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Abstract
Recent years have seen an increasing interest towards similitude methods. In fact, the possibility of testing a scaled model, 
instead of a full-scale prototype, leads to many advantages: financial and time savings, easier experimental setups, etc. 
However, similitudes have drawbacks, too, mainly due to non-scalable effects and partial similitude, which prevent from an 
accurate reconstruction of the prototype response. For these reasons, an alternative method which can bypass these limitations 
is needed. A new method, called VOODOO (Versatile Offset Operator for the Discrete Observation of Objects), is herein 
proposed: it is based on the definition of a transformation matrix which links the outputs of a given linear systems to those 
belonging to another system, which may be a scaled model. The responses are acquired on a discrete number of points for 
both the systems. This work aims at investigating the method’s strengths and limitations of the method. The results show 
that, although VOODOO exhibits some lack of accuracy in off-design conditions due to the loss of spatial correlation, it is 
able to overcome some major restrictions that affect all similitude methods.
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1  Introduction

The use of similitudes has received a lot of attention in engi-
neering field since analytical, numerical, and experimen-
tal analyses can be executed more easily in a transformed 
solution domain. In fact, by defining a set of similitude 
conditions and scaling laws, which allow to reconstruct the 
response of the full-scale prototype from that of a scaled 
model (and vice versa), it is possible to overcome many 
of the disadvantages characterizing experimental tests 
and numerical simulations, such as financial costs, set-up 

management, computational power, etc. An example of the 
benefits and advantages of using scaled models of the origi-
nal prototype are reported by Holmes and Sliter [7] which 
demonstrate how convenient it is, in both financial and tem-
poral terms, to study the complex structural response of a 
conveniently scaled model of the various parts of the vehi-
cle. Precisely, the authors estimate that in terms of cost there 
is a saving between 1/3 and 1/4 of the total cost of the real 
prototype and that in terms of time there is a reduction of 
about 1/3 of the time required for manufacturing and testing 
the prototype.

As reviewed in Casaburo et al [3] and Casaburo et al [4], 
structural similitudes prove to be useful in the investigation 
of many types of structures, as well as perform several types 
of analyses, concerning static and dynamic behavior, impact 
response, and failure analysis. For these purposes, several 
similitude methods have been proposed in literature. For 
example, Rezaeepazhand et al [10] apply STAGE (Simili-
tude Theory Applied to Governing Equations) to predict the 
free vibrations and elastic buckling responses of laminated 
rectangular plates. Adams et al [1] derive sensitivity-based 
scaling laws, represented by power laws of the parameters 
characterizing the system under investigation; then, Luo et al 
[8] combine STAGE and sensitivity analysis to investigate 
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the dynamic similitude of thin-walled structures. Meruane 
et  al [9] apply SAMSARA (Similitude and Asymptotic 
Models for Structural-Acoustic Research Applications) to 
perform a thorough numerical-experimental investigation 
on cantilever flexural plates; the same method is succes-
sively applied by Berry et al [2] to analyse rectangular flex-
ural orthotropic flat panels radiating sound. Other interest-
ing works are proposed by Wang et al [11], that investigate 
the vibrations and sound radiation of underwater complex 
shell structures in similitude, Zhang et al [12], deriving 
scaling laws as weighted powers of scale factors through 
least squares method, and He et al [6] with the application 
of similitudes to an hybrid wave-coupled FE-SEA (Finite 
Element-Statistical Energy Analysis) method to predict the 
medium-frequency vibration response of a satellite solar 
array.

Similitides and models can be classified in several ways; 
the most common approach is to define the type of similitude 
according to the parameters involved in the scaling proce-
dure. This way, one can define:

•	 Geometric similitude: geometrical parameters are scaled, 
model and prototype are identical in shape but different 
in size.

•	 Kinematic similitude: kinematic parameters are scaled 
so that homologous particles are at homologous points 
in homologous times.

•	 Dynamic similitude: homologous parts of the model and 
prototype are subject to homologous net forces.

Another common way in which similitudes and models are 
classified depends on the fulfillment of a set of similitude 
conditions which are analytically derived. Particularly, it is 
possible to define:

•	 True model: all the similitude conditions are satisfied; the 
similitude is said to be complete.

•	 Distorted model: at least one of the similitude condi-
tions is not satisfied. In this case, the similitude is partial. 
Sometimes, the model is also called avatar.

Despite the number of similitude methods formulated 
in recent decades, there are inevitably limitations in the 
applicability of the scaling laws. In fact, while a complete 
similitude makes it possible to accurately reconstruct the 
behaviour of the prototype, the partial similitude does not. 
Moreover, the derivation of similitude conditions and scaling 
laws becomes more convoluted as the system under investi-
gation becomes more complex (laminated or sandwich struc-
tures, particular geometries, etc.). Nonetheless, the problem 
of partial similitudes (models which do not satisfy at least 
one similitude condition) must not be underestimated, since 
distortions are a true issue due to manufacturing errors and 

limits. Therefore, there is a need to research and formulate 
alternative methods to overcome these drawbacks, which has 
led to the definition of VOODOO (Versatile Offset Operator 
for the Discrete Observation of Objects) method, already 
proposed in a work by De Rosa et al [5].

The purpose of this work is to investigate the perfor-
mances of VOODOO in off-design conditions, with specific 
attention to single plates and assemblies of two plates. Thus, 
the article is structured as follows. Section 2 provides the 
theoretical basis underlying VOODOO method. Section 3 
reports the results obtained when VOODOO is applied to 
three test cases. In particular, Sect. 3.1 deals with the appli-
cation of VOODOO to two simply supported plates in design 
conditions and when one plate is excited in a point different 
from a VOODOO point; Sect. 3.2 concerns two assemblies 
of two plates in coplanar and orthogonal configuration; 
finally, in Sect. 3.3 a uniform pressure load is applied on 
a plate to investigate the performances of VOODOO. Sec-
tion 4 draws the conclusions.

2 � The VOODOO Method

The main purpose of VOODOO method is to estimate a 
linear transformation matrix � , called VOODOO matrix, 
between the frequency response vectors of the prototype, 
�(�) , and the model, �(�) (where � is the angular fre-
quency), both subjected to the same load.

For a given number N of excitation/acquisition points, 
equal for both the systems, if �(�) is the frequency depend-
ent transformation matrix between the two systems and if 
the output vector of the prototype is known, it is possible 
to derive the response of the model using the VOODOO 
matrix:

Vice versa, the prototype response can be predicted from the 
model response; assuming �(�) = �−1(�),

The vectors �(�) and �(�) have size [N ×1 ] and the matrix 
�(�) and its inverse have size [N × N].

The VOODOO matrix is constructed as follows. A unit 
force ( F

�,1 = 1 ) is applied to the first point of the proto-
type and the response of all N points ( �(F

�,1=1)

1
 , �(F

�,1=1)

2
 , 

… , �(F
�,1=1)

N
 ) is derived. This procedure is repeated for the 

remaining N − 1 points of the prototype. The same proce-
dure is performed also for the model, applying the same 
load and obtaining the outputs �(F

�,i=1)

1
,�

(F
�,i=1)

2
,… ,�

(F
�,i=1)

N
 , 

when the i-th point is excited. Once the responses of all 
prototype and model points to a unit force are evaluated, 
N linear systems can be written. For example, the first 

(1)�(�) = �(�)�(�).

(2)�(�) = 𝚯(�)�(�).
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system, due to the excitation of the first point of prototype 
and model, is given by

The other N − 1 systems can be written accordingly, con-
sidering that each one is due to the excitation of one point 
in both prototype and model. Hence, the last system, due to 
the excitation of the N-th point, is

Equations 3–4 represent the outputs of the the model at each 
point, written as a linear combination of the output of the 
prototype and the elements Ti,j of the VOODOO matrix, for 
a given frequency � . The points used for the determination 
of matrix � are called VOODOO points. In this phase of 
construction of the VOODOO matrix, the VOODOO points 
coincide with the excitation/acquisition points.

To clarify, considering two panels, the prototype and 
a scaled-up model, and a number of points N = 4 , the 
response of the latter at point 1 due to the excitation of 
point 3 (refer to Fig. 1) is given by

which is a linear combination of the responses of the proto-
type due to the excitation of point 3 and measured in all the 
considered points.

Returning to the more general problem with N points, 
the N2 elements of the VOODOO matrix
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are the unknown terms of the system.
Since Betti’s theorem and its extension, Maxwell’s 

theorem, state that in a linear elastic structure, the dis-
placement at the i-th point, due to a unit force applied on 
the j-th point, is equal to the displacement at the j-th point 
due to a unit force acting at the i-th point. Hence, it is pos-
sible to write that

as well as

where p and q are two generic points of the systems.
This leads to

or, briefly,

The columns of the matrix � are the responses of the proto-
type to the unit load applied on each point. Thus, the i-th col-
umn of the matrix represents the response of the i-th point 
of the prototype to the unit load applied on each point. Each 
element of the matrix � is known. The column vector �r is 
the response of the r-th point of the model to the unit load 
applied on each point. Each element of this vector is known, 
too. The column vector �r represents the r-th row of the 
unknown transformation matrix � , which elements are, as 
stated before, unknown. Therefore they can be evaluated as

The term � is a frequency-dependent matrix, containing the 
response of the prototype, which must be evaluated each 
time frequency sampling changes. Moreover, the design of 
the VOODOO matrix T is based on the outputs of the points 
to a unit excitation applied to each point, therefore material 
properties, damping, and boundary conditions are indirectly 
taken into account.
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Fig. 1   Example of two panels in similitude with N = 4 ; the black 
arrow indicates the excitation point, the red arrows the points used for 
the response evaluation



	 F. Tavasso et al.

1 3

3 � Validation of VOODOO Method

In this section, VOODOO method is applied to investigate 
its reliability in off-design conditions. Three test cases are 
presented. The first case concerns two simply supported 
plates excited by a concentrated force in which the excita-
tion point does not coincide with any of the VOODOO 
points. Secondly, two assemblies of two plates, with copla-
nar and orthogonal arrangements, are investigated. Finally, 
two simply supported plates subjected to a pressure load 
are analysed. All applications of VOODOO involve the 
reconstruction of the model response from that of the pro-
totype; moreover, all the responses are local, not averaged, 
since the method is meant to work with local responses.

3.1 � Test Case 1: Two Simply Supported Plates

The first validation test of the VOODOO method concerns 
two plates in partial similitude, the prototype and a dis-
torted model, which geometrical and material properties 
are summarized in Tables 1-2, are simply supported. Three 
VOODOO points are used for the construction of the 

transformation matrix; they are shown in Fig. 3 and their 
dimensionless coordinates are listed in Tables 3–4. The 
geometrical characteristics of a plate are shown in Fig. 2.

To construct the VOODOO matrix, which is different 
for each frequency, the frequency range (and the number 
of spectral lines) considered for the FRF analysis is the 
same for both prototype and model, namely a [0-2000] Hz 
range, with a frequency resolution equal to 5 Hz.

The VOODOO transformation matrix is constructed for 
each frequency. A three-dimensional matrix [N × N] × Nf  is 
created, where Nf  represents the number of used frequency 
points.

A first validation test is performed considering the same 
systems used to derive the VOODOO matrix, both subjected 
to a concentrated load F equal to 100 N. The results are 
shown in Fig. 4, displaying the reconstruction of the model 
displacement from that of the prototype in terms of ampli-
tude and phase in two different situations. Namely, Fig. 4a 
shows the results when the excitation and acquisition points 
coincide with the VOODOO points (i.e., Point 1). The 
plots exhibit a perfect overlap between the reference and 
predicted curves. This is due to the fact that the reconstruc-
tion is applied to points directly involved into the VOODOO 
matrix, therefore the transformation is built ad hoc for such a 

Fig. 2   Plate geometrical characteristics

Table 1   Geometrical characteristics of prototype and model

Model Length, a [m] Width, b [m] Thickness, t [m]

Prototype 0.656 0.400 0.001
Model 0.460 0.364 0.003

Table 2   Material properties of prototype and model (aluminium)

Young’s modulus, E [Pa] 71×109

Mass density [kg/m�], � 2723
Poisson’s ratio, � 0.33
Prototype damping, �

�
0.01

Model damping, �
�

0.005

Fig. 3   VOODOO points of both prototype and model in test case 1

Table 3   Dimensionless 
coordinates of prototype 
VOODOO points in test case 1

Point number x/a y/b

Point 1 0.125 0.856
Point 2 0.475 0.428
Point 3 0.850 0.106

Table 4   Dimensionless 
coordinates of model VOODOO 
points in test case 1

Point number x/a y/b

Point 1 0.208 0.771
Point 2 0.375 0.406
Point 3 0.750 0.181
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configuration. The same accuracy can be obtained when the 
behavior of the prototype is derived from that of the model 
De Rosa et al [5].

Instead, Fig. 4b shows the results obtained when the 
structure is not excited in a VOODOO point. The new exci-
tation point is shown in Fig. 5, and has dimensionless coor-
dinates (0.774, 0.208). Even though the first resonance peaks 
are well predicted, which is of no little significance when 
dealing with systems in partial similitude, the amplitudes 
are not well reconstructed: since there is no spatial corre-
spondence between the VOODOO points and the excitation 
point, the prediction is not as accurate as in the previous 
case. Thus, the method is sensitive to the switch of a VOO-
DOO point with another, generic point when it is used for 
exciting the system. Such a drawback may be overcome by 
increasing the number of VOODOO points: on the one hand, 
this approach would lead to bigger matrices, thus to proce-
dures more computationally expensive; on the other hand, 
a thorough distribution of several VOODOO points may 
help to bound amplitude shifts, like those shown in Fig. 4b, 
when predicting the responses De Rosa et al [5]. In fact, any 
excitation point would be closer to a VOODOO point with 
respect to the case with fewer points.

Fig. 4   Amplitude and phase of model’s Point 1 displacement, when 
(a) the excitation points coincide with the VOODOO points, and 
(b) the excitation point does not coincide with any of the VOODOO 
points

Fig. 5   Model VOODOO points; the green arrow indicates the new 
excitation point, different from the VOODOO points

Fig. 6   Plates configurations for test case 2, namely (a) coplanar and 
(b) orthogonal
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3.2 � Test Case 2: Assembly of Two Plates

The test case 2 concerns two joined panels in two differ-
ent configurations: coplanar and orthogonal, like shown 
in Figs. 6a-6b, respectively. Thus, this test case addresses 
the problem of peculiar geometrical distributions of VOO-
DOO points. The plates sizes do not change with respect 
to test case 1, they are simply joined together. Therefore, 
in this part of the work there are no more two plates in 
similitude, but two plates joined so that they compose 
an assembly. However, the reference plate is still called 
prototype, as well as the other plate is called model. Con-
cerning the coplanar plates, the prototype is the left one 
and the model is the right one. They are joined along the 
prototype’s right side and the model’s right side.

For both the assemblies a frequency range of [0–1000] 
Hz is chosen for the analysis. Table 5 summarizes the 
dimensionless coordinates of VOODOO points, for both 
the prototype and model, of the coplanar and orthogonal 
configurations, respectively. Both prototype and model 
have the same VOODOO points dimensionless coordi-
nates, as well as both the assemblies. However, in the 
orthogonal configuration, the points of the vertical plates 
have (y, z) coordinates. To avoid any ambiguity in the 
nomenclature, for this plate a local reference frame is 
considered by rotating around the y axis, which remains 
the same, so that the local x axis, used to describe the 
position of the VOODOO points, is coincident with the 
global z axis. With this reference frames in mind, the 
prototype is the plate in the global xy plane, the model is 
the plate in the global yz plane.

In both the configurations, the VOODOO matrix is 
constructed by exciting only the prototype and acquiring 
the response in both the prototype and model. For valida-
tion, a concentrated force F equal to 150 N is applied to 
the prototype.

Figure  7 shows the response predictions provided 
by VOODOO for all the acqusition points of the model 
(coinciding with the VOODOO points) when the Point 
2 of the prototype is excited. In particular, Figs. 7a–7c 
display the displacement amplitude and phase of model’s 
Points 1–3, respectively, when Point 2 of the prototype is 
excited. The only case in which the spatial correspond-
ence is retained is the one illustrated in Fig. 7b, that is, 
Point 2 of the model. Therefore, this is the only case in 
which the reconstruction is satisfactory.

Table 5   Dimensionless 
coordinates of prototype and 
model VOODOO points in both 
the coplanar and orthogonal 
configurations of test case 2

x/a y/b

Point 1 0.114 0.812
Point 2 0.422 0.500
Point 3 0.846 0.187

Fig. 7   Amplitude and phase of model’s Point (a) 1, (b) 2, and (c) 3, 
when Point 2 of the prototype is excited. Coplanar configuration
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The same results are obtained when the two panels are 
arranged orthogonally, as Fig. 8 shows. Hence, the dif-
ferent orientation of a plate with respect to the other does 
not affect not only the reconstruction process, but also the 
application of the method itself.

In this case, the same considerations made for the 
coplanar assembly hold.

3.3 � Test Case 3: Two Simply Supported Plates 
Subjected to a Uniformly Distributed Pressure 
Load

The simply supported plates used in test case 1 are herein 
used in order to investigate the potentialities of VOODOO 
when a pressure load excites the test articles. Twelve VOO-
DOO points are used, indicated in Fig. 9 (the dimensionless 
coordinates are reported in Appendix A) only for the pro-
totype, since they are the same for the model. The increase 
of the density of VOODOO points is used in the attempt to 
reduce the discrepancies between the prototype and model 
reconstructed responses introduced by the pressure load, 
which is applied not only on the VOODOO points, but also 
in all the other points of the plate. Therefore, while the exci-
tation of the original VOODOO points may assure an accu-
rate prediction of the displacements, the involvement of all 
other points may introduce disturbances when the transfor-
mation matrix is applied.

After the typical construction of VOODOO matrix, to 
reproduce a pressure load in the test phase, a set of local 
forces with the same magnitude are applied on all the points 
of the plate. In particular, the prototype is loaded with a set 
of forces so that the pressure distribution is constant on the 
entire plate and equal to 1 Pa.

Figure 10 shows the reconstruction provided by VOO-
DOO for point 3 of the model. Also in this case, the predic-
tion is not accurate. In fact, since all the points of the model 
are excited, the spatial correlation between VOODOO, exci-
tation, and acquisition points is not retained.

Fig. 8   Amplitude and phase of model’s Point (a) 1, (b) 2, and (c) 3, 
when Point 2 of the prototype is excited. Orthogonal configuration

Fig. 9   VOODOO points of the prototype when a pressure load is 
applied
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4 � Conclusions

This article shows new applications of VOODOO method, 
highlighting its potentialities and limits at this stage of devel-
opment. In particular, it is applied to several off-design condi-
tions: when the plate is excited in a point which is different 
from a VOODOO point, when the plates are joined with a 
coplanar and an orthogonal assembly, and when the plate is 
loaded with a uniform pressure. When VOODOO is applied 
in off-design conditions, its predictions are not as accurate as 
the design conditions, mainly because the spatial correlation 
between the excitation/acquisition and VOODOO points is 
lost. However, VOODOO proves to be a simple an immediate 
method to apply, since only the structural responses must be 
provided in order to generate the VOODOO matrix. Moreo-
ver, its potentialities are wide, since several types of structures 
can be investigated and linked through the transformation 
matrix, which makes VOODOO an advantageous method in 
several engineering fields. Therefore, further research should 
focus on improving the method when off-design conditions 
are considered, for example by involving similitude methods, 
since considering excitaton/acquisition points different from 
VOODOO points may be seen as considering distorted simili-
tudes [3], or particular shape functions which may transmit 
the response information among structures with different size.

Appendix: Test Case 3 Dimensionless 
Coordinates

Tables 6–7 report the dimensionless coordinates of VOO-
DOO points used in test case 3, Sect. 3.3, for prototype and 
model, respectively.
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