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Abstract: Bisphenol A (BPA) is an organic chemical compound widely used for manufacturing
plastics. BPA exposure originates principally from the diet, but it can also originate from dermal
contact. In over 90% of individuals, including pregnant women, BPA is detectable in several body
fluids. The effects of this exposure on the fetus are under active investigation in several research
laboratories. The aim of our work was to study the impact of prenatal exposure to BPA in the liver of
rat fetuses from a sex-dependent point of view. We particularly investigated the effects of prenatal
BPA exposure on hepatic lipids because of their crucial role, not only for the liver, but also for the
whole-body functions. Our results demonstrate that the liver of rat fetuses, in utero exposed to a very
low dose of BPA (2.5 µg/kg/day), displays significant modulations with regard to proteins involved
in cholesterol and fatty acid biosynthesis and trafficking. Moreover, an impact on inflammatory
process has been observed. All these effects are dependent on sex, being observable only in female rat
fetuses. In conclusion, this work demonstrates that maternal exposure to BPA compromises hepatic
lipid metabolism in female offspring, and it also reveals the perspective impact of BPA on human
health at doses currently considered safe.

Keywords: acyl coenzyme A carboxylase; bisphenol A; cholesterol; fatty acids; 3-hydroxy 3-
methylglutaryl coenzyme A reductase; fetuses; liver

1. Introduction

Bisphenol A (4,4-isopropylidenediphenol, BPA) is a plasticizer material particularly
adapted for the industrial production of phenol and epoxy resins and polycarbonate
plastics. Because of its high resistance to a broad range of temperatures and acids, it
is abundantly used in manufacturing commonly used items [1], making BPA exposure
unavoidable in daily life. Indeed, over 90% of individuals have a detectable amount of BPA
in their body fluids [2]. BPA exposure occurs mainly through environmental pollution,
inhalation, ingestion, or dermal contact. The most important route of intake is diet, as under
certain physical or chemical conditions, the BPA present in the containers used for the stor-
age of food and drinks can be released [3]. After ingestion, BPA is promptly metabolized
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and produces inactive metabolites, such as BPA-glucuronide, BPA-sulfate, and is finally
excreted primarily through feces (56–82%) [4]. Nevertheless, levels of free BPA have been
measured in the urine of adults and children [5], in the serum of pregnant women [6], as
well as in amniotic fluid, umbilical cord blood [7], and breast milk [8]. Concerns have arisen
about the presence of BPA in maternal and fetal fluids, which results in BPA exposure dur-
ing pre- and perinatal periods, with long-term hazardous consequences on the offspring’s
development and health [9,10]. Growing epidemiological studies reveal a correlation
between urinary levels of BPA and increased risk for onset of metabolic disorders, e.g.,
type 2 diabetes, obesity, metabolic syndrome, and cardiovascular disease [11,12]. Moreover,
studies carried out on animals have reported several disturbances in the metabolic profile
due to exposure to low doses of BPA, including increased liver fat [13] and enhanced serum
triglyceride and cholesterol levels in rodents [14]. In addition, early exposure to BPA has
been shown to impair glucose metabolism and alters metabolic gene expression in male
mice [15]. Notably, modified lipid metabolism has been observed not only in the liver and
plasma of experimental models but also in the brain. In particular, it has been demonstrated
that maternal exposure to low-dose BPA, via drinking water, affects cholesterol metabolism
and critical signaling pathways in the brain of rat fetuses [16].

The liver is the key organ for the maintenance of lipid homeostasis. 3-Hydroxy-3-
methylglutaryl-CoA reductase (HMGCR) and acetyl-CoA carboxylase (ACC) are the key
and rate-limiting enzymes for cholesterol and fatty acid synthesis, respectively [17,18].
Lipid metabolism is primary regulated by a family of transcriptional factors, named sterol
regulatory element binding proteins (SREBPs). Notably, SREBP1 is principally committed
to the transcription of genes encoding enzymes involved in fatty acid metabolism, while
SREBP2 mainly regulates the proteins controlling cholesterol metabolism [19]. Briefly, a
low intracellular content of sterols induces the translocation of SREBP precursors from the
endoplasmatic reticulum (ER) to the Golgi body, where they are proteolytically cleaved
and form the active NH 2-terminal fragment (nSREBP). nSREBP enters the nucleus and
induces the transcription of acc and hmgcr genes [20], as well as genes of receptors involved
in lipid transport into and out of the liver: low-density lipoprotein receptor (LDLR) and
scavenger receptor class B type 1 (SR-B1) [21,22].

Several studies have reported that the harmful effects of BPA on human health also
rely on the exacerbated activation of inflammatory response [23,24], and the upregulation
of pro-inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor- α
(TNF-α) [25]. Importantly, inflammation is the trigger for many chronic diseases, including
diabetes, dyslipidemia, and cardiovascular disease [26,27]. It is accepted that gestational
exposure can induce permanent modification in cells, organs, and tissues, without manifes-
tation of symptoms until later in life. A plethora of studies has investigated consequences
of early exposure to BPA in the post-natal period, while, to our knowledge, the possible
presence of changes during fetal life remains poorly investigated. Thus, this work aims at
studying the effects of maternal exposition to BPA on hepatic lipid metabolism in male and
female fetuses.

2. Materials and Methods
2.1. Chemicals

BPA is an organic compound characterized by two hydroxyphenyl groups linked by a
methyl bridge, belonging to the class of phenols (Figure 1). BPA (≥98% purity) used in this
work was purchased from Sigma Aldrich (Milan, Italy).
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2.2. Animals and Treatment

Experimental procedures were conducted in accordance with the European Guidelines
for the care and use of laboratory animals (Directive 26/2014/EU) and were approved
by the local ethical committee of the University of Calabria and by the Italian Ministry of
Health (license n.74/2018-PR).

Female Sprague Dawley rats 8 weeks old were used. Animals were housed individ-
ually in the animal care facility and maintained in a regular light cycle (12 h light/dark
photoperiod) and at 20–22 ◦C room temperature; food and water were ad libitum provided.
Rats (six animals for group) were administered BPA (2.5 µg/kg/day) or its vehicle, ethanol
0.05% (Control, CTR) in drinking water, starting from 30 days before coitus and continued
until gestational day (GD) 20. The actual intake was determined on the basis of the daily
difference of drinking water volume.

A female in proestrus and a fertile male were placed overnight, and the following
morning a vaginal smear was performed to detect spermatozoa, which confirms the first
day of pregnancy (GD1). Animals were euthanized on GD 20 with isoflurane inhalation.
Blood was collected to prepare the serum, and the uterus was removed. Fetus dissection
and sex assessment were performed as previously described [16]. Liver tissues collected
from each fetus were stored at −80 ◦C.

2.3. Measurement of Triglycerides and Cholesterol, HDL, and LDL Content in Serum and
Liver Samples

The measurements of triglycerides and total, LDL, and HDL cholesterol in serum
samples of pregnant rats were performed with an enzymatic method (Cobas Integra
400 Plus, Roche Diagnostics, Rotkreuz, Switzerland), with intra- and inter-assay coefficients
of variation <2%. The triglyceride and cholesterol amount in fetal liver tissue were extracted
and measured by the Triglyceride Quantification kit-MAK266 (Sigma-Aldrich, Milan, Italy)
and Cholesterol Quantitation Kit-MAK043 (Sigma Aldrich, Milan, Italy), respectively,
according to the manufacturer’s instructions. Briefly, for cholesterol measurement, lipids
were extracted from tissue (10 mg) with 200 µL of chloroform:isopropanol: Nonylphenyl-
polyethylene glycol solution (Nonidet P-40)(7:11:0.1), while triglycerides were solubilized
from tissue (100 mg) using 1 mL of 5% Nonidet P-40 solution. Cholesterol esterase or lipase
enzymes were added according to the manufacturer’s instruction in 50 µL of sample as the
final experimental volume. In the presence of cholesterol esterase, total cholesterol, both
free cholesterol and cholesteryl esters, was determined by enzymatic assay that resulted in
a colorimetric product. Similarly, adding lipase enzyme, triglycerides were transformed to
free fatty acids and glycerol, which, when oxidized, generate a colorimetric compound. The
amount of cholesterol or triglycerides present in the samples was revealed by determining
the absorbance at 570 nm, with Tecan Spark microplate reader (Männedorf, Switzerland).
All samples were run in duplicate.

2.4. Measurement of Tumor Necrosis Factor Alpha (TNF-α) in Liver Samples

Slices of liver samples from rat fetuses were homogenized in homogenization buffer (Su-
crose 0.1 M, potassium chloride (KCl) 0.05 M, potassium dihydrogen phosphate (KH2PO4)
0.04 M, ethylenediaminetetraacetic acid (EDTA) 0.04 M, pH 7.4). TNF-α concentration
was evaluated by enzyme-linked immunosorbent assay (sandwich ELISA-assay), using
the TNF-α Duo-Set kit (R&D, DBA, Milan, Italy), diluting each homogenate 1:50 [28] and
revealed by Multiskan FC Microplate Photometer (Thermo Scientific, Monza, Italy). Data
are expressed as ng of TNF-α per mg of proteins.

2.5. Total Lysate and Membrane Preparation for Western Blot Analysis

Fetal hepatic tissue was homogenized and sonicated in 1:10 w/v buffer containing
sucrose 0.1 M, KCl 0.05 M, KH2PO4 0.04 M, EDTA 0.04 M, pH 7.4, plus 1:1000 protease
inhibitor cocktail and 1:400 phosphatase inhibitor cocktail, Sigma-Aldrich, Milan, Italy
using VCX 130 PB (Sonics, Newtown, CT 06,470, USA) and centrifuged at 12,200× g for
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10 min at 4 ◦C to yield total lysate. Membrane fractions were isolated by centrifuging
the total lysates at 24,000× g for 1 h at 4 ◦C. Pellets were collected and homogenated by
sonication. Proteins were quantified using the method from Lowry [29]. Laemmli buffer
was used to dilute aliquots of homogenate samples, boiled for 5 min, and subjected to
Western blot analysis.

2.6. Immunoblotting

Equal amounts of proteins (30 µg) from samples were separated by sodium dodecyl
sulfate polyacrylamide denaturing gel electrophoresis (SDS-PAGE) (BioRad, Milan, Italy),
using 7% or 13.5% polyacrylamide gels depending on the mw of the tested protein, as
already described [16]. The following primary antibodies were tested: HMGCR (Abcam,
ab242315, dilution 1:1000), ACC (Sigma-Aldrich, Milan, Italy SAB4501396, dilution 1:500),
SR-B1 (Abcam, Cambridge, UK, ab52629, dilution 1:2000), LDLR (Abcam, Cambridge,
UK, ab30532, dilution 1:1000), LRP1 (H80) (Santa Cruz Biotechnology, Santa Cruz, CA,
USA, sc-25469, dilution 1:1000), ABC1 (AB.H10) (Santa Cruz Biotechnology, sc-58219,
dilution 1:1000), SREBP2 (Abcam, Cambridge, UK, ab30682, dilution 1:1000), SREBP1
(Santa Cruz Biotechnology, Santa Cruz, CA, USA, sc-8984, dilution 1:1000), RhoA (Santa
Cruz Biotechnology, Santa Cruz, CA, USA, sc-418, dilution 1:500), HRas (Santa Cruz
Biotechnology, sc-53959, Santa Cruz, CA, USA, dilution 1:500), ERα (D12) (Santa Cruz
Biotechnology, Santa Cruz, CA, USA, sc-8005, dilution 1:1000); p-NFκB p65 Ser536 (Santa
Cruz Biotechnology, Santa Cruz, CA, USA, sc-33020, dilution 1:1000), NFκB p65 (Santa Cruz
Biotechnology, Santa Cruz, CA, USA, sc-372, 1:3000), p-Stat3 (Santa Cruz Biotechnology,
Santa Cruz, CA, USA, sc-8059, 1:1000), and Stat3 (Santa Cruz Biotechnology, Santa Cruz,
CA, USA, sc-482, 1:3000). Antibodies against tubulin or vinculin (Sigma Aldrich, Milan,
Italy, dilution 1:10000), or caveolin-1 (N20) (Santa Cruz Biotechnology, Santa Cruz, CA,
USA, sc-894, dilution 1:3000), were used as loading control. Different housekeeping
proteins were used depending on the molecular weight of the analyzed protein, in order to
avoid confounding signals when detecting the immunoreactivity using the ChemiDoc MP
system., BioRad, Milan, Italy Western blot images were analyzed as already described [16].

2.7. In Vitro HMGCR Degradation Assay

Liver samples (10 mg) were suspended in 100 µL TrisHCl 0.01 M (pH 7.4), sucrose
0.01 M, and then incubated at 37 ◦C for 0, 4, 8, 16, and 24 h. About 30 µg of protein was used
for each reaction. Protein concentration was measured using the method of Lowry [29]. At
the end of incubation, the reaction was blocked by adding a proper volume of Laemmli
buffer. Samples were then analyzed through immunoblotting, as described in Section 2.6.

2.8. Statistical Analysis

Statistical analysis was performed by using unpaired Student’s t test, or by one-way
or two-way analysis of variance (ANOVA), followed by Turkey post-hoc test, as specifically
defined in the corresponding figure legends, and using six animals per experimental group.
Data are displayed as mean ± standard deviation (SD), and p < 0.05 was considered
significant. Statistical analysis and graphical illustrations were performed with GraphPad
Prism v8.0 (GraphPad, La Jolla, CA, USA) for Windows.

3. Results

Pregnant rats were treated with 2.5 µg/kg/day BPA. We chose this very low dose
on the basis of previous experiments carried on in our laboratories [16], demonstrating
that, despite the current tolerable daily intake (TDI) indicated by the European Food Safety
Authority (EFSA) is 4 µg/kg [30], a markedly lower dose exerts deleterious effects.

First, we assessed whether the exposition to 2.5 µg/kg/day of BPA affected pa-
rameters of lipid metabolism in pregnant rats, as it could affect fetal development. As
shown in Table 1 there were no significant differences in serum levels of total cholesterol
(T-C), triglycerides (TG), low-density lipoprotein-cholesterol (LDL-C) and high-density
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lipoprotein-cholesterol (HDL-C) in BPA-exposed animals compared to animals receiving
vehicle (CTR). Moreover, no differences in serum BPA content were detected between
exposed and not exposed dams.

Table 1. Serum free BPA level and lipid levels of dams. Dams received 0.05% ethanol (control group,
CTR) and 2.5 µg/kg/day of bisphenol A (BPA) for one month before and during pregnancy. Values
are expressed as mean ± SD, n = 6 for each experimental group. Differences between groups were
considered as significant at p < 0.05 and were analyzed by unpaired Student’s t test.

Groups Free BPA
(pg/mL)

TC
(mg/dL)

TG
(mg/dL)

HDL-C
(mg/dL)

LDL-C
(mg/dL)

CTR 12.61 ± 0.92 88.00 ± 14.44 299.67 ± 104.86 61.33 ± 10.89 16.50 ± 9.42
BPA 13.98 ± 3.44 70.80 ± 17.41 366.20 ± 142.72 46.00 ± 12.21 10.00 ± 2.55

TC: total cholesterol; TG: triglycerides; HDL-C: high density lipoprotein- cholesterol; LDL-C: low density
lipoprotein- cholesterol.

BPA is a widely recognized endocrine disruptor chemical (EDC) that may interact
with many hormone receptors, thus disturbing their physiological function and increasing
the risk of developing numerous diseases, including metabolic ones [9,10]. Thus, since
we did not detect significant differences in serum BPA content, to ascertain whether BPA
reaches the fetuses, we analyzed estrogen receptor α (ERα), whose protein levels tend to
increase upon BPA stimulation [31]. As expected, the level of ERα significantly increased
in fetuses prenatally exposed to BPA when compared to controls. The enhancement of ERα
was observed in both sexes, with a greater effect in females (Figure 2). Interestingly, the
physiological basal level observed in control fetuses was different between sexes, while
BPA exposure makes ERα levels similar in female and male fetuses.
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Figure 2. Effects of prenatal exposition to 2.5 µg/kg/day of BPA on ERα levels in fetal livers of male
and female rats. Typical Western blot and densitometric analysis of ERα total levels. Vinculin was
used to normalize protein loading. Values are expressed as mean ± SD, n = 6 for each experimental
group. Differences between groups were considered as significant at p < 0.05 and were analyzed with
two-way ANOVA, followed by Tukey post hoc test. ◦◦ p < 0.01 vs. CTR male; ◦◦◦ p < 0.001 vs. CTR
male; *** p < 0.001 vs. CTR female.

To uncover the impact of maternal BPA exposure on fetal lipid metabolism, we
analyzed the levels of key proteins involved in lipid biosynthesis and transport. First, we
checked for the rate-limiting enzymes of cholesterol and fatty acid biosynthesis, namely
HMGCR and ACC, respectively. The results showed that the prenatal exposure to BPA had
a sex-dependent effect. Specifically, the levels of HMGCR protein significantly increased
(Figure 3A), while ACC protein levels significantly decreased (Figure 3B) in BPA-exposed
female fetuses compared to controls.
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Figure 3. Effects of prenatal exposition to 2.5 µg/kg/day of BPA on HMGCR and ACC total levels in
fetal livers of male and female rats. Typical Western blot and densitometric analysis of total HMGCR
(A) and total ACC (B) levels. Tubulin was used to normalize protein loading. Values are expressed
as mean ± SD, n = 6 for each experimental group. Differences between groups were considered as
significant at p < 0.05 and were analyzed with two-way ANOVA, followed by Tukey post hoc test.
* p < 0.05; ** p < 0.01 vs. CTR female.

In agreement with the reduced ACC protein expression observed in BPA-exposed
female fetuses, the level of the nuclear and transcriptionally active fragment of SREBP1
(nSREBP1) was decreased in females, while no effects were observed in male fetuses
(Figure 4A). On the contrary, there was no significant modulation in nSREBP2 protein
levels, either in male or female fetuses prenatally exposed to BPA compared to control
(Figure 4B). The increased HMGCR levels observed in female fetuses could depend on a
reduced degradation rate of the enzyme following exposure to BPA, as shown in Figure 4C.
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degradation rate in fetal livers of male and female rats. The figure shows the typical Western
blot and the densitometric analysis of total HMGCR (A) and total ACC (B). Tubulin was used to
normalize protein loading. Values are expressed as mean ± SD, n = 6 for each experimental group.
Differences were considered as significant at p < 0.05 and were analyzed with two-way ANOVA,
followed by Tukey post hoc test. *** = p < 0.001 vs. CTR female. (C) Representative Western blot and
densitometric analysis of in vitro HMGCR degradation assay in female fetuses (for details see the
main text). Data were analyzed with unpaired Student’s t test, and differences between each time
point were considered as significant at p < 0.05. a = p < 0.001 vs. CTR 4 h; b = p < 0.5 vs. CTR 8 h;
c = p < 0.5 vs. CTR 16 h; d = p < 0.5 vs. CTR 24 h.
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Lipid homeostasis also relies on a series of lipoprotein membrane receptors and
transporters [32]. In this study, we analyzed the effects of prenatal exposure to BPA on
LDLR and Low density lipoprotein receptor-related protein 1 (LRP1), which are two main
receptors involved in LDL-C uptake [33,34]. In addition, the scavenger receptor, class B
type 1 (SR-B1) involved in the uptake of cholesteryl esters from HDL-C [35], and ATP-
binding cassette transporter 1 (ABC1) which mediates the efflux of cholesterol and other
lipids [36,37], were also assessed. The results showed that LDLR levels were not affected
by BPA in male nor in female fetuses (Figure 5A). Conversely, the amount of LRP1, SR-B1,
and ABC1 significantly decreased only in female fetuses exposed to BPA when compared
to controls (Figure 5B–D).
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Figure 5. Effects of prenatal exposition to 2.5 µg/kg/day of BPA on cellular lipid import and export
in fetal livers of male and female rats. The figure represents a typical Western blot and densitometric
analysis of LDLR (A), LRP1 (B), SR-B1 (C), and ABC1 (D). Tubulin and vinculin were used to
normalize protein loading. Values are expressed as mean ± SD, n = 6 for each experimental group.
Differences between groups were considered as significant at p < 0.05 and were analyzed with
two-way ANOVA, followed by Tukey post hoc test. * p < 0.5; ** p < 0.01 vs. CTR female.

As the previous results showed a sex-dependent modulation of proteins involved
in lipid metabolism, the following experiments were performed only in female fetuses.
Analyzing the main end-products of HMGCR and ACC, we found that the cholesterol and
triglycerides contents in the liver of rat fetuses were not changed in fetuses exposed to
BPA compared to controls (Table 2). Notably, the measurement of total and free cholesterol
was similar, indicating that almost all cholesterol was present as free cholesterol, whereas
cholesteryl esters were virtually absent in fetal hepatic tissue.

Besides cholesterol, HMGCR is also responsible to produce isoprenoid intermediates,
which regulate the subcellular localization and activation of small G-proteins [38]. In this
work, the amounts of activated RhoA and HRas were measured in membrane lysates and
considered as prototypes of geranyl-geranylated and farnesylated proteins, respectively.
Prenatal BPA exposure induced the enhancement of both RhoA and HRas membrane
translocation, which is in full agreement with the increased HMGCR protein expression
(Figure 6).
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Table 2. Effects of prenatal exposition to 2.5 µg/kg/day of BPA on hepatic cholesterol and triglyc-
erides content in female fetus rats. Total cholesterol, free cholesterol, and triglycerides were measure
in liver of female fetuses (CTR F = female control; BPA F = female exposed to BPA) n = 6 for each
experimental group. Differences between groups were considered as significant at p < 0.05 and were
analyzed with unpaired Student’s t test.

Lipid Content CTR F BPA F

Total cholesterol
(µg/mg tissue) 2.78 ± 0.41 2.95 ± 1.01

Free cholesterol
(µg/mg tissue) 2.51 ± 0.51 2.70 ± 0.75

Triglycerides
(nmol/mg tissue) 2.03 ± 0.27 1.92 ± 0.16
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Figure 6. Effects of prenatal exposition to 2.5 µg/kg/day of BPA on RhoA and HRas prenylation in
fetal livers of female rats. The figure shows typical Western blot of membrane-bound RhoA (mRhoA)
and HRas (mHRas), and their total content in the lysate of female fetus livers from CTR animals and
the ones prenatally exposed to BPA. The graph represents the ratio of membrane-bound and total
levels of the proteins in liver lysates. Values are expressed as mean ± SD, n = 6 for each experimental
group. Differences between groups were considered as significant at p < 0.05 and were analyzed with
unpaired Student’s t test. ** p < 0.01; *** p < 0,001 vs. CTR.

Previous work demonstrated that RhoA signaling is involved in inflammation pro-
cesses activating the RhoA/nuclear factor (NF)κB p65 pathway [39], and, as already
reported, BPA caused the activation of inflammatory response [23]. Therefore, we won-
dered whether prenatal exposure to 2.5 µg/kg/day of BPA alters the level of inflammatory
markers in liver of female fetuses. To this aim, firstly, the NFkB p65 activation state was
measured. The results showed that BPA exposure significantly increased the phospho-
rylation, and therefore activation, of NFkB p65 (Figure 7A). Successively, we analyzed
Stat3, a protein downstream from NFkB p65 activation, showing it was activated as well
(Figure 7B). Conversely, we did not find significant differences in tumor necrosis factor α
(TNF-α) expression between BPA-exposed fetuses and control groups (Figure 7C).
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4. Discussion

The role of BPA in several metabolic pathologies has been highlighted by many lines
of evidence, although the network of action is still unsolved and represents a challenge to
unveil the underlying molecular mechanisms that can lead to disease onset. The effects
of BPA on animals and human health are strictly dependent on dose, onset, and duration
of exposure [31]. Importantly, the associated danger increases if exposure occurs during
fetal and neonatal life, which are critical developmental windows [40,41]. In this context,
the vulnerability to low doses of BPA exposure is still unclear and deserves further studies
since it represents a hidden danger. Herein, we demonstrate early and significant effects
in the liver following BPA prenatal exposure at a dose almost two times less than the
approved human TDI of 4 µg/kg of body weight/day [28,30], in line with data that we
already reported [16]. After chronic exposure to 2.5 µg/kg/day of BPA during pregnancy,
via drinking water, we did not detect significant amounts of free BPA in the maternal serum,
and we did not record variations in serum levels of T-C, TG, LDL, and HDL in response
to pollutant exposure. However, additional studies are needed to ascertain whether
modulations present in liver of fetuses are consequential to changes in maternal physiology
that we did not evaluate in this study, or to the direct body burden of BPA in fetuses. In this
regard, it has been recently demonstrated in rats that exposing dams to 2.5 µg/kg/day of
BPA causes fetal weight gain and increases the ratio between fetuses and placenta weights,
meaning a greater efficiency of placenta in response to this chemical [42]. It is important
to note that both BPA and its glucuronide can easily pass this placental barrier reaching
the fetuses. Moreover, the limited functionality of fetal UDP glucuronosyltransferase,
which metabolizes xenobiotics [43], permits a remarkable fetal exposure to BPA even
if the maternal one is very low. This fact is supported by the increased levels of ERα
that we found in livers of both male and female BPA-exposed fetuses. Indeed, it is well
known that this EDC can enhance the levels of this hormone receptor [31,44]. Fascinatingly,
BPA exposure increases ERα levels in females making the content the same as those of
males. At the used dose, BPA modulates the main proteins that regulate lipid metabolism
and inflammation in the livers of fetuses, occurring in a sex-dependent manner. Our
results are in line with data reported by other researchers, which indicate that males
and females exhibit differential susceptibility to BPA exposure [45,46]. A wide range of
physiological factors could be responsible for the differences shown between sexes, which
enclose hormonal differences, innate differences in hepatic lipid metabolism, xenobiotic
clearance between males and females, and sex-specific placental responses to external
cues [47–50]. Specifically, in our study, prenatal exposure to BPA is linked to female-specific
increase in HMGCR and decrease in ACC levels, which are key enzymes in the cholesterol
and fatty acid biosynthesis pathways, respectively. The effects of BPA on HMGCR and
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ACC seem to depend on different mechanisms. Particularly, our results suggest that
BPA decreases ACC protein levels through transcriptional mechanisms, according to the
decreased expression of nuclear fragment of SREBP1, which is the active form. These results
contrast previous studies demonstrating that prenatal exposure to BPA trough drinking
water showed enhanced hepatic transcription of Acc and Srebp1c genes in female rats [23],
although this difference may be due to different doses or ages of the experimental models
used; moreover, gene transcription does not always mean protein expression. It has been
demonstrated that maternal exposure to low doses of BPA during gestation and lactation
produces life-long dimorphic modulations in metabolic homeostasis in rat offspring [51,52].

Changes induced by BPA on cholesterol metabolism could be mediated by post-
translational regulatory mechanisms. Indeed, the active fragment of transcription factor
SREBP2 showed unaltered levels in the treated group, while the greater BPA-induced
amount of the HMGCR protein level seems to rely on the reduction in the HMGCR
degradation rate. The hepatic levels of LDLR, another major target of nSREBP2, showed no
modulations in animals exposed to BPA, while the observed female-dependent modulation
of other lipoprotein receptors and transporters (LRP1, SR-B1, and ABC1) may depend
on a homeostatic response to keep the cellular lipid content constant. In fact, despite
the significant modulations of HMGCR and ACC, the tissue content of cholesterol and
triglycerides was not altered in female fetuses exposed to BPA compared to controls.
Interestingly, the absence of unesterified cholesterol content, both in controls and in exposed
female fetuses, indicates that at this developmental stage, the liver does not store cholesterol,
and that BPA does not induce cellular accumulation of this lipid.

Besides cholesterol, HMGCR takes part in the synthesis of other important end-
products, named prenyls. In turn, changes in the availability of these compounds can
affect the protein prenylation state [16,38]. The covalent attachment of prenyls, such as
farnesol and geranylgeraniol, assures membrane anchoring, and thus the activation of the
small GTPases HRas and RhoA, respectively. The obtained data indicate that prenatal BPA
exposure promotes RhoA and HRas translocation to membranes only in female rat fetuses,
in agreement with the increased HMGCR levels. These small GTPases proteins are involved
in a plethora of signal transduction pathways, primarily regulating cytoskeletal dynamics,
and affecting many cellular processes, e.g., cell polarity and migration, vesicle trafficking
and cytokinesis [53]. Nevertheless, recent studies sustained the involvement of HRas in en-
ergy homeostasis. For instance, it is reported that the HRas/ERK pathway plays a relevant
role in the signaling network that regulates hepatic metabolism in response to insulin [54].
Studies carried out in transgenic mice highlighted the causative correlation between a
reduced levels of HRas and the onset of diet-induced obesity, insulin resistance, and liver
steatosis resistance [55,56]. Therefore, alterations in these key proteins could disrupt the
proper function of the liver and enhance the risk for metabolic disorders in adolescence
and adulthood. Moreover, numerous studies reveal that Rho family members contribute
to pro-inflammatory processes [57,58]. As mentioned above, it has been demonstrated
that RhoA signaling is involved in inflammation processes activating the RhoA/NFkB
p65/Stat3 pathway [39]. Moreover, several lines of investigation suggest that the inhibi-
tion of protein geranylgeranylation could be a strategy to cure inflammatory diseases. In
this context, statins, which are irreversible inhibitors of HMGCR, show also a powerful
anti-inflammatory effect counteracting the upregulation of pro-inflammatory molecules
such as interleukin (IL) 1β, IL-6, and tumor necrosis factor alpha (TNF-α) through the
repression of prenylation [58–60]. Therefore, the activation of RhoA together with NFkB
P65 and Stat3, two key transcriptional factors involved in inflammation [61,62] observed in
our study, provided evidence that activation of inflammatory pathways occurs early in life
after exposure to very low doses of BPA, and that this alteration may occur through the
modulation of HMGCR. However, the absence of BPA-induced modulations in TNF-α is
not in agreement with previous findings showing enhanced levels of pro-inflammatory
cytokines, such as IL-6 and TNF-α, upon BPA treatment [23,63]. Once again this can
depend on the different ages, doses, routes of exposition, and experimental models used.
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Despite that BPA exposure is associated with activation of the inflammatory response, the
mechanisms are still not completely understood. It has been hypothesized that BPA can
also trigger Toll-like receptors (TLRs), which in turn may induce Jun N-terminal kinase
(JNK) and NFkB pathways, leading to up-regulation of pro-inflammatory factors [64].

Overall, our findings further strengthen the evidence for sex-specific effects of BPA,
suggesting that exposure to a very low dose of this chemical during prenatal life induces
metabolic alterations in early stages of development. Despite that we examined only
fetuses, we hypothesize that the observed modulations may contribute to the onset of
metabolic diseases late in life. Indeed, the concept of “developmental programming”
strongly supports that stimuli occurring during the intrauterine life can alter the metabolic
pathway and program hepatic development and function [65,66], and these stimuli, includ-
ing BPA exposure, could then govern the response to postnatal lifestyle factors, such as diet.
However, future studies are critical to address this topic and to analyze the mechanisms
that determine the prominent sex differences observed in the hepatic response to BPA.
Moreover, we can also speculate that the observed effects could be even worse in humans.
In fact, pregnancy is longer in humans than in rodents, and fetal vessels in humans are
separated from the mother blood by only one layer of syncytiotrophoblast, while in rodents
there are two layers. This means that human fetuses are exposed to BPA longer and are
less protected [67].
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