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Simple Summary: Cancer is a group of diseases characterized by abnormal cell growth with a high
potential to invade other tissues. Genetic abnormalities and epigenetic alterations found in tumors
can be due to high levels of DNA damage and repair. These can be transmitted to daughter cells,
which assuming other alterations as well, will generate heterogeneous and complex populations.
Deciphering this complexity represents a central point for understanding the molecular mechanisms
of cancer and its therapy. Here, we summarize the genomic and epigenomic events that occur in
cancer and discuss novel approaches to analyze the epigenetic complexity of cancer cell populations.

Abstract: Cancer evolution is associated with genomic instability and epigenetic alterations, which
contribute to the inter and intra tumor heterogeneity, making genetic markers not accurate to monitor
tumor evolution. Epigenetic changes, aberrant DNA methylation and modifications of chromatin
proteins, determine the “epigenome chaos”, which means that the changes of epigenetic traits are
randomly generated, but strongly selected by deterministic events. Disordered changes of DNA
methylation profiles are the hallmarks of all cancer types, but it is not clear if aberrant methylation
is the cause or the consequence of cancer evolution. Critical points to address are the profound
epigenetic intra- and inter-tumor heterogeneity and the nature of the heterogeneity of the methylation
patterns in each single cell in the tumor population. To analyze the methylation heterogeneity of
tumors, new technological and informatic tools have been developed. This review discusses the state
of the art of DNA methylation analysis and new approaches to reduce or solve the complexity of
methylated alleles in DNA or cell populations.

Keywords: genomic instability; epigenetic alterations; clonal expansion; clonal selection; genome
and epigenome chaos; cancer evolution

1. Introduction

Uncontrolled cell growth is the dominant characteristic of cancer cells and is due to
genomic instability and epigenetic alterations [1]. The genomic instability as increased
tendency to accumulate mutations includes small (single nucleotide variants, insertion,
deletion, and microsatellite instability) and large structural variations (aneuploidy and
chromosome instability) [2]. The epigenetic changes are characterized by addition or
removal of chemical groups (mainly methyl groups) to the DNA or histones, which wrap
DNA in chromosomes and can alter gene expression and chromatin structure [3]. The
heterogeneity between tumors (inter-tumor) and within tumors (intra-tumor) depends on
these genetic and epigenetic alterations [4]. Since the genetic changes are very rapid and
frequent over time, the use of genetic markers in unstable cancer cells is not informative as
far as the tumor evolution is concerned. On the other hand, also DNA methylation shows
a high inter-tumor and intra-tumoral heterogeneity and is defined globally as aberrant
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methylation [5,6], due to the high polymorphism of the somatic methylation traits in all
chromosomes [7–9]. We refer to these epigenetic changes as “epigenomic chaos” because
they are generated by a mix of random and deterministic events, which are not easily
separable. The evolution of cancer clones can be explained by the chaos theory, a concept
borrowed from non-linear dynamic systems, which evolve with apparent randomness
but contain “underlying patterns, interconnectedness, constant feedback loops, repetition,
self-similarity, fractals, and self-organization” [10].

In fact, methylation changes during tumor evolution are aperiodic, repetitive, and
very sensitive to the initial states of the system (e.g., cell type or differentiation state). The
genetic and epigenetic changes in evolving cancer cells are randomly generated but are
selected by deterministic events (e.g., chemoresistance). However, at present, we do not
know whether aberrant methylation is the cause or the consequence of cancer progression.

To analyze the epigenetic heterogeneity of tumors, new technological and informatic
tools have been developed. This review discusses the state of the art of the epigenomic
analysis and new approaches to dissect the complexity of cancer epigenomes.

2. Cancer Evolution

Cancer evolution is characterized by the accumulation of mutations and epimutations
(e.g., variations in CpGs methylation status) in somatic cells. At beginning of this evolution
neoplasms are clusters of cells that display the same genetic and epigenetic profiles. With
the time, new genetic and epigenetic variants emerge and are transmitted to daughter
cells, which can acquire new genetic and epigenetic anomalies. Competition for space and
resources, increased survival, and reproduction success may depend on mutations and
epimutations leading to increased fitness of clones in the population of cells [11] (Figure 1).
Anti-cancer therapies can also induce selection of clones, killing sensitive cells, but leaving
resistant cells behind [12]. Cancer is an example of Darwinian evolution and selection at the
genetic and epigenetic levels. For example, methylation and downregulation of CDKN2A
gene (CDK4 and 6 inhibitor) permit the exit from senescence induced by oncogenes [13].
Cells bearing both methylated CDKN2A and protooncogene mutations acquire a greater
fitness compared to cells with the oncogene mutations without CDKN2A-B epigenomic
changes. Cells with both changes have a selective advantage that will be more evident in a
hostile environment (hypoxia, therapies, and multilevel metastasis process) [14–17].

Cancer evolution can be separated into two evolutionary phases: macro-evolutionary
in which genomic instability generates new genetic and epigenetic assets (clones) and a
micro-evolutionary phase in which the cells transmit the genetic and epigenetic modifica-
tions to daughter cells stabilizing these variants. Fitness selection of genetic and epigenetic
changes occurs mainly within the micro-evolutionary phase (deterministic evolution) [18].
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evolution of clones based on the acquisition of new variants. The higher fitness is shown as a darker tone. Each clone 

acquires different genetic and epigenetic variants, randomly generated but selected by the microenvironment and DNA-

damaging therapies. 
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Figure 1. Evolution of cancer clones. Schematic representation of the evolution of clones based on the accumulation of
genetic and epigenetic variants. Cancer cells acquire different mutations over time under environmental pressure, whereas
DNA methylation is passed on to the offspring to balance oncogene-induced senescence. (A) Schematic representation
of the expansion of a clone in which all cells share same genetic and epigenetic variants. (B) Schematic representation
of the evolution of clones based on the acquisition of new variants. The higher fitness is shown as a darker tone. Each
clone acquires different genetic and epigenetic variants, randomly generated but selected by the microenvironment and
DNA-damaging therapies.

3. Genome Instability (Genome Chaos)

We believe that evolution of cancer cell clones is shaped initially by randomness and
eventually by fitness selection. Genomic instability is a critical hallmark of cancer. Such
instability derives from genetic or epigenetic alterations acquired during cancer progression
and helps selected cancer cells to be competitive for survival [18,19]. These modifications
may underlie alterations of the cell cycle and resistance to programmed cell death [19,20].
Both endogenous genotoxic stress (such as reactive oxygen species (ROS) resulting from
cell metabolism, DNA replication, or transcription) and exogenous genotoxic insults (such
as ultraviolet light, ionizing radiation, or chemicals harmful to DNA) can induce genetic
alterations leading to genomic instability.

The study of genomic instability has revealed the complexity of clonal evolution
characterized by chaotic and continuously evolving genomes (accumulation of genetic
alterations) [21]. Not all genetic alterations will endure. In fact, many of them will be
eliminated during a phase of adaptation and fixation of the mutation until a partial stability
is reached [22–24]. This strategy allows tumor cells to employ a stepwise adaptative
response to environmental cues [21,25,26]. These unstable and chaotic states increase
the complexity of tumor cell populations when considered over time [27–31]. Somatic
mutations can also accumulate with aging and contribute to cancer [32,33] supporting the
conclusion that there is a linear relationship between age and number of mutations [34–37].
Cancer-associated mutations have been found in a variety of normal tissues of individuals
of all ages [38–40], including bone marrow [41–43], esophagus [44,45], colon [46], brain [47],
endometrium and gynecological tissues [48–52], and a comprehensive set of 29 human
tissues [35,53]. The presence of mutations in leukemia driver genes is a phenomenon known
as clonal hematopoiesis [54] and concerns the 3% of healthy individuals under 30 [55]
and 95% of individuals aged over 50 [48]. These mutations affect genes or loci implicated
in cancer and are associated with diffuse inflammation [56–60]. The most frequently
mutated genes are DNMT3a, TET2, and ASXL, which are powerful epigenetic regulators.
Although the mutations in these genes are not accompanied by hematological disorders,
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they can trigger disordered epigenetic modifications, which can amplify silent genomic
changes [61]. These findings are rapidly expanding and reshaping our understanding
of human carcinogenesis and aging. In addition, the immune system applies a further
selective pressure on cancer clone evolution. In fact, one of the important functions of the
immune system is to recognize and eliminate cancer or senescent cells. It is plausible that
aging of the immune system (senescence) can reduce the selective pressure and favor the
amplification of mutated clones [59,61]. One general conclusion derived from these data
is that the presence or the accumulation of mutations in growth or survival-controlling
genes (oncogenes and suppressors) does not induce per se genome instability in cells that
maintain the epigenetic memory. Furthermore, these findings reduce the power of the
genetic markers to accurately predict tumor evolution.

4. Epigenome Chaos

Cancer cells show also epigenetic alterations, referred as aberrant methylation [62,63].
The organization of chromatin, as the topologically associating domains (TAD) and gene
expression profiles in normal cellular become unrecognizable in cancer cells. A dense
hypermethylation of the CpG islands and a hypomethylation of regulatory regions (such
as centromeres) characterize the genome of transformed cells [63]. These dramatic changes
may lead to chromosomal instability and may contribute to transcriptional silencing of
tumor suppressor genes [64]. Promoter hypermethylation of genes regulating apoptosis
(DAPK and APAF-1), cell cycle (p16INK4a, p14ARF, and p15INK4b), and DNA repair
(hMLH1, BRCA1, and MGMT) has been found in many cancers. The epigenetic aberra-
tions observed in cancer can be summarized as follows: (1) transcriptional silencing of
tumor suppressor genes by CpG island promoter hyper-methylation [64,65], (2) global
genomic hypomethylation [66], (3) loss of imprinting (LOI) [65,67], (4) loss of epigenetic
repression of intragenomic “parasites” [68], and altered expression of homeobox genes [68].
These changes contribute to the evolution of cancer clones by balancing the activation of
oncogenes that would otherwise induce senescence [69].

However, CpG hypermethylation is not always associated to silencing. A new notion
on the impact of methylation on gene expression is emerging. The inhibition or activation
of transcription by methylation is dependent on the gene segment analyzed. For example,
hypermethylation at gene bodies is associated with gene expression, while hypermethy-
lation of TSS or enhancers leads invariably to silencing. This is relevant in pan cancer
methylome analysis because the activation of homeobox genes in many cases is due to
hypermethylation of the gene body (Figure 2).
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Figure 2. Methylation is not always associated with silencing of gene expression. (A–C) These show that methylation of the
promoters and transcription start sites (TSS) leads to repression of gene expression, while methylation of the gene body
results in increased expression as found in pan cancer methylomes.



Cancers 2021, 13, 1800 5 of 12

Conversely, methylation at the enhancer sites leads to gene silencing [13]. We conclude
that aberrant CpG island methylation can be used as a biomarker of evolution of cancer
cells and represents a possible target for therapies [10–13,69–74].

5. Mechanisms of de Novo DNA Methylation

The epigenetic modifications change the structure of chromatin, its accessibility, and,
ultimately, modify gene expression. The epigenomic chaos in cancer, which generates
various patterns of hypermethylated and hypomethylated loci, has stimulated a debate
on the evolution of neoplasms. In particular, a question still unanswered is whether the
initial processes that induce epigenetic, specifically, methylation, changes are stochastic or
deterministic, i.e., they are driven by random events that change the methylation status of
any segment of DNA or by factors that target specific DNA regions and change the local
methylation profile(s). There are many examples showing that targeting specific factors
changes the methylation status of specific DNA segments. For example, gene products
that silence the INK4-ARF tumor suppressor locus in a human colorectal cancer cell line
have been reported [75]. The mutated KRAS protein in the same cell line inhibits the
degradation and stabilizes the transcription factor, ZNF304, which forms a co-repressor
complex containing a DNA methyltransferase that induces de novo DNA methylation at
the INK4-ARF locus resulting in inhibition of transcription. Similarly, we have shown, in
two different experimental models, that DNA damage induces the silencing of the soluble
Wnt inhibitor WIF1 via ATM [76] and that TGF-β1 induces activation and repression of
target genes by modifying the conformation of the chromatin at the promoter sites [77]. On
the other hand, there are also examples of stochastic or random de novo methylation due
to damage (Double Strand Breaks, DSB) and repair (Homologous Recombination, HR) (see
below) or incomplete demethylation, C hydroxymethylation, or contiguity of methylated
traits (Figure 3).

However, it is worth to note that the transmission of epigenetic features is a mechanism
underlying embryonic development that we know with the term imprinting [78], which
regulates the expression of some loci based on the origin of the allele (maternal or paternal).
The transmission of a methylated locus from the mother cell to the daughter cell is ensured
by the enzyme DNA methyl-transferase 1 (DNMT1). The activity of DNMT1 in mainte-
nance of DNA methylation is supported by its substrate preference for hemi-methylated
CpG sites, as well as by high enzymatic processivity [79]. We have demonstrated with
a synthetic gene (GFP) that DNA damage and HR induce strand-specific (allele-specific)
methylation that is transmitted to the offspring generating undermethylated high expressor
clones and hypermethylated low expressor cells [8–11,65]. In addition, we have shown
that transcription in a short time window (15 days after DSB and HR) edits further local
methylation, which is stably transmitted to daughter cells and can be monitored overtime
in evolving cell populations [7–9,70]. The transmission of the somatic epigenetic traits from
mother to the daughter cells allows tumors to use this strategy to generate a great variety of
clones and select epigenetically permissive clones, for example, clones in which the DNA
damage-HR resulted in de novo methylation and silencing of a tumor suppressor. This
trait confers an obvious advantage to the clone, because it can escape oncogene-induced
senescence [8–10].
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Figure 3. Double strand break (DSB) and homologous repair (HR) edit local methylation. Schematic
representation of the events leading to the silencing or expression of DNA segments following DBS
and HR. The yellow circles represent de novo methylated CpGs in HR clones. The black circles
represent previously methylated CpGs. DNA damage and subsequent methylation are random,
while gene silencing depends on the location of the methyl Cs. If the expression of the repaired
gene is harmful, only cells that inherit the muted copy will survive. Conversely, if the function
of the repaired gene is beneficial, the cells inheriting the non-methylated copy will have a growth
advantage.

6. New Tools for DNA Methylation Analysis

Before discussing the new methods of DNA methylation analysis, it may be useful to
remark some concepts and definitions reported here. A clone is defined as a group of tumor
cells that shares the same mutational profile, while a subclone is a group of tumor cells that
originates from the clone and diverges by acquiring new additional mutations [80,81]. A
cluster is a group of cells that share a fraction of the mutational profiles. Another important
concept is fitness, which refers to the ability of a tumor cell to survive and proliferate.
Increased fitness can lead to clonal expansions characterized by expansion of one genotype
in the tumor cell populations (Figure 1) [81,82].

A large degree of variation in the number of subclones at both the genetic and epi-
genetic levels is detected in human cancers, although the relative relevance of this phe-
nomenon is influenced by technical reproducibility and sequencing depth. However, two
key principles are relevant: 1. evolution time and 2. presence or absence of intermedi-
ates during evolution. However, we note that (1) the analysis of the mutations of cancer
driver genes alone is complicated by the epigenetic disorder (chaos) and genetic instability
that drive tumor heterogeneity inter- and intra-tumor heterogeneity and (2) the different
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methods of methylation analysis that identify differentially methylated cytosines (DMC) or
differentially methylated regions (DMR) show extreme heterogeneity and polymorphism
and are not informative on the tumor progression [5–9,76,83] (see Figures 3 and 4). Below
are reported the current methods used for DNA methylation analysis.
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Figure 4. Differential methylated regions (DMC) and epiallele-based (EBA) analysis. Two populations
of epialleles are reported on the right and left: the first population on the left is composed by two
subpopulations equally represented (one fully methylated at the 4 CpGs and the other unmethylated).
The second population on the right is composed by epialleles with differentially heterogeneous
methylated CpGs with the same frequency 6.25%.

7. Epialleles-Based Analysis (EBA)

These methods are based on the concept that clones derived from a single positively se-
lected progenitor will have a unique epigenetic configuration (epialleles). In particular, the
Epialleles-Based Analysis (EBA) identifies methylated DNA molecules with defined 5’ and
3’ ends (epihaplotype) generating a binary profile (0 unmethylated/1 methylated) of CpGs
in DNA strings (Figure 4). This method generates binary matrices (0 and 1)/CpG/locus.
This binary matrix provides information about the constitution and complexity of the
populations considering that 1 cell = 1 epiallele.

The tools based on EBA are: 1 AmpliMethProfiler [84] (used for single loci), 2. Meth-
CoresProfiler [83], and 3. Methclone [85] (used to analyze genome-wide methylomes (RRBS
and WGBS)).

1. AmpliMethProfiler, a python-based pipeline, extracts and performs statistical epi-
haplotype analysis of amplicons from targeted deep bisulfite sequences. This tool
investigates the methylation diversity by directly extracting the methylation profiles
(epihaplotypes) at a single locus in the sequence population [84,86]. Using this high-
throughput approach, the epihaplotypes can be treated as haploid organisms with a
specific frequency in the population (Shannon Entropy).

2. MethCoresProfiler, a R-based pipeline, traces and tracks CpGs in the same phase
(methylated or not methylated cores) shared by families of epialleles by calculating
their frequency in the population (MethCore Index), the frequency normalized to the
mean methylation (Clonality Index), and the association index between the CpGs
belonging to the same core normalized to the average methylation of the population
of sequences (Entanglement Index) [83]. This tool is able to recognize the original epi-
genetic ancestor from which the molecules of different epialleles derive, considering
each addition or removal of a methyl groups as independent events. This method
allows the reconstruction of the evolution of families of epialleles from a common
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ancestor. Note that the frequency of individual epialleles is usually not statistically
significant, while the frequency of the common signature (core) is significant. This tool
analyses amplicons from targeted deep bisulfite sequencing and allows the analysis
of several samples longitudinally.

3. Methclone extracts and performs statistical epihaplotype analysis for each locus from
genome-wide DNA NGS data (RRBS and WGBS). It is based on the comparison
between two samples longitudinally and identifies the epigenetic loci hosting large
clonal variations. It quantifies epiallele shift(s), as the Hamming distance and the
frequency of single epialleles [85].

8. Conclusions

Cancer is an ever-changing disease characterized by both genetic and epigenetic dy-
namic alterations. Although mutations in driver genes are necessary for the proliferation
of a clone, numerous other mutations are found in tumor cells [29,30]. Furthermore, the
mutations in the driver genes can also be found in healthy subjects (clonal hematopoiesis)
linked to cellular aging or to immunological senescence [35,38–54]. The accumulation of
gene mutations and chromosomal alterations, the high intra- and inter-tumor heterogene-
ity, the fluctuations in the frequency of the mutations in the various stages of neoplastic
evolution generate a dynamic pattern of evolution of the cell populations very similar to
the chaotic evolution defined in dynamic physical systems. In the Figure 1 is reported
a model of cancer evolution in which clones acquire different mutations over time un-
der environmental pressure, whereas DNA methylation is passed almost intact on to all
offspring. This condition balances oncogene-induced senescence. Further evolution of
cancer cell populations is induced by epigenetic chaos, which involves disordered hyper
and hypomethylation in various DNA segments, leading to the redistribution of repressor
sites and loss of epigenetic memory, which we call aberrant methylation. We believe that
the epigenetic chaos unleashes genomic instability by promoting expression of fetal genes
and silenced transposons [87]. These features characterize the late-stage therapy-resistant
cancers (Figure 1). The complexity of methylation profiles in the unstable cancers cannot
yet be analyzed with the current methods. New tools need to be developed and validated,
and recently, new approaches based on analytic systems borrowed from metagenomics
and population genetics [83–85] are being tested. We believe that this approach represents
an important tool to decipher the methylation profiles in complex populations.
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APAF-1 apoptotic protease activating factor 1
ASXL additional sex combs-like
ATM ATM serine/threonine kinase or ataxia-telangiectasia mutated
BRCA1 breast cancer type 1
C cytosine
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CDKN2A Cyclin Dependent Kinase Inhibitor 2A
CDKN2B Cyclin Dependent Kinase Inhibitor 2B
CDKCpG cyclin-dependent kinasecytosine-guanine dinucleotides cluster
DNMT1 DNA methyl-transferase 1
DNMT3a DNA methyl-transferase 3A
DAPK Death Associated Protein Kinase
DMC differentially methylated cytosines
DMR differentially methylated regions
DSB double strand break
EBA Epialleles-Based Analysis
GFP green fluorescence protein
HR homologous repair
hMLH1 MutL (E. Coli) Homolog 1
INK4 INhibitors of CDK4-CDK6
ARF alternate open reading frame
KRAS Kirsten rat sarcoma viral oncogene homolog
LOI loss of imprinting
MGMT O6-methylguanine-DNA methyltransferase
ROS reactive oxygen species
RRBS reduced representation bisulfite sequencing
TAD topologically associating domains
TGF-β1 Transforming growth factor beta1
TAD topologically associating domains
TSS transcription start site
TET2 Ten-Eleven Translocation
WGBS whole-genome bisulfite sequencing
WIF1 WNT Inhibitory Factor 1
ZNF304 Zinc Finger Protein 304
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