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Abstract

We address a new numerical method based on machine learning and in particular based on the concept of the so-called
xtreme Learning Machines, to approximate the solution of linear elliptic partial differential equations with collocation. We
how that a feedforward neural network with a single hidden layer and sigmoidal transfer functions and fixed, random, internal
eights and biases can be used to compute accurately enough a collocated solution for such problems. We discuss how one can

et the range of values for both the weights between the input and hidden layer and the biases of the hidden layer in order to
btain a good underlying approximating subspace, and we explore the required number of collocation points. We demonstrate
he efficiency of the proposed method with several one-dimensional diffusion–advection–reaction benchmark problems that
xhibit steep behaviors, such as boundary layers. We point out that there is no need of iterative training of the network, as
he proposed numerical approach results to a linear problem that can be easily solved using least-squares and regularization.
umerical results show that the proposed machine learning method achieves a good numerical accuracy, outperforming central
inite Differences, thus bypassing the time-consuming training phase of other machine learning approaches.

c 2021 Elsevier B.V. All rights reserved.

eywords: Partial differential equations; Collocation methods; Artificial Neural Networks; Extreme Learning Machine; Boundary layer;
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1. Introduction

The use of machine learning for the numerical solution of PDEs goes back to the end of 90s [1,2]. Today, due
o both theoretical and technological advances there is a growing interest in developing and implementing new
umerical approaches based on machine learning for the solution of Partial Differential Equations (PDEs) (see e.g.
3–19]). The main focus of such techniques is on the numerical solution of some very difficult problems, such as the
olution of high-dimensional PDEs, and nonlinear PDEs with complex geometries. Machine learning approaches
ave proven to be enough accurate and extremely flexible. However, one of their major drawbacks, when compared
ith conventional numerical methods (such as Finite Differences and Finite Elements) is the computational cost of
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the training phase which in general is very high. While a good numerical accuracy obtained with Artificial Neural
Networks (ANNs) can be theoretically justified by the celebrated theorem of the universal approximation of ANNs,
their broad use is still limited in the field of numerical analysis/scientific computing, due to the lack of theoretical
justification on their convergence. For example, while it has been proven that the approximation error, with ANNs,
vanishes asymptotically, results about explicit error bounds for the approximation errors or about the polynomial
reproduction are still limited (see e.g. [20–23]). Among all types of machine learning and in particular ANNs,
recently, great attention has been given to the so-called Extreme Learning Machines (ELMs) [24–26]. As discussed
in [27], ELMs are built on Rosenblatt’s perceptron concept [28], spectral methods, numerical analysis and linear
algebra matrix methods but with “essential extensions”. It is worthwhile to mention that ELMs are inspired by
earlier works addressing ANN with Random Weights (NNRW) [29] and Random Vector Functional Link networks
(RVFL) [30]. A thorough discussion about the (subtle) differences between these approaches can be found in [27].
Unlike other machine learning algorithms, ELMs learn in one step, thus bypassing the need to tune in an iterative
manner all the weights and biases. ELMs have been used mainly for classification purposes, yet their efficiency and
applicability for the numerical solution of differential equations is still underrepresented. Indeed, to the best of our
knowledge, [7] is the only study on the subject, where the authors however report a failure of ELMs to deal with
sharp gradient problems.

Here, we show how ELMs can be exploited to deal with boundary-value problems, in particular 1D second-order
linear elliptic problems that exhibit steep behaviors, such as boundary layers. It is well known, that the numerical
solution of such problems using classical methods such as Finite Differences may lead to several numerical
instabilities such as spurious oscillations (see e.g. [31,32]) even if the solution is regular. Here, for our illustrations,
we focus on linear advection–reaction boundary-value problems with constant coefficients, where the solution is
known analytically and it is regular, but the advection-dominated or the reaction-dominated cases may result to
boundary layers. For such problems, several approaches (for example artificial diffusion, upwind schemes or mesh
adaptivity schemes [33,34]) have been addressed to deal with the emergent steep gradients. Compared to the above
techniques, our approach is free from problem-dependent modifications and it is shown to be able to efficiently
approximate the steep gradients that arise. Our results reveal that ELMs can serve as a robust numerical approach
to obtain accurate solutions of boundary value problems without the need of stabilization techniques. In particular,
we pinpoint that the training process of ELMs with one hidden layer reduces to the solution of a under-determined
linear system of algebraic equations.

Our findings reveal the ability of ELMs to approximate the solutions efficiently, thus extending and giving a new
insight on the application of such types of machine learning methods and in particular of ANNs. What we propose
here, is that one does not need to iteratively train an ANN in order to obtain a sufficiently accurate solution. By
appropriately fixing the values of both internal weights and biases, one can in principle obtain accurate enough
solutions by solving for linear problems once a least-squares/regularization problem to adjust the weights of the
connections between the hidden and the output layer of the network. Obviously, such solutions can be taken as
initial choices for a iterative process if the problem is non-linear and/or there is a demand for a higher numerical
accuracy.

The paper is organized as follows. In Section 2, we introduce the approximation space on the basis of the
proposed ELM scheme, and in Section 3, we present the proposed collocation method. The approximation efficiency
and convergence property of the scheme is analyzed in Section 4. In Section 5, we present the numerical results
obtained with the proposed approach for the solution of several benchmark 1D boundary-layer elliptic problems
and compare them with both the exact-analytical and the Finite Difference numerical solutions.

2. The proposed machine learning scheme: the ELM network

In this section, we briefly introduce the proposed ELM scheme, and the main results related to the properties
of ELMs as universal approximators. The structure of the proposed scheme is a simple feedforward ANN with a
single hidden layer with n nodes (neurons). The first layer is the input layer, where the inputs (here, the domain of
he PDE, i.e. the collocation points, where the solution is sought) are fed and the last one is the so-called output
ayer, where one gets the computed collocated solution. Every neuron in one layer is connected to every neuron
n the next layer, i.e. the structure is fully connected and at each connection is assigned a weight. Finally, to each
euron in the hidden layer is also assigned a bias and an activation (transfer) function that takes as input the linear
eighted sum of its (input) connections (see e.g. [23]).
2
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Here, we have chosen the standard logistic sigmoid function as activation (transfer) function:

σ (x) =
1

1 + exp(−x)
.

The output function is the linear activation function, so that the output of the network turns out to be a linear
weighted sum of the outputs of the n sigmoid functions. In the network, one has to assign values to the biases of
the neurons of the hidden layer, denoted by the vector β = (β1, β2, . . . , βn) ∈ Rn , the (internal) weights between
the input layer and the hidden layer, denoted by the vector α = (α1, α2, . . . , αn) ∈ Rn , and the (external) weights

f the connections between the hidden and the output layer, denoted by the vector w = (w1, w2, . . . , wn) ∈ Rn .
herefore, this type of ANN describes a map G : R → R that can be written as:

G(x; α,β,w) =

n∑
i=1

wiσ (αi x + βi ). (2.1)

s it is well-known, this kind of ANN is a universal approximator for any L1 function as stated, for example
n [35–37]. For the completeness of the presentation, we state this fundamental theorem below.

heorem 2.1. Let G be a ANN function as in (2.1). For any function f ∈ L1([a, b]) and for all ε > 0 there exist
choice of α,β,w such that

∥G − f ∥L1 < ε.

here ∥ · ∥L1 is the usual L1 norm, i.e. ∥ψ∥L1 =
∫ b

a |ψ(x)|dx.

Similar results apply for continuous functions and for the derivatives of differentiable functions [23,36,38].
These results open the way to the use of ANN for the numerical solution of differential equations. The most

ommon approach when using an ANN is the one that minimizes a cost function with respect to the network’s
arameters α,β,w in an iterative manner (e.g. using back-propagation). This optimization procedure is called
training”. This approach can be also exploited for the solution of differential problems. In this case, the optimization
rocess can be facilitated by the analytical derivation of the derivatives as defined by the ANN input–output map
see e.g. [1]). Two main issues arise when training an ANN via such an iterative optimization approach: the initial
hoice of the degrees of freedom (weights and biases) and the overall computational cost. When dealing with
ime-dependent problems, usually the above optimization problem is solved by tessellating the time interval where
he solution is sought in smaller subintervals, thus solving the optimization problem in each one of the subintervals
equentially. Hence, upon convergence of the optimization problem in a subinterval, one can use as initial guesses
f the unknown parameters of the network for the numerical solution in the next subinterval the ones obtained from
he previous time subinterval (see e.g. [17,39]); in other problems, where the main difficulties are related to the
eometry of the boundary, the initial choice is efficiently chosen as a boundary lift (see e.g. [1,5]). Conversely,
n the problems that we consider here, i.e. elliptic PDEs that may lead to an internal layer or a boundary layer
roblem, there is no such a good indication by the problem itself that may provide “good” initial guesses for the
etwork parameters. Here, we present a procedure that approximates a solution of a linear PDE in the framework
f ELMs bypassing the traditional optimization approach. Toward to the above aim, we first show how one can set
he internal weights and biases of the hidden layer to get “good” approximating functions.

We start by considering the function G in (2.1) that depends non-linearly on the internal weights and biases. Let
s now take the function:

σi (x) = σ (αi x + βi ) =
1

1 + exp(−αi x − βi )
. (2.2)

The first and second derivatives of (2.2) with respect to the independent variable x read:

σ ′

i (x) =αi
exp(z)

(1 + exp(z))2

σ ′′

i (x) =α2
i

exp(z)(1 − exp(z))
(1 + exp(z))3 ,

(2.3)

where z = αi x +βi . Note that if one takes two functions σi and σ j , where at least one of the parameters is different,
.e. αi ̸= α j or βi ̸= β j , then these are linearly independent (see [40]). Finally, the ratio between αi and βi gives the
location of the inflection point, while the internal weights αi govern the variation of the amplitude of the S-shape:

3
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Fig. 1. The functions σi of (2.2) with varying parameters. On the top left panel, we have set αi = 100, on the top right, αi = 1. On the
bottom left panel we show functions with a fixed center Ci = 1/2. On the bottom right panel, a set of 10 functions obtained by varying
he coefficients as stated in Section 3 are depicted.

• σi has an inflection point at x = −
βi

αi
, that we call the center Ci of the sigmoid function;

• σi is monotone, limx→−∞ = 0; limx→+∞ = 1 if αi is positive, the other way if negative. Moreover, the range
where the values are between 0.05 and 0.95 is

[
Ci −

2.945
αi
,Ci +

2.945
αi

]
. We denote this interval as the S-shape

amplitude IS of the function.

The values of αi , βi are set randomly, and kept constant throughout the computations. This is the case of the
so-called Extreme Learning Machine (ELM) networks [26,41,42]. The only free parameters that one needs to adjust
are the output weights, i.e. the weights of the connections between the hidden layer and the output layer. The analysis
presented in [25] gives the conditions that are required to ensure the interpolation property, thus the non-singularity
of the collocation matrices; we report this result in Section 4.

Outside the domain IS , the function σi is (almost) constant; then, we focus on the values of the parameters
αi , βi such that the intersection of the S-shape amplitude IS and the domain of interest is non-null, thus leading to
functions σi with Ci inside the interval. The choice of αi is related to the behavior of the derivative of the function.
When taking all internal weights αi ≡ K , one obtains Heaviside-like functions if K is big (as used in [43]), or
almost-linear functions, if K is small (as discussed in [22,44]). In our case, the use of both kind of functions can
help to approximate both steep gradients and global behaviors. In Fig. 1, we plot different cases of such functions:
on the top panels, αi is a constant, on the bottom left panel, Ci is set equal to the mid-point of the interval and
finally on the bottom right panel, we plot functions with random values of αi , βi . Note, that some functions can
have similar shapes: interpolation properties are not changed but the resolution of the interpolation problem may
become ill-conditioned.

3. The proposed numerical algorithm

We address a simple algorithm for the numerical solution of linear PDEs with steep gradients with the aid of
ELMs with a single hidden layer with n neurons. As discussed above, the main idea is to fix in an appropriate

way the values of the internal weights and the biases of the neurons in the hidden layer, in order to construct a

4
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“good” basis of n sigmoid functions σi . Then, the values of the external weights are computed by solving a linear
east-squares problem with regularization.

To present the approach, we have chosen a steady-state one-dimensional PDE with constant coefficients.{
−µu′′(x) + γ u′(x) + λu(x) = f (x), x ∈ I := [0, 1] ⊆ R
ν0u′(0) + ρ0u(0) = g0 , ν1u′(1) + ρ1u(1) = g1,

(3.1)

where µ, γ and λ are the diffusion, advection and reaction terms, respectively. The domain is fixed to [0, 1] for our
convenience. The boundary conditions (BC) are in general of the Robin form; Dirichlet and Neumann boundary
conditions are derived by the Robin BC by setting νi = 0 or ρi = 0. The approximate solution ũ(x,w) obtained
by the proposed scheme can be written as:

ũ(x; w) =

n∑
i=1

wiσi (x). (3.2)

We choose α to be random uniformly distributed in a range that depends on the number of neurons n; if we fix the
domain of the differential problem to have unitary length, we propose to set:

α := rand
([

−
n − 10

10
− 4,

n − 10
10

+ 4
])

. (3.3)

In this way, if n = 10 we have a maximum weight e.g. 4 and as n grows by 10, then the maximum weight grows by
. Note that the choice (3.3) is empirically derived and based on the general consideration described in Section 2.
he biases β are fixed so that the centers Ci = −βi/αi of the sigmoid functions are located on random uniformly

distributed points inside the interval.1

Then, the ELM network is collocated in (3.1) on M − 2 equidistant collocation points x j ∈ (0, 1) getting:

−µũ′′(x j ) + γ ũ′(x j ) + λũ(x j ) = f (x j ) for j = 2, . . . ,M − 1. (3.4)

nalytical derivatives of the sigmoid function σi can be computed by (2.3). Then:

−µ

n∑
i=1

wiσ
′′

i (x j ) + γ

n∑
i=1

wiσ
′

i (x j ) + λ

n∑
i=1

wiσi (x j ) = f (x j ) for j = 2, . . . ,M − 1.

Finally, we observe that we can write separately the external weights w in a matrix form as:

Sw := (−µS(2)
+ γS(1)

+ λS(0))w = f , (3.5)

where S2, S1 and S0 are matrices of elements:

S(2)
=

(
σ ′′

i (x j )
)

i, j
, S(1)

=

(
σ ′

i (x j )
)

i, j
and S(0)

=

(
σi (x j )

)
i, j

i = 1, . . . , n , j = 2, . . . ,M − 1.
(3.6)

or the boundary conditions defined in (3.1), we augment the system by two equations collocating on the boundary
oints 0 and 1 as:

ν

n∑
i=1

wiσ
′

i (xk) + ρ

n∑
i=1

wiσi (xk) = g(xk) k = 0,M ; x1 = 0, xM = 1. .

s before, we rewrite the above in a matrix form:

Bw := (νB(1)
+ ρB(0))w = g , (3.7)

here B(1) and B(0) are matrices of elements:

B(1)
=

(
σ ′

i (xk)
)

i,k
and B(0)

=

(
σi (xk)

)
i,k

i = 1, . . . , n , k = 0,M .

(3.8)

1 The randomness of the biases βi is strictly related to the value of internal weights αi and centers Ci , in order to force functions σi to
e “active” and “non-trivial” in the considered domain, i.e. the S-shape amplitude I is not disjoint to the considered domain.
S
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To this end, considering Eq. (3.5)–(3.8), we have a linear system of M equations and n unknowns, which can be
over-determined (M > n), under-determined (M < n) or square (M = n). In the over- and under-determined cases,

e consider the solution to be the one obtained in the least-square sense (in the under-determined problem, we
btain the minimum-norm regularized solution). In the next section, we show that the under-determined solutions
each the same accuracy when compared with the square or over-determined cases. Moreover, we observe that the
quare case can lead to ill-conditioned problems, thus we propose an under-determined collocation. A pseudo-code
ummarizing the above procedure is given below.

nput: The values of the parameters of the PDE: µ, γ, λ; νi , ρi ; the number of neurons n, the number of
ollocation points M , the function evaluations [ f , g] ∈ RM .
LM initialization:
. Set α ∈ Rn randomly according to (3.3) ;
. Set β ∈ Rn such that Ci are uniformly distributed, i.e. βi = −αi ∗ Ci ;
umerical Solution (ELM Collocation)
. Compute the matrix S according to (3.5)–(3.6) ;
. Compute the matrix B according to (3.7)–(3.8) ;
. Solve the (eventually under/over-determined) linear system [S;B]w = [ f ; g] ;
utput: The external ELM weights w ∈ Rn that provide the collocated solution ũ(x) in (3.2);

Algorithm 1: Pseudo-code for the proposed ELM collocation method

4. Analysis of the ELM collocation approximation

In this section, we report the results that guarantee convergence of the proposed ELM collocation method. First,
based on the Theorem 2.1 presented in [42], we state the following theorem that fits to our proposed framework.

Theorem 4.1. Let (xi , yi ) , i = 1, . . . ,M be a set of points such that xi < xi+1, and take the ELM network
with n < M neurons ũ(x; w) in (3.2) such that the internal weights α and the biases β are randomly generated
independently from the data according to any continuous probability distribution. Then, ∀ε > 0, there exists a
choice of w such that ∥(ũ(xi ; w) − yi )i∥ < ε. Here ∥ · ∥ denotes the L2 Euclidean norm of vectors, the analogous
of the Frobenius norm.

Moreover, if n = M then w can be found such that ∥(ũ(xi ; w) − yi )i∥ = 0.

The above theorem states that if the number of hidden neurons is at least equal to the number of data points,
then the interpolation error is zero. Starting from the above theorem, we detail the properties of the ELM network
for the approximation of functions. First, we consider the construction of a sequence of nested ELM families:
E(n)

:= {ũ(x; w) , w ∈ Rn
} ⊂ E(n+1)

:= {ũ(x; w) , w ∈ Rn+1
}, where we add one neuron at a time.

The interpolation property of the above theorem extends to a convergence result, as proved in [45] (see also
heorem 2 in [25]).

heorem 4.2. Let φ(x) be a continuous function. Then, there exist a sequence of ELM network functions ũ(n)
∈ E(n)

uch that:

∥φ − ũ(n)
∥L2 → 0 ,

here by ∥ · ∥2 we denote the L2 norm.

Theorem 4.2 extends the convergence to a general continuous function φ in the L2 sense; thus it states that the
finite-dimensional discrete space of ELM networks is consistent in the L2 setting.

Theorems 4.1 and 4.2 also imply that the collocation matrices S(0) are of full rank.
We should note that for the problems that we consider here, we could obtain ill-conditioned matrices. In these

cases, the solution of the under-determined collocation problem (i.e. when the number of neurons is larger than the
number of collocation points), a regularization method can applied.

The collocation solution can now be sought in a variational formulation tested against delta-type functions or,
equivalently, a discretized formulation of the problem with C2 test functions. We follow the classic approach (see
6
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e.g. [46,47]) and write the weak formulation for Eq. (3.1) that seeks a u(x) in the trial space (denoted by U ) such
hat: ∫ 1

0

[
−µu′′(x) + γ u′(x) + λu(x)

]
v(x) dx =

∫ 1

0
f (x)v(x) dx

or all test functions v ∈ V . For simplicity, we suppose that the boundary conditions are imposed on the space U
nd are satisfied in all the corresponding subspaces.

The general Galerkin method is a weak formulation as above where one looks for a function ũn ∈ Un for which
he equations hold true ∀vm ∈ Vm and both Un and Vm are finite-dimensional. In our case, we fix Un = E(n), i.e. the
LM space with n neurons so that, the degrees of freedom of the finite dimensional space are the weights w ∈ Rn .

Now, consider the test space to be Vn = span{δxi ,ε(x) , i = 1, . . . , n} defined by a set of n distinct points
xi }. We also consider that the function f is approximated by its interpolant in the subspace of ELM functions,
.e. f̃ ≈ f , f̃ ∈ E(n) , f̃ (xi ) = f (xi ). Then, the Galerkin problem is given by:∫ 1

0

[
−µũ′′

ε (x) + γ ũ′

ε(x) + λũε(x)
]
δxi ,ε(x) dx =

∫ 1

0
f̃ (x)δxi ,ε(x) dx

∀i = 1, . . . , n,
(4.1)

here the functions δ are defined by:

δxi ,ε(x) = φ(|x − xi |/ε) ,

φ(ζ ) =

⎧⎪⎨⎪⎩
exp{1/(ζ 2

− 1)}∫
exp{1/(ζ 2 − 1)} dζ

ζ ∈ [0, 1)

0 ζ ∈ [1,+∞)
.

his Galerkin problem is related to the above collocation problem by the following theorem.

heorem 4.3. Let ũn,ε(x) be a solution to the Galerkin problem (4.1). Then, limε→0 ũn,ε(x) = ũn(x), where ũn(x)
is the solution in the ELM subspace of the collocation problem (3.4) on the points {xi }:

−µũ′′

n(xi ) + γ ũ′

n(xi ) + λũn(xi ) = f̃ (xi ) for i = 1, . . . , n. (4.2)

The proof is straightforward as noticed in the Appendix A of [46]: because δxi ,ε functions converge to δ

distributions, this provides that the integrals converge to the evaluation of the integrand function on xi .
The above result gives, for our problem, an asymptotic stability property. With all this machinery, what we expect

from the numerical solution is that non only one can obtain the usual convergence on collation points, but also,
based on Theorem 2.2 presented in [47], convergence to the true solution in the L2 norm. This is what we observe
also numerically in the next section.

We remark that the collocation equations can be derived also via quadrature rules applied to Eqs. (4.1). In this
case there is no need of Theorem 4.3, and the relation with collocation is obtained by the requirement that the
quadrature rule is supported on the collocation points. In this case, the functions δ can be substituted with any
family of locally supported functions whose support includes only one collocation point.

5. Numerical results

In this section, we apply the proposed algorithm for the solution of benchmark linear PDEs exhibiting steep
gradients as suggested in [33]. More particularly, in Section 5.1, we first consider regular problems, in Section 5.2
boundary layer problems, and in Section 5.3 internal layer problems. For our computations, we have used
Matlab2020b. In order to get reproducible results, we have used rng(5) to create the random values for the vectors
α, β before calling the random value generator of Matlab (rand). The solution of the least squares problems is
achieved via the backslash command.

For each problem, the number n of neurons ranged from 10 to 1280, doubling the number of neurons at each
execution. For each fixed n, we compute solutions with various numbers M of collocation points. The computational
time for all the above problems was of the order of 0.5 s on a single intel core i7-10750H with 16 GB RAM 2.60

Ghz. In particular, the maximum computational time was 0.6 s for n = 1280. To evaluate the approximation error,

7
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Fig. 2. Applying the proposed ELM network for the numerical solution of the problem given in (5.1): approximation with n neurons, the
umber of collocation points M fixed to be n/2 (on the left panel, k = 1, on the right panel, k = 5).

e used two different metrics: the absolute difference between the computed and the exact-analytical solution,
enoted by Eu , and the residual of the equation, denoted by R f :

Eu(x) =|u(x) − ũ(x)|
R f (x) =| f (x) + µũ′′(x) − γ ũ′(x) − λũ(x)| .

ote, that all errors are absolute, not normalized. Then, we computed the L2 norm of Eu and R f ; when computing
he L2-norm, we used 5000 equispaced points and the trapezoidal rule for integration. As a reference numerical

ethod, we considered the Finite Difference (FD) scheme obtained with a maximal order on 7 nodes computed on
M equispaced points. In order to compute the solution also on points that are not grid-points, the FD function
s defined as the piecewise linear polynomial that interpolates the computed values. We emphasize that in all
omputations the number of points considered for the FD solution is equal to M , i.e. the number of collocation
quations considered for the ELM implementation. In two cases, we also considered the solution only at collocation
oints, thus considering L∞ errors between vectors in RM .

.1. Regular problems

In this section, we analyze sinusoidal-bump problems as well as a high-order polynomial problem to show that
he proposed approach can provide a high numerical approximation accuracy.

The first example is a simple 1D boundary value problem with homogeneous Dirichlet boundary conditions:{
u′′

+ (4k2π2
− 1)u = 4kπex cos(2kπx), 0 < x < 1

u(0) = 0 , u(1) = 0 with k ∈ N (5.1)

he above has the exact analytical solution:

u = exp(x) sin(2kπx)

he coefficient k represents the number of oscillations in the domain. We consider the simple case with k = 1 and
more challenging one with k = 5 (see Fig. 2). The computed errors with respect to the exact solution are reported

n Fig. 3 and in Table 1. In both cases, we note that the proposed ELM network results to a good approximation
ith a modest number of neurons. In Fig. 3 on the right panels one can notice what pointed out in Section 3: when
e fix the number of neurons and increase the number of collocation points the convergence is slow so that the

hoice M = n/2 is proposed.
Finally, for this case, we have also computed the L∞-norm of the error only at the collocation points, see Fig. 4,

here the ELM turns out to have a “super-convergence” (as also the FD scheme) but provides an accuracy of at
east 1 order more compared to the FD scheme.

The second boundary value problem that we consider is a problem characterized by the presence of a high-order
olynomial at the right-hand side:{

u′′
= 22p p(1 − x)p−2x p−2(−1 + 2x − 2x2

+ p(1 − 4x + 4x2)), 0 < x < 1
(5.2)
u(0) = 0 , u(1) = 0

8
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p

Fig. 3. Error and residual convergence for the ELM numerical solution of the problem (5.1). On the top panels, k = 1: on the left top panel
M = n/2, on the right top panel n = 40. On the bottom panels, k = 5: on the left bottom panel, M = n/2, on the right bottom panel,
n = 160.

Fig. 4. Converge plots of the L∞ norm at the collocation points for the solution of the problem (5.1): on the left panel, k = 1, on the right
anel, k = 5.

Table 1
Error and residuals for the ELM numerical solution of the problem (5.1): on the left table, k = 1, on the right table k = 5.

k=1 k=5
Neurons Nodes Error_L2 Residual Neurons Nodes Error_L2 Residual

10 3 1.2825e+00 1.7566e+01 40 13 1.0291e+00 5.4833e+02
4 1.1336e+00 1.4846e+01 16 9.0266e−01 2.8111e+02
5 1.6084e+00 1.5970e+01 20 8.9477e−01 3.7287e+02
6 6.4758e+00 4.7969e+01 26 1.0524e+00 2.7019e+01
8 1.9045e−01 6.7843e+00 33 1.1745e+00 1.1760e+00
10 1.1092e−02 1.5801e−01 40 3.0679e−01 8.3835e+00

(continued on next page)

The above BV problem has the exact solution:

u(x) = 22px p(1 − x)p (5.3)

Here, we consider the case p = 10, for which the FD scheme fails to accurately approximate the correct solution.
9
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Table 1 (continued).

k=1 k=5
Neurons Nodes Error_L2 Residual Neurons Nodes Error_L2 Residual

20 6 4.1912e−01 2.1314e+01 80 26 1.0283e+00 2.7422e+01
8 4.1948e−01 7.0691e+00 32 2.3444e−02 1.4636e+00
10 7.5525e−03 4.5484e−01 40 6.3788e−03 2.4238e−01
13 2.1932e−03 4.7934e−02 53 6.1162e−04 3.7449e−02
16 9.4571e−05 4.7279e−03 66 2.7654e−06 1.3766e−03
20 3.4250e−07 2.3290e−05 80 1.0742e−06 1.9191e−04

40 13 4.5810e−02 1.0488e+00 160 53 3.2723e−03 1.3777e−01
16 8.2667e−04 7.3745e−02 64 3.0106e−05 1.7641e−03
20 3.6740e−06 6.1176e−04 80 6.4715e−06 5.2040e−04
26 3.6832e−07 2.9772e−05 106 7.7111e−07 1.1040e−04
33 8.2306e−08 1.0047e−05 133 1.1303e−06 2.0768e−05
40 1.9954e−10 3.9535e−08 160 2.8612e−07 1.0990e−05

80 26 1.4968e−04 1.1856e−02 320 106 5.1808e−06 9.5524e−04
32 1.4893e−05 1.9670e−03 128 6.5518e−06 1.1001e−03
40 2.3953e−07 4.7799e−05 160 5.4403e−07 1.7879e−04
53 1.9385e−10 5.7391e−08 213 1.3397e−07 1.0850e−05
66 3.0444e−10 6.2147e−08 266 9.3901e−08 4.1553e−06
80 2.3971e−11 5.9213e−09 320 2.6074e−09 8.7342e−08

In Fig. 5, we depict the computed errors of the approximated ELM solutions with respect to the exact-analytical
nes.

.2. Boundary layer problems

In this section, we consider two benchmark boundary layer problems, namely an advection-dominated and a
eaction-dominated problem that lead to sharp gradients near the boundary (see also [34]). We show how the
roposed scheme can deal properly with the steep gradients that arise in these cases.

When λ = 0 and f ≡ 0 in (3.1), we have a diffusion–advection problem. If we impose Dirichlet boundary
onditions with g0 = 0 , g1 = 1, the solution is given by:

u(x) =

exp
(
γ

µ
x
)

− 1

exp
(
γ

µ

)
− 1

. (5.4)

If |
γ

µ
| ≪ 1, the solution approaches the line connecting the boundary conditions while if |

γ

µ
| ≫ 1 the solution

is close to zero in almost the whole domain, except in a neighborhood of the right boundary where the function

has a steep gradient. In this last case, the solution has a boundary layer with a width of order O
(
µ

γ

)
. From a

numerical point of view, for the particular problem, in which advection dominates over diffusion, we need to catch
the behavior on a small scale µ

γ
, but it is well known that using Finite Differences or even Finite Element methods,

the approximate solution may oscillate while the exact solution is monotonic (see [34]).
In the advection-dominated problem, the presence of the boundary layer is usually related to the so-called global

Péclet number:

Peg =
|γ | · |I |

2µ
, (5.5)

where |I | is the domain length.
We considered the case with γ = 100 and µ = 1, with a Péclet number Peg = 50. Fig. 6 depicts the

xact-analytical solution and some of the ELM numerical solutions along with the corresponding approximation

rrors.

10
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Fig. 5. Numerical tests for the solution of problem (5.2) with p = 10. On the top panel are depicted the exact-analytical (5.3) and the ELM
umerical solutions with n = 40, 80; the number of collocation points M was set to n/2. On the bottom panels are shown the error and

residual convergence: on the left panel, we have fixed M = n/2 and varied n and on the right panel we have fixed n = 80 and varied M .

Fig. 6. Numerical tests for the solution of the problem (3.1) with µ = 1, γ = 100, λ = 0. In this case, the Péclet number is Peg = 50, the
oundary layer is of the order of 10−2. On the top panel are shown both the exact-analytical (5.4) and the ELM numerical solutions with
= 40, 80; the number of collocation points was set to M = n/2. On the bottom panels are shown the error and residual convergence; on

he left panel, we have fixed M = n/2 and varied n and on the right panel we have fixed n = 320 and varied M .

When γ = 0, λ > 0 and f ≡ 0, in the problem (3.1), one gets a diffusion–reaction problem. As before, we
mposed Dirichlet boundary conditions with g0 = 0 , g1 = 1. The problem has analogous difficulties as the previous
11
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Fig. 7. Numerical tests for the solution of the problem (3.1) with µ = 1, γ = 0, λ = 300. In this case, the Péclet number is Peg = 50,
he boundary layer is of the order of 10−1. On the top panel are shown the exact-analytical (5.6) and the ELM numerical solutions for
= 40, 80; the number of collocation points was set to M = n/2. On the bottom panels are depicted the error and the residual convergence:

n the left panel we have fixed M = n/2 and varied n and on the right panel we have fixed n = 80 and varied M .

one. The exact-analytical solution is given by:

u(x) =
sinh(θx)
sinh(θ )

, where θ =
√
λ/µ. (5.6)

Also in this case, the solution exhibits steep gradients if λ/µ ≫ 1 and there is a boundary layer of amplitude
O(

√
µ/λ) at the right boundary. In this case, the usual definition of the global Péclet number is:

Peg =
|λ| · |I |2

6µ
. (5.7)

We have set λ = 300 and µ = 1 so that the Péclet number is Peg = 50 as before. The computed errors with respect
o the exact-analytical solution are reported in Fig. 7.

Finally, we considered both the advection- and the reaction-dominated problems with different values for the
arameters γ and λ so that we get appropriate values of the Péclet number. In Fig. 8, we plot the L2 errors of the
omputed ELM solutions versus the Péclet numbers for two different choices of number of neurons.

.3. Internal layer problems

In this section, we consider highly transient problems that lead to an internal layer. For the solutions of these
roblems an adaptive mesh is usually proposed. For a description of the numerical problems that can arise, we
efer to [33]. In this section, we show that the proposed ELM scheme can provide good approximations. First, we
onsider the atan problem:{

−u′′
=

(2α3(x−x0))
(1+α2(x−x0)2)2 , 0 < x < 1 (5.8)
u(0) = θ0 , u(1) = θ1

12
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r
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θ

θ

Fig. 8. L2 errors of the computed ELM solutions with fixed n and M = n/2 with respect to the Péclet number as computed with Eq. (5.5)
(left panel) and Eq. (5.7) (right panel). In particular, on the left panel, we have taken γ = [0, 1, 2, 5, 10, 20, 50, 100, 200, 500] and on the
ight panel λ = [0, 3, 6, 15, 30, 60, 150, 300, 600, 1500].

Fig. 9. Numerical tests for the solution of problem (5.8) with α = 60 and x0 = 4/9. On the top panel, we depict the exact-analytical (5.9)
nd the ELM numerical solutions for n = 640, 1280; the number of collocation points M was fixed to n/2. On the bottom panel, we depict

the error and residual convergence: on the left panel, we have fixed M = n/2 and varied n and on the right panel we have fixed n = 1280
and varied M .

0, θ1 are fixed in order to have an exact solution that reads:

u(x) = atan(α(x − x0)) (5.9)

In our tests, we have fixed α = 60 and x0 = 4/9 that leads to a non-symmetric internal layer as in [48]. Fig. 9
depicts the exact-analytical solution and some of the numerical ones. The approximation errors with respect to
the exact-analytical solution are also given. The second test with internal peak is a rescaled sinusoidal problem
suggested in [49]:{

−u′′
=

(
−4x2

ε2 +
2
ε

)
e−x2/ε, 0 < x < 1

u(0) = θ0 , u(1) = θ1
(5.10)

0, θ1 are fixed in order to have as exact solution:

−x2/ε
u(x) = e . (5.11)

13
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Fig. 10. Numerical results for the solution of the problem (5.10) with ε = 10−3. On the top panel are depicted the exact-analytical (5.11)
nd the computed solutions based on the proposed scheme with n = 640, 1280 neurons and M = n/2 collocations points. On the bottom
anel are depicted the error and residual convergence: on the left panel, we have fixed M = n/2 and varied n and on the right panel, we
ave fixed n = 1280 and varied M .

e consider the case ε = 10−3. Fig. 10 depicts the exact-analytical solution and some of the numerical ones.
he approximation errors with respect to the exact-analytical solution are also given. Finally, we considered a very
ifficult numerical problem that has as exact-analytical solution a comb-like profile. For this problem, we compute
he approximation errors only on collocation points using several numbers of neurons. The equation we consider is
he following:{

−u′′
= −

2(ε+x) cos( 1
ε+x )−sin( 1

ε+x )
(ε+x)4 , 0 < x < 1

u(0) = θ0 , u(1) = θ1

(5.12)

e have set θ0, θ1 in order to have the following exact-analytical solution:

u(x) = sin
(

1
ε + x

)
. (5.13)

Then, we considered the case ε = 1/10π that exhibits a solution with 10 zeros and 5 oscillations in the domain.
Fig. 11 depicts the exact-analytical solution as well as the numerical solution obtained with the proposed machine
learning scheme for n = 1280, 2560 and the resulting approximation errors with respect to the exact-analytical
solution considering only the approximation errors at the collocation points using the L∞ norm.

6. Conclusions and future work

In the present work, we address a numerical scheme based on the concept of ELM networks for the numerical
approximation of 1D elliptic linear PDEs which solutions exhibit steep gradients. The weights between the input
layer and the hidden layer as well as the biases of the neurons in the hidden layer are fixed appropriately in
advance and kept fixed. In this way, the only unknown parameters are the weights of the connections between the
hidden layer and the linear activation transfer function of the output layer of the ELM. First, we have explored the
underlying subspace, so as to construct it in a random but proper way. Then, the numerical solution to the boundary
value problems was reduced to the computation of the n output weights of the ELM network via the solution of M
collocation equations. We have justified the convergence of the scheme in the square-matrix case, and we proposed

the use of an under-determined collocation scheme to avoid ill-conditioning.

14
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Fig. 11. Numerical results for the solution of the problem (5.12) with ε = 1/10π . On the top panels it is depicted the exact-analytical (5.13)
and the numerical solutions with n = 1280, 2560 neurons and the number of collocation points fixed at M = n/2. On the bottom panels
are shown the error and residual convergence: on the left panel, it is shown the L2 norms with fixed M = n/2 and on the right panel it is
shown the L∞ on the collocation points.

Numerical tests were performed for the evaluation of the approximation accuracy of the proposed method with
the aid of benchmark boundary value problems exhibiting sharp gradients. We also compared the proposed approach
with a high order Finite Difference (FD) scheme. We showed that for both internal and boundary layer problems,
the proposed machine learning method outperforms FD, when the number of neurons is taken to be large enough in
order to catch the steep gradient of the layer. We emphasize also that in our case, the solutions are C∞ functions.

The proposed numerical method can be further developed by exploring some alternatives, such as the use of
optimal activation functions, as proposed in [22], or the selection of the solution of the under-determined system
by using the properties of null rules, as explored in [50]. Finally, the application of the proposed machine learning
collocation method can be extended in various ways. Among others, we are currently considering in developing
numerical schemes for the solution of:

• Non linear differential problems;
• Multidimensional problems;
• Time-dependent problems;
• Inverse problems with overfitting.
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