
Web Application Testing: Using Tree Kernels to Detect
Near-duplicate States in Automated Model Inference

Anna Corazza∗
anna.corazza@unina.it

Università degli Studi di Napoli Federico II
Naples, Italy

Sergio Di Martino∗
sergio.dimartino@unina.it

Università degli Studi di Napoli Federico II
Naples, Italy

Adriano Peron∗
adrperon@unina.it

Università degli Studi di Napoli Federico II
Naples, Italy

Luigi Libero Lucio Starace∗
luigiliberolucio.starace@unina.it

Università degli Studi di Napoli Federico II
Naples, Italy

ABSTRACT
Background: In the context of End-to-End testing of web applica-
tions, automated exploration techniques (a.k.a. crawling) are widely
used to infer state-based models of the site under test. These models,
in which states represent features of the web application and tran-
sitions represent reachability relationships, can be used for several
model-based testing tasks, such as test case generation. However,
current exploration techniques often lead to models containing
many near-duplicate states, i.e., states representing slightly differ-
ent pages that are in fact instances of the same feature. This has a
negative impact on the subsequent model-based testing tasks, ad-
versely affecting, for example, size, running time, and achieved cov-
erage of generated test suites.Aims:As a web page can be naturally
represented by its tree-structured DOM representation, we propose
a novel near-duplicate detection technique to improve the model
inference of web applications, based on Tree Kernel (TK) functions.
TKs are a class of functions that compute similarity between tree-
structured objects, largely investigated and successfully applied in
the Natural Language Processing domain. Method: To evaluate
the capability of the proposed approach in detecting near-duplicate
web pages, we conducted preliminary classification experiments
on a freely-available massive dataset of about 100k manually anno-
tated web page pairs. We compared the classification performance
of the proposed approach with other state-of-the-art near-duplicate
detection techniques. Results: Preliminary results show that our
approach performs better than state-of-the-art techniques in the
near-duplicate detection classification task. Conclusions: These
promising results show that TKs can be applied to near-duplicate
detection in the context of web application model inference, and
motivate further research in this direction to assess the impact of

∗All authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEM ’21, October 11–15, 2021, Bari, Italy
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8665-4/21/10. . . $15.00
https://doi.org/10.1145/3475716.3484187

the technique on the quality of the inferred models and on the
subsequent application of model-based testing techniques.

CCS CONCEPTS
• Software and its engineering→Abstraction, modeling and
modularity; Software testing and debugging; • Information
systems →Web applications.

KEYWORDS
Near-duplicate detection, Model inference, Web Application Test-
ing, Tree kernels, Reverse engineering, Model-based testing

ACM Reference Format:
Anna Corazza, Sergio Di Martino, Adriano Peron, and Luigi Libero Lucio
Starace. 2021. Web Application Testing: Using Tree Kernels to Detect Near-
duplicate States in Automated Model Inference . In ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM)
(ESEM ’21), October 11–15, 2021, Bari, Italy. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3475716.3484187

1 INTRODUCTION
Web applications have become pervasive and are involved in many
aspects of our daily lives. From home banking to public transit trip
planning, from e-commerce to social networks, society relies onweb
applications to an ever-growing extent for a multitude of economic,
social, and recreational activities. The impact of failures in a web
application may range from simple inconveniences for end-users
up to complete business interruption, and can potentially cause
significant damages. Hence, ensuring the quality and correctness
of web applications is of undeniable importance [28].

End-to-end (E2E) web testing is one of the main approaches
to ensure the quality of web applications. In this kind of activity,
testers exercise the Application Under Test (AUT) as a whole, from
the perspective of an end-user interacting with the Graphical User
Interface (GUI), i.e., the web pages, of the application. The goal is
to verify that the web application behaves as intended in response
to user-generated events and interactions with the GUI (e.g., clicks,
scrolls, forms filling and submissions, etc.). To do so, testers typi-
cally develop test scripts that, leveraging test automation libraries
such as Selenium [7], automate the set of manual operations that
the end-user would perform on the GUI of the web application.

https://orcid.org/0000-0002-9156-5079
https://orcid.org/0000-0002-1019-9004
https://orcid.org/0000-0002-7111-3171
https://orcid.org/0000-0001-7945-9014
https://doi.org/10.1145/3475716.3484187
https://doi.org/10.1145/3475716.3484187

ESEM ’21, October 11–15, 2021, Bari, Italy Anna Corazza, Sergio Di Martino, Adriano Peron, and Luigi Libero Lucio Starace

Marketplace

Book A
$ 9,99

Book B
$ 14,99

Book A

$ 9,99

Language:
Author:
Publisher:
Rating:

English
J. Doe
ABCD

★★★★

Book B

$ 14,99

Language:
Author:
Publisher:
Rating:

Italian
M. Rossi

WXYZ
★★★☆

Homepage Web page A Web page B

Figure 1: Example of near-duplicate web pages

Developing such test scripts manually, however, is a time consum-
ing and expensive task, often neglected in web projects because of
resource constraints [8]. To support these E2E web testing activ-
ities, several model-based approaches have been proposed in the
software engineering community, including test case generation
[3–5, 23, 29] and test artifact generation [31, 32]. To infer the AUT
models underlying these approaches, automated exploration tech-
niques [37], also referred to as web application crawling [20], are
widely used. Broadly speaking, these crawling-based techniques
dynamically and systematically analyze the AUT starting at an
initial page, and then explore the application by generating GUI
events and checking the responses. When, as a consequence of
a fired event, changes in the web page are detected, a new state
is added to the model. In these models, a state represents a web
page of the application, and transitions between states represent
the fact that the target state is reachable from the source one under
particular conditions (e.g., when a particular event is fired).

From a testing view-point, these inferred models should contain
a minimal set of significantly different states, yet adequate to cover
all the functionalities of the AUT. In practice, however, models
inferred automatically through crawling are often affected by near-
duplicates [12, 15, 18, 22], i.e., replicas of the same functional web
page differing only by minor changes [37]. As an example, let us
consider Figure 1, in which three web pages from an imaginary
bookstore web application are depicted. The homepage of the appli-
cation shows a catalog of available books. After clicking on one of
the books, the user is redirected to a detail web page with additional
information, from which it is possible to add the book to the cart
and finalize the purchase. The detail pages for the two books in the
example are of course different in terms of contained text, but from
a functional testing view-point they are conceptually the same, as
both are an instance of the “Show book details” functionality. Nev-
ertheless, a “naive” crawler would assign them to different states,
with negative consequences on subsequent model-based testing
activities. For instance, test suites generated from these models
with many near-duplicate states can be noticeably worse in terms
of size and, running time [37].

Despite being crucial for effective model inference activities, few
research efforts have been directed towards detecting and discard-
ing such near-duplicate web pages during the crawling process for
E2E testing purposes. A first study in this direction was recently
presented at ICSE 2020 [37]. In that study, 10 widely used simi-
larity measures for web pages (e.g. Simhash [9], which is used by
Google during its indexing process) taken from different domains

are applied and compared in the context of near-duplicate detection
for web application model inference. The study shows that all of
the techniques exhibited limitations and highlighted that there is
a need for further research in devising novel approaches geared
specifically towards model inference.

To address this issue, in our ongoing research we are investi-
gating novel similarity measures for web pages, specifically de-
signed for supporting model inference for web applications. In
particular, as web pages can be naturally represented using their
tree-structured Document Object Model (DOM), we leverage Tree
Kernel (TK) functions, a class of kernel functions largely inves-
tigated in the Natural Language Processing domain to evaluate
similarity between tree-structured objects [26]. We envision that
TKs, thanks to their flexibility and customizability in the definition
of what features to weight more for computing the similarity, might
be effective tools to capture different types of near-duplicate web
pages, improving the overall detection performance.

To understand the potentialities of our proposal, we conducted
some preliminary experiments using a freely-available massive
dataset of about 100k web page pairs, in which each pair was manu-
ally labelled as distinct, near-duplicate, or clone [33]. We compared
the classification performance of the proposed approach with the
one achieved by the similarity measures investigated in [37]. Pre-
liminary results show that our TK-based approach outperforms all
other techniques in the near-duplicate detection classification task.

The remainder of this paper is organized as follows. In Section 2
we survey related works on near-duplicate detection of web pages.
In Section 3 we introduce the TK-based near duplicate detection
approach we propose, while in Section 4 we describe the prelimi-
nary empirical evaluation we conducted. In Section 4.3 we present
the emerging results we obtained, and in Section 5 we provide
some concluding remarks and a road-map detailing future research
efforts.

2 RELATEDWORKS
Many techniques from different domains have been defined, in
different contexts, to the near-duplicate detection of web pages.
For instance, the problem of detecting duplicate and near-duplicate
web pages arises naturally in the web indexing process of search en-
gines. In this field, the concept of duplication and near-duplication
is mainly related to the content of the web page, and hence Infor-
mation Retrieval techniques have been found to be quite effective
[18]. Since performance is a crucial issue in this domain, due to
the amount of involved data, content hashing techniques have
been widely adopted thanks to their design simplicity and speed
of comparison. Notable examples include the shingling algorithm
presented by Broder et al. in [6], and the Simhash algorithm [9],
which is also used by Google in its web page indexing process [22].
In [18], Henzinger carried out a large scale evaluation of these al-
gorithms on a set of 1.6B distinct web pages, showing that both
achieve high precision in detecting near-duplicate web page pairs
across different websites, while performing significantly worse in
detecting near-duplicated within the same website.

Detecting near-duplicate pages is also a challenge for automatic
phishing detection. In this context, malicious websites are often
designed to look as similar as possible to the original website they

Web Application Testing: Using Tree Kernels to Detect Near-duplicate States in Automated Model Inference ESEM ’21, October 11–15, 2021, Bari, Italy

try to impersonate, while maintaining an entirely different HTML
structure to avoid detection. Hence, techniques from the Computer
Vision domain have often been applied to screen captures of the
web pages with good results [1, 36].

Among those visual-based techniques, the most fine grained
approaches focus on individual pixels composing the image. Ex-
amples of such techniques are color-histogram [34] and Perceptual
Diff (PDiff) [39], which have also been successfully applied in a
previous web testing work for detecting cross-browser incompati-
bilities [21]. Some visual approaches operate at a coarser-grained
scale, aiming at quantifying structural similarity or at extracting
features from images. Structural similarity-based techniques lever-
age the intuition that images (and in particular screen captures of
web applications) are typically highly structured, and their pixels,
especially when they are spatially close, exhibit strong dependen-
cies that convey important information about the structure of the
represented objects. Similarity measures such as Structural Similar-
ity Index (SSIM) [35], which has been successfully applied in the
detection of phishing websites [10], take into account these spatial
correlations.

Other visual techniques are based on image hashing, aiming at
computing identical or nearly-identical digests for similar images,
e.g. the screen captures corresponding to near-duplicate web pages
[17]. Examples of image hashing algorithms include block-mean
hash [38] and perceptual hash (pHash) [40].

Less work, however, has been directed towards the detection
of near duplicate web pages within the same web application and
with the specific goal of supporting automated model inference.
Notable examples are the works presented in [14, 31], in which the
authors apply the Robust Tree Edit Distance (RTED) [27] metric to
respectively detect duplicate and near-duplicate web pages during
dynamic crawling of web applications, and to reduce the size of the
inferred models by clustering duplicate and near-duplicate states.
More recently, in [37], Yandrapally et al. presented a comparative
study in which 10 different near-duplicate detection techniques
from different domains (including the aforementioned simhash,
PDiff, color-histogram, SSIM, pHash, RTED) are applied and eval-
uated in the context of model inference. That study showed that
none of the considered algorithms borrowed from the domains of
information retrieval and computer vision “is able to accurately
detect all functional near-duplicates within apps”, and “underlined
the need for further research in devising techniques geared specifically
toward web test models”.

3 NEAR-DUPLICATE DETECTIONWITH
TREE KERNELS

As done in the work of Yandrapally et al. [37], we frame the near-
duplicate detection problem as a multiclass classification problem.
In particular, given a pair of web pages from the same web appli-
cations, the goal is to classify it into one of the following distinct
categories:

• Clone, if there is no semantic, functional or perceptible
difference between two web pages.

• Distinct, if there is any semantic or functional difference
between the two pages.

• Near-duplicate, if there are noticeable differences, but the
overall functionality being exposed is the same.

In this section, we start by giving some preliminary notions on
Tree Kernel functions in 3.1, and then we introduce the Tree Kernel-
based near-duplicate detection approach we are investigating in
3.2.

3.1 Tree Kernel functions
Tree Kernel (TK) functions are a particular family of kernel func-
tions which specifically evaluate similarity between two tree- struc-
tured objects. These functions have been extensively studied in
Natural Language Processing [26], and have also been applied with
promising results in the Software Engineering domain. In particular,
TKs have been applied on Abstract Syntax Tree representations of
source code for clone detection [11], and their usage is also being
investigated for test case prioritization tasks [2]. More recently,
[19, 30] presented an effective approach to fake website detection,
which leveraged TK functions.

To compute the similarity between two trees𝑇1 and𝑇2, TK func-
tions consider, for each tree, a set of tree fragments. A tree fragment
is a subset of nodes and edges of the original tree. Then, the simi-
larity between the tree fragments of the two trees is evaluated, and
the overall similarity of the two trees is computed by aggregating,
in some meaningful way, the similarities of the single fragments.
Depending on how the set of fragments to consider is defined, it is
possible to characterize different classes of tree kernel functions.
Widely-used classes include [25]:

• Subtree Kernels, which consider only proper subtrees of the
original trees, i.e., a node and all of its descendants, as frag-
ments.

• Subset Tree Kernels, which consider as fragments a more
general structure than the one considered by subtree kernels,
relaxing the constraint of taking all descendant of a given
node and thus allowing for incomplete subtrees, limited at
any arbitrary depth.

• Partial Tree Kernels, which consider an even more general
notion of fragment, in which the constraint of taking either
all children of a tree node or none at all is relaxed. In this
case, it is possible to include only some of the children of a
node in a fragment.

3.2 The proposed approach
We envision that Tree Kernel (TK) functions might be an effective
tool to measure the similarity of two web pages which, as shown
in Figure 3, can be naturally modelled using their tree-structured
Document Object Model (DOM) representation. Since some prelim-
inary experiments highlighted that none of the most common TK
functions was able to detect all kinds of near-duplicates effectively,
we devised a solution combining the similarity score computed by
three different TK functions, namely a subtree kernel, a subset-tree
kernel and a partial tree kernel.

Moreover, to investigate how different portions of the DOM tree
impact similarity computation and near-duplicate detection, and
to make our approach more general and customizable, we also in-
troduce the concept of DOM representation functions. Intuitively,
these functions represent a pre-processing step in which the DOM

ESEM ’21, October 11–15, 2021, Bari, Italy Anna Corazza, Sergio Di Martino, Adriano Peron, and Luigi Libero Lucio Starace

Figure 2: Overview of the proposed TK-based approach

<html>
<head>
<title></title>
<link/>

</head>
<body>
<section>
<h1></h1>
<p><a></p>
<figure>

</figure>

</section>
</body>

</html>

html

head

title link

body

section

h1 p

a

figure

img

Figure 3: An HTML document and its DOM representation

Table 1: Considered DOM representation strategies

Strategy Description

As-is This representation strategy leaves the DOM un-
changed;

Only body This representation strategy considers only the DOM
subtree rooted in the body element of the web page.

Only body with
no scripts

This representation strategy is the same as the only
body one, but also removes script elements along
with their subtrees.

of a web page can be transformed according to some meaningful
strategy. Currently, we are considering three basic DOM represen-
tation strategies, as detailed in Table 1.

From the pairwise combination of the three considered TK func-
tions and the three DOM representation strategies, the similarity
vector feeding the classifier has nine components for each pair of
web pages. Leveraging these similarity vectors and existing open
datasets with annotated web page pairs, we use supervised learning
approaches to train an ad-hoc classifier. The proposed approach is
summarized in Figure 2.

4 PRELIMINARY EMPIRICAL EVALUATION
The goal of our preliminary experiment is to evaluate the effec-
tiveness of the proposed TK-based approach in correctly detecting
near-duplicate web pages, w.r.t. other state-of-the-art techniques.
To this end, we formulated and investigated the following research
question:

RQ. As compared to state-of-the-art approaches (i.e., the 10
techniques investigated in [37]), does the TK-based approach
we propose allow achieving better near-duplicate detection
performance?

4.1 Employed Data
We preliminarily evaluate the proposed approach using the same
data and experimental procedure presented by Yandrapally et al. in
[37]. This way, our results can be directly compared with the state-
of-the-art. In particular, [37] compared 10 different near-duplicate
detection techniques (which we use as a baseline) from the differ-
ent domains of Computer Vision and Information Retrieval, and
provided a large dataset of about 100k manually annotated same-
website web page pairs, obtained by crawling both real-world web-
sites and open source applications in a controlled environment.

The dataset they made available consists of three main parts
detailed as follows:

• SS is a set of ∼97k annotated web page pairs extracted from
9 open source web applications in a controlled environment.
The considered web applications were used in many previ-
ous works on web testing, and are briefly described in Table
2.

• DS is a set of ∼1k annotated same-website web page pairs
extracted from about 1k real-world websites, randomly se-
lected from Alexa’s top 1 million URLs list.

• TS is a set of ∼500 additional annotated web page pairs
extracted from the same websites as DS.

For more details on the dataset and on the classification procedure
the authors employed, we refer the interested reader to [37].

Web Application Testing: Using Tree Kernels to Detect Near-duplicate States in Automated Model Inference ESEM ’21, October 11–15, 2021, Bari, Italy

Table 2: The considered open source web applications

Web App Description

Addressbook Simple address and phone book.
PetClinic Management of a veterinary clinic.
Claroline Collaborative e-learning platform.
Dimeshift Expense tracker.
PageKit Modular Content Management System.
Phoenix Project management.
PPMA Password Manager.
MRBS Meeting Room Booking System.
MantisBT Bug Tracker.

Table 3: Macro-averaged 𝐹1 scores on SS and TS

Technique SS TS Average

PDiff 0.53 0.67 0.60
BlockHash 0.54 0.62 0.58
SSIM 0.53 0.62 0.57
Levenshtein 0.48 0.59 0.54
RTED 0.50 0.57 0.54
SIFT 0.47 0.61 0.54
pHASH 0.40 0.63 0.52
TLSH 0.44 0.56 0.50
Color-histogram 0.37 0.52 0.44
Simhash 0.17 0.48 0.33

TK-based SVM 0.58 0.68 0.63

4.2 Experimental Procedure
To evaluate the effectiveness of the TK-based classification approach
we devised, we firstly extracted, for each web page pair in the
dataset, the TK-based similarity vector we defined in Section 3.
To do so, we leveraged the well-known open-source KeLP library,
which features a state-of-the-art implementation of the tree kernel
functions we employed [16]. Then, similarly to [37], we used DS
to train a SVM classifier, representing each web page pair with
its computed similarity vector. Finally, we evaluated classification
performance on both SS and TS, measuring for each of these
datasets the macro-averaged 𝐹1 classification score, as done in [37].

The software component we implemented to extract the similar-
ity vectors, as well as the R scripts we used to train and evaluate the
SVM classifier, is open-source and available in the replication pack-
age at the public doi: https://doi.org/10.6084/m9.figshare.14975178.

4.3 Emerging results and discussion
The results of this preliminary evaluation are reported in Table 3,
in which the first 10 rows show the best results obtained by the
10 state-of-the-art techniques in [37], and the last one the results
obtained by our TK-based approach. These figures show that the
proposed TK-based classification solution performs better than all
the considered baseline approaches, achieving a 5% improvement
on SS and a 1% improvement on TS w.r.t. Perceptual Diff (PDiff),
the best technique among those investigated in [37].

It is worth noting that PDiff is a computationally expensive
visual-based technique, and this can limit its application to model

inference of large applications. Indeed, as reported in [37], when us-
ing PDiff the model inference process could only explore 4 states per
minute on average, as compared to faster, DOM-based approaches
such as RTED, which could explore 25 states per minute. The ap-
proach we propose is based on the DOM of the web pages, and
thus is more efficient than PDiff. When considering the best DOM-
based techniques, namely RTED and the Levenshtein distance, our
TK-based approach improves classification performance on both
datasets by approximately 10%.

4.4 Threats to Validity
External validity threats concern the generalizability of the results.
In this study, the employed dataset consists mainly of web page
pairs from nine open-source web applications, which may not be
representative of complex, real-world commercial applications. To
mitigate this threat, the authors of the original dataset selected
nine open source web applications from different domains, having
different sizes, and implemented with different technologies. To
further improve the generalizability of the results, in future works
we plan to extend the original dataset by considering more web
applications, including possibly commercial solutions.

A possible threat to internal validity, concerning uncontrolled
factors that may have affected the results, is represented by the
manually created web page pair annotations. This threat is unavoid-
able, since there exists no automated method to compute the ideal
classification of web pages. To minimize this threat, the authors of
the original dataset created, in isolation, a ground truth, and then
established a discussion to reach an agreement [37].

5 CONCLUSIONS AND FUTURE RESEARCH
Automated exploration techniques (a.k.a. crawling) are widely used
to infer state-based models of web applications. From a functional
testing viewpoint, such inferred models should be as compact as
possible, i.e., contain a minimal set of significantly different states,
while maintaining completeness, adequately covering all the func-
tionalities of the web application. In practice, however, models
inferred automatically through state exploration are often affected
by near-duplicate states, i.e., states corresponding to replicas of
the same functional web page differing only by minimal, insignif-
icant changes. This has a negative impact on the quality of the
models and on the subsequent model-based testing tasks, adversely
affecting, for example, size, running time, and achieved coverage
of generated test suites.

In this paper, we introduced a novel approach to near-duplicate
detection, based on Tree Kernel functions, a class of kernel func-
tions largely used in the Natural Language Processing domain to
measure the similarity of tree-structured objects. To preliminarily
assess the effectiveness of the proposed approach, we conducted
an empirical evaluation based on an open dataset of approximately
100k annotated web page pairs, in which we compared the near-
duplicate detection performance of our approach against 10 baseline
techniques. Preliminary results were promising and showed that
the TK-based approach performs better than all the baselines.

In future works, we plan to further investigate the potential of
Tree Kernels in near duplicate detection and model inference along

https://doi.org/10.6084/m9.figshare.14975178

ESEM ’21, October 11–15, 2021, Bari, Italy Anna Corazza, Sergio Di Martino, Adriano Peron, and Luigi Libero Lucio Starace

several research directions. Firstly, we plan to improve the classifica-
tion performance. Along this direction, we aim at designing custom
TK functions specifically geared towards detecting near-duplicate
web pages, as we believe that considering peculiar structural prop-
erties of web pages could make TKs more effective. Furthermore,
we also plan on extending the current approach, including more
components in our similarity vectors. To this end, for example,
we intend to experiment with more refined DOM representation
strategies and with different kinds of TK functions, such as Subpath
Kernels, which were also recently applied, although in a different
context, to web pages [30]. We aim at implementing the solutions
emerging from these studies as open-source extensions of the well-
known Crawljax web crawler [24], that will be made freely available
to Software Engineering researchers and practitioners. As for the
empirical assessment, we plan to use the same data and experimen-
tal procedure used by Yandrapally et al. in [37], which provides a
valuable state-of-the-art benchmark both for near-duplicate clas-
sification performances and for the quality of the inferred models.
Moreover, we plan to investigate the effectiveness of TK-based
near-duplicate detection also in fully-automated E2E testing [13]
of mobile applications, leveraging the tree-like layout structure of
their GUI.

REFERENCES
[1] Sadia Afroz and Rachel Greenstadt. 2011. Phishzoo: Detecting phishing web-

sites by looking at them. In 2011 IEEE fifth international conference on semantic
computing. IEEE, 368–375.

[2] Francesco Altiero, Anna Corazza, Sergio Di Martino, Adriano Peron, and Luigi
Libero Lucio Starace. 2020. Inspecting Code Churns to Prioritize Test Cases. In
IFIP International Conference on Testing Software and Systems. Springer, 272–285.

[3] Anneliese A Andrews, Jeff Offutt, and Roger T Alexander. 2005. Testing web
applications by modeling with FSMs. Software & Systems Modeling 4, 3 (2005),
326–345.

[4] Matteo Biagiola, Filippo Ricca, and Paolo Tonella. 2017. Search based path and
input data generation for web application testing. In International Symposium on
Search Based Software Engineering. Springer, 18–32.

[5] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2019. Diversity-
based web test generation. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 142–153.

[6] Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey Zweig. 1997.
Syntactic clustering of the web. Computer networks and ISDN systems 29, 8-13
(1997), 1157–1166.

[7] Andreas Bruns, Andreas Kornstadt, andDennisWichmann. 2009. Web application
tests with selenium. IEEE software 26, 5 (2009), 88–91.

[8] Hari Sankar Chaini and Sateesh Kumar Pradhan. 2015. Test script execution and
effective result analysis in hybrid test automation framework. In 2015 Interna-
tional Conference on Advances in Computer Engineering and Applications. IEEE,
214–217.

[9] Moses S Charikar. 2002. Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing. 380–388.

[10] Teh-Chung Chen, Scott Dick, and James Miller. 2010. Detecting visually similar
web pages: Application to phishing detection. ACM Transactions on Internet
Technology (TOIT) 10, 2 (2010), 1–38.

[11] Anna Corazza, Sergio Di Martino, Valerio Maggio, and Giuseppe Scanniello. 2010.
A tree kernel based approach for clone detection. In 2010 IEEE International
Conference on Software Maintenance. IEEE, 1–5.

[12] Giuseppe Antonio Di Lucca, Massimiliano Di Penta, Anna Rita Fasolino, and
Pasquale Granato. 2001. Clone analysis in the web era: An approach to iden-
tify cloned web pages. In Seventh Workshop on Empirical Studies of Software
Maintenance. 107.

[13] Sergio Di Martino, Anna Rita Fasolino, Luigi Libero Lucio Starace, and Porfirio
Tramontana. 2021. Comparing the effectiveness of capture and replay against
automatic input generation for Android graphical user interface testing. Software
Testing, Verification and Reliability 31, 3 (2021), e1754.

[14] Amin Milani Fard and Ali Mesbah. 2013. Feedback-directed exploration of web
applications to derive test models.. In ISSRE, Vol. 13. 278–287.

[15] Dennis Fetterly, Mark Manasse, and Marc Najork. 2003. On the evolution of
clusters of near-duplicate web pages. In Proceedings of the IEEE/LEOS 3rd In-
ternational Conference on Numerical Simulation of Semiconductor Optoelectronic
Devices (IEEE Cat. No. 03EX726). IEEE, 37–45.

[16] Simone Filice, Giuseppe Castellucci, Danilo Croce, and Roberto Basili. 2015. Kelp:
a kernel-based learning platform for natural language processing. In Proceedings
of ACL-IJCNLP 2015 System Demonstrations. 19–24.

[17] Abhishek Gangwar, Eduardo Fidalgo, Enrique Alegre, and Vıctor González-Castro.
2018. PhishFingerprint: A Practical Approach for Phishing Web Page Identity
Retrieval Based on Visual Cues. In International Conference of Applications of
Intelligent Systems.

[18] Monika Henzinger. 2006. Finding near-duplicate web pages: a large-scale evalu-
ation of algorithms. In Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information retrieval. 284–291.

[19] Taichi Ishikawa, Yu-Lu Liu, David Lawrence Shepard, and Kilho Shin. 2020.
Machine learning for tree structures in fake site detection. In Proceedings of the
15th International Conference on Availability, Reliability and Security. 1–10.

[20] Manuel Leithner and Dimitris E Simos. 2020. XIEv: dynamic analysis for crawl-
ing and modeling of web applications. In Proceedings of the 35th Annual ACM
Symposium on Applied Computing. 2201–2210.

[21] Sonal Mahajan and William GJ Halfond. 2014. Finding HTML presentation
failures using image comparison techniques. In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering. 91–96.

[22] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. 2007. Detecting near-
duplicates for web crawling. In Proceedings of the 16th international conference on
World Wide Web. 141–150.

[23] Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. 2008. State-based testing
of Ajax web applications. In 2008 1st International Conference on Software Testing,
Verification, and Validation. IEEE, 121–130.

[24] Ali Mesbah, Engin Bozdag, and Arie Van Deursen. 2008. Crawling Ajax by
inferring user interface state changes. In 2008 Eighth International Conference on
Web Engineering. IEEE, 122–134.

[25] Alessandro Moschitti. 2006. Efficient convolution kernels for dependency and
constituent syntactic trees. In European Conference on Machine Learning. Springer,
318–329.

[26] Alessandro Moschitti. 2006. Making tree kernels practical for natural language
learning. In 11th conference of the European Chapter of the Association for Compu-
tational Linguistics.

[27] Mateusz Pawlik and Nikolaus Augsten. 2015. Efficient computation of the tree
edit distance. ACM Transactions on Database Systems (TODS) 40, 1 (2015), 1–40.

[28] Filippo Ricca, Maurizio Leotta, and Andrea Stocco. 2019. Three open problems in
the context of E2E web testing and a vision: NEONATE. InAdvances in Computers.
Vol. 113. Elsevier, 89–133.

[29] Filippo Ricca and Paolo Tonella. 2001. Analysis and testing of web applications.
In Proceedings of the 23rd International Conference on Software Engineering. ICSE
2001. IEEE, 25–34.

[30] Kilho Shin, Taichi Ishikawa, Yu-Lu Liu, and David Lawrence Shepard. 2021.
Learning DOM Trees of Web Pages by Subpath Kernel and Detecting Fake e-
Commerce Sites. Machine Learning and Knowledge Extraction 3, 1 (2021), 95–122.

[31] Andrea Stocco,Maurizio Leotta, Filippo Ricca, and Paolo Tonella. 2016. Clustering-
aided page object generation for web testing. In International Conference on Web
Engineering. Springer, 132–151.

[32] Andrea Stocco, Maurizio Leotta, Filippo Ricca, and Paolo Tonella. 2017. APOGEN:
automatic page object generator for web testing. Software Quality Journal 25, 3
(2017), 1007–1039.

[33] Near Duplicate Study. 2019. Near-Duplicate Study DataSet. https://doi.org/10.
5281/zenodo.3376730

[34] Michael J Swain and Dana H Ballard. 1992. Indexing via color histograms. In
Active perception and robot vision. Springer, 261–273.

[35] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE transactions
on image processing 13, 4 (2004), 600–612.

[36] Liu Wenyin, Guanglin Huang, Liu Xiaoyue, Zhang Min, and Xiaotie Deng. 2005.
Detection of phishing webpages based on visual similarity. In Special interest
tracks and posters of the 14th international conference on World Wide Web. 1060–
1061.

[37] Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah. 2020. Near-duplicate
detection in web app model inference. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 186–197.

[38] Bian Yang, Fan Gu, and Xiamu Niu. 2006. Block mean value based image percep-
tual hashing. In 2006 International Conference on Intelligent Information Hiding
and Multimedia. IEEE, 167–172.

[39] Hector Yee, Sumanita Pattanaik, and Donald P Greenberg. 2001. Spatiotemporal
sensitivity and visual attention for efficient rendering of dynamic environments.
ACM Transactions on Graphics (TOG) 20, 1 (2001), 39–65.

[40] Christoph Zauner. 2010. Implementation and benchmarking of perceptual image
hash functions. (2010).

https://doi.org/10.5281/zenodo.3376730
https://doi.org/10.5281/zenodo.3376730

	Abstract
	1 Introduction
	2 Related Works
	3 Near-duplicate Detection with Tree Kernels
	3.1 Tree Kernel functions
	3.2 The proposed approach

	4 Preliminary Empirical Evaluation
	4.1 Employed Data
	4.2 Experimental Procedure
	4.3 Emerging results and discussion
	4.4 Threats to Validity

	5 Conclusions and Future Research
	References

