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Abstract— Humans in contrast to robots are excellent in
performing fine manipulation tasks owing to their remarkable
dexterity and sensorimotor organization. Enabling robots to
acquire such capabilities, necessitates a framework that not only
replicates the human behaviour but also integrates the multi-
sensory information for autonomous object interaction. To
address such limitations, this research proposes to augment the
previously developed kernelized synergies framework with vi-
sual perception to automatically adapt to the unknown objects.
The kernelized synergies, inspired from humans, retain the
same reduced subspace for object grasping and manipulation.
To detect object in the scene, a simplified perception pipeline
is used that leverages the RANSAC algorithm with Euclidean
clustering and SVM for object segmentation and recognition
respectively. Further, the comparative analysis of kernelized
synergies with other state of art approaches is made to confirm
their flexibility and effectiveness on the robotic manipulation
tasks. The experiments conducted on the robot hand confirm the
robustness of modified kernelized synergies framework against
the uncertainties related to the perception of environment.

I. INTRODUCTION
Robotic manipulation refers to the ways a robot perceives

and interacts with the objects in the environment. The
knowledge of the environment i.e, the type and location of
objects in the world is a deterministic aspect to improve the
performance of robots to manipulate, similar to humans.
Building robot hands that emulate the functionalities of
humans is challenging owing to the limitations of existing
software and hardware [1]. However, few attempts have
been made to mimic the design and control of human
hand for flexible grasping and manipulation [2][3][4] but
are still lagging behind the human capabilities. The control
architecture of humans reveals that they exploit reduced
subspace, called postural synergies [5] [6] to plan and
regulate their whole body movements. Inspired from postural
synergies, a framework called kernelized synergies has been
developed that reuses the same subspace for robust grasping
and dexterous manipulation [7].

The kernelized synergies framework however assumes the
pose of objects to be known for grasp execution. But the
human inspired robotic manipulation requires to recognize
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Fig. 1: Sketch of vision based adaptation to robotic manipulation.
Camera detects the object in the scene and its pose is estimated
which is given to controller box for grasp planning and execution.

and estimate the object pose in run time using visual
perception as illustrated in Fig. 1. The four key steps
to the vision based robotic manipulation are (1) bringing
gripper within the desirable work-space (2) recognizing and
estimating the object pose (3) planning a suitable candidate
grasp (4) executing the grasping and manipulation actions.
The kernelized synergies framework however considers all
the major steps except the object recognition and pose
estimation.

The object recognition and pose estimation techniques
are still evolving and the algorithms ranging from object
semantic segmentation to end-end learning have been ex-
ercised for various robotic tasks [8][9][10]. A model based
object recognition framework is proposed in [11] for robotic
manipulation. The framework is robust against scalability,
complexity and latency of the scene but requires multi-
view instances for object recognition. A modified object
detection approach based on single image segmentation using
discriminative classifier is suggested in [12] for robotic
grasping. Such technique requires a large data base for
object reconstruction and does not work well in the cluttered
environments. To alleviate the need of building data base
and performing well in the complex scenarios, an object
detection framework is discussed in [13] for robotic grasping.
The framework however uses model approximations on the
filtered point cloud but does not achieve desired accuracy
since only two models i.e, spherical and cylindrical are
considered for approximation. In our research, we update
this pipeline by mitigating the need of using two specific
RANSAC models and proposes to exploit additionally a Sup-



Fig. 2: Block diagram of updated kernelized synergies framework.

port Vector Machine (SVM) classifier for object recognition.
With reference to [7], the key contributions of this work

are (1) to upgrade the kernelized synergies framework with
visual perception for autonomous grasping and manipulation
(2) to compare the performance of kernelized synergies
framework with other state of art methods using two metrics
i.e, normalized square error and primitive accuracy (3) to
apply modified framework to perform three different daily
life tasks i.e, mounting bulb on the socket, squeezing lemon
into the water, and spraying cleanser on the board.

II. RESEARCH METHODOLOGY

Figure 2 shows the block diagram of research methodol-
ogy adopted to perform the human inspired robotic manip-
ulation tasks. The methodology starts with teaching basic
grasping and manipulation primitives to the robot hand on
the given training objects in Fig. 3 by tele-operating it and
recording the corresponding joint hand configurations. The
Principle Component Analysis (PCA) is applied to all the
individual tasks and the directions of highest data variance
are selected as the predominant postural synergies. The
postural synergies evolve over the duration of demonstration
to obtain the corresponding synergistic trajectories. The
given synergistic trajectories are approximated with Gaussian
components using Gaussian Mixture Model (GMM) and the
Gaussian Mixture Regression (GMR) generates the reference
trajectory to reproduce the taught grasping and manipula-
tion primitives. In order to generalize the learned synergy
subspace to wider set of objects, the idea of Kernelized
Movement Primitives (KMP) is exploited to deal with the
environmental descriptors i.e, via-points and end-points for
the new object’s shape and size respectively. The kernel
trick used in KMP preserves the probabilistic properties of
synergy subspace such that it can be reused for grasping and
manipulation of unknown objects. The geometrical features
of the new objects are estimated from their point cloud using
RANSAC algorithm with Euclidean clustering for object
segmentation and the SVM classifier, trained on objects in
Fig. 3, is used for object recognition. The pose of object is
enumerated locally from the centroid of recognized object’s

Fig. 3: Training data set, (a) ball, (b) biscuit (c) bottle (d) bowl, (e)
box, (f) bulb, (g) coke can, (h) cone, (i) cream, (j) smart card, (k)
cube, (l) disk, (m) duster, (n) eraser, (o) glue, (p) highlighter, (q)
juice, (r) lemon, (s) mobile, (t) mouse, (u) screw-driver, (v) soap
(w) spray, (x) sticky-notes .

point cloud. The estimated pose of object is then transformed
into respective synergistic values, which then act as envi-
ronmental descriptors for the KMP to update its reference
trajectory to adapt to the targeted object accordingly. Finally,
the mapping from synergistic subspace to the joint space
helps in performing the given tasks on the robot system.

A. Kernelized Synergies Framework

The robot hand shown in Fig. 4 (a) is tele-operated on
training objects in Fig. 3 and the mean hand positions θ̂k=θk-
q0, with θk and q0 representing the current hand configuration
and nominal hand posture respectively, are recorded. The
mean hand positions are then concatenated into a row vector
to construct a configuration matrix C=[θ̂1......θ̂K ]T and the
PCA is applied on C to obtain the lower dimensional
representation, called synergistic subspace Ê [14]. Where, Ê
is called synergy matrix, which numerically characterizes the
synergistic subspace and is accessed by properly selecting the
appropriate values of synergy co-efficients (PCA coloumn
vector) i.e, ei = eg1 + em1, eg2 + em2, ...egn + emn for a
given object to be grasped (g) and manipulated (m) and
are determined by Eq. 1, where Ê† is the pseudo inverse of
synergy matrix.

ei = Ê†(θi − q0) (1)

The synergistic subspace of two predominant postural
components, estimated using training objects in Fig. 3, for
the robot hand in Fig. 4 (a), is illustrated in Fig. 4 (b and
c). The computed subspace reveals that the first synergistic
component regulates the medial and proximal joints of each
finger while the second synergistic component controls the
relative motion of index finger and thumb during grasping
and manipulation. Further, such a relative motion of index
finger and thumb helps in switching from one grasping
position to other while an object is being manipulated.

The synergistic co-efficients in Eq. 1 for each object in
Fig. 3 evolve over the duration (t) of demonstration to
obtain the corresponding synergistic trajectories e(t). The
synergistic trajectories define the timing profile of synergistic
co-efficients for the demonstrations over the given objects in
Fig. 3. The synergistic trajectories are then approximated
with Gaussian components e(t)∼

∑N
n=1πnN (µn,Σn) using

GMM, with πn,Σn,µn representing the prior probability,
covariance and mean of the nth Gaussian respectively and
N being the total number of Gaussian components used.
Further, a reference synergistic trajectory, to be followed by
the robot hand to reproduce the taught postures, is generated



Fig. 4: Graphical representation of computed synergistic subspace of INSPIRE robot hand, (a) represents the 6 DOF robot hand, (b) and
(c) are the first two predominant synergies with respective grasping (eg) and manipulation (em) components.

by conditioning the joint probability distribution of the GMM
i.e, en|t∼N (µn,Σn) using GMR.

To generalize the learned synergy subspace and to adapt
to the new objects, the idea of KMP is exploited. For a new
instance t∗ (time sampling of new object), the expected mean
and co-variance of the synergistic trajectory are computed
using Eq. 2 [15], with k∗ being a kernel function i.e, k∗ =
[k(t∗, t1), k(t∗, t2), .....k(t∗, tN )], K is the corresponding
kernel matrix and λ is a regularization parameter.

E(e(t∗)) = k∗(K + λI)−1µ

D(e(t∗)) =
N

λ
(k(t∗, t∗)− k∗(K + λΣ)−1k∗T )

(2)

The priorities (Υ) (i.e, weightage to task execution) can
be assigned to different interaction tasks in the kernelized
synergies framework and are formulated by Eq. 3 [15], which
represents the product of R Gaussian distributions in the
kernelized synergistic subspace with r = 1, 2, ...R.

N (µn
T ,Σn

T )∝
R∏
r=1

N (µ̂n,r, Σ̂n,r/Υn,r) (3)

The compliance in the kernelized synergies for flexible
interactions with the objects is introduced by the model of
soft synergies ∆qref = Ê∆e with ∆q = ∆qref − Ch∆τ ,
where Ch represents the robot hand compliance matrix and τ
is the vector of robot hand joint torques. The soft synergies,
defining adaptive lower dimensional subspace, are useful for
regulating the contact forces for soft object interaction using
synergistic co-efficients. Therefore, the grasp established
with kernelized synergies can be now defined by Eq. 4 in
terms of forces balancing the grasped object.

fc = G†ω + ξ∆e (4)

Where, fc represents the vector of contact forces be-
tween the object and robot hand fingers, G† is the pseudo-
inverse of grasp matrix (i.e, defining kinematic and dynamic
characteristics of robot hand), ω is the vector of external
forces and wrenches applied to the grasped object, ξ is
the subspace of internal forces and ∆e is the change in
kernelized synergistic co-efficients. The kernelized synergies
co-efficients interpolated using Eq. 2 are modulated in Eq.
4 until the steady state grasping posture is achieved and it
is conditioned by the threshold on the robot hand motors’
current (being a feedback signal) to ensure the grasp stability.

B. Object Detection and Synergy Mapping

Algorithm 1: Object Detection & Synergy Mapping
input : Pc −→ point cloud of scene
output: eO −→ synergistic values of object
while (p(i) ∈ Pc) −→ Pp do

function(Pp) −→ (Inliers,Outliers)
Pp := Ouliers
function(Pp, C) −→ (O);
if d(x, y) ≤ ε|MinPts then

O;
else

φ−→discard point;
end

end
foreach (shape, color) ∈ O do

function(l, ψ) = SVM(O,model);
if (shape, color) ∩ (model) −→ object detected

then
return(l, ψ);

else
φ−→object not found;

end
Po

c = centroid(ψ)
Po

b = transformation(Po
c)

eO = mapping(Po
b)

end

The point cloud of the scene, consisted of objects placed
on the table, is acquired using Intel RealSence D435 camera
and is shown in Fig. 5 (a). The raw point cloud Pc is filtered
to remove the adversarial data points and is down-sampled
to reduce the processing time. Further, RANSAC algorithm
is used to separate the large planar component representing
the table and the remaining points are grouped into different
clusters that represent the candidate objects in the processed
point cloud Pp in Fig. 5 (b). The essential points in Pp,
expressed in k-d tree, are grouped according to Euclidean
clustering criteria, defined by Eq. 5.

O =

∫ C

i=0

Nε(xi|MinPts) : {yi|d(xi, yi)≤ε}dx (5)

Where, ε represent the radius of neighbour Nε of a point,
MinPts is the minimum number of neighbouring points



Fig. 5: Object segmentation and recognition, (a) represents the raw point cloud of the scene, (b) illustrates the processed point cloud with
candidate objects (dense clusters) after filtering out the adversarial data points and removing the larger planar component (table) using
RANSAC algorithm, (c) indicates the candidate objects being recognized and labeled by the trained SVM classifier.

Fig. 6: Object based synergistic mapping to robot hand. (a) rep-
resents the robot hand without synchronous (synergistic) control,
(b) illustrates the robot hand with virtual object similar to real one
at the contact points for determining the corresponding synergistic
components. The dashed lines represent the coordinated motion of
respective robot hand joints within the synergistic subspace.

within ε, point y can be grouped to point x, if the distance
between them is less than or equal to ε otherwise discarded
and C is the number of clusters in the processed point cloud.

The candidate objects found in term of clusters using Eq.
5 are processed further to capture their shape and color
characteristics using respective (shape and color) histogram
features. Having segmented objects, the SVM classifier
trained on objects in Fig. 3 over 10 different orientations
of each (for generalization to distinct daily life objects with
similar shapes), it successfully recognizes (ψ) and labels (l)
the given objects in Fig. 5 (c). The performance of SVM
classifier is assessed using confusion matrix in Fig. 9 as an
evaluation metric. It is evident from Fig. 9 that the trained
classier has 84% accuracy over 240 instances in the data set.

Such a approach however ensures to grasp and ma-
nipulate novel objects but the approximations made with
given perception pipeline may introduce some errors in the
object recognition i.e, sparse point cloud, occluded object,
variational features etc. Thanks to the probablistic nature of
kernelized synergies framework that uses Gaussian kernel
having infinite Hilbert-Space, the system is robust against
such perceptual errors. Finally, the pose of detected object
is calculated locally by averaging all the data in the point
cloud to determine the 3D dimensions of their centroid (i.e,
defining respective reference frame for pose information).

The extracted geometrical features are in local camera
frame and need to be transformed into robot base frame for

Fig. 7: Performance evaluation of kernelized synergies against two
different state of art techniques. Kernelized synergies achieve de-
sired results on normalized square error (a) and primitive accuracy
(b) by exploiting the reduced number of synergistic components as
compared to manipulation and complex synergies approaches.

precise targeted grasping and manipulation. The object pose
in robot base frame is determined by Eq. 6, where Tcmr is the
transformation between camera frame and marker, Tmrb is a
transformation between marker and base frame, Poc and Pob

are the object poses in camera and base frames respectively.

Po
b = Tmr

bTc
mrPo

c (6)

Further, the pose of object needs to be transformed into
corresponding synergistic values to update the via/end points
of KMP in Eq. 2. For this, a virtual object of dimensions
similar to the targeted shape is defined in robot hand Carte-
sian space in Fig. 6. The relationship between robot hand



Fig. 8: Set of test objects, (a) glass, (b) cup, (c) conditioner, (d)
honey, (e) tic-tac, (f) food-supplement.

Cartesian space and synergistic subspace is given by Eq. 7.

˙eO = A†moChÊ
† ˙Po

b (7)

Where, ˙Po
b is the robot hand Cartesian space velocity due

to the object, Ch is the hand compliance matrix, Amo is the
motion transfer matrix and † represents the pseudo inverse of
respective quantities. The Euler integration at sampling time
of 1 ms is applied to Eq. 7 to get the synergistic values
of via/end points. Finally, the mapping from synergistic
subspace to joint space is required to execute the given task
on the robot hand and is defined to be θ = Êe+ θ0, where
θ0 represents the initial robot hand configuration.

The complete pipeline of object detection and synergy
mapping is summarized in Algorithm 1.

III. COMPARATIVE ANALYSIS
To better understand the performance and potential of

kernelized synergies framework, it is compared with other
state of art techniques such as; manipulation synergies [16]
and complex synergies [17] using two different evaluation
metrics i.e, normalized square error (NSE) and primitive
accuracy (PA) in Fig. 7. The robot hand trained on objects in
Fig. 3, is evaluated on test objects in Fig. 8. The robot hand
performs grasping (precision) and manipulation (rotation) of
test objects and the difference between robot hand configura-
tions defined by human subject(ground-truth) and established
by considered techniques is computed to define the given
metrics in Fig. 7. The values of NSE and PA plotted in Fig.
7, are the average of all the hand configurations established
over test objects in Fig. 8. Note that for simplicity, all the
objects are placed in orthogonal direction to robot hand palm
and their grasping postures are pre-defined.

As shown in Fig. 7, the manipulation synergies have
high NSE and low PA because they are task specific and
for any unknown object it requires to recompute the entire
synergistic subspace on the new data set. Therefore, it
completely changes the shape of whole synergy subspace and
in particular the grasping properties of predominant postural
synergies are not preserved. Such framework achieves the
desired performance i.e, 15% NSE and 85% PA by exploiting
almost 8 synergistic components, which itself violates the
motivation behind using synergies i.e, bringing simplicity.

Fig. 9: Normalized confusion matrix of trained SVM classifier.

However, the complex synergies have relatively low NSE
and high PA as compared to manipulation synergies and
attain desired accuracy but again at the cost of large number
of synergistic components (less than manipulation synergies)
to reproduce the required hand configurations. Although, this
technique preserves the grasping properties of synergistic
subspace and the manipulation tasks are executed by the
additional synergistic components that are used to correct the
corresponding hand configuration with respect to grasping
posture. Although, it does not require to re-compute the
synergy subspace for every new entry in contrast to manipu-
lation synergies but it increases the size of synergy subspace
and is computationally inefficient. Further, the properties
of grasping synergies are preserved locally and can not be
generalized to even different dimensions of same objects.

It is evident from Fig. 7 that the kernelized synergies have
lowest NSE and highest PA as compared to other two tech-
niques mainly due to two reasons; (1) the use of movement
primitives to adapt to the dimensions of new geometrical
shapes and (2) the application of kernel trick which preserves
the probabilistic properties of computed subspace globally
such that it can be reused for grasping and manipulation of
different objects. Further, this framework achieves desired
results by utilizing just first two predominant synergistic
components with and without visual perception.

IV. RESULTS AND DISCUSSION

To experimentally evaluate the performance of updated
kernelized synergies framework, three different daily life
tasks i.e, (1) mounting bulb on the socket, (2) squeezing
lemon into the water, and (3) spraying cleanser on the board
are performed. Note that the appropriate values of em and
eg are determined according to Eq. 7.

In the first task, the robot hand performs bulb mounting
task by exploiting rotation primitives of its synergy subspace,
similar to humans. For simplicity, the expired bulb has been
already removed from the socket and the robot hand is



Fig. 10: A robot mounting bulb on the socket, (a) is the estimated
pose of bulb in the camera frame, (b) shows the robot hand grasping
the bulb in its tripod posture, in (c) robot brings the bulb over the
socket, (d) represents the bulb after being screwed into the socket.

asked to mount the new one. Firstly, the eye-to-hand camera
estimates the pose of the bulb using Eq. 6 as shown in Fig. 10
(a) and updates the kernelized synergies subspace according
to Eq. 7. The updated values of kernelized synergies are
computed using Eq. 2 that help in mounting the bulb on
the socket. The robot hand grasps the bulb in tripod posture
at eg1 = −0.18, eg2 = 0.21 in Fig. 10 (b) and places it on
the socket using robot arm movements in Fig. 10 (c). The
bulb is then rotated clockwise at em1 = −0.19 to −0.05,
em2 = 0.21 to 0.37 such that it is screwed into the socket as
shown in Fig. 10 (d). In this task, the force between the robot
hand fingertips and the bulb is modulated approximately
from 2.38 N to 3.57 N according to Eq. 4. It is due to the
reason that the resistance between the bulb’s rings and the
socket increases during the final phase when it is about to
mount on the socket and thus requires to apply more strength.

During the second task, the robot hand utilizes the transla-
tion primitives of its synergy subspace to squeeze the lemon
into the water to prepare the lemon juice. With the pose of
lemon estimated in Fig. 11 (a), the robot hand grips it in a
tripod posture in Fig. 11 (b) at eg1 = 0.12, eg2 = 0.32 and
brings it over the glass using the robot arm movements in
Fig. 11 (c). The robot hand stretches in its index and middle
fingers at em1 = 0.13 to 0.26, em2 = 0.33 to 0.47 such that
the lemon is pressed and its juice is sprinkled into the glass
of water in Fig. 11 (d). Alike first task, the interaction force
is modulated from 2.38 N to 4.16 N according to Eq. 4.

For the third task, the robot hand takes an advantage
of priority characteristics of kernelized synergies framework
according to Eq. 3, to regulate its two parts independently.
In this task, using pose information of spray bottle in Fig.
12 (a), the robot hand initially assumes the pre-grasping
pose in Fig. 12 (b) and then grasps it in Fig. 12 (c)
at eg1 = −0.11, eg2 = 0.38 with priority Υ = 0.5 being
assigned to each. The robot hand presses the spray within its
tripod posture at em1 = −0.1 to 0.14, em2 = 0.39 to 0.48
while the index and ring fingers help in holding the spray
in Fig. 12 (d). The action of pressing the spray, results into
showering of cleanser on the board. Similarly, in this task,
the interaction force between the spray and robot hand is
modulated from approximately 2.38 N to 4.76 N according
to Eq. 4. Such priority characteristics of kernelized synergies
framework are helpful in various multi-digit manipulations
such as; holding and typing on smart phone, gripping and
pressing the computer mouse, holding receiver and dialing a
number on the telephone and many others.

Fig. 11: A robot squeezing lemon into the glass of water, (a) is the
estimated pose of lemon, (b) shows the robot hand gripping lemon
in its tripod posture, (c) illustrates the robot bringing lemon over
the glass, (d) represents the robot hand squeezing lemon into glass.

Fig. 12: A robot spraying cleanser on the board, (a) is the estimated
pose of spray in the camera frame, (b) is the pre-grasping posture of
robot hand, (c) shows the robot hand holding spray with its thumb,
little and ring fingers, (d) represents the robot hand spraying against
the board with its index and middle fingers.

V. CONCLUSIONS

This research proposed to update the previously developed
kernelized synergies framework with visual perception for
autonomous grasping and manipulation of novel objects.
The point cloud of objects in the scene was extracted with
RGB-D camera and was pre-processed and later filtered
using RANSAC algorithm to remove the largest planar
component in the scene. The remaining points were grouped
to represent the candidate objects, based on the Euclidean
clustering segmentation criteria. The candidate objects in the
filtered point cloud were recognized and labeled using the
trained SVM classifier and the pose was estimated locally by
computing the centroid (defining 3D reference frame) of each
candidate object. The geometrical features of the detected
objects were in image plane and the suitable transformations
were applied to obtain the desired pose in the robot base
frame for task execution. The use of RANSAC algorithm
however introduced some approximation inaccuracies in the
object recognition and pose estimation pipeline but due to
the probabilistic nature of kernelized synergies, it was robust
against the perceptual errors. Further, the performance of
kernelized synergies framework was compared with the other
state of art techniques and it was evident that the kernelized
synergies are effective, efficient and robust in performing
various robust grasping and fine manipulation tasks. Finally,
the updated framework was experimentally evaluated on
three different daily life tasks i.e, mounting bulb on the
socket, squeezing lemon into the water, and spraying cleanser
on the board and the results confirm the task agnostic
approach of updated kernelized synergies framework.

For future work, the tactile information will be integrated
into the kernelized synergies framework to do visuo-tactile
dexterous manipulation. Further, the updated framework can
also be extended to anthropomorphic dual arm-hand system
for whole body manipulation in the cluttered environments.
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