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Alexandra-Antonia Cucu 1 , Gabriela-Maria Baci 1 , Ştefan Dezsi 2,* , Mircea-Emil Nap 3,4, Florin Ioan Beteg 5,
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Abstract: Known especially for its negative ecological impact, Fallopia japonica (Japanese knotweed)
is now considered one of the most invasive species. Nevertheless, its chemical composition has
shown, beyond doubt, some high biological active compounds that can be a source of valuable
pharmacological potential for the enhancement of human health. In this direction, resveratrol, emodin
or polydatin, to name a few, have been extensively studied to demonstrate the beneficial effects on
animals and humans. Thus, by taking into consideration the recent advances in the study of Japanese
knotweed and its phytochemical constituents, the aim of this article is to provide an overview on
the high therapeutic potential, underlining its antioxidant, antimicrobial, anti-inflammatory and
anticancer effects, among the most important ones. Moreover, we describe some future directions for
reducing the negative impact of Fallopia japonica by using the plant for its beekeeping properties in
providing a distinct honey type that incorporates most of its bioactive compounds, with the same
health-promoting properties.

Keywords: Fallopia japonica; Japanese knotweed; antimicrobial activity; antioxidant effect; bioactive
compounds; honey; invasive species; phytopharmaceuticals

1. Introduction

Plants have always played an important role in human life because of their nutritional
and health benefits and are therefore considered to be nutraceuticals [1–4]. Their use as
alternative medicine continues to remain popular, despite the progress of the pharmaceu-
tical industry. Moreover, in light of the impact that food can have on human health [5],
consumers have become more sensitive towards balance-supporting food that can improve
and enhance health [6,7].

In this light, Japanese knotweed, known also as: Fallopia japonica, Reynoutria japonica
(R. japonica), Polygonum cuspidatum (P.cuspidatum), according to Flora Europaea [8], is well
known to be used as part of alternative medicine, especially to prevent or to treat
various disorders [9].
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Native to Asia (China, Japan, Taiwan, North and South Korea) and North America,
Japanese knotweed is an herbaceous perennial plant [10], from the Polygonaceae family [11].
It is found in sunny places, on the banks of rivers, or in pastures due to the presence of
nitrogen from agricultural practices [12].

First introduced in Europe for ornamental purposes during the 19th century [13–15],
Japanese knotweed has become one of the most invasive European alien species [16]
because of its ability to expand in different types of habitats [17,18].

Possessing long-branches, thickened rhizomes and large ovate or elliptical blade
leaves [10,19], this fast-growing invasive plant is distinguished by some specificities such
as strong regeneration capacity [18], ample environmental resistance to various habitat
conditions [20], high hybridization potential [21] and clonal and sexual reproduction [22].
Thus, it is tremendously difficult and costly to remove from invaded areas or to control
their spread, as numerous studies have proven [23–29]. Moreover, it exhibits a menacing
character towards native flora and ecosystems [30] because of the inhibition mechanism;
its chemical composition manifests on local vegetation [31–33]. In this regard, alien plants
in general, and the Japanese knotweed in particular, significantly affect the economy and
ecosystem of the areas that they aggressively take over [15,34], and are therefore seen as a
growing threat to global sustainability [35].

While Japanese knotweed can have a significant negative impact on its surrounding
environment, including the endangerment and extinction of local species [33,36], effecting
crop production [37], human health [38–40], forest regeneration [35,40] and urban and
rural land management [41], this invasive plant also has several positive aspects. Reports
in the literature show that Japanese knotweed can have a positive influence in terms of
its use as food and fodder [39,42], medicine [10,43–45], fuel [46] and bioenergy [47,48], as
well as an ecological indicator [49], insecticidal and fungicidal product [50–52], organic
fertilizer [12] or carbon adsorbent [53]. These latest positive uses of F. japonica can act
both as a preventive method for its invasiveness, as well as a pathfinder for further and
innovative utilization of this troublesome plant species in the current circular economy.

It is well known that plants possess important sources of biologically active com-
pounds that act as natural antioxidants, possessing nutritional, functional, as well as
important health benefits [54]. It is also the case for Japanese knotweed and largely its rhi-
zomes, whose phytochemical composition has indicated the presence of important amounts
of anthraquinones (emodin, citreorosein, fallacinol, physcion, etc.), flavonoids (rutin, api-
genin, quercetin, quercitrin, isoquercitrin, hyperoside, reynoutrin and kaempferol), and
most important, stilbenes (resveratrol and polydatin), coumarins, lignans, essential oils
along with other compounds [55–59].

Among these compounds, the most studied, because of their pharmacological values,
are resveratrol, polydatin, emodin and physcion [60,61]. According to clinical trials, the
four most studied bioactive compounds have revealed positive pharmacological effects,
including antioxidant [61–63], antimicrobial [64–66], anti-inflammatory [67–69], neuropro-
tective [70–72] or anticancer activities [73–76], among others.

As current knowledge about the medicinal characteristics of Japanese knotweed
are still incomplete, the aim of this review is to provide a deeper understanding of the
pharmacological effects that the bioactive compounds of this plant possess and to draw
attention to its possible use as an alternative medicine for specific diseases.

Furthermore, based on the therapeutic potential of the bioactive compounds found in
different parts of Japanese knotweed, future directions can be taken into consideration, to
both reduce its negative impact and offer new perspectives on the sustainable landscape
management of knotweeds [77]. Thus, by creating new medical and economic value prod-
ucts, we can encourage the re-examination of the use of herbicides as the main eradication
method for this invasive plant [78].

From this perspective, our last chapter will focus on the potential of Japanese knotweed
flowers as a nectar source for bees and the valuable health-enhancing properties of the
honey it can produce.
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Consequently, to carry out this review, the authors researched literature using Japanese
knotweed, F. japonica, R. japonica or P. cuspidatum as the main keywords, focusing espe-
cially on the papers that underlined its chemical composition and its potential use as a
pharmaceutical, as well as the activities of its bioactive compounds. The denomination
used by different authors was kept in our manuscript, due to the fact that we investigated
the same plant, according to different botanical specialists. In an effort to obtain thorough
information, the most accessed databases were Web of Science, ScienceDirect and Google
Scholar, where resveratrol, emodin and polydatin have been carefully covered, as to achieve
a comprehensive understanding of the holistic therapeutic effects that this invasive plant
and its compounds can exert on an individual’s health, highlighting in vitro and in vivo
studies and results that demonstrate its antioxidant, anti-inflammatory, neuroprotective
and anticancer properties. Moreover, in order to undertake a comprehensive research, the
selection was unlimited and included articles up until the submission of the study.

2. Phyto-Chemical Constituents and Identification Methods

As stated before, Japanese knotweed (Figure 1) has been studied for its chemical
composition and properties.
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Figure 1. Japanese knotweed plant (Maris Marius Gabriel, beekeeper—personal collection).

Principal classes of compounds, considered as bioactive compounds, are flavonoids,
stilbenes, anthraquinones, coumarins and lignans, found in roots, stems, leaves and flow-
ers [10,57,58,79,80]. It is important to note that environmental factors, including climate or
harvesting time, play a key role in the plant’s chemical composition [81]. Moreover, as a
balance, Japanese knotweed can have a great impact in modifying the physico-chemical
parameters of the soils they invade [82], so that it is able to adapt to any kind of soil and
even enrich it with a lot of nutrients [83]. As a consequence, it is challenging to compare
the differences between the phyto-chemical constituents, depending on the region from
where the samples were collected.

In this regard, Table 1 presents the most representative studies made on the chemical
composition of Japanese knotweed, emphasizing the part of the plant analysed, the phyto-
chemical constituents found, the identification method, and some results.
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Table 1. Phyto-chemical constituents of Japanese knotweed and identification/quantification methods.

Root extract of R. japonica China (R.j.C); R. japonica Poland
(R.j.P);

R. x bohemica (Rxb)
R. sachalinensis (R.s.)

HPLC-DAD-
HR-MS

gradient mode

water-formic acid (100:0.1 v/v) (solvent A)
acetonitrile-formic acid (100:0.1 v/v)

(solvent B)

- piceid (14.83 mg/g R.j.C; 7.45 mg/g R.j.P; 4.67 mg/g Rxb)
- resveratrol (1.29 mg/g R.j.C; 0.65 mg/g R.j.P; 0.52 mg/g Rxb)
- vanicoside B (0.64 mg/g R.j.C; 0.49 mg/g R.j.P; 0.77 mg/g Rxb; 2.25 mg/g R.s.)
- vanicoside A (0.08 mg/g R.j.C; 0.04 mg/g R.j.P; 0.12 mg/g Rxb; 0.55 mg/g R.s.)
- emodin (4.93 mg/g R.j.C; 4.01 mg/g R.j.P; 1.93 mg/g Rxb; 0.13 mg/g R.s.)
- physcion (2.96 mg/g R.j.C; 1.23 mg/g R.j.P; 1.86 mg/g Rxb; 0.19 mg/g R.s.)

[57]

Root, stalk and leaves extract of F. japonica (Houtt) (F.j.)
and F. sachalinensis (F. Schmidt)(F.s.)

LC-MS-Q/TOF
isocratic mode

UPLC-PDA
gradient mode

methanol-acetonitrile (15:85 v/v)
0.25% aqueous acetic acid (solvent A)

acetonitrile (solvent B)

- flavan-3-ols (leaves: 0.04–0.26 g/100 g F.j.; 0.04–0.23 g/100 g F.s.; stalk: 0.01–0.18 g/100 g F.j.; 0.02–0.24 g/100 g F.s.;
roots: 0.02–1.48 g/100 g F.j.; 0.07–0.62 g/100 g F.s.)
- phenolic acids (leaves: 0.01–0.49 g/100 g F.j.; 0.01–0.58 g/100 g F.s.; stalk: 0.01–0.08 g/100 g F.j.; 0.01–0.07 g/100 g
F.s.; roots: 0.0–0.01 g/100 g F.j.; 0.0–0.03 g/100 g F.s.)
- flavones/flavonols: (leaves: 0.01–1.71 g/100 g F.j.; 0.01–0.89 g/100 g F.s.; stalk: 0.01–0.28 g/100 g F.j.;
0.01–0.16 g/100 g F.s.; roots: 0.01 g/100 g F.j.; 0.01 g/100 g F.s.)
- stilbenes: (leaves: 0.01–0.03 g/100 g F.j.; 0.01–0.02 g/100 g F.s.; stalk: 0.01–0.04 g/100 g F.j.; 0.01–0.06 g/100 g F.s.;
roots: 0.02–0.50 g/100 g F.j.; 0.02–0.22 g/100 g F.s.)

[58]

Rhizome extracts of R. japonica, R. sachalinensis and
R. x bohemica

LC-ESI-MS/MS
gradient mode

water-formic acid (99.9:0.1)
(solvent A)

acetonitrile-formic acid (99.9:0.1) (solvent B)

- procyanidins with high degree of polymerization; dianthrone glycosides; phenylpropanoid disaccharide esters;
hydroxycinnamic acid derivatives; lignin oligomers; izovitexin; izovitexin diglucoside [63]

Leaves extract of F. japonica (F.j.) and F. x bohemica (Fxb) HPTLC–MS/MS developing agent: 0.1% TBHQ in
methanol: acetone (1:1, v/v)

- violaxanthin: green leaves (4.9–53.3 mg/100 g F.j.; 3.9–39.9 mg/100 g Fxb), yellow leaves (<LOQ F.j.; 1.5 mg/100 g
Fxb), green-yellowish leaves (4.2 mg/100 g F.j.; 7.1–96.8 mg/100 g Fxb)
- neoxanthin: green leaves (38.2 mg/100 g F.j.; 24.4 mg/100 g Fxb), yellow leaves (<LOQ F.j. and Fxb),
green-yellowish leaves (3.3 mg/100 g F.j.; 44.3 mg/100 g Fxb)
- luteoxanthin: green leaves (2.9–6.3 mg/100 g F.j.; 2.2–5.4 mg/100 g Fxb), yellow leaves (<LOQ F.j. and Fxb),
green-yellowish leaves (1.1 mg/100 g F.j.; <LOQ Fxb)
- antheraxanthin: green leaves (10.3 mg/100 g F.j.; 12.8 mg/100 g Fxb), yellow leaves (1.0 mg/100 g F.j.; 2.0 mg/100 g
Fxb), green-yellowish leaves (6.4 mg/100 g F.j.; 3.6 mg/100 g Fxb)
- all-trans-lutein: green leaves (144.3 mg/100 g F.j.; 97.1 mg/100 g Fxb), yellow leaves (9.4 mg/100 g F.j.;
28.6 mg/100 g Fxb), green-yellowish leaves (55.8 mg/100 g F.j.; 127.9 mg/100 g Fxb)
- all-trans-zeaxanthin: green leaves (3.4 mg/100 g F.j.; 2.7 mg/100 g Fxb), yellow leaves (1.8 mg/100 g F.j.;
6.1 mg/100 g Fxb), green-yellowish leaves (5.1 mg/100 g F.j.; <LOQ Fxb)
- 13-cis-β-carotene: green leaves (1.4 mg/100 g F.j.; 0.9 mg/100 g Fxb), yellow leaves (<LOQ F.j. and Fxb),
green-yellowish leaves (<LOQ F.j.; 1.9 mg/100 g Fxb)
- all-trans-β-carotene: green leaves (97.3 mg/100 g F.j.; 68.7 mg/100 g Fxb), yellow leaves (8.0 mg/100 g F.j.;
12.7 mg/100 g Fxb), green-yellowish leaves (23.2 mg/100 g F.j.; 97.4 mg/100 g Fxb)
- 9-cis-β-carotene: green leaves (8.6 mg/100 g F.j.; 6.1 mg/100 g Fxb), yellow leaves (<LOQ F.j. and Fxb),
green-yellowish leaves (<LOQ F.j.; 9.8 mg/100 g Fxb)
- other 8 carotenoid esters

[80]

Root, Stem,
Leaf and Flower extract of F. japonaica (F.j.) and

F x bohemica (Fxb)
UPLC

gradient mode
methanol (solvent A)

water (solvent B)

- polydatin (root: 5.72–13.38 mg/g F.j.; 0.43–13.68 mg/g Fxb; stem: 0.08–0.11 mg/g F.j.; 0.01–0.1 mg/g Fxb; stem and
leaf: 0.16–0.3 mg/g F.j.; 0.2–0.28 mg/g Fxb; leaf: 0.13–0.25 mg/g F.j.; 0.05–0.41 mg/g Fxb; flowers: ND)
- resveratrol (root: 0.83–12.07 mg/g F.j.; 0.05–2.74 mg/g Fxb; stem: ND; stem and leaf: 0.03–0.15 mg/g F.j.;
0.03–0.05 mg/g Fxb; leaf: ND; flowers: ND)
- emodin (root: 0.55–13.38 mg/g F.j.; 0.0–5.42 mg/g Fxb; stem: 0.0–0.06 mg/g F.j.; 0.0–0.05 mg/g Fxb; stem and leaf:
0.06–0.41 mg/g F.j.; 0.11–0.12 mg/g Fxb; leaf: 0.0–0.05 mg/g F.j.; 0.0–0.05 mg/g Fxb; flowers: ND)
- physcion (root: 3.97–15.72 mg/g F.j.; 0.0–9.71 mg/g Fxb; stem: 0.0–0.33 mg/g F.j.; 0.0–0.07 mg/g Fxb; stem and leaf:
0.16–0.77 mg/g F.j.; 0.24–0.39 mg/g Fxb; leaf: 0.0–0.89 mg/g F.j.; 0.0–0.06 mg/g Fxb; flowers: ND)

[81]
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Table 1. Cont.

Root extract of
P. cuspidatum Sieb. et Zucc.

HSCCC gradient
mode

light petroleum-ethyl acetate-water
(1:5:5, v/v)

light petroleum-ethyl acetate-methanol-water
(3:5:4:6, v/v)

light petroleum-ethyl acetate-methanol-water
(3:5:7:3, v/v)

- piceid (19.3 mg), anthraglycoside B (17.6 mg) from 200 mg sample
- resveratrol (18.5 mg), emodin (35.3 mg) and physcion (8.2 mg) from 220 mg sample [84]

Sprout extract of R. japonica (R.j.) R. sachalinensis (R.s.) and
Bohemian knotweed (B.k.)

HPLC-DAD
gradient mode

water-acetonitrile-orthophosphoric acid
(94.9:5:0.1 v/v)(solvent A)

water-acetonitrile-orthophosphoric acid
(80:19.9:0.1 v/v)(solvent B)

- catechin (103 mg/kg R.j.; 167 mg/kg R.s.; 42 mg/kg B.k.)
- epicatechin (568 mg/kg R.j.; 674 mg/kg R.s.; 230 mg/kg B.k.)
- resveratroloside (48 mg/kg R.j.; 31 mg/kg R.s.; 11 mg/kg B.k.)
- piceid (683 mg/kg R.j.; 502 mg/kg R.s.; 215 mg.kg B.k.)
- resveratrol (64 mg/kg R.j.; 29 mg/kg R.s.; 23 mg/kg B.k.)

[85]

Root extract of
P. cuspidatum Sieb. et Zucc.

HPLC-DAD
and HPLC-ESI/MS

gradient mode
water:acetic acid (95.5:0.5)(solvent A)

acetonitrile (solvent B)

- piceid (1.75–5.03 mg/g)
- resveratrol (0.378–1.15 mg/g)
- emodin-8-β-D-glucoside (3.69–9.60 mg/g)
- physcion-8-β-D-glucoside (0.299–0.854 mg/g)
- aloe-emodin (0.032–0.109 mg/g)
- emodin (1.05–2.50 mg/g)
- physcion (0.180–0.456 mg/g)

[86]

Leaves extract of F. japonica Houtt (F.j.), F. sachalinensis F.
Schmidt (F.s.) and
F. x bohemica (Fxb)

HPTLC–MS/MS developing agent: acetonitrile - flavan-3-ols monomers: total content 84 mg/100 g F.j.; 236 mg/100 g F.s.; 139 mg/100 g Fxb
- proanthocyanidin dimers: total content 99 mg/100 g F.j.; 206 mg/100 g F.s.; 140 mg/100 g Fxb [87]

Roots extracts of R. japonica
UHPLC-DAD-

ESI-MSn

gradient mode

water-formic acid (99.9:0.1)
(solvent A)

acetonitrile-formic acid (99.9:0.1)
(solvent B)

- 4 stilbene (glycosides and aglycones) total amount of different extraction methods: 55.45 mg/g plant
- 8 anthranoids (glycosides and aglycones) total amount of different extraction methods: 14.91 mg/g plant [88]

HPLC-DAD-HR-MS-High-performance thin-layer chromatography hyphenated to high-performance liquid chromatography-diode array detection-mass spectrometry; LC-MS-Q/TOF-Liquid chromatography-
photodiode detector-mass spectrometry/quadrupole time of flight; UPLC-PDA-Ultra-performance liquid chromatography with photodiode array detection; LC-ESI-MS/MS-Liquid chromatography electrospray
ionization mass spectrometry/mass spectrometry; HPTLC–MS/MS-High performance thin layer chromatography and mass spectrometry; UPLC-Ultra Performance liquid chromatography; HSCCC-High-speed
counter-current chromatography; HPLC-DAD-High-performance liquid chromatography with diode-array detection; HPLC-ESI/MS-High-performance liquid chromatography/electro-spray ionization tandem
mass spectrometry; UHPLC-DAD-Highly sensitive ultra-high-performance liquid chromatographic-diode array detection; TBHQ- tertbuthyl hydroquinone; LOQ-limit of quantification.
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Nawrot-Hadzik et al. (2018) revealed that the chemical composition of the roots of
different species of Fallopia (F. japonica, F. bohemica and F. sachalinensis) contained a higher
amount of piceid and resveratrol [57]. Comparing two Fallopia species, Lachowicz and
Oszmianski (2019) reported that the leaves were a source of polymeric procyanidins,
flavones, flavonols, phenolic acids, oleanolic and ursolic acids, while the roots contain
flavan-3-ols and stilbenes, resveratrol being the most dominant [58]. Glavnik and Vovk
(2020) extracted the anthraquinones from Japanese knotweed rhizomes using numerous
extraction solvents and obtaining identical qualitative densitometric profiles in almost
all the solvents with the exception of the sample test solution in dichloromethane, who
allowed the extraction of physcion, emodin, and its equivalents (emodin-8-O-hexoside,
emodin-O-acetyl-hexoside and emodin-O-malonyl-hexoside) [59]. Other compounds such
as carotenoids were observed by Metličar et al. (2019) [80] when exploring the green and
senescing leaves of two types of knotweeds, respectively, Japanese knotweed and Bohemian
knotweed. Even if both plants indicated close pigment profiles, the total carotenoid content
in green leaves exceeded the content revealed in senescing leaves for the two species,
being comparable to one of the richest sources of carotenoids, specifically spinach [89,90].
Chen et al. (2013) have compared several Japanese knotweed samples from different parts
of Canada and China, showing that the higher amount of resveratrol was found in the roots,
compared to the stems and leaves. Moreover, it is suggested that the level of polydatin is
similar in the samples from Prince Edward Island compared to those from China, while
the level content of resveratrol turned up higher for the samples from China in contrast
to those from Canada. In the case of emodin, Canadian samples contain a lower level
than the Chinese samples, whereas physcion had higher levels in the Canadian samples
compared to the Chinese ones [81]. However, Chu et al. (2005) founded in his study a
higher amount of emodin, while physcion was found in the lowest quantity [84]. On the
other hand, Vrchotová et al. (2007) evaluated the stilbene and catechin content of the spring
sprouts and knotweed rhizomes of Reynoutria species, finding that the most predominant
stilbene derivative in sprouts was piceid. By contrast, in the rhizome composition there
was little resveratrol, while in the sprouts, the amount of resveratrol was much the same
in all analysed knotweed samples [85]. Yi et al. (2020) managed to analyse five samples
of the Japanese knotweed procured from different parts of China, reporting that from the
seven compounds found, the greater proportion was represented by piceid [86]. It should
be pointed out that according to the Chinese Pharmacopoeia, emodin and polydatin are
considered to be standard indicators regarding the quality of dried material, thus a content
of 1.0% emodin and 1.5% polydatin is required [19].

Studies made by Bensa et al. (2020) found that, concerning the degree of polymer-
ization, leaves of the Japanese knotweed and other two knotweed species have similar
chemical profiles of proanthocyanins [87]. This data is in accordance with the profiles of
Japanese knotweed rhizomes examined by Glavnik et al. (2019) [91]. However, regarding
the profile of gallates, leaves possess lower variety than rhizomes [87].

In his study, Alperth et al. (2021) detailed the presence of thirty-four substances, of
which the greatest proportion was represented by anthranoids, while four new substances,
namely demethylatedv torachrysonehexoside, sulfonyl torachryson, emodin methyl ether
acetyl hexoside and malonylemodin, were declared new derivatives of the abovementioned
compounds [88]. The aforementioned results are in agreement with the fact that the major
chemical constituents found in the analysed parts of F. japonica, are a valuable source
of polyphenolic compounds that exhibit a large spectrum of therapeutic properties and
biological activities, which will be detailed as follows. As seen, the frequently used
method for the identification of the biological constituents of this invasive alien species
was chromatographic fingerprinting. This method is frequently employed for confirming
the quality of plants used as alternative medical compounds or food supplements [87,92].
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3. Biological Activities

In traditional medicine, F. japonica has been used for many years in Japan, China, Korea,
and Taiwan. Recently, it became the spotlight of numerous studies, since its chemical com-
position has revealed promising therapeutic effects. Alcoholic, hydroalcoholic and water
extracts from roots, rhizomes, and aerial parts (stems, leaves and flowers) have antibacterial
activity [64,66,93–95], antioxidant effects [44,58,66,96–105], anticancer, antiproliferative and
apoptotic properties [106–108], anti-inflammatory and antiviral activity [11,69,109–112]
and many other bioactive properties.

The rich sources of biologically active substances found in F. japonica are essential for
its specific therapeutic properties. Its applicability using in vitro and in vivo models has
been largely investigated and is pointed out in the following section.

3.1. Antibacterial Activity

Recently, interest in antimicrobial substances originating from plants has extended to
researchers investigating how different plants and their morphological extracts are associ-
ated with therapeutic activity and how they can be used as natural preservatives or ingredi-
ents for medicinal use. In this sense, P. cuspidatum exhibits significant antibacterial activities,
mainly because of its bioactive compounds, especially stilbenes and anthraquinones. The
most commonly used methods in analysing antimicrobial activity are disk diffusion, well
diffusion and broth or agar dilution, together with the minimum inhibitory concentration
(MIC) and minimum bactericidal value (MBC) [94]. Studies regarding antibacterial activity
and bactericidal effects against different classes of microorganisms (Gram-positive and
Gram-negative bacteria), including oral pathogens of P. cuspidatum extracts, were reported
for several decades [93], without investigating the compounds, or classes of compounds
responsible for this activity. Foodborne pathogens are represented by a large variety of
microorganisms that lead to food spoilage and foodborne illnesses.

Lately, there has been an increase in interest, both from consumers and food producers,
for safe food that is produced without using synthetic preservatives. Natural products
with antimicrobial properties have been identified with plants as their main sources [64].
An excellent candidate for extracts with high antibacterial activity and, thus, important
for food preservation is P. cuspidatum. A study by Shan et al. (2008), demonstrated that
the major classes of constituents in the roots of P. cuspidatum are stilbenes and hydrox-
yanthraquinones [64]. The extract was tested on five foodborne pathogenic or faecal indi-
cator bacteria, namely, Bacillus cereus (B. cereus), Listeria monocytogenes (L. monocytogenes),
Staphylococcus aureus (S. aureus), Escherichia coli (E. coli) ATCC25922, and Salmonella anatum
(S. anatum). Results were reported using MIC, MBC, and observation of the bacterial mor-
phology under scanning electron microscope of the incubated cells. Antibacterial results of
the extract were verified using pure standards of the main compounds found in the root ex-
tract of P. cuspidatum, indicating high antibacterial activity for all of them. Except for E. coli,
all other bacteria used in the study presented a high diameter of inhibition zone (DIZ)
as average value compared to pure standards (6.4–20.2 mm compared to 15.2–35.4 mm).
However, MIC and MBC were much better when compared to pure standards for Gram
positive bacteria (B. cereus, L. monocytogenes), due to the synergism between compounds
(156.3 µg/mL for L. monocitogenes compared to 312.5–625 µg/mL for pure standards and
312.5 µg/mL for B. cereus compared to 625 µg/mL for pure standards, excepting resvera-
trol with the same concentration as the extract). Another in vitro study demonstrated the
potent inhibitory effect of P. cuspidatum and specifically of emodin against Gram-negative
Haemophilus parasuis [113]. Therefore, the results indicated a MIC concentration of 32 g/mL
and a MBC value of 64 g/mL for emodin.

Magacz et al. (2021) [95] proved the antibacterial effects of three Reynoutria species
against Streptococcus mutans (S. mutans) and the positive impact on the prevention of caries
formation. Due to the fact that extracts of the rhizomes of Reynoutria species are a rich source
of polyphenols, they can balance the lactoperoxidase cycle, acting as activating/inhibiting
agents for the antibacterial activity of the enzyme. The results showed that R. japonica
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extract exhibited the strongest inhibitory effect against the analysed microorganism us-
ing the acetone extracts (MIC 0.15 mg/mL), while for the bactericidal activity R. Japonica
revealed a strong activity for the ethyl acetate fraction and acetone (MBC 0.60 mg/mL).
Moreover, the authors observed that the content of polyphenols is a key factor for the
presence of its antimicrobial activity, as the water fraction in the case of R. japonica re-
vealed a very week inhibition against S. mutans (MIC 1.20 mg/mL) compared to the other
studied fractions. On the same page, Nawrot-Hadzik et al. (2019a) [63] observed the
dependence between the polyphenols and the antiseptic activity when testing the bacterial
viability of the same three Reynoutria species (R. Japonica, R. sachalinensis and R. bohemica)
against Gram positive bacteria (Streptococcus mutans, Streptococcus salivarius, Streptococcus
sanguinis, and Streptococcus pyogenes). Compared to the other three species, R. japonica
extract had the highest antibacterial activity against S. mutans (mean MIC 1000 µg/mL
and MBC 2000 µg/mL), mainly because of the abundance of stilbene, aglycones and
anthraquinone aglycone, respectively. The latest mentioned studies and their results in-
dicate that R. japonica can be considered a useful antimicrobial agent for the profilaxy of
dental pathogens.

3.2. Antioxidant Activity

The positive therapeutic effects of the major compounds found in F. Japonica, namely
polyphenols, are associated with its antioxidant capacity and therefore can be related to the
modulation of a range of receptors and metabolic pathways. [105]. Therefore, as inhibitors
of free radicals, they may cause oxidative reactions in the human body and thus produce
various disorders, especially cancer [96].

When evaluating antioxidant activity, several methods are used specific for different
matrices. These in vitro methods have certain advantages, but on the other hand, they
also exhibit several disadvantages and limitations when used on plants, foods, or different
extracts. The most used methods are: 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonate)
scavenging activity, (ABTS+) 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical scavenging
activity, Fe3+−Fe2+ transformation assay, ferric reducing antioxidant power (FRAP) assay,
cupric ions (Cu2+) reducing power assay (Cuprac), Folin–Ciocalteu reducing capacity (FCR
assay), peroxyl radical (ROO·), superoxide radical anion (O2·-), hydrogen peroxide (H2O2)
scavenging assay, hydroxyl radical (OH·) scavenging assay, singlet oxygen (1O2) quenching
assay, nitric oxide radical (NO·), oxygen radical absorbance capacity assay (ORAC), to
mention the most important.

Considerable studies regarding the antioxidant activity of F. Japonica have been car-
ried out worldwide. For instance, Lachowicz and Oszmiańsk (2019) [58] compared the
antioxidative activity between F. japonica and F. sachalinensis plants and their morphological
parts (leaves, stalks, and roots), noting that the average values in F. japonica were higher
than in F. sachalinensis. As for the morphological parts, the lowest level of antioxidative
activity was found in the stalks of both Fallopia sp. samples, measuring an average of 31.79
for the ABTS assay and 14.11 mmol Trolox/100 g DW for the ORAC assay, respectively.
Still, both the leaves of F. japonica and the roots of F. sachalinensis showed the highest
antioxidative activity (81.12/71.22-ABTS assay, compared to 30.42/30.85—ORAC assay-
mmol Trolox/100 g DW). This suggests that the antioxidative capacity of plants can be
attributed to the polyphenolic content of its compounds. Another study showed strong
antioxidant activity for 32 compounds from P. cupidatum samples collected in China [114],
specifically 92.7% inhibition at a concentration of 64 µg·mL−1.

Studies have proven the high correlation between the phenolic content and the an-
tioxidant capacity in P. cupidatum species. For instance, Lazurca et al. (2012) analysed
the phenolic content and antioxidative activity of P. cuspidatum buds from Romania in
different solvents. The analysis revealed that the total phenolic content (TPC) ranged from
1048 ± 13 mg GAE/100 g to 1426 ± 15 mg GAE/100 g fresh buds. The results are in agree-
ment with the antioxidant capacity, which varied from 89.034 to 182.483 µM trolox/g fresh
weight buds, using an extraction index of 96.3. This demonstrates a positive correlation
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between the antioxidant activities and the total polyphenol content, but not necessarily
strong enough (r = 0.5274, p < 0.01) [98].

On the other hand, Ardelean et al. (2016) [44] observed by measuring the root extracts
of this plant that the phenolic content was 146.34 ± 5.36, expressed as milligrams of
gallic acid equivalents (GAE)/g extract. This result exhibited a notable correlation with its
antioxidant effect, namely 92%, by using a concentration of 1 mg/mL in ethanol 50%. Other
studies have also explored the phenolic and antioxidant activity of P. cupidatum, showing
higher results, while Chen et al. (2010) identified for the ethanolic extract from P. cuspidatum
roots a phenolic content of 276.78 ± 39.31 mg/mL and 231.73 ± 5.04 mg/mL expressed as
gallic acid equivalents [102], Hsu et al. (2007) remarked that the phenolic and flavonoid
total contents in P. cuspidatum have much higher inhibitory activity against the DPPH
radical (641.1 ± 42.6 mg/g and 62.3 ± 6 mg/g). This latest study proved also an important
antioxidative effect (the half maximal inhibitory concentration—IC50 value of P. cuspidatum
extracts represents 110 µg/mL in free radical scavenging assays, 3.2 µg/mL in superoxide
radical scavenging assays, and 8 µg/mL in lipid peroxidation assays, respectively) [100].

Among all polyphenols, the one most frequently associated with the antioxidative
effect are stilbenes [115], mostly resveratrol [99,103].

Still, there are recent studies which demonstrate that stilbenes may not be the only
contributing factors to the antioxidative activity of Japanese knotweed, and that different
compounds may also play an important role. In this regard, Lee et al. (2011) has pointed
out no correlation between the antioxidative property and resveratrol or emodin [116], as
the smallest extracts of R. japonica showed the higher antioxidant activity.

In addition, Pan et al. (2007) revealed that resveratrol extract from P. cuspidatum
roots had a lower antioxidant activity than ethanol extract [101]. Additionally, recent
contributions confirmed the presence of polydatin and epicatechin in higher proportion
than trans-resveratrol [117,118] showing at the same time a stronger antioxidant activity
than the previously mentioned compound (higher IC50; 7.08 g/mL or 31.02 M) [97].

Moreover, an investigation by Lachowicz et al. (2019) indicated that the greater
radical scavenging capacity of the compounds found in two Reynoutria sp. extracts
(R. japonica and R. sachalinensis) was given by catechins, procyanidin, trans-piceid and
trans-resveratrolside (procyanidins derivatives) [58]. The same direction is confirmed by
Nawrot-Hadzik et al. (2019a) who suggested that procyanidins can also be taken into con-
sideration when speaking about the antioxidant potential of the the Japanese knotweed [63].

These data suggest that Japanese knotweed is a rich source of natural antioxidants that
can be used in human diet as an ingredient in different foods or drugs in order to protect
and prevent chronic diseases (cardiovascular diseases, cancer, diabetes, obesity, etc.).

3.3. Anticancer, Antiproliferative and Apoptotic Activity

The continuous research on cancer prevention and treatment has led to some no-
table studies that have revealed the chemopreventive role of the Polygonum genus, notably
P. cuspidatum. As cancer is the result of some biochemical processes that produce oxidative
damage and possible death to the cells, the phenolic and metabolite compounds found in
the roots of this alien species plant have been screened in order to demonstrate their antipro-
liferative and apoptotic activities. The study carried out by Xie et al. (2014) [108] revealed
that one of the active constituents of P. cuspidatum, namely resveratrol, had remarkable
inhibition effects on three human hepatoma cell lines (HepG2, SMMC–7721 and BEL-7402),
using concentrations ranging from 2.5 to 40 µM in a time-dependent manner. Among the
tested cell lines, SMMC-7721 was the most sensitive to the resveratrol action. Moreover, the
study also confirmed that resveratrol could prevent the apoptosis of caspase 3 and caspase
9, the main cells involved in this process. The antitumor effects of this compound were
also proven in vivo, as doses of 10 and 30 mg/kg of resveratrol could significantly reduce
tumour growth (41.7 ± 12.45% and 60.9 ± 9.9%, respectively). The extracts of the same
plant, and once again resveratrol as the main compound, proved its efficiency in inhibiting
the human oral cancer cells in a study carried out by Wang et al. (2019). Thus, the cisplatin-
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resistant cancer cells originated from a human tongue cancer cell line CAL 27 and were
exposed to 150 µg/mL P. cuspidatum extract for different hours. The results have shown
that for 48 h, the half maximal inhibitory concentration of the plant extract in the tested
cancer cells was 110.34 ± 8.21 µg/mL [118]. Other antiproliferative effects of P. cuspidatum
roots against human hepatocellular carcinoma cells of HepG2 and SMMC-7721 were inves-
tigated by Jiao et al. (2018) who observed that besides the cell apoptosis effects, polydatin
could inhibit cell proliferation, invasion, and migration [106]. Furthermore, other research
confirmed the chemopreventive properties of the juglone analogue 2-ethoxystypandrone
isolated from the P. cuspidatum roots [107]. This compound is considered to be an inhibitor
of the signal transducer and activator of transcription 3 (STAT3), an important constituent
of hepatocellular carcinoma. Therefore, the study made by Li et al. (2019) demonstrated
that 2-Ethoxystypandrone was able to block the STAT3 activation (7.75 ± 0.18 µM, using
50% concentration) to induce the death of hepatocellular carcinoma and to inhibit the
proliferation of cancer cells (IC50 = 2.70 ± 0.28 µM) [107].

These dates are consistent with the idea that the extracts of the Japanese knotweed have
shown promising healing effects on various types of cancer by inhibiting the growth and
progression of cancer gene cells in different stages and in a time/dose-dependent manner.

3.4. Anti-Inflammatory and Antiviral Activity

Some bioactive compounds from the extracts of Japanese knotweed exhibit anti-
inflammatory and antiviral activities. The anti-inflammatory and protective activities
of P. cuspidatum on Dry Eye Disease (DED) was investigated by Park et al. (2018) with
both in vitro and in vivo analysis. It was revealed that the active substances from the
examined plant are represented by caftaric acid, rutin, quercitrin, resveratrol and poly-
datin, the latest being the crucial one. In vivo, these compounds had increased the tear
volumes of the groups treated (using 100 and 250 mg/kg extract) to 5.95 ± 0.71 and
6.49 ± 0.89 mm (p < 0.05), respectively, in contrast to the exorbital lacrimal gland-excised
group (4.33 ± 1.28 mm, p < 0.0001), whereas in vitro it had positive effects on inhibiting
the hyperosmolar stress-induced inflammation by reducing the expression of COX-2,Bax,
nuclear translocation of NF-B through the stimulation of PARP, NF-B and caspase 3 [11].

Furthermore, Yu et al. (2020) gave evidence that resveratrol, emodin-1-O-d-glucoside,
and emodin-8-O-d-glucoside play crucial roles in the anti-inflammatory properties of
P. cuspidatum [69]. In addition, the study revealed that different concentrations of resvera-
trol can have a significant contribution in modulating the inflammatory process, namely
at a concentration of 100 M resveratrol mitigates the TNF- level with the inhibition rate
of 51.55%, while half of the same concentration diminished the pro-inflammatory cy-
tokines production levels of IL-6 and MCP-1 cells by 63.86% and 69.88% [69]. Besides,
Hodgin et al. (2021) revealed that resveratrol extract from P. cuspidatum had a major con-
tribution in attenuating the symptoms of the Gulf War Illness, associated in general with
an inflammatory process. Results showed that by taking a dose of both 200 mg/day or
600 mg/day, the symptoms associated with this illness were diminished. On the contrary,
the other bioactive compounds analysed from another plant (luteolin and fisetin) showed
no significant effects [111].

As for the antiviral effects, several studies confirmed that the bioactive compounds
extracted from the Japanese knotweed rhizomes possess high curative properties against
viral microorganisms. For example, Liu et al. (2013) [109] underlined the positive effect
that the roots and rhizomes of P. cuspidatum has on treating the Coxsackievirus B4 (CVB4)
infection. Specifically, emodin was explored through in vivo and in vitro assays, suggesting
that it can lessen both the replication of Hep-2 and CVB4 cells. Emodin together with ethyl
acetate subfraction F3 from P. cuspidatum were also indicated to slow down the Epstein–
Barr virus (EBV) lytic cycle in a dose-dependent manner (5.94 µg/mL and 4.83 µg/mL,
respectively, at a half maximal effective concentration [110].

Zhang et al. (2015) examined the cytotoxicity of both resveratrol and polydatin
on Enterovirus 71 (EV71) infected cells, suggesting that while resveratrol has inhibition
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activity against the production of inflammatory cytokines of EV71 (IC50 of 21.36 µg/mL
at a concentration of ≤40 µg/mL), polydatin revealed a lower antiviral activity (IC50 of
979.66 µg/mL, at a concentration of 300 µg/mL) [119].

The report made by Nawrot-Hadzik et al. (2021) showed significant effects of the bu-
tanol fractions from R. japonica and R. sachalinensis (especially vanicosides) on the inhibition
of SARS-CoV-2 Mpro cells (7.877 g/mL, 4.031 g/mL, respectively at IC50). However, these
constituents may act in synergy with other compounds such as polymerized procyanidins
that can also exhibit a strong inhibitory activity on the antiviral pathway, as suggested by
previous authors [112].

3.5. Other Bioactive Properties

In addition to the aforementioned biological activities, Japanese knotweed possesses
some other notable therapeutic activities. For instance, its cardioprotective effects were
mentioned in studies focusing on hyperlipidaemia [120], ventricular remodelling [121],
ischemia-reperfusion injury [122], myocardial infarction [123], where different compounds
of P. cuspidatum (resveratrol and polydatin) were proven to improve the functions and
mechanisms of some enzymes responsible for the good functioning of the heart. Moreover,
promising results with regard to the neuroprotective effects of this plant were reported
in animal models. Resveratrol exhibited positive effects on ameliorating anxiety [124]
and alleviating depression activity by decreasing the malonaldehyde marker for oxidative
stress, using 15 mg/kg/day extract [125]. Importantly, it has also been implicated in inhibit-
ing the progression of Alzheimer Disease through the multiplication of neurons [126]. In
addition, Liu et al. (2016) found out that resveratrol can reduce depression symptoms such
as sucrose preference, lipid peroxidation, superoxide dismutase, immobility time and loco-
motor activity [127]. The same results have been confirmed by Wang et al. (2016) [114] and
Moore et al. (2018) [128]. Polydatin [72], emodin-8-O-β-d-glucoside [70] and 2-methoxy-6-
acetyl-7-methyljuglone [129], have also shown impressive results in improving the biologi-
cal parameters for cognitive deficits or neuromuscular coordination.

The anti-diabetic activity of F. Japonica was demonstrated by its ability to scavenger the
methylglyoxal reactions, responsible for the apparition of this chronic disease [130]. Several
studies in this direction suggested its protective effects regarding diabetes by ensuring
better glycaemic control [117,131–134]. Moreover, the extract of P. cuspidatum was described
to be beneficial for gastrointestinal disorders, notably ulcers [135], as well as in respiratory
dysfunctionalities [136] or obesity [121,137,138].

Subsequently, the positive effects on reproductive system disorders were outlined
for some compounds found in the roots of Japanese knotweed. In particular, convincing
evidence indicates that this invasive alien plant may be an ideal remedy for hormone
replacement [139] through the enhancement of the oestrogen-sensitive cells.

All the described bioactive properties of P. cuspidatum confirm, once again, that this
plant can be a valuable nutraceutical source for human health.

However, besides the positive activities of the biological active compounds of F. japonica,
we cannot ignore the possible toxicity that may occur. In this regard, resveratrol has
been revealed to exert undesirable effects depending on the dosage intake, the most
common being abdominal discomfort, diarrhoea and nausea [140–143], while emodin
inhibited human sperm functions [144]. Therefore, it is important to underline that further
investigations and clinical trials are required in order to establish quantitative assessment
of the standardized dose that can be used in order to maintain the health contribution of
this compound and to avoid side-effects.

4. Future Directions
4.1. Fallopia japonica Flowers: Important Nectar Source

It is worth mentioning that F. japonica is one of the invasive plants that are considered
to produce pollination services [145]. Even if the male flowers are very rare for pollen
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production, its female flowers are a great source of nectar rich fructose and glucose and,
therefore, are intensively visited by pollination-insects, respectively bees [18,146–148].

To better appreciate its importance for beekeeping, but also to determine the massive
unwanted invasion, different modern techniques may be used to detect the presence
of Japanese knotweed. The newest and, at the same time, the most efficient of these
methods, both in terms of actual working time in the field and of the surfaces covered
in a certain time interval, is the technique that uses U.A.V. (Unmanned Aerial Vehicle)
technology, which, depending on the chosen device model and the sensors mounted on it,
can cover areas between 10 ha and 100 ha in less than two hours of flight [149]. During
a photogrammetric operation, all data will be recorded in a series of three-dimensional
coordinates, in a graphical form. From the existing varieties of this type of technology,
drones that successfully combine all the good elements from each major category, in a
single device, seem to be at present, the one best choice, for almost any kind of large surface
work: this being about Fixed Wing Vertical Take-Off and Landing U.A.V. Some of the most
relevant software for capturing or processing photogrammetric data are DroneDeploy,
Agisoft Photoscan, and Pix4D. Referring to the correct choice of sensors to be used in this
field, multispectral cameras are by far the most useful accessories. With their help, different
types of vegetation can be identified and differentiated (either cultivated or wild), and
it is also possible to study and establish their condition [149]. This method may be used
successfully for the mentioned purposes.

It is known that the beekeeping value of F. japonica originates in the Far East, but
as the plant became naturalized in Europe and America, this property was studied in
the respective areas also. The study of Ferrazzi and Marletto (1990) is one of the few
published investigating the beekeeping potential of the plant [146]. Conducted in the
Piedmont region of Italy between 1988 and 1989, the study describes the feeding behaviour
of the bees during the flowering period from July to October. The tiny greenish-white
flowers, placed in axillary spikes, produce a high amount of nectar from non-differentiated
nectar tissue located at the base of the stamens. The flower has eight stamens, presented
regularly shaped anthers, in which however no pollen was ever observed. One of the
few studies on nectar of P. cuspidatum was made in Poland in 2001 [150], where in three
consecutive years (1998–2000), different parameters were measured, during the blooming
period which was determined between 01.09 and 23.09. This period is also in accordance
with different observations made by beekeepers in Romania. As stated by the previous
study, P. cuspidatum (F. japonica) has a good potential for honey production, as the nectar
of Polygonum flowers owns a concentration of sugars ranging from 30 to 56%, and a
potential for honey production of 200–355 kg/ha, with a daily gain of honey production
of 10–15 kg [150]. Still, the nutritional quality of the invasive F. Japonica nectar, compared
with other invasive plant species, is unknown.

Foregoing descriptions of the plant demonstrate a very good source of secondary
metabolites from different chemical classes, from root to the flowers. Nectary glands also
contain high amounts of bioactive compounds from the class of polyphenols, which are
transferred to honey when the bees are collecting the nectar.

On account of this, the management control and eradication of F. japonica has to
be made using sustainable methods that will keep creating a healthy environment and
protection for biodiversity [151]. Thereby, the effects that some methods may have on
insect communities found in invaded locations need to be consciously evaluated [152].

4.2. Knotweed Honey

As known, honey is the only sweet natural product, made by the bees from flower
nectar or from sweet secretions of plants or found on the plants, brought to the hive and
left for ripening and maturation [153]. Depending on the nectar source, honey is classified
as monofloral, multifloral or honeydew honey. Its aspect, taste, and chemical composition,
depends also on the same parameters. Another important factor for honey colour is the
harvest period. For instance, honey collected in spring and early summer is light in colour,
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whereas in mid-summer, the colour of honey transforms to dark yellow, orange or even
brown. The darker the honey colour is, the higher its nutritional value, represented by
vitamins, minerals and secondary metabolites coming from the plants which provide the
sugar source. Japanese knotweed plants belong to the Polygonaceae family, from which dark
coloured honeys are produced (e.g., buckwheat honey). Japanese knotweed honey makes
no exception. It was known and consumed in Japan for many years, from where the plant
is native, but its invasiveness in countless regions of the world made this honey known,
analysed, and appreciated. Knotweed honey is dark in colour (Figure 2), very aromatic,
with a particular flavour, and it is finely and uniformly crystallized during storage [146].
In addition, it has an extremely high content of minerals, but also possesses antioxidant
and antibacterial properties [154].
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It is also known as “bamboo honey” due to the fact that the knotweed plant looks
similar to a bamboo stick. Describing the chemical composition of Italian knotweed,
Ferrazzi and Marletto (1990) stated that it has reduced humidity (17.9%) and medium
electrical conductivity value, although it is very dark in colour (0.432 mS/cm), acidic
pH (3.8) and has low acidity (free acidity 13 meq/kg, lactone acidity 1.25 meq/kg) and a
small value of ash content (0.09%) [146].

A recent study [149] found similar characteristics for knotweed honey from western
Romania. Due to the fact that this type of honey is harvested very late (generally October),
there are few beekeepers in Romania producing it. Three samples were harvested in
different locations from western Romania and analysed for their chemical composition,
showing an average water content (15.6–20.0%) and electrical conductivity characteristic
to multifloral honey (0.541–0.697 mS/cm), high diastazic index (11.52–18.74 DN) and
low HMF content (0.29–9.93 mg/kg). Fructose and glucose are the main sugars found
in knotweed honey, having similar values (38.9–39.8% fructose and 29.3–35.2% glucose).
Therefore, the crystallization process installs very quickly from the time of harvesting.
Other sugars identified were sucrose, turanose, maltose, trehalose and erlose (values
from 0.13 to 3.18%). An important characteristic for this type of honey is total lipid and
total nitrogen contents. High values (for honey) were quantified, ranging from 0.12 to
0.52% (total lipids) and 0.47–1.05% (total nitrogen). Further studies are necessary for the
identification of amino acids and fatty acids, important compounds of this type of honey.
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High amounts of minerals (K, Ca, Na and Mg) were also quantified in knotweed
honey (6196.8 mg/kg for K). This amount is extremely high compared to other floral
honeys, including buckwheat and manuka honey [155–158]. The polyphenolic content
of honey came from the plants that ensure the nectar and pollen as raw materials for the
bees. As stated before, Japanese knotweed is an important source of secondary metabolites
from the classes of polyphenols, specifically stilbenes and anthraquinones. Total pheno-
lic content of knotweed honey ranged between 100 and 195 mgGAE/100 g honey and
20–55 mgQE/100 g content of flavone/flavonols [154]. These values were higher compared
to other dark coloured honeys, including buckwheat honey [159–162].

4.3. Comparison with Other Honey Types from the Same Plant Family

F. japonica (R. japonica, P. cuspidatum) belongs to the Polygonaceae family. According to
Sanchez et al. (2009) [163] and Burke et al. (2010) [164], the phylogenetic tree for the Fallopia,
Reynoutria and Polygonum is: Polygonaceae, Polygonaceae, Polygonum, Fallopia and Reynoutria.
Searching for studies describing the chemical composition of Japanese knotweed honey,
we could not find extensive literature, although this type of honey has been produced
and consumed for many years, first in Japan, where the plant is native and later, all over
the world where it has spread and maintained its common use. The few studies were
compared to other dark coloured honeys, including buckwheat (from the same plant
family) or manuka honey.

Manuka honey is known for its medicinal value more than for its taste, which is not
appreciated by many consumers. It has a dark colour when fluid and freshly harvested, and
its colour intensity decreases when crystallization occurs [155,165]. The smell is described
as “pungent” most of the time and is not consumed for its aroma. Although, the health
properties of dark honeys are by far superior to light colour honeys. From the chemical
composition of honey, different classes of compounds found in very small amounts, deter-
mine their bioactive properties. The synergism between phenolics, organic acids, enzymes
or peptides seems to be responsible for these properties. In the case of manuka honey, its
bioactive properties are related to Unique Manuka Factor (UMF), representing the con-
tent of methylglyoxal and phenolic content. According to different studies [155,166–169],
manuka honey contains high amounts of caffeic, p-coumaric, syringic acids, quercetin,
luteolin, pinocembrin, isorhamnetin, kaempferol, chrysin, galangin, pinobanksin, methyl
syringate, leptosin, glyoxal, and methyl glyoxal. The synergism between these classes of
compounds present high antioxidant and antibacterial activity [170].

Buckwheat honey is produced in North America, but also in Europe, China and
Russia. The main producers in Europe are Poland, Ukraine, the Netherlands, Germany
and Moldova. This honey is characterised by a dark purple colour, almost black, with
a malty aroma and strong animal odour [171]. Many scientific studies have shown the
high antioxidant and antibacterial properties of this honey [172], especially its efficacy in
respiratory tract infection. The study by Pasini et al. (2013) [171] highlighted the presence
of p-hydroxybenzoic, p-coumaric, ferulic, syringic and caffeic acid, also abscisic acid, and
quercetin, apigenin, pinobanksin, kaempferol, isorhamnetin, chrysin, pinocembrin and
galangin in buckwheat honey. For this reason, the bioactive properties of this honey type
are extremely high.

Furthermore, a study by Dzugan et al. (2020) [173], demonstrated that Polish buck-
wheat honey possesses the strongest antibacterial and antioxidant properties, because it is
registered as the darkest Polish honey and, according to other scientific studies, the darker
the honey, the higher the bioactive properties. Earlier in 2018, Deng et al. [157] compara-
tively evaluated the cellular antioxidant activity of buckwheat and manuka honey samples,
using a cell-based model of HepG2 cells. The cellular antioxidant activity can determine
the antioxidant activity more accurately than chemical-based methods, due to the fact
that it takes into consideration the bioavailability, distribution of bioactive compounds
in the interested biologic system and the cellular uptake. The EC50 value of buckwheat
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honey was lower than of manuka honey, indicating a potent cellular antioxidant activity
for buckwheat honey.

Unpublished studies by Bobis et al. (2018) [174], presented at the Symposium Apimed-
ica and Apiquality (Sibiu, Romania), highlighted the bioactive properties of knotweed
honey (F. japonica), identified using HPLC, p-OH-hydroxybenzoic acid, syringic acid,
p-coumaric acid, ferulic and t-cinnamic acid in honey samples from Romania. Addition-
ally, a high percentage of inhibition of the DPPH radical was determined (61.69–71.75%),
higher than registered for honeydew honey. Regarding the antibacterial activity, Japanese
knotweed honey from Romania inhibits the growth of S. aureus, and is effective also on
Staphyloccocus pseudointermedius, Bacillus cereus and Salmonella enteritidis.

Further studies of Japanese knotweed honey samples produced in different loca-
tions are needed to determine its chemical composition, biological properties and its best
valorization.

5. Conclusions

Japanese knotweed, an all invasive plant species, represents a challenge because of
its ecological and economic impact. Nevertheless, its chemical composition (from roots
to leaves) has revealed the presence of unique active compounds that are reputable for
their extensive variety of physicochemical features and biological activities. The aim of
this review was to provide a comprehensive overview on the high therapeutic potential
of Japanese knotweed by emphasizing its main compounds and their biological activities.
Specifically, in vivo and in vitro studies on the chemical composition of F. japonica were
covered, identifying resveratrol, emodin and polydatin as the main compounds that
can exert therapeutic effects (antibacterial, antioxidant, anti-inflammatory and anticancer
effects, among the most important ones). In addition, some future directions were proposed
in order to valorise this troublesome plant for its nutraceutical and functional characteristics.
Therefore, using F. japonica by exploiting its pharmacological properties through sustainable
approaches such as beekeeping can lead to new and innovative opportunities, from which
local communities and biodiversity can take advantage and, consequently, may reduce
its negative impact. However, it should be noted that the management, control and
eradication of F. japonica has to take into consideration the possible effects that the use of
some insecticidal methods can have on the pollinators found in the invaded locations. Still,
further research is needed to support the promising potential of this invasive plant as a
honey source and to assess its health-supporting properties.
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63. Nawrot-Hadzik, I.; Ślusarczyk, S.; Granica, S.; Hadzik, J.; Matkowski, A. Phytochemical Diversity in Rhizomes of Three
Reynoutria Species and their Antioxidant Activity Correlations Elucidated by LC-ESI-MS/MS Analysis. Molecules 2019, 24, 1136.
[CrossRef]

64. Shan, B.; Cai, Y.-Z.; Brooks, J.D.; Corke, H. Antibacterial properties of Polygonum cuspidatum roots and their major bioactive
constituents. Food Chem. 2008, 109, 530–537. [CrossRef]

65. Mattio, L.M.; Dallavalle, S.; Musso, L.; Filardi, R.; Franzetti, L.; Pellegrino, L.; D’Incecco, P.; Mora, D.; Pinto, A.; Arioli, S.
Antimicrobial activity of resveratrol-derived monomers and dimers against foodborne pathogens. Sci. Rep. 2019, 9, 19525.
[CrossRef]
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85. Vrchotová, N.; Bozena, S.; Tříska, J. The Stilbene and Catechin Content of the Spring Sprouts of Reynoutria Species. Acta
Chromatogr. 2007, 19, 21.

86. Yi, T.; Zhang, H.; Cai, Z. Analysis of Rhizoma Polygoni cuspidati by HPLC and HPLC-ESI/MS. Phytochem. Anal. 2007, 18, 387–392.
[CrossRef]

87. Bensa, M.; Glavnik, V.; Vovk, A.I. Leaves of Invasive Plants—Japanese, Bohemian and Giant Knotweed—The Promising New
Source of Flavan-3-ols and Proanthocyanidins. Plants 2020, 9, 118. [CrossRef]

88. Alperth, F.; Melinz, L.; Fladerer, J.-P.; Bucar, F. UHPLC Analysis of Reynoutria japonica Houtt. Rhizome Preparations Regarding
Stilbene and Anthranoid Composition and Their Antimycobacterial Activity Evaluation. Plants 2021, 10, 1809. [CrossRef]

http://doi.org/10.1177/1934578X1801300923
http://doi.org/10.3390/molecules24061136
http://doi.org/10.1016/j.foodchem.2007.12.064
http://doi.org/10.1038/s41598-019-55975-1
http://doi.org/10.12659/MSM.913855
http://doi.org/10.1186/1476-9255-5-1
http://www.ncbi.nlm.nih.gov/pubmed/18261214
http://doi.org/10.3390/nu11112792
http://doi.org/10.1016/j.jpba.2020.113839
http://doi.org/10.1016/j.ejphar.2007.08.033
http://doi.org/10.3390/molecules26113168
http://www.ncbi.nlm.nih.gov/pubmed/34073163
http://doi.org/10.1016/j.phymed.2012.03.002
http://www.ncbi.nlm.nih.gov/pubmed/22483554
http://doi.org/10.1016/j.biomed.2012.03.003
http://doi.org/10.1186/1479-5876-11-264
http://doi.org/10.3390/ijms17060893
http://doi.org/10.1016/j.canlet.2018.04.017
http://doi.org/10.1016/j.ancene.2020.100240
http://doi.org/10.3897/neobiota.63.58918
http://doi.org/10.4172/2573-4555.1000193
http://doi.org/10.3390/plants8100384
http://www.ncbi.nlm.nih.gov/pubmed/31569417
http://doi.org/10.1021/jf4019239
http://www.ncbi.nlm.nih.gov/pubmed/23742076
http://doi.org/10.1007/s00442-008-1054-6
http://www.ncbi.nlm.nih.gov/pubmed/18491146
http://doi.org/10.2478/s11535-013-0267-9
http://doi.org/10.1016/j.chroma.2005.08.008
http://doi.org/10.1002/pca.993
http://doi.org/10.3390/plants9010118
http://doi.org/10.3390/plants10091809


Plants 2021, 10, 2621 19 of 22

89. Bunea, A.; Andjelkovic, M.; Socaciu, C.; Bobis, O.; Neacsu, M.; Verhé, R.; Van Camp, J. Total and individual carotenoids and
phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chem. 2008, 108, 649–656. [CrossRef]

90. Chandra-Hioe, M.V.; Rahman, H.H.; Arcot, J. Lutein and β-Carotene in Selected Asian Leafy Vegetables. J. Food Chem. Nanotechnol.
2017, 3, 93–97. [CrossRef]

91. Glavnik, V.; Vovk, I. High performance thin-layer chromatography–mass spectrometry methods on diol stationary phase for the
analyses of flavan-3-ols and proanthocyanidins in invasive Japanese knotweed. J. Chromatogr. A 2019, 1598, 196–208. [CrossRef]
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