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ABSTRACT
Knee arthroplasty is one of the most commonly performed proce-
dures within a hospital. The progressive aging of the population
and the spread of clinical conditions such as obesity will lead to
an increasing use of this procedure. Therefore, being able to make
the process related to this procedure more effective and efficient
becomes strategic within hospitals, subject to increasingly strin-
gent clinical and financial pressures. A useful parameter for this
purpose is the length of stay (LOS), whose early prediction allows
for better bed management and resource allocation, models patient
expectations and facilitates discharge planning. In this work, the
data of 124 patients who underwent knee surgery in the two-year
period 2019-2020 at the San Giovanni di Dio and Ruggi d’Aragona
university hospital were studied using multiple linear regression
and machine learning algorithms in order to evaluate and predict
how patient data affect LOS.
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1 INTRODUCTION
Hip and knee prostheses are the best solution for people suffer-
ing from terminal arthritis. This procedure has been shown to be
highly effective in the treatment of pain and immobility, leading
patients to a significant improvement in the quality of life [1, 2].
For this reason, the number of procedures performed is constantly
increasing. Population aging and the growing obesity epidemic are
just two examples of contributing causes [3, 4]. In Italy, a country
of interest for this study, 181,738 joint replacement surgeries were
performed in 2015, 4% more than the previous year, of which 38.6%
in the knee [5]. The interventions mainly concern the age group
65-74, and among these it is the women who most characterize the
sample. As a result of this growth, the number of review procedures
is also expected to increase [6]. Among the causes that lead to the
revision of the knee prosthesis, the main one is infection in 27.1%
of cases, followed by painful prosthesis for 15.9% of cases, up to
causes more closely related to the prosthesis, such as wear of the
materials and implant rupture (4.9%) and instability (3.8%) [5].

In consideration of the growing costs in the healthcare sector
and the quality requirements in this field, the detection of the main
processes and variables that can alter its standard execution, or in
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accordance with the patient’s expectations, is becoming increas-
ingly important. Specifically, for the intervention studied, there
will always be a fixed amount of expenditure linked to the plant
to which a variable component linked to hospitalization and other
hospital costs is added [7].

In this, data analysis becomes an indispensable tool for charac-
terizing a process. Several studies and different techniques have
been applied with great success to the healthcare world, starting
from the use of innovative management methods, such as the Lean
Six Sigma paradigm [8–16] or the Health Technology Assessment
[17–19], up to advanced processing techniques, such as Machine
Learning [20–23] and Data Mining [24–28].

A parameter particularly used in literature and in application
practice is the length of stay (LOS) [1, 7, 8, 29, 30]. Being able to
manage the length of stay is useful not only in economic terms, but
also in operational terms. In fact, it is designed to evaluate both the
quality of care and the ability to plan a health facility. Furthermore,
it is a good representation of the amount of resources used, in terms
of both beds and human and technological resources and is closely
related to patient satisfaction [31].

The following work fits into this perspective. The purpose is
precisely to analyze which of the variables provided in input are
those that most affect the output, in this case represented by the
overall patients’ LOS. This analysis will be conducted on the data
extracted from the QuaniSDO hospital computer system on the
activity of the "San Giovanni di Dio e Ruggi d’Aragona" University
Hospital, using first the Linear Multiple Regression and then the
Machine Learning algorithms. The latter made it possible to identify
the optimal solution that would allow the construction of a classifier
that will facilitate the planning phases within the department.

2 METHODS
The analysis involves the data obtained by the Complex Operative
Unit (C.O.U.) of Orthopaedic and Traumatology of the "San Gio-
vanni di Dio e Ruggi d’Aragona" University Hospital of Salerno
(Italy). The information of 124 patients who underwent a procedure
for the insertion or review of knee prostheses in the two years
period 2019-2020. The following information were extracted from
the hospital information system (QuaniSDO):

• gender (male/female);
• age;
• presence of comorbidity, like hypertension, diabetes and
obesity (yes/no);

• complications during surgery (yes/no);
• date of admission;
• date of surgery; and
• date of discharge.

These data were analysed in order to build a Multiple Linear
Regression Model (MLR) and a Machine Learning (ML) classifier to
predict the total LOS. IBM SPSS Statistics 26 Software was used to
perform the MLR, instead KNIME Analytics Platform for the ML
algorithms.

2.1 Multiple Linear Regression
MLR was used to find a functional relationship between the output
variable y, in this case the total LOS, and the independent variables,

that is age, gender, presence of comorbidity, complication during
the surgery and pre-operative LOS. The equation, reported below,
describe the model implemented:

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5

Where y represents LOS, xk the input variables, β0 the intercept
and βk the regression coefficient.

Before the implementation of themodel, the following conditions
were verified:

• The linear relationship between the independent and depen-
dent variable.

• Absence of multicollinearity in the data.
• Independence of residual values.
• Constancy in the variance of residuals.
• Normally distributed residual value.
• There are no influential cases that affect the model.

2.2 Machine Learning
With the ML algorithms it can be possible the construction of a
smart system that increase the knowledge starting from the elab-
oration of the input data. In this work, the ML algorithms were
used to classify and predict the target value (LOS) influenced by the
input variables. Starting from the knowledge acquired through the
analysis of initial set of data called training, the model was built.
For this reason, the dataset was divided into training (80%) and test
(20%) sets.

Before the elaboration, LOS was normalized in weeks, in order to
simplify the discussion of the results, and only the two classes most
represented were considered. The ML algorithms implemented are
Decision Tree (DT), Random Forest (RF), Support Vector Machine
(SVM) and Gradient Boosted Trees (GBT). DT, RF and GBT use
the tree structure as the base technique for the classification. In
particular, DT uses tree structure, where each node is a specify
condition and, depending on the value assumed, the flow proceeds
to another node through a specific branch. At the last level, the final
decision will be made. RF and GBT extend this simple structure,
the first is based on the aggregation of multiple decision trees and
the second create a strong predictive model starting from the set
of weak predictive models, as DT. In both cases, the performance
improves compared to the single tree, but the complexity increases.
The last one, SVM doesn’t use the previous structure but it is based
on a hyperplane, which is of a higher dimension than the dimension
of the variables and enables the separation between the different
identified classes.

3 RESULTS
Firstly, the six assumption of the MLR model have been evaluated.
Linear relationships between the varibales have been assessed by
means of scatter plots. The absence of collinearity was verified
through a Tolerance greater than 0.2 and the Variance Inflation Fac-
tor (VIF) less than 10 for each input variable. The Durbin-Watson
test, used to study the correlation between residuals, return 1.913
and so a value between the acceptable range of [1.5; 2.5], demon-
strating the independence. Homoschedasticity (i.e. homogeneity
of the variance of the residuals) and normality distribution of the
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Table 1: Model summary

R R2 R2 adjusted Std. Error of the Estimate

MLR Model
0,646 0,418 0,393 2,186

Table 2: Regression coefficients, t-test results and level of significant.

Regression
coefficients Bk

Coefficients Std.
Error

Regression
coefficients βk

t Sig.

Intercept 2,017 2,144 - 0,941 0,349
Age 0,059 0,026 0,165 2,263 0,025

Gender -0,111 0,464 -0,018 0,240 0,811
Pre-operative LOS 1,127 0,137 0,594 8,257 0,000

Presence of comorbidities 0,001 0,501 0,000 0,002 0,999
Presence of complications 2,474 1,298 0,136 1,905 0,059

Table 3: Accuracy, Error and all statistical parameters for each ML algorithms implemented

Algorithms Accuracy(%) Error
(1-Accuracy)(%)

Class Precision(%) Sensitivity(%) Specificity(%) F-
measure(%)

DT 87.5 12.5 1 76.92 100.00 78.57 86.96
2 100.00 78.57 100.00 88.00

RF 87.5 12.5 1 81.82 90.00 85.71 85.71
2 92.31 85.71 90.00 88.89

SVM 66.67 33.33 1 100.00 20.00 100.00 33.33
2 63.64 100.00 20.00 77.78

GBT 79.16 20.83 1 72.73 80.00 78.57 76.19
2 84.62 78.57 80.00 81.48

residuals have also been checked graphically through a residual-vs-
predicted values plot and a quantile-quantile (Q-Q) plot respectively.
Visual assessment allowed to confirm that both the homoscedas-
ticity and variance homogeneity assumptions were met. Then, the
Cook’s distance for each sample is less than 1 and ensure the ab-
sence of outliers. After the validation of the MLR assumptions, the
model has been implemented. Table 1 shows the goodness of the
model obtained.

Despite the modest value of the determination coefficient of the
model, it seems interesting and somewhat representative (R2>0.5),
thus giving a rough but still useful and indicative estimate of the
robustness of the model. Further helpful indications can be obtained
looking at the coefficient of the model. Indeed, Table 2 reported
the regression coefficients, the t-test results and the significant (the
test result is significant if Sig. <0.05).

For age and pre-operative length of stay, the t-test return a signif-
icant result and, in particular, the second have the higher coefficient
in agreement with the definition of LOS.

Finally, the performances of the four selected ML algorithms
were analyzed. Table 3 shows the results obtained.

With DT and RF, the best performance has been obtained. For
DT algorithms, the F-measures for the class 1 is equal to 86.96 and
for the class 2 is equal to 88.00 while for RF are 85.71 and 88.89

Table 4: The confusion matrix of the DT algorithm

Real / Predicted 1 2

1 10 0
2 3 11

respectively. In this case, the best algorithm selected has been DT
for its simple structure compared with RF. The confusion matrix of
DT algorithm has been reported in Table 4

The Cohen’s kappa coefficient is equal to 0.727 demonstrating a
good agreement.

4 DISCUSSION AND CONCLUSIONS
This study analyzed the data of 124 patients who underwent knee
replacement surgery in the two-year period 2019-2020 at the "San
Giovanni di Dio e Ruggi d’Aragona" University Hospital in Salerno.
Age, gender, pre-operative LOS, comorbidity and presence of com-
plications was used as independent variables to predict the total
LOS. Through both the MLR and the Machine Learning, promis-
ing results are obtained. However, the MLR model showed that
only two factors appear to significantly affect the LOS, namely age
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and preoperative LOS, thus suggesting that a more standardized
preoperative management and the introduction of dedicated path-
ways based on the patient’s age could improve the quality of the
care process and possibly reduce the LOS. The low value of the
determination coefficient of the MLR model also suggest that a
more robust models is needed to study the LOS. More appealing
results have been achieved by means of the machine learning algo-
rithms. Indeed, through the DT algorithm it was possible to create
a predictor that is simple to understand and that works with an
accuracy of more than 87%. When compared to the relevant liter-
ature in the field, despite the most of the works focus on the use
of machine learning to predict clinical outcome and preoperative
variables [32, 33], such results are promising since other works that
proposed models to study the LOS after knee arthroplasty report an
Area Under the Curve (AUC) ranging from 0.710 to 0.766 [34, 35],
which is still far from optimal values (0.95 - 1). However, a direct
comparison between our study and other literature works since the
selected predictors are different and the size of the dataset are not
comparable.

The future developments of this work are manifold. The observa-
tion period and the variables considered will certainly be extended.
More comorbidities will be analyzed in order to obtain a more ac-
curate characterization of the classes of patients who undergo the
surgery. Through management tools, for example Lean Six Sigma,
it will be possible to analyze the situation and evaluate the possibil-
ity of implementing fast-track surgery paths within this hospital
structure [11, 12].
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