechanics, including the deformed ∗-products above. The unpalat-
able feature is that this kind of noncommutativity breaks Lorentz invariance, although it
maintains translation invariance. This was not a problem for quantum mechanics since
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there is not, in general, a symmetry rotating coordinates into momenta. However, for space-
time Lorentz transformations, spacetime symmetries are a must. This kind breaking of
the Lorentz symmetry means not only the presence of a scale, (or scales if the numerical
values of the entries of the matrix θ differ considerably). More cogent is the presence the
fact that the constant θ is an antisymmmetric four by four tensor, which can be expressed
as two directions (the analog of electric and magnetic fields for Fµν. This implies two fun-
damental constant directions, a vector and a pseudovector, which would be a fundamental
characteristic of our universe. These fundamental directions would show up for example
in cosmology, and the recent data pose stringent limits on this. But the problem is not only
“phenomenological”, it would be bizarre if a quantization of gravity where to prescind from
the fundamental symmetries of spacetime.

2. Quantum Spaces and Their Symmetries

There is however the possibility that a quantum spacetime will have quantum sym-
metries, as described by quantum groups, or more precisely Hopf algebras. Quantum
Groups and Hopf Algebras developed in parallel to the algebraic/topological approach of
Noncommutative Geometry, with several intersections, a classic reviee is [8]. Of particular
interest for us is the deformation of the Poincaré Lie algebra which goes under the name of
κ-Poincaré [9–11]. Here I can only mention a few features of it, since I want to concentrate
on the role of the observers. It suffices to say that the homogenous space for this quantum
symmetry is generated by the commutation rule

[x0, xi] = iλxi ; [xi, xj] = 0. (2)

where λ is a dimensionful quantity with the dimension of a length. The relation (2) is often
written in terms of 1

κ = λ, hence the name. Later I will discuss a space which is a variation
on this theme. I will study this space using the usual techniques of quantum mechanics.
Let me first briefly recall a well known case study: the Quantum Phase Space of a particle.

Quantum mechanical phase space is a six-dimensional (or in general an even dimen-
sional) space spanned by (qi, pi). Quantization introduces the commutation relation

[qi, pj] = ih̄δi
j. (3)

The most common representations of position and momenta is operators on L2(R3
q)

q̂iψ(q) = qiψ(q) ; p̂iψ(q) = −ih̄
∂

∂qi ψ(q) . (4)

Both the q̂’s and p̂’s are unbounded self-adjoint operators with a dense domain.
The spectrum is the real line (for each i). We know from the Stone-Von Neumann theorem
that, up to unitary transformations, this is the only possible representation. We also know
that they have no proper eigenvectors (normalized functions) but improper eigenfunctions:
distributions. Since the q̂i’s commute it is possible to have a simultaneous improper
eigenvector of all of them, these are the Dirac distributions δ(q− q̄) for a particular q̄ vector
in R3 For a particular momentum p̄ the improper eigenfunctions of the p̂i are plane waves
eip̄iqi

. Formally, the eigenvalue equation ∂qψ(q) = αψ(q) , α ∈ C3 is solved by eα·q with a
vector α.

There is no way that such an exponential can belong to L2(R3), therefore also in this
case there are no proper eigenfunctions. The operator p̂ is unbounded and symmetric, it
has a domain of self-adjointness in absolutely continuous functions. This fixes α to have
vanishing real part, so that the “function” must be understood in the distributional sense
and be well defined on the domain of self-adjointness of the operators. The improper
eigenfunctions of momentum are physically interpreted as infinite plane waves of a given
frequency. Since plane waves are not vectors of the Hilbert space there is no quantum state
for which a measure of the moment would give a precise value. Nevertheless we talk of
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the momentum of a particle in a well defined sense, when a state is a square integrable
superposition of plane wave peaked around a given value.

We are representing vectors of the Hilbert space as functions of q, this means that we
have selected q̂i as a complete set of observables, the description of a quantum state as a
function of positions. |ψ(q)|2 (normalized) is the density probability to find the particle at
position q.

The wave function ψ contains also information about the momentum in the phase.
Indeed we could have chosen momenta p̂ equally well for the complete set of observables.
In this basis the wave function ψ̃(p) is the Fourier transform of the original ψ. The fact that
the Fourier transform maps square integrable functions into square integrable functions is
crucial in this respect. The fact that the Fourier transform is an isometry means that we can
use either representation equivalently.

Other choice of complete sets of commuting observables are possible, some with
continuous spectrum, like the three number operators along the three directions, or the
global number operator, the square of angular momentum and the angular momentum in
a given direction.

3. Observers and Observables for κ-Minkowski

Although this is not always clearly stated: observables are related to an observer.
Consider now a different observer, for the sake of clarity imagine the second observer
rotated or translated with respect to the first one. The second observer will describe the
same states with different quantities, it will have its own Hilbert space, set of states and
observables. Indeed there are precise rule on how to transform from one observer to
the other. The rules are given by the action of a group, represented as unitary operators,
on the set of states. Notice also that unavoidably there must be tensor products involved
in the process. This is usually not a problem, we know that how to make a unitary
transformation from one set to another. But if there are more observers we need, perhaps
implicitly, to put together representations. The mathematical object which describes this
is the coproduct. Quantum Groups have taught us that there is more than a Lie algebra
structure to symmetries. We need extra structure described by Hopf Algebras, which
give us the procedure to combine and transform representations. Usually this is done in
a cocommutative way, and we do not notice it. The coproduct is primitive, and the full
structure appears redundant.

This discussion on quantization of the previous section was a a case study, and was
performed in a noncommutative phase space, where the parameter/scale of noncommu-
tativity is h̄. The aim of the discussion is however to discuss κ-Minkowski. This is a
deformation of four dimensional spacetime, with different commutation relation and a de-
formation parameter λ = 1

κ . I will consider also this space a quantum space, but I will only
consider its kinematical structure, matter will not be involved, nor h̄ will appear. This will
allow me to circumvent the known Pauli objection to the existence of a time operator: that
such an operator, dual to the Hamiltonian, would have, by Stone-Von Neumann theorem,
the same spectrum of the Hamiltonian, i.e. the real line. But his is in contradiction with the
requirement that the energy must be limited from below. However the duality time/energy
is given by a commutator which only involves h̄, which we are neglecting.

We are considering (special) relativistic spaces, the speed of light c is necessary to
have time x0 to have the same dimensions as the spatial coordinates, and it must of course
be finite. It is impossible to separate this space from it symmetry: The Poincaré group in
primis, which we have to represent as operators on some concrete Hilbert space. I will
first look for a representation of the xµ on square integrable function of position, L2(R3).
In other words I choose the xi as a complete set of observables. In this case the xi are
multiplicative operators:

x̂iψ(x) = xiψ(x). (5)
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Time instead, not commuting with the xi, is represented by a dilation operator:

x̂0ψ(x) = iλ

(
∑

i
xi∂xi +

3
2

)
ψ(x) = iλ

(
r∂r +

3
2

)
ψ(x). (6)

where r =
√

xixi. The 3/2 factor is necessary to make the operator symmetric. It has
a domain of self-adjointness in absolutely continuous functions. This is not the unique
representation of the xµ on L2(R3) which satisfies the commutation relations. These are
catalogued in [12]. The most general realisation for x0 symmetric is:

x̂i = xi A(iλ∂0)

x̂0 = x0B(iλ∂0) + iλC(iλ∂0)

(
r∂r +

3
2

)
. (7)

with the three functions A, B and C which satisfy the constraints A′
A B = (1 − C) and

C(0) = A′(0) + 1 finite, and the boundary conditions A(0) = 1, B(0) = 0. Our choice is to
have all quantities constant: A = 1, B = 0 and C = 1.

The κ-Minkowski space is spatially isotropic, this suggests that a polar basis is more
appropriate. We can rewrite therefore the relations (2) as:

[x̂0, cos θ] = [x̂0, eiϕ] = 0 , [x0, r] = iλr. (8)

And the uncertainty relation becomes

∆x0∆r ≥ λ

2
|〈r〉|. (9)

We know that the spectrum of r is the positive half-line, with improper eigenfunctions
the δ(r), i.e., localisation of the state at a given distance from the origin. Instead θ and ϕ are
not good operators, but we know we can expand the angular part in spherical harmonics,
which is tantamount to consider in the complete set the square of the angular momentum
and one of its components. The fact that the angular part is not affected by the commutation
relations suggests that issues relating with spin and statistics may not affect observers in
this case. This will not be true for the other kinds of noncommutativity considered below.

Let me now find the spectrum of the time operator. First notice that monomials in r
are formal solutions of the eigenvalue problem:

iλ
(

r∂r +
3
2

)
rα = iλ(α +

3
2
)rα = λαrα. (10)

The eigenvalues are real if and only if α = − 3
2 + τ.

with −∞ < τ < ∞ a real number. Where previously we have seen that for momentum
we had plane waves, in this case we have the following distributions:

Tτ =
r−

3
2−iτ

λ−iτ = r−
3
2 e−iτ log( r

λ ). (11)

The distribution has the correct dimension of a length3/2, the factor of λ is there to
avoid taking the logarithm of a dimensional quantity. Since λ is a natural scale for the
model, its choice is natural, but not unique. Whereas for quantum phase space we had as
complete set of observables either three q or three p, connected by a Fourier transform, for κ-
Minkowski we have either (r, θ, ϕ) or (τ, θ, ϕ), and they are connected by polar version of
a Mellin transform:

ψ(r, θ, ϕ) =
1√
2π

∫ ∞

−∞
dτ r−

3
2 e−iτ log( r

λ )ψ̃(τ, θ, ϕ)
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ψ̃(τ, θ, ϕ) =
1√
2π

∫ ∞

0
dr r

1
2 eiτ log( r

λ )ψ(r, θ, ϕ). (12)

The functions |ψ|2 and |ψ̃|2 are dual to each other, in the sense that the former is
interpreted as the probability density to find the particle in a particular radial and angular
position given by r, θ, ϕ. Dually, the modulus square of ψ̃ is the probability to find the
particle at angular position θ, ϕ at the time τ. The fact that time and the radial coordinate
coordinate do not commute means that it is possible to precisely localize a state in space,
at the price of not knowing anything about its time localisation. And conversely, a sharp
localisation in time implies complete delocalization as far the distance from the origin is
concerned. In [13–15] there are various examples of localised/delocalised states.

It is useful to have an idea of the dimensional quantities involved. If we call t the
eigenvalue of the time operator x0

c , then τ = t c
λ . The scale is set by c

λ , a dimensional
quantity with the dimensions of the inverse of a time, a frequency. If we choose for λ the
Planck length then c

λ ∼ 2 · 1043 Hz. In other words if t = 1 s, then τ = 2 · 1043, an extremely
large number. If instead t is of the order of Planck time, then τ ∼ 1.

So far we have been treating the origin as a special point. Does this mean that
somewhere in the universe there is “the origin”. A special position in space singled out
by the κ-God? Implicitly in our discussion, when we were referring to states, we were
assuming the existence of an observer measuring the localisation of states. This observer
singles out a special point, the one in which he is located: the origin. This observer can
measure with absolute precision its position. Subjective, operational “here” and “now”
make sense. Is it however impossible for this observer to localise with absolute precision
distant states, if some information about the time of the event is to be retained. This is
a consequence of the particular noncommutativity of κ-Minkowski. What about other
observers? A different observer will be in general Poincaré transformed, i.e. translated,
rotated and boosted. These operations are usually performed with an element of the
Poincaré group. But now we have κ-Poincaré! We should require invariance under the
transformation xµ → x′µ = Λµ

ν ⊗ xν + aµ ⊗ 1.
The coordinate functions on the group are noncommutative, they are (in the basis

of [16])
[aµ, aν] = iλ(δµ

0 aν − δν
0 aµ) , [Λµ

ν, Λρ
σ] = 0 (13)

[Λµ
ν, aρ] = iλ

[
(Λµ

σδσ
0 − δµ

0)Λρ
ν +

(
Λσ

νδ0
σ − δ0

ν

)
ηµρ
]
. (14)

Notice in particular that translations are now noncommuting. With the same commu-
tation relations of the coordinates. Their coproduct, antipode and counit are

∆(aµ) = aν ⊗Λµ
ν + 1⊗ aµ

∆(Λµ
ν) = Λµ

ρ ⊗Λρ
ν

S(aµ) = −aν(Λ−1)µ
ν

S(Λµ
ν) = (Λ−1)µ

ν

ε(aµ) = 0

ε(Λµ
ν) = δµ

ν. (15)

We represented the κ-Minkowski algebra as operators. But in doing so we had im-
plicitly chosen an observer. In order to take into account the fact that there are different
observers we enlarge the algebra (and consequently the space) to include the locations, i.e.
the coordinates, of the observers. We call this new set of states as Pκ . The Hilbert space as
well has to take into account the state of the observers, which are identified not only by their
relative position, but also by their orientation, or rather the orientation of their reference
frame. Hence the Hilbert space will now comprise not only functions on spacetime (either
functions of r or τ), but also functions of the a’s and Λ’s.



Universe 2022, 8, 24 6 of 11

We can represent the κ-Poincaré group faithfully as

aρ = −i
λ

2

[
(Λµ

σδσ
0 − δµ

0)Λρ
ν +

(
Λσ

νδ0
σ − δ0

ν

)
ηµρ
]
Λν

α
∂

∂ωµ
α

+i
λ

2

(
δρ

0 qi ∂

∂qi + δµ
i qi
)
+

1
2

h.c. (16)

where ω are the parameters of the Lorentz transformation, and the Λ’s are represented as
multiplicative operators. We have therefore that, like spacetime, the space of observers is also
noncommutative, and that the noncommutativity is only present in the translation sector.

We now explore this space of observers, seen seeing them as states. First consider a
transformed observer, also located at the origin. The transformation is connecting the two
observers is the identity transformation, and we connect it to the counit of the Hopf algebra.
Define |o〉P with the property:

P 〈o| f (a, Λ)|o〉P = ε( f ), (17)

with f (a, Λ) a generic noncommutative function of translations and Lorentz transformation
matrices, and ε the counit. This state describes the Poincaré transformation between two
coincident observers. The state is such that all combined uncertainties vanish. Coincident
observers are therefore a well-defined concept in κ-Minkowski spacetime.

A change of observer will transform xµ → x′µ = Λµ
ν ⊗ xν + aµ ⊗ 1 and primed and

unprimed coordinates correspond to different observers. Identifying x with 1 ⊗ x we
generate an extended algebra P ⊗M which extends κ-Minkowski by the κ-Poincaré group
algebra. This algebra takes into account position states and observables. Remember that,
just as we cannot sharply localize position states, neither we can sharply localize where the
observer is. Since Lorentz transformations commute among themselves, we can however
say if two observers are just rotated with respect to each other. Different observers will
identify directions in a unique way without problems.

We can build the action of the position, translation and Lorentz transformations
operator on generic functions of all those variables. To simplify notations let us consider
1 + 1 dimensions. In this case there are only two position coordinates, two translations
coordinates and one Lorentz transformation parametrized by the rapidity ξ.

The relations among the various quantities are:

Λ0
0 = Λ1

1 = cosh ξ , Λ0
1 = Λ1

0 = sinh ξ, (18)

and
[a0, a1] = iλ a1 , [ξ, a0] = −iλ sinh ξ , [ξ, a1] = iλ(1− cosh ξ). (19)

The action on P is

a0 = iλq
∂

∂q
+ iλ sinh ξ

∂

∂ξ
, a1 = q + iλ(cosh ξ − 1)

∂

∂ξ
, (20)

States (non entangled) will be objects of the kind |g〉 ⊗ | f 〉. In particular |g〉 ⊗ |o〉 is a
pure translation of the state at the origin.

The new observer measures coordinates with x′. The expectation values on (nor-
malised) transformed state is

〈x′µ〉 = 〈g| ⊗ 〈o|x′µ|g〉 ⊗ |o〉 = 〈g|Λµ
ν|g〉〈o|xν|o〉+ 〈g|aµ|g〉〈o|o〉 , (21)

We get:
〈x′µ〉 = 〈g|aµ|g〉 , (22)

The expectation value of the transformed coordinates is completely defined by transla-
tions. This is natural, the different observers are comparing positions, not directions.
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In general

〈x′µ1 . . . x′µn〉 = 〈g|aµ1 . . . aµn |g〉〈o|o〉 = 〈g|aµ1 . . . aµn |g〉 . (23)

Poincaré transforming the origin state |o〉 by a state with wavefunction |g〉 in the
representation of the κ-Poincaré algebra, the resulting state will assign, to all polynomials
in the transformed coordinates the same expectation value as what assigned by |g〉 to the
corresponding polynomials in aµ. In other words, the state x′µ is identical to the state of aµ.

All uncertainty in the transformed coordinates ∆x′µ is introduced by the uncertainty
in the state of the translation operator, ∆aµ. It is also possible to see that the uncertainty
of states increases with translation. I can summarise saying that all observers can sharply
localise states in their vicinity, and cannot localise states far away from them. The apparent
paradox of a state badly localisable by Alice, but which is well localised by Bob, is that Bob
herself is badly localised by Alice, and of course viceversa.

All this is qualitatively perfectly compatible with the principle of relative locality [17],
which however starts in a quite different context: curved momentum space. In this analysis
instead momentum does not appear explicitly, although it is present in the symmetry.
The space of momenta in this context has been studied in [15]. Note however that the
construction may run into troubles for multiparticles states, unless the noncommutativity
is light-like [18], a case not discusse here.

One of the tenets of Quantum Mechanics is that the observer is classical, usually
macroscopic, and that therefore we “know” how to deal with them. In quantum gravity this
may not be the case. While it is true that the smallness of the Planckian constants suggests
this, there may be amplifying effects, and conceptual aspects to deals with. The group
algebra approach, where the parameters of the Poincaré transformations do not commute
is the key to understand the observer-dependent transformations relating different frames
belonging to a noncommutative algebra. Hence the localisability limitations. Alternatively,
the deformation can be seen as a deformation of the tensor product. This is evident in the
case of a Drinfeld twist, and I give another example, based on such a twist.

4. ρ-Minkowski and Discrete Time

We now pass to the discussion of the following noncommutative space, which we call
ρ-Minkowski, defined by the commutation relations:

[x0, x1] = −iλx2 ; [x0, x2] = iλx1 ; [x0, x3] = 0 ; [x1, xj] = 0. (24)

This form of noncommutativity has a long history, [19–26], more recentlyit was studied
in [27–29] who called ρ what I call here λ, hence the name. I will present here mainly the
results in [30] and particularly in [31].

A similar version of noncommutative spaces can be can be built in which x0 and x3

are exchanged. I will not discuss this variant here. Details can be found in [30].
Just like we did for κ-Minkowski and polar coordinates, it is useful to express the

commutation relations (24) in cylindrical coordinates (t, ρ, z, ϕ)

“[t, ϕ] = iλ”; [t, z] = [t, ρ] = “[ρ, ϕ]” = [ρ, z] = 0. (25)

Note that I have put some of the commutators in inverted commas. These commutation
relations are to be understood better. We can repeat the previous analysis, but take into
account that the angular variables are not good observables. This explains the inverted
commas. A better expression would be [r, Y(ϕ)] = 0, where Y is an operator generated by
well defined functions of ϕ.

In this case the uncertainty will be between time and the angular variable. And one
should definitely resist the temptation to write:

��
�
��HH

HHH
∆t∆ϕ ≥ λ

2
. (26)



Universe 2022, 8, 24 8 of 11

In the {ρ, z, ϕ} basis t is represented by the derivation operator −iλ∂ϕ.
The crucial issue is that this operator, which basically the third component of the

angular momentum Lz, has discrete spectrum!
Just as in the previous case we wish to express wav functions and states in two

alternative basis. As before one basis is given by functions of position. Then we have the
other basis, that when we consider time as one of operators of the complete set. The basis
in which time is diagonals is given this time by the Fourier series. Representing the fact that
the operator has discrete spectrum. The eigenstates of momentum are einϕ, and they are
completely delocalised in ϕ. On the other hand, a state completely localised in ϕ, given by
a δ, which requires a superposition with equal weights of all eigenvalues of time.

δ(ϕ) =
1

2π

∞

∑
n=−∞

einϕ. (27)

After a time measurement, which has given as result n0λ, the system is in the eigenstate
ein0 ϕ. A slightly uncertain state uses a great number of Fourier modes to built a state peaked
around some time, then the corresponding uncertainty is the angular variable is given by
the fact that only a finite set of elements of the basis are available. For λ Planckian of the
quantum of time (also called a chronon), is 5.39 · 10−44 s. The most accurate measurement of
time is ∼ 10−19 s. Heuristically the superposition of 1035 quanta of time is needed. If we
approximate δ by the Dirichlet nucleus

δN =
N

∑
n=−N

einϕ =
1

2π

sin(N + 1
2 )ϕ

sin N
2 ϕ

. (28)

Then N ∼ 1035. In this case the first zero of the nucleus is at ϕ ∼ 10−35. We may as-
sume this to be the uncertainty in an angle determination. To translate this as an uncertainty
in position we need ρ. For the radius of the observable universe (1026 m) the uncertainty is
of the order of one metre. Certainly not a large uncertainty for such a distant state!

Again we should worry about symmetries. Is this all pervading clicking a feature of
our universe? Is time translation definitely lost? Putting time on a lattice may be disturbing.
Self-adjointness come to the rescue. Anybody who has studied the Aharonov-Bohm
experiment knows that the momentum operator on a compact domain is a rich operator.
It is self-adjoint on periodic functions, but is also self-adjoint on functions periodic up
to a phase. In this case the eigenfunctions are ei(n+α)ϕ. The differences between states is
unchanged, and the effect is a rigid shift. This however means that a different choices
of self-adjointess domains. Time translations are undeformed, and two time translated
observers will be in different, but equivalent domains. In order to compare their results the
two observers, again, have to compare representations, and this is ruled by a coproduct.
This time the rotation group is deformed. This may have consequences for the connection
between spin and statistics, which may not be related as in the usual way. This issue
deserves further scrutiny.

The important ingredient which allow us to study efficiently the Hopf algebra is that
this kind of noncommutativity can be built with a Drinfeld twist. The twist is a map from
the tensor product of a Lie algebra times itself. The algebra is intended represented over
functions. In particular the twist F must be invertible, and satisfy a cocycle condition:

(F ⊗ 1)(∆⊗ id)F = (1⊗F )(id⊗ ∆)F , (29)

with ∆(X) = X⊗ 1 + 1⊗ X the primitive coproduct for the element X in the Lie algebra.
What the twist does is to modify the tensor product, so that the pointwise product, which
is map from the tensor functions of functions into functions becomes a deforms one. Given
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µ : f ⊗ g→ f · g the standard pointwise multiplication in C∞(M), the deformed product
of functions is then defined according to

f ? g := µ ◦ F−1( f ⊗ g) . (30)

The twist is further supplemented with the normalization condition

µ(ε⊗ 1)F = µ(1⊗ ε)F = 1 . (31)

The Drinfeld twist relevant for $-Minkowski is:

F (x, y) = exp
{
− iλ

2

(
∂y0

(
x2∂x1 − x1∂x2

)
− ∂x0

(
y2∂y1 − y1∂y2

))}
(32)

= exp
{

iλ
2

(
∂y0 ∂ϕx − ∂x0 ∂ϕy

)}
.

This deforms the Hopf algebra as

∆P3 = P3 ⊗ 1 + 1⊗ P3,

∆P0 = P0 ⊗ 1 + 1⊗ P0,

∆P1 = P1 ⊗ cos
(

λ

2
P0

)
+ cos

(
λ

2
P0

)
⊗ P1 + P2 ⊗ sin

(
λ

2
P0

)
− sin

(
λ

2
P0

)
⊗ P2,

∆P2 = P2 ⊗ cos
(

λ

2
P0

)
+ cos

(
λ

2
P0

)
⊗ P2 − P1 ⊗ sin

(
λ

2
P0

)
+ sin

(
λ

2
P0

)
⊗ P1,

∆M01 = M01 ⊗ cos
(

λ

2
P0

)
+ cos

(
λ

2
P0

)
⊗M01 + M02 ⊗ sin

(
λ

2
P0

)
− sin

(
λ

2
P0

)
⊗M02

−P1 ⊗
λ

2
M12 cos

(
λ

2
P0

)
+

λ

2
M12 cos

(
λ

2
P0

)
⊗ P1

−P2 ⊗
λ

2
M12 sin

(
λ

2
P0

)
− λ

2
M12 sin

(
λ

2
P0

)
⊗ P2,

∆M02 = M02 ⊗ cos
(

λ

2
P0

)
+ cos

(
λ

2
P0

)
⊗M02 −M01 ⊗ sin

(
λ

2
P0

)
+ sin

(
λ

2
P0

)
⊗M01 (33)

−P2 ⊗
λ

2
M12 cos

(
λ

2
P0

)
+

λ

2
M12 cos

(
λ

2
P0

)
⊗ P2

+P1 ⊗
λ

2
M12 sin

(
λ

2
P0

)
+

λ

2
M12 sin

(
λ

2
P0

)
⊗ P1,

∆M03 = M03 ⊗ 1 + 1⊗M03 −
λ

2
P3 ⊗M12 +

λ

2
M12 ⊗ P3,

∆M12 = M12 ⊗ 1 + 1⊗M12,

∆M13 = M13 ⊗ cos
(

λ

2
P0

)
+ cos

(
λ

2
P0

)
⊗M13 + M23 ⊗ sin

(
λ

2
P0

)
− sin

(
λ

2
P0

)
⊗M23

∆M23 = M23 ⊗ cos
(

λ

2
P0

)
+ cos

(
λ

2
P0

)
⊗M23 −M13 ⊗ sin

(
λ

2
P0

)
+ sin

(
λ

2
P0

)
⊗M13.

With this twist we can build a covariant ? product, and proceed to the study of field,
and gauge, theories, as well as the determination of all relations defining the Hopf algebra:

( f ? g)(x) = F−1(y, z) f (y)g(z)
∣∣∣∣
x=y=z

= f g− iλ
2
(∂ϕ f ∂0g− ∂0 f ∂ϕg) + O(λ2). (34)

which deforms the addition of momenta

e−ip·x ? e−iq·x = e−i(p+?q)·x, (35)

where
p +? q = R(q0)p + R(−p0)q, (36)
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and

R(t) ≡


1 0 0 0
0 cos

(
λt
2

)
sin
(

λt
2

)
0

0 − sin
(

λt
2

)
cos

(
λt
2

)
0

0 0 0 1

.

With this is it possible to build a field theory. In particular we looked at φ4 Euclidean
scalar theory. The usual arena to look for phenomena like ultraviolet/infrared mixing.The
deformed conservation of momenta gives a deformation of the vertex but not of the
propagator. This is because the δ of conservation of momentum involves the ? sum of
momenta given by the R matrix (37). One consequence is that decays are not anymore back
to back, details can be found in [30].

To conclude: the main message I wished to convey is that quantum gravity will require
Quantum Spacetime. But also that Quantum Spacetime in turn requires quantum observers.
This is of course true for quantum phase space as well. There we became (more or less)
used to deal with the contradictions of the quantum/classical interaction. We learned how
to deal with noncommuting observables for example. But a quantum spacetime will pose
further challenges and other layers to our understanding, in this respect see [32].
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28. Ćirić, M.D.; Konjik, N.; Samsarov, A. Search for footprints of quantum spacetime in black hole QNM spectrum. arXiv 2019,

arXiv:1910.13342.
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