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Abstract: In-plane strength of masonry walls is affected by the resistant mechanisms activated in the
walls, i.e., related to flexural or shear behavior. The latter one can occur in the walls according to
different failure modes depending on both mortar and unit strengths and on the type of assembling,
i.e., ‘regular’ or ‘irregular’ texture. In this paper, a critical review of the existing design formulations
for the in-plane strength of masonry walls is firstly presented, with important information on the
achievable failure modes depending on the geometrical and mechanical features of the masonry
fabric. Then, experimental tests are collected from the literature and a comparison between theoretical
and experimental results is carried out. The presented analyses are aimed to highlight the differences
between the existing formulations and to identify the most suitable ones.

Keywords: regular masonry; irregular/rubble masonry; walls; in-plane behavior; shear failures;
flexural failures; shear-compression test; design formulations

1. Introduction

Under dynamic actions (i.e., earthquakes, wind, etc.), masonry buildings can col-
lapse or have relevant damage for two main groups of mechanisms: ‘local’ and ‘global’
failure modes. The loss of stability of parts of the structure determines local failure
mechanisms [1–5], while all the crises related to the in-plane behavior of masonry walls can
be addressed to the global ones. Focusing on the second group, the failure mechanisms are
called ‘global’ because they can occur only if the whole structure reacts as a box, according
to the so-called ‘box-behavior’. In this case, efficient connections among walls and between
walls and floors are able to prevent out-of-plane failures [6,7] and in-plane mechanisms
can take place [8].

The ‘in-plane’ failure modes are generally categorized as follows (see Figure 1):

• flexural failure (rocking or toe crushing, named F in Figure 1a): failure due to the
achievement of the tensile or compressive strength along the cross end-sections of the
wall and characterized by nearly horizontal or vertical cracks, respectively;

• diagonal shear failure (Figure 1b): failure related to the achievement of the tensile
strength of masonry along the principal direction and characterized by diagonal cracks
along the wall. This kind of failure generally occurs in irregular/rubble masonry (DS),
or in regular masonry (TDS) with strong mortar/weak units and good bond behavior
at the mortar-masonry interfaces;

• sliding shear failure (Figure 1c): failure occurs along the mortar joints according to
horizontal (HSS) or stepped diagonal cracks (DSS) because of the low bond strength at
the mortar-masonry interface or in case of reduced values of the compressive stresses
acting in the wall.
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Figure 1. Typical failure mode in masonry panels: (a) flexural failure (F); (b) diagonal shear failure mode (DS or TDS); (c) 
sliding shear failure (HSS or DSS). 

Several authors have studied the influence of different parameters on the in-plane 
capacity of masonry walls [9–21]. Among these, the following five main parameters can 
be identified: (a) mechanical properties of the material, (b) constraint conditions, (c) verti-
cal compression level, (d) slenderness of the wall, (e) masonry texture. 

The dependence of the in-plane failure on the mechanical properties of the material 
is clear: all failure modes are related to the achievement of the local strength of the material 
and, in particular, of the tensile strength. The constraint conditions and the slenderness of 
walls are also very important aspects because they may favor the formation of diagonal 
or horizontal cracks and, thus, drive the failure mechanisms (shear or flexural failure). The 
vertical compression level influences both the capacity and the type of failure: for a low 
state of compression, a sliding shear failure is, indeed, generally favored in regular walls. 
For moderate and high compression levels, flexural and diagonal shear failures may occur 
depending on other parameters (slenderness and constraints). The in-plane slenderness, 
generally defined as the height-to-width ratio of the wall, influences the distribution of 
the normal and tangential stresses inside the wall. For slenderness equal to or lower than 
1 (so-called ‘squat’ walls), the shear mechanisms are, indeed, predominant in comparison 
with the flexural one, which is mainly exhibited by walls with slenderness more than 1.5 
(so-called ‘slender’ walls). 

Finally, the masonry texture also has a relevant role on the most probable failure 
mode of walls: clearly, sliding shear failures, as evidenced in Figure 1c, can occur only 
when regular mortar joints are present, i.e., ‘regular’ masonry. In the case of chaotic ma-
sonry, i.e., ‘irregular/rubble’ masonry, indeed, the geometrical interlocking between ma-
sonry units and/or elements with several dimensions allows to avoid sliding phenomena 
and leads to diagonal shear failures. It is important to note that the anisotropic behavior 
of the masonry material is strongly dependent on the ratio between the strength/stiffness 
of units and mortar joints [22]. 

From the experimental point of view, two types of tests have been diffusely used by 
researchers to investigate the in-plane behavior of masonry walls under lateral loads. 
These are: 
• diagonal compression test; 
• shear-compression test. 

Diagonal compression tests are mainly used to determine the tensile strength of ma-
sonry [23,24], considering the walls subject to the only compression force applied along a 
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(c) sliding shear failure (HSS or DSS).

Several authors have studied the influence of different parameters on the in-plane
capacity of masonry walls [9–21]. Among these, the following five main parameters can be
identified: (a) mechanical properties of the material, (b) constraint conditions, (c) vertical
compression level, (d) slenderness of the wall, (e) masonry texture.

The dependence of the in-plane failure on the mechanical properties of the material is
clear: all failure modes are related to the achievement of the local strength of the material
and, in particular, of the tensile strength. The constraint conditions and the slenderness of
walls are also very important aspects because they may favor the formation of diagonal or
horizontal cracks and, thus, drive the failure mechanisms (shear or flexural failure). The
vertical compression level influences both the capacity and the type of failure: for a low
state of compression, a sliding shear failure is, indeed, generally favored in regular walls.
For moderate and high compression levels, flexural and diagonal shear failures may occur
depending on other parameters (slenderness and constraints). The in-plane slenderness,
generally defined as the height-to-width ratio of the wall, influences the distribution of
the normal and tangential stresses inside the wall. For slenderness equal to or lower than
1 (so-called ‘squat’ walls), the shear mechanisms are, indeed, predominant in comparison
with the flexural one, which is mainly exhibited by walls with slenderness more than
1.5 (so-called ‘slender’ walls).

Finally, the masonry texture also has a relevant role on the most probable failure mode
of walls: clearly, sliding shear failures, as evidenced in Figure 1c, can occur only when
regular mortar joints are present, i.e., ‘regular’ masonry. In the case of chaotic masonry, i.e.,
‘irregular/rubble’ masonry, indeed, the geometrical interlocking between masonry units
and/or elements with several dimensions allows to avoid sliding phenomena and leads to
diagonal shear failures. It is important to note that the anisotropic behavior of the masonry
material is strongly dependent on the ratio between the strength/stiffness of units and
mortar joints [22].

From the experimental point of view, two types of tests have been diffusely used
by researchers to investigate the in-plane behavior of masonry walls under lateral loads.
These are:

• diagonal compression test;
• shear-compression test.

Diagonal compression tests are mainly used to determine the tensile strength of
masonry [23,24], considering the walls subject to the only compression force applied along
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a diagonal in the absence of lateral compression, in order to determine a pure shear stress
condition in the middle of the wall.

Shear-compression tests allow to better analyze the effective in-plane response of
masonry walls because a biaxial stress state, due to the simultaneous application of vertical
compressive and horizontal shear forces, takes place [11,12,14,25–36]. Such a loading
condition more reliably represents the behavior of walls inserted in masonry structures
under vertical and horizontal actions.

In this framework, there is a wealth of recent literature that has analyzed the in-plane
behavior of masonry walls through laboratory or in-situ tests based on these two set-ups,
also considering the presence of externally bonded innovative reinforcing systems [37–49].

The first part of this paper is focused on a detailed analysis of the theoretical formu-
lations available in the literature proposed by several authors and codes to predict the
in-plane capacity of masonry walls, with reference to both flexural and shear failure. The
existing strength models are classified according to the failure modes achievable in regular
and irregular masonry walls. An accurate sensitivity analysis of the formulations to the
parameters involved is reported as well, in order to assess the differences between them
and identify the safest ones. Successively, a database of experimental tests (i.e., shear-
compression tests) on masonry walls available in the literature and made of both regular
and irregular/rubble masonry is collected in order to assess the reliability of the previously
examined formulations. Finally, due to their higher easiness of application, it was also
explored if the formulations usually provided for the shear strength of irregular/rubble
masonry walls are safe for predicting the shear strength of regular masonry walls, too.

2. Literature Review of Theoretical Formulations

Several formulations are available in the literature about the in-plane capacity of
masonry walls, referenced to each of the failure mechanisms described above. In order
to numerically evaluate this capacity, the available formulations referred to the cases of
flexural and shear failures shown in Figure 1 are briefly described in the following. These
will then be used for comparisons with available experimental results on masonry walls
(Section 4).

2.1. Flexural Failure

The most ductile mechanism is attained in the case of flexural failure, which is gen-
erally studied considering a certain distribution of the normal stresses at the base of the
wall subjected to both horizontal (shear force) and vertical (normal forces corresponding to
gravitational forces) loads. The flexural capacity is directly derived by the global and the
local equilibrium of the wall and of the cross end-sections. Depending on the distribution
of the normal stresses at the base of the wall and on the constraint conditions, different
authors have proposed various formulations for the flexural strength, usually expressed in
terms of maximum shear force (Table 1). The formulations reported in the following refer
to masonry walls having base width B, height H, and thickness s, subject to an average
normal stress σ0, due to the vertical force N, applied with eccentricity e = M/N, and to a
horizontal force representative of the shear action, V (Figure 2).

It is worth noting that the self-weight of the wall is generally neglected because it
is very low with respect to the average normal stress, σ0, applied during the experimen-
tal tests.
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Table 1. Literature formulations used to predict the flexural capacity.

Authors Formula Compressive
Strength Aspect Ratio

Tomaževič and Lutman [50] Equation (1) VT, f = Bs σ0
2ψλ ·

(
1− σ0

fc,d

)
fc ,d ψλ = ψ H

B
ψ = 1 for cantilever;

ψ = 0.5 for double-fixed constraint.
Magenes and Calvi [42] Equation (2) VMC, f = Bs σ0

2ψλ ·
(

1− σ0
0.85 fc,av

)
0.85 fc ,av

Abrams [51] Equation (3) VA, f = Bs σ0
2ψλ ·

(
1− σ0

0.7 fc,av

)
0.70 fc ,av ψλ =

He f f
B

For Heff see Figure 2
Heff = H for cantilever;

Heff = 0.5 H for double-fixed constraint.

Eurocode 8-Part 3 [52] Equation (4) VEC, f = Bs σ0
2ψλ ·

(
1− σ0

0.87 fc,d

)
0.87 fc ,d

NTC 2018 [53] Equation (5) VNTC, f = Bs σ0
2ψλ ·

(
1− σ0

0.85 fc,d

)
0.85 fc ,d

Materials 2021, 14, x FOR PEER REVIEW 4 of 37 
 

 

Table 1. Literature formulations used to predict the flexural capacity. 

Authors Formula Compressive 
Strength Aspect Ratio 

Tomaževič and Lutman [50] Equation (1) 𝑉 ,௙ = 𝐵𝑠 𝜎଴2𝜓𝜆 ∙ (1 − 𝜎଴𝑓௖,ௗ) fc,d 𝜓𝜆 = 𝜓 𝐻𝐵 𝜓 = 1 for cantilever; 𝜓 = 0.5 for double-fixed 
constraint. 

Magenes and Calvi [42] Equation (2) 𝑉ெ஼,௙ = 𝐵𝑠 𝜎଴2𝜓𝜆 ∙ (1 − 𝜎଴0.85𝑓௖,௔௩) 0.85 fc,av 

Abrams [51] Equation (3) 𝑉஺,௙ = 𝐵𝑠 𝜎଴2𝜓𝜆 ∙ (1 − 𝜎଴0.7𝑓௖,௔௩) 0.70 fc,av 𝜓𝜆 = 𝐻௘௙௙𝐵  

For Heff see Figure 2 
Heff = H for cantilever; 
Heff = 0.5 H for double-

fixed constraint. 

Eurocode 8-Part 3 [52] Equation (4) 𝑉ா஼,௙ = 𝐵𝑠 𝜎଴2𝜓𝜆 ∙ ቆ1 − 𝜎଴0.87 𝑓௖,ௗቇ 0.87 fc,d 

NTC 2018 [53] Equation (5) 𝑉ே்஼,௙ = 𝐵𝑠 𝜎଴2𝜓𝜆 ∙ ቆ1 − 𝜎଴0.85𝑓௖,ௗቇ 0.85 fc,d 

 
Figure 2. Equilibrium of masonry walls in case of flexural failure. 

Tomaževič and Lutman [50] have provided a theoretical formulation to predict the 
flexural capacity of masonry walls, i.e., Equation (1) in Table 1. It was obtained through 
an internal and external equilibrium analysis of a masonry wall, with in-plane slenderness 
λ = H/B and a double fixed constraint condition at the ends represented by the parameter 
ψ. The theoretical results were compared with the outcomes of several experimental tests 
performed by the same authors [12], evidencing a good agreement. 

Magenes and Calvi [42] have adopted the same approach of [50] with a slight differ-
ence in the compressive strength, providing Equation (2) in Table 1. These authors have 
suggested using such a formulation when the value of the aspect ratio, ψλ, is higher than 
1. In the work of Abrams [51], the formulation used to predict the flexural capacity of 
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Tomaževič and Lutman [50] have provided a theoretical formulation to predict the
flexural capacity of masonry walls, i.e., Equation (1) in Table 1. It was obtained through an
internal and external equilibrium analysis of a masonry wall, with in-plane slenderness
λ = H/B and a double fixed constraint condition at the ends represented by the parameter
ψ. The theoretical results were compared with the outcomes of several experimental tests
performed by the same authors [12], evidencing a good agreement.

Magenes and Calvi [42] have adopted the same approach of [50] with a slight differ-
ence in the compressive strength, providing Equation (2) in Table 1. These authors have
suggested using such a formulation when the value of the aspect ratio, ψλ, is higher than
1. In the work of Abrams [51], the formulation used to predict the flexural capacity of
masonry walls, i.e., Equation (3) in Table 1, is based on the FEMA-273 guidelines. Still, this
formulation is closely comparable with the previous two, considering a further reduced
compressive strength.

Both Eurocode 8-Part 3 [52] and Italian building code [53] provide very similar formu-
lations for predicting the flexural capacity of masonry walls, represented by Equations (4)
and (5) in Table 1, respectively.
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It should be noted that all the formulations listed in Table 1 have the same structure
since they are obtained following the same rotational equilibrium analysis of the wall
according to a double-fixed boundary condition. In order to account for different constraint
conditions at the ends, in some formulations, the shear length, Heff, is defined as the distance
between the cross end-section of the wall and the no-bending moment section, as shown
in Figure 2. The distribution of compressive stresses on the base wall section towards the
edge is idealized as constant (stress-block simplification) by means of a reduction factor, in
order to facilitate the analysis.

In Table 1, the values of the compressive strength and the aspect ratio adopted in the
various formulations are listed too. The aspect ratio, ψλ, depends on the wall dimensions
(H and B), and on the constraint conditions through the parameter ψ. As reported in Table 1,
this parameter is 1 in a cantilever scheme and 0.5 in a double-fixed constrain condition. In
Equations (1) and (2), ψ is directly indicated, while for Equations (3)–(5) it is considered
through Heff, which is equal to H/2 in a double-fixed condition and to H for the cantilever.

Moreover, the flexural capacity depends on the compressive stress state at the cross
end-section of the wall, σ0, and on the compressive strength, fc, of masonry. About the
latter, in Equations (2) and (3) the average strength, fc,av, of masonry is assumed, while
in the others the design value, fc,d, is used. It is worth noting that the design values are
calculated differently for new and existing masonry buildings, according to the indications
of the Commentary to the Italian code [54]. While the formulation reported in Eurocode
6 [55] is focused on new masonry buildings, Eurocode 8-Part 3 [52] provides a slightly
different formulation for existing masonry buildings. Similar to what is indicated in [54],
for existing buildings the use of mean values for strengths and of ‘confidence’ factors,
depending on the knowledge level attained in the structure, is suggested.

About the normal compressive stress distribution, in Equation (1) the whole value of
the compressive strength is assumed, while in Equations (2), (4) and (5) a 15% reduction
is adopted, and in Equation (3) the reduction becomes 30%. These reduction factors are
related to the assumption of a stress-block distribution that facilitates the analysis of the
section by assuming a constant distribution of the normal compressive stresses instead of
the real one related to the constitutive law in compression of masonry (Figure 2). However,
it is easy to derive that the shear capacity of the wall in case of flexural collapse is much
more influenced by the aspect ratio, ψλ, rather than by the strength reduction, and the
choice of the constitutive law in compression for masonry does not influence significantly
the prediction of the shear capacity [42].

2.2. Shear Failure

Shear failure is, in general, a brittle mechanism in comparison with the flexural one,
with a certain ductility attained in the case of sliding mechanisms along the mortar joints.
Shear failure is accompanied by the propagation of oriented cracks and mainly occurs for
relatively high axial loads and squat elements, i.e., in elements where bending stresses are
lower. The cracks can extend either through the mortar or the units, depending on their
strengths and on the anisotropy of the material [13].

As introduced above, two main shear failures can be considered: (a) sliding shear
failure, (HSS or DSS) and (b) tension diagonal shear failure (TDS or DS). The sliding shear
failure is typical of masonry with regular texture subjected to low-medium axial loads,
while the second one can occur both in regular and in irregular/rubble masonry textures
under greater axial loads. A description of these typical shear failures is presented in the
following sections, based on the type of masonry, i.e., regular or irregular/rubble masonry.

2.2.1. Regular Masonry

‘Regular’ masonries are characterized by a regular disposition of block/brick with or
without mortar joints, as shown in Figure 3a. Figure 3b,c show two possible examples of
textures for regular masonry walls along with the thickness: the presence of transversal
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units (Figure 3c) may provide a monolithic behaviour to the whole wall and, thus, it is an
important requirement for activating its in-plane behavior.
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two directions.

For walls made of regular masonry, the two in-plane shear failures are: (a) sliding
shear failure (HSS or DSS in Figure 1c), and (b) diagonal shear failure with cracking of
units (TDS in Figure 1b). Thus, these two shear failure modes are governed by the cohesion
of joints and the tensile strength of units, respectively. Usually, sliding shear failure (HSS
or DSS) is related to the crisis of the bond at the mortar-masonry interface and is the
predominant failure mode if the ratio between the shear strengths of units and mortar is
higher than 1 (strong units and weak mortar) and when the compression level is limited.
In the case of weak mortar, indeed, cohesion is low and sliding failure can occur. Such
a sliding mechanism is commonly studied through the application of the well-known
Mohr–Coulomb criterion, which provides the shear strength, τ, based on cohesion, c, and
the friction angle, φ, of the material, and the level of normal compression, σ, applied in
the wall:

τ = c + tan φ · σ (6)

Equation (6) shows that the level of vertical compression clearly plays a fundamental
role since it increases the frictional contribution. It is worth noting that, in the formulations
listed in Table 2, the friction coefficient, µ = tan φ, is directly adopted, the average normal
stress, σ0, is considered, and the cohesion, c, is usually indicated as fv0, i.e., the shear
strength in the absence of normal stresses. In particular, c and φ are mechanical parameters
generally assessed by means of bond tests on two (couplet) or three (triplet) masonry units
connected by mortar [56].

On the basis of experimental tests carried out on masonry walls, Grimm [57] has
proposed a formulation (Equation (7) in Table 2) dependent on the parameters fv0 and µ,
defined as ‘local’ values of cohesion and friction coefficient, respectively, and on the length
of the uncracked part of the cross end-section of the wall, defined as B’.

Generally, local parameters are used to predict the shear capacity of masonry walls
that exhibit a sliding shear failure along the adjacent bed joints (i.e., HSS failure mode
in Figure 1c). This is an important aspect since local parameters can be experimentally
obtained by means of simple tests, such as couplet or triplet tests, and are related to
the local adherence developed at the interface between units and mortar. Note that in
Equation (7) local cohesion is increased by 40% in order to take into account the interlock-
ing phenomenon.
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Table 2. Literature and code formulations used to predict the shear capacity of regular masonry walls.

Parameters Authors Formula Failure

Local for masonry
fv0 and µ

Grimm [57] Equation (7) VG,hss = B′s·(1.4 fv0 + µσ0) Sliding shear along
horizontal cracks (HSS)Eurocode 6 [55]

NTC 2018 [53] Equation (8) VEC,hss = B′s· fv0+µσ0
γd

Global for masonry
f ′v0 =

fv0
1+µϕ

µ′ = µ
1+µϕ

Mann and Muller [58] Equation (9)
VMM,dss =

Bs
b ·
(

f ′v0 + µ′σ0
)

1 ≤ b = H
B ≤ 1.5

Sliding shear along
diagonal stepped

cracks (DSS)

Magenes and Calvi [42] Equation (10)

VMC,dss = Bs·
(

1.5 f ′v0+µ′σ0

1+3
f ′v0ψλ

σ0

)
ψ = 1 for cantilever;

ψ = 0.5 for double-fixed
constraint.

Commentary to the
Italian code [54] Equation (11)

VC,dss =
Bs
b ·
(

f ′v0 + µ′σ0
)
≤ Vt,lim

1 ≤ b = H
B ≤ 1.5

Single units Commentary to the
Italian code [54] Equation (12) Vt,lim =

Bs fbt,d
2.3b ·

√
1 +

(
σ0
fbt,d

) Diagonal shear for
tensile cracking of units

(TDS)

Eurocode 6 [55] and the Italian building code [53] provide a similar formulation based
on Equation (6) (i.e., Equation (8) in Table 2), without increasing the local cohesion, but
using the design coefficient, γd. According to the Italian code, this formulation is generally
used for new buildings, while more detailed indications for existing buildings are reported
in the Commentary [54] and are represented by Equations (11) and (12) in Table 2.

Conversely, other literature formulations use the global parameters fv0’ and µ’ of
masonry, which are referred to the global behavior of masonry walls accounting for the
interlocking effect among the units and the full length of the cross section, B. The global
parameters are obtained by modifying the local parameters, fv0 and µ, through the unit
shape ratio, ϕ = 2hb/bb, where hb and bb are the height and the width of the single unit,
respectively. It is important to highlight that, while local parameters are used to define the
shear sliding failure along a horizontal crack (HSS), global parameters are mainly used to
predict the shear capacity in the case of diagonal sliding shear failure (DSS), i.e., in the case
of sliding along diagonal stepped cracks.

In order to predict the strength associated to the DSS failure, the Mohr–Coulomb
criterion, i.e., Equation (6), is applied with reference to a local state of damage in the
middle cross section of the masonry wall (Figure 4). Such an approach is followed by
Mann and Muller [58], who have proposed a formulation (Equation (9) in Table 2) based
on the equilibrium equations of a single unit and on two main hypotheses: (1) head joints
have negligible mechanical properties (no normal and tangential stresses) and (2) the ratio
between the stiffness of units and mortar is very high (rigid units). According to this
model, the compressive normal stresses on a single unit in the middle cross section can
be evaluated as a sum of the stresses produced by vertical loads (stress distribution ‘b’ in
Figure 4) and the ones related to shear actions (stress distribution ‘a’ in Figure 4). In fact,
because no stresses are assumed along the head joints, the rotational equilibrium of the
unit in the latter distribution can only be satisfied by a variation of the normal stresses
along the bed joints, where ϕ is the unit shape ratio.
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Magenes and Calvi [42] have also proposed a formulation (Equation (10) in Table 2) for
assessing the shear strength of walls made of regular masonry using the global parameters
and, thus, with reference to the DSS failure in Figure 1c. Similar to what was proposed by
Mann and Muller [58], Equation (10) defines the global parameters fv0’ and µ’, through the
unit shape ratio, ϕ. However, with respect to the formulation of Mann and Muller [58], the
slenderness of the wall, λ, is introduced to take into account the effect of stress distributions,
the interaction between shear and flexural stresses, and the crack propagation, while the
parameter ψ is always used to account for the effect of the constraint conditions. The authors
have compared the theoretical values of the capacity provided by the proposed formulation
with the results of quasi-static cyclic experimental tests, performed by Anthoine et al. [11] on
clay brick masonry walls with different slenderness and a double-fixed constraint condition.
A significant scatter between theoretical and experimental capacities was observed, mainly
related to the scatter of the mechanical properties assumed for masonry.

The Commentary to the Italian code [54] provides a difference for walls made of
regular and irregular/rubble masonries and uses a variety of values of material strengths
for new and existing buildings. In particular, for regular masonry, in addition to the HSS
failure predicted by Equation (8), the same formulation proposed by Mann and Muller [58]
and based on global parameters (Equation (11) in Table 2) is provided for predicting the
shear strength in the case of sliding along diagonal stepped cracks in the mortar (DSS
failure). However, the document also provides an upper bound (Equation (12) in Table 2)
for the shear strength of walls made of regular masonry, which is represented by the
shear-tensile cracking of units, Vt,lim, depending on their tensile strength, fbt,d.

It is worth noting that Equations (9) and (11) contain an additional parameter, b, called
‘shape factor’, which takes into account the shear stress distribution along the middle cross
section of the wall by means of the maximum-to-average shear stress ratio. The shear
distribution is influenced by the geometry of the wall as some numerical analyses have
evidenced [13,59,60] and in many formulations the shape factor is generally defined as
1 ≤ b = λ = H/B ≤ 1.5, i.e., it is assumed equal to the slenderness of the wall, λ, but limited
to the range 1–1.5. Such a definition is based on the assumption that the distribution of the
shear stresses in the middle cross section of the wall is parabolic or constant for very slender
or very squat walls, respectively, and this corresponds to have a maximum-to-average shear
stress ratio equal to 1.5 or 1 as threshold values. Since the classification of slender or squat
wall depends on the slenderness ratio, λ, it is more generally assumed that b = λ in the
range 1–1.5. However, such an assumption is not always realistic. Thanks to the analysis
of the internal stresses inside a regular masonry wall by means of finite element (FE)



Materials 2021, 14, 3063 9 of 37

models, Betti et al. [59] have proposed, indeed, to assume b = (1 + 0.5λ) ≤ 1.5, evidencing
that the values provided by Equations (9) and (11) are not realistic for squat walls, i.e.,
H/B = 1, since they tend to overestimate the effective DSS strength. Moreover, also in
Celano et al. [60], numerical analyses with a FE model evidenced that the assumption of
parabolic distribution of the shear stresses is reliable even for squat walls.

2.2.2. Irregular/Rubble Masonry

Irregular/rubble masonry walls are made of chaotic arrangements of units with mortar
not organized in regular layers such as, e.g., the three different types of stone masonry
walls shown in Figure 5. An almost negligible presence of mortar layers can be observed in
Figure 5a,b, while the masonry wall in Figure 5c is made of irregular tuff stones bonded
with high thickness mortar joints.
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In general, a non-regular configuration influences the in-plane behavior of this kind
of masonry with reference to both vertical and horizontal actions. In terms of shear
failure, irregular/rubble masonry walls can only exhibit a diagonal shear failure (DS
in Figure 1b), with diagonally orientated crack patterns when the tension strength is
overcome. Depending on the quality of masonry units and mortar, these cracks may either
pass through the units or partly follow the joints and partly pass through the units.

Experimental tests were carried out by several authors [27,61–63] for investigating the
in-plane shear behavior of irregular/rubble masonry walls. The tests mainly evidenced
that the DS capacity of the walls can be evaluated assuming masonry as a homogeneous
and isotropic material. One of the most popular is, indeed, the formulation proposed by
Turnšek and Čačovič [14], i.e., Equation (13) in Table 3, which represents the reference
approach for the other ones. This formulation is based on the analysis of the internal stress
state of the wall subjected to the DS failure, considering masonry an elastic, homogeneous
and isotropic material that fails when its tensile strength is attained.

The formulation of Tomaževič and Lutman [50] (Equation (14) in Table 3) is similar to
the previous one but assumes a reduction of 10% of the shear capacity in order to take into
account the effect of cyclic loads. The analytical results obtained with this formulation have
also been compared with experimental results by the same authors. A similar approach
has also been adopted by Abrams [51] and the Commentary to the Italian code [54], by
means of Equations (15) and (16) listed in Table 3, respectively.
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Table 3. Literature and code formulations used to predict the DS capacity of irregular/rubble masonry walls.

Authors Formula Tensile
Strength Shape Factor

Turnšek and Čačovič [14] Equation (13) VNTC,ds = Bs ft,av
b ·
√

1 + σ0
ft,av

ft,av 1 ≤ b = H
B ≤ 1.5

Tomaževič and Lutman [50] Equation (14) VT,ds = 0.9Bs ft,d
b ·
√

1 + σ0
ft,d

ft,d

Abrams [51] Equation (15) VA,ds = Bs ft,d
2ψλ ·

√
1 + σ0

ft,d
ft,d

ψλ =
He f f

B
For Heff see Figure 2

Heff = H for cantilever;
Heff = 0.5 H for

double-fixed constrain.
Commentary to the Italian

code [54] Equation (16) VC,ds = Bs ft,d
b ·
√

1 + σ0
ft,d

ft,d 1 ≤ b = H
B ≤ 1.5

All these formulations assume the same shape factor, b, adopted for regular masonry
walls. This factor is variable between 1 and 1.5 for squat and slender walls, respectively,
except for Abram’s formula (Equation (15)), where the slenderness of the wall is directly
assumed through the aspect ratio, ψλ, also accounting for the constraint conditions of
the wall. Moreover, it should be remarked that all the formulations in Table 3 report the
design value of the tensile strength of masonry, ft,d, except for Equation (13) of Turnšek and
Čačovič [14], where the average value of the tensile strength, ft,av, is assumed. Thus, the
main parameters that influence the DS capacity of irregular/rubble masonry walls are the
tensile strength of masonry, ft, the shape factor, b, or the aspect ratio, ψλ, and the normal
compressive stress, σ0. The tensile strength of masonry ft is usually obtained by diagonal
compression tests.

3. Sensitivity Analysis of the Theoretical Formulations

A sensitivity analysis is herein performed to compare the trend of the flexural and
shear strength models proposed by the various authors as the main parameters vary. The
mechanical properties of masonry are assumed to vary in the ranges of values reported in
the Commentary to the Italian code [54] for existing buildings. In particular, the starting
values of the tensile and the compressive strengths are ft = 0.5 MPa and fc = 5 MPa,
respectively, while the cohesion is fv0 = 0.25 MPa; the friction coefficient is assumed
µ = 0.58, corresponding to a friction angle of 30◦, which is commonly suggested in the lack
of further data [54]. These values may be considered representative of a regular masonry
made of clay bricks with unit dimensions hb = bb = 0.15 m, sb = 0.25 m and joints made
of lime-based mortar. It is worth noting that in the following analyses no differences
between average and design values of material strengths are assumed. The starting values
of geometrical parameters are B = 1 m, H = 1 m, corresponding to the in-plane slenderness
λ = H/B = 1, and thickness s = sb = 0.25 m. The normal stress is σ0 = 0.6 MPa and a
double-fixed constraint condition is assumed. Table 4 reports the values of the mechanical
and geometrical properties assumed for the reference case.

Table 4. Mechanical and geometrical properties of masonry walls for the reference case.

B H λ s bb hb σ0 ft fc fv0 µ

(m) (m) (−) (m) (m) (m) (MPa) (MPa) (MPa) (MPa) (−)
1.00 1.00 1.0 0.25 0.15 0.15 0.60 0.50 5.00 0.25 0.58

3.1. Flexural Failure

For all the formulations displayed in Table 1, the parameters involved in the evaluation
of the flexural capacity of masonry walls are: the geometrical parameters of the wall, i.e.,
B, H, λ and s, the vertical compressive stress, σ0, the compressive strength of masonry,
fc, and the constraint conditions, evaluated through the factor ψ. Among these, the most
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influencing parameters are λ and fc, which are varied separately in Figure 6, assuming
all the other data listed in Table 4 unvaried. In particular, the wall base is assumed
constant, B = 1 m, while H variable from 0.5 m to 2.5 m in order to vary λ from 0.5 to 2.5.
The compressive strength varies between 1 and 9 MPa, being these values the minimum
and the maximum compressive strengths reported in [54]. It is important to underline
that, because no difference is assumed between the average and the design value of the
compressive strength, Equations (2) and (5) provide the same value of the capacity.
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Figure 6a shows how the flexural capacity tends to decrease as the slenderness of the
masonry wall increases. Clearly, the curves are almost all overlapping since all formulations
depend on the wall slenderness in the same way and there is only some difference in the
reduction factor of the compressive strength. Such a decreasing trend of the strength with
the slenderness is due to the effect of an increase in the shear length, Heff (see Figure 2).

Conversely, Figure 6b shows the variability of the flexural capacity with the compres-
sive strength of masonry. In this case, the trend is initially very steep until about fc ≈ 3 MPa,
i.e., until the vertical compression, σ0, reduces to only 20% of the compressive strength.
Then, the capacity increases with the compressive strength up to an asymptotic value
and the influence of σ0 is clearly dampened since it becomes a very low percentage of
the compressive strength. Anyway, there is again a slight variability among the results
provided by the different formulations, evidencing that normal stresses do not significantly
influence the results, especially for large values of fc. In this sense, the formulation pro-
posed by Abrams [51], i.e., Equation (3), provides the lowest curve since it assumes a higher
reduction factor for fc (i.e., −30%) and the difference with the other formulations is as more
relevant as fc is lower.

3.2. Shear Failure of Regular Masonry

The parameters involved in the evaluation of the shear capacity of regular masonry
walls due to sliding failure along horizontal cracks (HSS) are: the geometric parameters,
B and s, the reduced length of the section, B’, that is the uncracked part of the section on
which the sliding occurs (in the specific case, assumed to be equal to B/2), the compressive
stress, σ0, the local values of cohesion and internal friction coefficient, fv0 and µ. For the
formulations using the global parameters, i.e., those aimed to predict the sliding failure
along diagonal stepped cracks (DSS), the global values of cohesion and internal friction
coefficient, f’v0 and µ’, have to be defined in function of the unit shape ratio, ϕ = 2hb/bb,
being hb and bb the unit dimensions. Note that Equation (10) also depends on the aspect
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ratio, ψλ, while Equations (9) and (11) depend on the shape factor, b. Again, due to the
assumption of the same value for the average and the design value of the shear strengths,
Equations (9) and (11) provide the same shear capacity. It is worth noting that Equation (12)
is not plotted here because it is the only one proposed to predict the diagonal shear failure
for tensile cracking of units (TDS), and therefore not directly comparable to the others.

For all the examined formulations, the variable parameters assumed in the analyses
are fv0, µ and the ratio between the height and length of the unit, hb/bb, which also allows
to obtain the global values of cohesion and friction coefficient. In particular, fv0 is varied
between 0 and 0.6 MPa, µ between 0.1 and 0.80, and hb/bb in 0.1–1.0, the latter range
obtained by fixing bb and changing hb.

Figure 7 plots the variation of the shear strength with fv0, provided by the formulations
listed in Table 2 for two values of hb/bb (0.5 and 1) and a fixed value of µ = 0.58. The
continuous lines refer to the equations using local parameters, i.e., Equations (7) and (8)
related to the HSS failure, while the dashed lines refer to the equations using global
parameters, i.e., Equations (9) and (11) related to the DSS failure. Conversely, Figure 8 plots
the variation of the shear strength with µ, for two values of hb/bb (0.5 and 1) and a fixed
value of fv0 = 0.25 MPa.

Figure 7a,b show that for all the formulations the shear capacity increases with fv0;
in the case of hb/bb = 0.5 (Figure 7a) the shear strengths for HSS (Equations (7) and (8))
are lower than the ones related to DSS (Equations (9)–(11)), due to a higher effect of the
interlocking between units that increase the shear strength when the global parameters
are used. Conversely, in the case of hb/bb = 1 (Figure 7b), the shear strengths based on the
global parameters reduce and become lower than the shear strengths using the local ones,
being the latter clearly independent of hb/bb. Figure 7 also shows that Equation (7) provides
the highest values of the shear capacity for HSS, while Equation (10) provides the highest
strengths for DSS.
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Figure 8 highlights that the shear strength provided by the formulations related to
the HSS failure using local parameters always increases with µ, while the shear strength
based on global parameters (DSS failure) increases with µ for hb/bb = 0.5 (Figure 8a) and is
practically constant for hb/bb = 1 (Figure 8b).

In particular, about the effect of hb/bb on Equations (9)–(11), Figure 9 shows that the DSS
strength provided by these formulations reduces with increasing hb/bb, even considering
two different slenderness values, i.e., λ = 1 in Figure 9a and λ = 1.5 in Figure 9b. If hb/bb
increases, there is, indeed, a lower interlocking between the overlapped units along the
horizontal mortar joints. Conversely, Equations (7) and (8) are independent of both λ and
hb/bb, because the horizontal sliding failure only depends on local parameters.

Materials 2021, 14, x FOR PEER REVIEW 13 of 37 
 

 

Figure 8 highlights that the shear strength provided by the formulations related to 
the HSS failure using local parameters always increases with μ, while the shear strength 
based on global parameters (DSS failure) increases with μ for hb/bb = 0.5 (Figure 8a) and is 
practically constant for hb/bb = 1 (Figure 8b). 

  
(a) (b) 

Figure 8. Sensitivity analysis for the shear capacity in regular masonry in function of μ, for fv0 = 0.25 MPa and: (a) hb/bb = 
0.5; (b) hb/bb = 1. 

In particular, about the effect of hb/bb on Equations (9)–(11), Figure 9 shows that the 
DSS strength provided by these formulations reduces with increasing hb/bb, even consid-
ering two different slenderness values, i.e., λ = 1 in Figure 9a and λ = 1.5 in Figure 9b. If 
hb/bb increases, there is, indeed, a lower interlocking between the overlapped units along 
the horizontal mortar joints. Conversely, Equations (7) and (8) are independent of both λ 
and hb/bb, because the horizontal sliding failure only depends on local parameters.  

  
(a) (b) 

Figure 9. Sensitivity analysis for the shear capacity in regular masonry in function of hb/bb for fv0 = 0.25 MPa, μ = 0.58, and 
for: (a) λ = 1; (b) λ = 1.5. 

Figure 9a also shows that in the case of squat walls, i.e., λ = 1, Equation (8) provides 
safer results than Equations (9) and (11) for hb/bb < 0.85 (slender units) and, thus, a hori-
zontal sliding shear (HSS) failure is expected, while for hb/bb > 0.85 (squat units), Equations 

Figure 9. Sensitivity analysis for the shear capacity in regular masonry in function of hb/bb for fv0 = 0.25 MPa, µ = 0.58, and
for: (a) λ = 1; (b) λ = 1.5.



Materials 2021, 14, 3063 14 of 37

Figure 9a also shows that in the case of squat walls, i.e., λ = 1, Equation (8) provides
safer results than Equations (9) and (11) for hb/bb < 0.85 (slender units) and, thus, a
horizontal sliding shear (HSS) failure is expected, while for hb/bb > 0.85 (squat units),
Equations (9) and (11) become safer than Equation (8) and, thus, a diagonal sliding shear
(DSS) failure is expected. The same trend is shown in Figure 9b for slender walls, i.e.,
having λ = 1.5, but it can be noted that the threshold value of hb/bb, which indicates when
the HSS failure occurs more probably that the DSS one, is reduced to 0.3. This means that
for slender walls, only in the case of very slender units, i.e., with hb/bb < 0.3, Equation (8)
is safer than Equations (9) and (11) and, thus, the HSS failure can occur instead of the DSS
one. This occurs because Equations (9) and (11) depends on the slenderness of the wall, λ,
through the shape factor b.

Anyway, these results are due to the fact that, in the formulations using the global
parameters (Equations (9)–(11)), there is a significant effect of the unit interlocking and,
thus, the results are very sensitive to the parameter hb/bb. It is worth noting that the
relevance of the ratio hb/bb, in determining the development of horizontal (HSS) or stepped
diagonal (DSS) cracks is strongly affected by the shape factor, b, of the wall, too. In fact, the
value of the threshold, which theoretically influences the occurrence of the HSS or the DSS
sliding failure mode, tends to reduce when the slenderness of the wall increases. It can be
observed that in most real situations hb/bb is lower than 1 because the units are usually
arranged along the longest side, and, thus, it is expected that in squat walls (λ = 1) the HSS
failure is generally predominant, while in slender walls (λ = 1.5) the HSS failure can occur
only for very slender units.

3.3. Shear Failure in Irregular/Rubble Masonry

Table 3 shows that the parameters involved in the evaluation of the shear capacity for
irregular/rubble masonry walls are: the geometrical parameters of the wall, B, H, λ and s,
the vertical compressive stress, σ0, and the tensile strength of masonry, ft. The constraint
conditions are only considered by Abrams in Equation (15) through the factor ψ. It is worth
remembering that Equation (15) depends on λ and on the constraint conditions, while in
Equations (13), (14) and (16) the dependence on b = λ is limited to the range 1–1.5. Again,
since no difference is assumed in these comparisons between the average and the design
value of the tensile strength, Equations (13) and (16) provide the same shear capacity, and,
therefore, only Equation (13) is plotted in Figure 10.
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Figure 10a,b show the variation of the shear capacity with the parameters λ and ft in
the range 0.5–2.5 and 0.05–0.6 MPa, respectively. The first figure shows that Equations (13),
(14) and (16) clearly provide constant values of the shear capacity for λ ≤ 1 and λ ≥ 1.5,
while for Equation (15) the shear capacity is always variable with λ, since it directly depends
on it. When the double-fixed condition is considered in Equation (15), the double aspect
ratio, 2ψλ, is exactly equal to the shape factor, b, present in Equations (13) and (16), and, as
a consequence, they provide the same values when H/B ranges in 1–1.5. As highlighted
above, Equation (14) always provides 10% lower values of capacity in comparison with
Equations (13) and (16), since it subtracts a 10% rate of capacity to take into account the
cyclic degradation action.

Besides, Figure 10b shows that all the shear capacity curves for irregular/rubble
masonry walls increase with the tensile strength, with an almost linear law. Specifically, it
is highlighted how, for squat walls, i.e., λ = 1, Equation (15) provides the highest values
and coincides with Equations (13) and (16). Again, Equation (14) provides results about
10% lower than those given by the other equations. Conversely, for slender walls, i.e.,
λ = 2, Equations (13) and (16) still provide the highest values of the shear capacity, while
Equation (15) provides the lowest ones because it depends on λ, independently of its range
of variation.

4. Theoretical vs. Experimental In-Plane Shear Capacity

In order to assess the reliability of the theoretical formulations described in Section 2,
some experimental data for shear-compression tests on unreinforced masonry walls, sub-
jected to constant vertical overloads and cyclic horizontal loads, have been collected and
summarized in two databases, one made of regular masonry walls and the other made of
irregular/rubble masonry walls. Successively, the experimental and theoretical in-plane
shear capacities of masonry walls are critically compared.

4.1. The Experimental Database on Regular Masonry Walls

Based on the examination of the literature concerning experimental tests on regular
masonry walls, a dataset of the results of shear-compression tests has been built and the
main data are listed in Table 5. The first driving criterion for selecting the experimental tests
has been the choice of walls constrained in a double-fixed condition in a shear-compression
scheme. In all the selected experimental tests, the horizontal actions are applied to walls
according to a quasi-static cyclic loading history.

The first part of the dataset collects the cases (from Case 1-R to Case 53-R) for which
the complete knowledge of the geometrical and mechanical characteristics of the materials
is available. Conversely, for the second part of the dataset (from Case 54-R to Case 93-R),
some information, such as the dimensions of the units and/or the cohesion and the friction
coefficient, is missing. This means that not all the previously discussed formulations, from
Equations (7) to (12), for predicting the shear strength in regular masonry walls, can be
applicable to the whole database.
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Table 5. Database of experimental tests on regular masonry walls.

Case Authors
Type of

Masonry
B H λ s bb hb hb/bb ϕ φ σ0 ft fc fv0 µ fbc Failure

Mode

Vexp τav

(mm) (mm) (−) (mm) (mm) (mm) (−) (−) (%) (MPa) (MPa) (MPa) (MPa) (−) (MPa) (kN) (MPa)

1-R Anthoine et al.,
1994 [11]

Clay brick 1000 1350 1.35 250 300 125 0.42 0.83 0 0.60 0.25 6.20 0.23 0.58 24.40 DSS 75.0 0.30
2-R 1000 2000 2.00 250 300 125 0.42 0.83 0 0.60 0.25 6.20 0.23 0.58 24.40 F 65.0 0.26

3-R
Magenes et al.,

2008 [64]
Calcium
silicate

1250 2500 2.00 175 248 248 1.00 2.00 0 1.00 0.27 24.00 0.60 0.54 15.10 DSS 75.0 0.34
4-R 1250 2500 2.00 175 248 248 1.00 2.00 0 0.50 0.27 24.00 0.60 0.54 15.10 DSS 50.0 0.23
5-R 1250 2500 2.00 175 248 248 1.00 2.00 0 2.00 0.27 24.00 0.60 0.54 15.10 DSS 140.0 0.64
6-R 1250 2500 2.00 175 248 248 1.00 2.00 0 1.00 0.27 24.00 0.60 0.54 15.10 DSS 100.0 0.46

7-R
Magenes et al.,

2008 [64]
Hollow

clay brick

2500 2600 1.04 300 250 190 0.76 1.52 45 0.68 0.28 9.50 0.60 0.54 26.50 DSS 309.0 0.41
8-R 2500 2600 1.04 300 250 190 0.76 1.52 45 0.68 0.28 9.50 0.60 0.54 26.50 DSS 340.0 0.45
9-R 1250 2600 2.08 300 250 190 0.76 1.52 45 0.50 0.28 9.50 0.60 0.54 26.50 F 86.0 0.23
10-R 1250 2600 2.08 300 250 190 0.76 1.52 45 0.50 0.28 9.50 0.60 0.54 26.50 F 72.0 0.19

11-R
Messali et al.,

2020 [65]
Calcium
silicate

1100 2700 2.45 102 434 476 1.10 2.19 0 0.70 0.21 5.93 0.14 0.43 27.40 DSS 27.7 0.25
12-R 1100 2700 2.45 102 434 476 1.10 2.19 0 0.40 0.21 5.93 0.14 0.43 27.40 DSS 15.0 0.13
13-R 4000 2700 0.68 102 434 476 1.10 2.19 0 0.50 0.21 5.93 0.14 0.43 27.40 HSS 119.0 0.29
14-R 4000 2700 0.68 102 434 476 1.10 2.19 0 0.30 0.21 5.93 0.14 0.43 27.40 HSS 102.0 0.25

15-R

Morandi et al.,
2013 [66]

Hollow
clay brick

1250 2000 1.60 350 250 190 0.76 1.52 45 0.50 0.41 9.50 0.69 0.77 19.20 TDS 130.0 0.30
16-R 1250 2000 1.60 350 250 190 0.76 1.52 45 0.70 0.41 9.50 0.69 0.77 19.20 TDS 166.0 0.38
17-R 1250 2000 1.60 350 250 190 0.76 1.52 45 1.00 0.41 9.50 0.69 0.77 19.20 TDS 198.0 0.45
18-R 2500 2000 0.80 350 250 190 0.76 1.52 45 0.50 0.41 9.50 0.69 0.77 19.20 TDS 401.0 0.46
19-R 2500 2000 0.80 350 250 190 0.76 1.52 45 0.70 0.41 9.50 0.69 0.77 19.20 TDS 500.0 0.57

20-R

Tomaževič, 2009 [67]
Hollow

clay brick

1000 1430 1.43 280 188 189 1.01 2.01 58 1.92 0.23 4.88 0.27 0.40 20.70 TDS 140.6 0.50
21-R 1000 1430 1.43 280 188 189 1.01 2.01 58 0.96 0.23 4.88 0.27 0.40 20.70 TDS 92.0 0.33
22-R 1020 1510 1.48 280 238 234 0.98 1.97 55 1.71 0.24 4.89 0.26 0.40 13.00 TDS 133.7 0.47
23-R 1020 1510 1.48 280 238 234 0.98 1.97 55 0.94 0.24 4.89 0.26 0.40 13.00 TDS 90.9 0.32
24-R 1020 1510 1.48 280 238 234 0.98 1.97 55 1.37 0.24 4.89 0.26 0.40 13.00 TDS 118.0 0.41
25-R 1010 1420 1.41 290 189 188 0.99 1.99 53 1.67 0.20 4.51 0.20 0.40 14.60 TDS 128.7 0.44
26-R 1010 1420 1.41 290 189 188 0.99 1.99 53 0.89 0.20 4.51 0.20 0.40 14.60 TDS 84.2 0.29
27-R 990 1420 1.43 290 331 189 0.57 1.14 54 1.62 0.26 4.76 0.38 0.40 12.20 TDS 141.7 0.49
28-R 990 1420 1.43 290 331 189 0.57 1.14 54 1.00 0.26 4.76 0.38 0.40 12.20 TDS 93.9 0.33
29-R 1070 1470 1.37 250 254 121 0.48 0.95 25 1.96 0.23 5.44 0.33 0.40 30.30 TDS 131.0 0.49
30-R 1070 1470 1.37 250 254 121 0.48 0.95 25 1.10 0.23 5.44 0.33 0.40 30.30 TDS 91.6 0.34

31-R
Churilov et al.,

2013 [68]
Clay brick

2600 1800 0.69 250 250 65 0.26 0.52 0 1.00 0.10 3.60 0.00 0.66 6.80 TDS 213.2 0.33
32-R 1500 1800 1.20 250 250 65 0.26 0.52 0 1.00 0.10 3.60 0.00 0.66 6.80 TDS 99.1 0.26
33-R 2600 1800 0.69 250 250 65 0.26 0.52 0 0.50 0.10 3.60 0.00 0.66 6.80 TDS 157.4 0.24



Materials 2021, 14, 3063 17 of 37

Table 5. Cont.

Case Authors
Type of

Masonry
B H λ s bb hb hb/bb ϕ φ σ0 ft fc fv0 µ fbc Failure

Mode

Vexp τav

(mm) (mm) (−) (mm) (mm) (mm) (−) (−) (%) (MPa) (MPa) (MPa) (MPa) (−) (MPa) (kN) (MPa)

34-R 1500 1800 1.20 250 250 65 0.26 0.52 0 0.50 0.10 3.60 0.00 0.66 6.80 DSS 65.5 0.17

35-R Salmanpour et al.,
2015 [69]

Hollow
clay brick

1500 1600 1.07 150 290 190 0.66 1.31 42 0.64 0.25 6.40 0.26 0.48 26.30 TDS 91.0 0.40
36-R 1500 1600 1.07 150 290 190 0.66 1.31 42 0.96 0.25 6.40 0.26 0.48 26.30 TDS 103.0 0.46

37-R Salmanpour et al.,
2015 [69]

Calcium
silicate

1550 1600 1.03 150 250 190 0.76 1.52 25 0.77 0.26 7.70 0.26 0.48 22.20 TDS 131.0 0.56
38-R 1550 1600 1.03 150 250 190 0.76 1.52 25 1.16 0.26 7.70 0.26 0.48 22.20 TDS 148.0 0.64

39-R

Salmanpour et al.,
2015 [69]

Hollow
clay brick

2700 2600 0.96 150 290 190 0.66 1.31 42 0.58 0.25 6.40 0.26 0.48 26.30 TDS 141.0 0.35
40-R 2700 2600 0.96 150 290 190 0.66 1.31 42 0.29 0.25 6.40 0.26 0.48 26.30 DSS 88.0 0.22
41-R 2700 2600 0.96 150 290 190 0.66 1.31 42 0.42 0.25 6.40 0.26 0.48 26.30 TDS 181.0 0.45
42-R 1800 2600 1.44 150 290 190 0.66 1.31 42 0.58 0.25 6.40 0.26 0.48 26.30 TDS 67.0 0.25
43-R 3600 2600 0.72 150 290 190 0.66 1.31 42 0.58 0.25 6.40 0.26 0.48 26.30 DSS 223.0 0.41

44-R

Petry and Beyer,
2015 [70]

Hollow
clay brick

2010 2250 1.12 200 300 190 0.63 1.27 - 1.06 0.50 5.87 0.27 0.94 35.00 TDS 187.0 0.47
45-R 2010 2250 1.12 200 300 190 0.63 1.27 - 1.06 0.50 5.87 0.27 0.94 35.00 TDS 178.0 0.44
46-R 2010 2250 1.12 200 300 190 0.63 1.27 - 1.53 0.50 5.87 0.27 0.94 35.00 TDS 145.0 0.36
47-R 2010 2250 1.12 200 300 190 0.63 1.27 - 0.53 0.50 5.87 0.27 0.94 35.00 TDS 135.0 0.34
48-R 2010 2250 1.12 200 300 190 0.63 1.27 - 0.53 0.50 5.87 0.27 0.94 35.00 TDS 154.0 0.38

49-R

Morandi et al.,
2014 [71]

Hollow
clay Brick

1350 2140 1.59 350 225 230 1.02 2.04 55 0.15 0.60 6.20 0.49 1.04 10.50 DSS 48.0 0.10
50-R 1350 2140 1.59 350 225 230 1.02 2.04 55 0.45 0.60 6.20 0.49 1.04 10.50 DSS 119.0 0.25
51-R 1350 2140 1.59 350 225 230 1.02 2.04 55 0.65 0.60 6.20 0.49 1.04 10.50 TDS 164.0 0.35
52-R 2700 2140 0.79 350 225 230 1.02 2.04 55 0.45 0.60 6.20 0.49 1.04 10.50 DSS 263.0 0.28
53-R 2700 2140 0.79 350 225 230 1.02 2.04 55 0.65 0.60 6.20 0.49 1.04 10.50 TDS 341.0 0.36

54-R
Martinelli et al.,

2016 [72]
Clay brick

1160 1160 1.00 250 250 55 0.22 0.44 0 0.52 0.13 12.31 - - 30.32 TDS 124.0 0.43
55-R 1160 1160 1.00 250 250 55 0.22 0.44 0 0.52 0.13 12.31 - - 30.32 TDS 68.0 0.23
56-R 1160 1160 1.00 250 250 55 0.22 0.44 0 0.52 0.13 12.31 - - 30.32 TDS 104.0 0.36

57-R

Fehling and Stuerz,
2007 [73]

Hollow
clay brick

2200 3800 1.73 175 250 240 0.96 1.92 - 1.00 0.28 10.30 - - 10.30 TDS 160.0 0.42
58-R 2200 3800 1.73 175 250 240 0.96 1.92 - 1.00 0.28 10.30 - - 10.30 DSS 140.0 0.36
59-R 2200 3800 1.73 175 250 240 0.96 1.92 - 1.00 0.28 10.30 - - 10.30 TDS 118.0 0.31
60-R 2200 3800 1.73 175 250 240 0.96 1.92 - 1.00 0.28 10.30 - - 10.30 TDS 147.0 0.38
61-R 2200 3800 1.73 175 250 240 0.96 1.92 - 1.00 0.28 10.30 - - 10.30 TDS 120.0 0.31
62-R 2200 3800 1.73 175 250 240 0.96 1.92 - 1.00 0.28 10.30 - - 10.30 TDS 149.0 0.39
63-R 1100 1900 1.73 175 250 240 0.96 1.92 - 1.00 0.28 10.30 - - 10.30 TDS 60.0 0.31
64-R 1100 1900 1.73 175 250 240 0.96 1.92 - 1.00 0.28 10.30 - - 10.30 TDS 56.0 0.29
65-R 2200 950 0.43 175 250 240 0.96 1.92 - 0.25 0.28 10.30 - - 10.30 DSS 72.0 0.19
66-R 2200 3800 1.73 175 250 240 0.96 1.92 - 1.00 0.28 10.30 - - 10.30 TDS 150.0 0.39
67-R 2200 3800 1.73 175 250 240 0.96 1.92 - 1.00 0.28 10.30 - - 10.30 TDS 162.0 0.42
68-R 1100 1900 1.73 175 250 240 0.96 1.92 - 1.00 0.28 10.30 - - 10.30 TDS 70.0 0.36
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Table 5. Cont.

Case Authors
Type of

Masonry
B H λ s bb hb hb/bb ϕ φ σ0 ft fc fv0 µ fbc Failure

Mode

Vexp τav

(mm) (mm) (−) (mm) (mm) (mm) (−) (−) (%) (MPa) (MPa) (MPa) (MPa) (−) (MPa) (kN) (MPa)

69-R Fehling and Stuerz,
2007 [73]

Calcium
silicate

1250 2200 1.76 175 175 249 1.42 2.85 - 1.00 0.27 5.93 - - 24.00 DSS 91.0 0.42
70-R 1250 2200 1.76 175 175 249 1.42 2.85 - 1.00 0.27 5.93 - - 24.00 TDS 86.0 0.39

71-R

Fehling and Stuerz,
2007 [73]

Lightweight
Aerated
Concrete

1250 2200 1.76 175 250 240 0.96 1.92 - 1.00 0.25 2.40 - - 3.31 DSS 90.0 0.41
72-R 1250 2200 1.76 175 250 240 0.96 1.92 - 1.00 0.25 2.40 - - 3.31 DSS 98.0 0.45
73-R 1250 1100 0.88 175 250 240 0.96 1.92 - 0.50 0.25 2.40 - - 3.31 DSS 65.0 0.30
74-R 1250 1100 0.88 175 250 240 0.96 1.92 - 0.50 0.25 2.40 - - 3.31 DSS 61.0 0.28
75-R 1250 2200 1.76 175 250 240 0.96 1.92 - 1.00 0.25 2.40 - - 3.31 DSS 49.0 0.22

76-R
Magenes et al.,

2008 [64]

Lightweight
Aerated
Concrete

2500 2500 1.00 175 247 240 0.97 1.94 0 0.50 0.25 2.40 - - 3.31 DSS 125.0 0.29
77-R 2500 2500 1.00 175 247 240 0.97 1.94 0 0.50 0.25 2.40 - - 3.31 DSS 140.0 0.32
78-R 2500 2500 1.00 175 247 240 0.97 1.94 0 1.00 0.25 2.40 - - 3.31 DSS 230.0 0.53
79-R 2500 2500 1.00 175 247 240 0.97 1.94 0 1.00 0.25 2.40 - - 3.31 DSS 230.0 0.53

80-R
Borri et al., 2015 [27] Clay brick

890 905 1.02 250 240 55 0.23 0.46 0 0.48 0.10 6.00 - - 20.99 TDS 84.1 0.38
81-R 900 895 0.99 250 240 55 0.23 0.46 0 0.40 0.10 6.00 - - 20.99 TDS 61.3 0.27
82-R 930 900 0.97 250 240 55 0.23 0.46 0 0.39 0.10 6.00 - - 20.99 TDS 70.8 0.30

83-R Marcari et al.,
2007 [41]

Tuff stone
(‘a sacco’) 1480 1570 1.06 530 - - - - 0 0.50 0.06 1.40 - - 2.00 TDS 132.0 0.17

84-R
Faella et al.,

1992 [74]
Tuff stone
(‘a sacco’)

1300 1250 0.96 500 - - - - 0 0.21 0.06 2.00 - - 3.00 TDS 82.4 0.13
85-R 1300 1250 0.96 500 - - - - 0 0.21 0.06 2.00 - - 3.00 TDS 83.0 0.13
86-R 1300 1250 0.96 500 - - - - 0 0.52 0.06 2.00 - - 3.00 TDS 107.7 0.17
87-R 1300 1250 0.96 500 - - - - 0 0.52 0.06 2.00 - - 3.00 TDS 124.4 0.19

88-R Faella et al.,
1992 [74] Tuff stone

1300 1250 0.96 500 - - - - 0 0.21 0.12 3.50 - - 3.50 TDS 102.4 0.16
89-R 1300 1250 0.96 500 - - - - 0 0.52 0.12 3.50 - - 3.50 TDS 165.7 0.25

90-R
Lourenço et al.,

2005 [75]
Dry Stone

1000 1000 1.00 200 200 100 0.50 1.00 0 0.15 0.06 50.00 - - 82.70 HSS 22.0 0.11
91-R 1000 1000 1.00 200 200 100 0.50 1.00 0 0.15 0.06 50.00 - - 82.70 HSS 23.0 0.12
92-R 1000 1000 1.00 200 200 100 0.50 1.00 0 0.50 0.07 50.00 - - 82.70 TDS 42.0 0.21
93-R 1000 1000 1.00 200 200 100 0.50 1.00 0 0.50 0.07 50.00 - - 82.70 TDS 49.0 0.25

Failure modes: F = Flexural; DSS = Diagonal Sliding Shear; HSS = Horizontal Sliding Shear; TDS = Tensile Diagonal Shear.
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For each series of the collected experimental data, the single specimens are numbered
from 1 to n, being n their total number, followed by the type of masonry, ‘R’ for regular.
The parameters are the same as in Table 4, with the addition of the unit shape ratio, ϕ,
the volume of holes, φ, when available, and the compressive strength of units, fbc. The
values of all the mechanical properties are obtained by means of the experimental tests
carried out by the related authors. In particular, the compressive strength of masonry, fc,
was evaluated by means of experimental compressive tests on masonry wallets and ft by
means of diagonal compression tests, interpreted according to the ASTM indications [23],
i.e., ft = 0.707N/A, where N is the maximum compressive load and A is the area of the
cross section. The values of cohesion, fv0, and of the friction coefficient, µ, when available,
were evaluated experimentally according to shear tests on couplets or triplets. Moreover,
the compressive strength of units, fbc, was obtained according to laboratory compressive
tests on single specimens carved from the units. In the last columns of Table 5, the failure
modes and the shear capacities, Vexp, experimentally obtained are reported together with
the corresponding experimental average shear stress defined as τav = Vexp/A.

Anthoine et al. [11] have studied the experimental in-plane behaviour of clay brick
walls (Cases 1-R and 2-R in Table 5), with a base width of 1.0 m and two slenderness
ratios (λ = 1.35 and 2.00). The main aim of this study was to analyze the effect of the
slenderness on the in-plane behavior of walls. In particular, it was evidenced that under the
same constraint conditions and vertical axial load, the slender wall (λ = 2.00) was mainly
subjected to the flexural failure, while the squat wall (λ = 1.35) to the shear failure. Based
on the results of the experimental tests of [11], Magenes and Calvi [42] have derived the
formulations to predict the flexural and shear capacities, i.e., the previously described
Equations (2) and (10), respectively.

Magenes et al. [64] have analyzed the experimental in-plane response of regular
masonry walls made of different materials. The walls from Case 3-R to Case 6-R in Table 5
were made of calcium silicate units and those from Case 7-R to Case 10-R of hollow clay
bricks. Different dimensions of the walls were considered and the slenderness, λ, varied
between 1.0 and 2.0. The top vertical load was also varied in order to provide compressive
stresses ranging from 0.5 to 2 MPa. The failure modes experimentally observed were
mainly related to diagonal sliding shear (DSS) and, in some cases, to flexural failures (F).
A wide variation in ductility and drift capacity was observed depending on the failure
mechanism, which was influenced by all the examined parameters, i.e., the axial load, the
geometry and the boundary conditions. In particular, the drift capacities were strongly
affected by the type of failure and the highest values were obtained when the sliding shear
failure along mortar joints occurred.

Messali et al. [65] have provided results related to regular masonry walls made of
calcium silicate units (from Case 11-R to Case 14-R in Table 5), characterized by two
different geometries to test both squat and slender walls. The slender walls were 1.1 m long
and 2.7 m high (λ = 2.45), while the squat walls were 4 m long and 2.7 m high (λ = 0.67).
The thickness of the walls was the same and equal to 0.1 m, while the top load was varied
in order to have compressive stresses varying in the range 0.3–0.7 MPa. The experimental
results evidenced a significant effect of the wall slenderness on the failure modes and the
drift capacities of the walls. In fact, the typical failure modes of regular masonry walls
were attained, i.e., HSS and DSS failures for squat and slender walls, respectively.

Morandi et al. [66] have carried out researches on the in-plane behavior of slender
masonry walls made of hollow clay bricks with slenderness, λ, varying between 1.0 and
1.6 (from Case 15-R to Case 19-R in Table 5). The cyclical response of these walls evidenced
a TDS failure, regardless of the slenderness. The results showed that, in all the cases, the
cracks start developing in the units and then move towards the horizontal and vertical
mortar joints.

Tomaževič [67] has carried out experimental tests on 11 unreinforced regular masonry
walls made of hollow clay bricks (from Case 20-R to Case 30-R in Table 5) with slenderness
varying between 1.3 and 1.5 and assuming a vertical compression stresses variable in the
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range 0.9–2 MPa. The walls were built using different units with a significant scattering of
the mechanical properties. All the experimental tests showed a failure mechanism mainly
related to the TDS failure.

Churilov et al. [68] have performed experiments with the purpose of evaluating the
stiffness, the shear strength and the energy dissipation of masonry walls made of clay
bricks (from Case 31-R to Case 34-R in Table 5). The tested walls had the same thickness
and height, i.e., s = 0.25 m and H = 1.8 m, and two widths, i.e., B = 1.5 m and 2.6 m,
corresponding to two slenderness values, λ = 0.7 and 1.2, under two different vertical loads,
i.e., 0.5 and 1 MPa. The failure mechanisms observed during the experimental tests were
mainly related to the TDS failure, except for the last case where a DSS failure occurred.

Salmanpour et al. [69] have carried out experimental tests on regular masonry walls
made of hollow clay bricks (Case 35-R, Case 36-R and from Case 39-R to Case 43-R in
Table 5) and calcium silicate units (Case 37-R and 38-R in Table 5). Different dimensions
of the walls were considered and the slenderness, λ, varied between 0.7 and 1.5. The
vertical load was also varied in order to provide compressive stresses ranging from 0.3 to
1.2 MPa. The failure modes experimentally observed were mainly related to the TDS failure
and, in some cases, to the DSS failure. The experimental tests evidenced a very limited
displacement capacity, regardless of the failure mode exhibited, and it was evidenced by
the narrowness of the current codes to reliably assess the displacement capacity of masonry
structures.

Petry and Beyer [70] have investigated the in-plane behavior of five regular masonry
walls made of hollow clay bricks (from Case 44-R to Case 48-R in Table 5) with the same
dimensions, i.e., B = 2.0 m, H = 2.25 m and s = 0.2 m. The experimental tests were
conducted assuming a vertical load variable in the range 0.5–1.1 MPa. All the tests showed
a TDS failure.

Morandi et al. [71] have experimentally investigated the behavior of thin walls made
of hollow clay bricks. The tested masonry walls (from Case 49-R to Case 53-R in Table 5)
were built with the same thickness, s = 0.35 m, the same height, H = 2.14 m, and two base
widths, B = 1.35 m and 2.7 m, corresponding to a slenderness of λ = 0.8 and 1.6, respectively.
The experimental tests were carried out under three levels of vertical compression stress,
equal to 0.15 MPa, 0.45 MPa and 0.65 MPa. The experimentally observed failure modes
were mainly related to the TDS and DSS failures.

From Case 54-R to Case 93-R in Table 5, the database is increased adding other
experimental tests performed on regular masonry walls made of clay bricks [27,72], hollow
clay bricks [73], lightweight aerated concrete units [64,73], calcium silicate units [73], yellow
tuff stones [41,74], and dry stones [75]. The available data for these cases are not complete,
as shown in Table 5.

4.2. Theoretical vs. Experimental Shear Capacities for Regular Masonry Walls

The comparisons between the experimental and the theoretical shear capacities of
regular masonry walls are here described for the first part of the dataset reported in Table 5
(from Case 1-R to Case 53-R), because only for these tests the parameters necessary for
calculating the theoretical predictions, Vth, given by the formulations presented in Section 2,
are available. The values of Vth are listed in Table 6, together with the experimental failure
loads, Vexp, and modes.
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Table 6. Theoretical results and comparison with the experimental results for regular masonry walls.

Experimental Result

Theoretical Results

Theoretical vs. Experimental ResultsFlexural Failure (F), Vth ,F
Sliding Failure Tensile Failure of

Units (TDS) Vth ,TDS‘local’ (HSS) Vth ,HSS ‘global’ (DSS) Vth ,DSS

CASE
Vexp Failure

Mode

Equation
(1)

Equations
(2) and (5)

Equation
(3)

Equation
(4)

Equation
(7)

Equation
(8)

Equations
(9) and

(11)

Equation
(10) Equation (12) Vth ,min,exp ρmin ,exp Vth ,min ρmin

(kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (−) (kN) (−)
1-R 75.0 DSS 100.4 98.5 95.8 98.7 83.8 72.3 72.2 76.7 79.5 72.2 0.96 72.2 0.96 (DSS)
2-R 65.0 F 67.7 66.5 64.6 66.7 83.8 72.3 64.9 65.8 71.6 64.6 0.99 64.6 0.99 (F)

3-R 75.0 DSS 104.8 104.0 102.9 104.1 150.9 124.7 79.9 81.2 51.4 79.9 1.07 51.4 0.69
(TDS)

4-R 50.0 DSS 53.5 53.3 53.1 53.4 121.4 95.2 61.0 78.0 41.7 61.0 1.22 41.7 0.83
(TDS)

5-R 140.0 DSS 200.5 197.3 192.7 197.8 210.0 183.8 117.8 145.3 66.8 117.8 0.84 66.8 0.48
(TDS)

6-R 100.0 DSS 104.8 104.0 102.9 104.1 150.9 124.7 79.9 81.2 51.4 79.9 0.80 51.4 0.51
(TDS)

7-R 309.0 DSS 455.3 449.1 440.2 450.0 452.7 362.7 383.1 416.9 339.5 383.1 1.24 339.5 1.10
(TDS)

8-R 340.0 DSS 455.3 449.1 440.2 450.0 452.7 362.7 383.1 416.9 339.5 383.1 1.13 339.5 1.00
(TDS)

9-R 86.0 F 85.4 84.6 83.4 84.7 208.1 163.1 119.5 143.0 110.3 83.4 0.97 83.4 0.97 (F)
10-R 72.0 F 85.4 84.6 83.4 84.7 208.1 163.1 119.5 143.0 110.3 83.4 1.16 83.4 1.16 (F)
11-R 27.7 DSS 28.2 27.6 26.6 27.7 27.9 24.7 17.0 21.4 36.4 17.0 0.61 17.0 0.61 (DSS)
12-R 15.0 DSS 17.1 16.8 16.5 16.9 20.6 17.5 12.0 13.3 32.6 12.0 0.80 12.0 0.80 (DSS)
13-R 119.0 HSS 276.7 272.2 265.8 272.9 83.8 72.4 74.5 77.9 184.9 72.4 0.61 72.4 0.61 (HSS)
14-R 102.0 HSS 172.2 170.5 168.2 170.8 66.3 54.9 56.5 57.3 170.4 54.9 0.54 54.9 0.54 (HSS)
15-R 130.0 TDS 129.5 128.3 126.4 128.4 295.5 235.2 144.5 189.7 99.8 99.8 0.77 99.8 0.77 (TDS)
16-R 166.0 TDS 177.3 174.8 171.3 175.2 329.2 268.8 165.2 232.7 108.7 108.7 0.65 108.7 0.65 (TDS)
17-R 198.0 TDS 244.7 239.6 232.3 240.3 379.8 319.4 196.2 206.4 120.8 120.8 0.61 120.8 0.61 (TDS)
18-R 401.0 TDS 518.1 513.0 505.8 513.8 591.1 470.3 433.4 456.4 299.5 299.5 0.75 299.5 0.75 (TDS)
19-R 500.0 TDS 709.2 699.3 685.0 700.7 658.4 537.7 495.5 537.0 326.1 326.1 0.65 326.1 0.65 (TDS)
20-R 140.6 TDS 228.0 201.9 164.6 205.8 160.4 145.3 112.6 156.0 106.9 106.9 0.76 106.9 0.76 (TDS)
21-R 92.0 TDS 151.0 144.5 135.1 145.4 106.7 91.6 71.0 91.8 84.4 84.4 0.92 71.0 0.77 (DSS)
22-R 133.7 TDS 214.5 194.2 165.1 197.2 149.7 134.8 101.9 144.4 75.9 75.9 0.57 75.9 0.57 (TDS)
23-R 90.9 TDS 146.5 140.3 131.5 141.3 105.7 90.8 68.7 91.1 60.4 60.4 0.66 60.4 0.66 (TDS)
24-R 118.0 TDS 190.3 177.2 158.5 179.1 130.2 115.4 87.3 121.3 69.5 69.5 0.59 69.5 0.59 (TDS)
25-R 128.7 TDS 219.1 196.3 163.9 199.8 138.8 127.1 100.7 138.4 87.0 87.0 0.68 87.0 0.68 (TDS)
26-R 84.2 TDS 148.8 142.4 133.1 143.3 93.1 81.4 64.5 84.7 69.1 69.1 0.82 64.5 0.77 (DSS)
27-R 141.7 TDS 213.9 194.4 166.6 197.3 169.4 147.6 141.2 178.3 74.2 74.2 0.52 74.2 0.52 (TDS)
28-R 93.9 TDS 158.1 150.7 140.1 151.8 133.8 112.0 107.2 122.4 61.5 61.5 0.66 61.5 0.66 (TDS)
29-R 131.0 TDS 244.1 219.9 185.2 223.5 166.7 149.0 157.1 198.0 136.7 136.7 1.04 136.7 1.04 (TDS)
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Table 6. Cont.

Experimental Result

Theoretical Results

Theoretical vs. Experimental ResultsFlexural Failure (F), Vth ,F
Sliding Failure Tensile Failure of

Units (TDS) Vth ,TDS‘local’ (HSS) Vth ,HSS ‘global’ (DSS) Vth ,DSS

30-R 91.6 TDS 170.9 163.2 152.3 164.4 120.6 113.0 108.6 125.1 114.4 114.4 1.25 108.6 1.19 (DSS)
31-R 213.2 TDS 678.1 632.1 566.3 639.0 429.0 429.0 319.4 319.4 208.1 208.1 0.98 208.1 0.98 (TDS)
32-R 99.1 TDS 225.7 210.4 188.5 212.7 247.5 247.5 153.6 184.3 100.0 100.0 1.01 100.0 1.01 (TDS)
33-R 157.4 TDS 404.2 392.7 376.3 394.5 214.5 214.5 159.7 159.7 166.5 166.5 1.06 159.7 1.01 (DSS)
34-R 65.5 DSS 134.5 130.7 125.2 131.3 123.8 123.8 76.8 92.1 80.0 76.8 1.17 76.8 1.17 (DSS)
35-R 91.0 TDS 121.5 119.1 115.7 119.5 151.0 127.6 73.4 85.0 97.4 97.4 1.07 73.4 0.81 (DSS)
36-R 103.0 TDS 172.1 166.8 159.1 167.6 185.6 162.2 93.3 107.9 107.7 107.7 1.05 93.3 0.91 (DSS)
37-R 131.0 TDS 156.1 153.0 148.6 153.5 170.6 146.4 82.0 92.8 95.8 95.8 0.73 82.0 0.63 (DSS)
38-R 148.0 TDS 221.4 214.5 204.7 215.6 213.8 189.6 106.2 119.1 107.9 107.9 0.73 106.2 0.72 (DSS)
39-R 141.0 TDS 221.9 218.0 212.4 218.6 260.2 218.1 133.9 146.8 183.0 183.0 1.30 133.9 0.95 (DSS)
40-R 88.0 DSS 116.0 115.0 113.7 115.2 203.6 161.5 99.1 103.8 162.4 99.1 1.13 99.1 1.13 (DSS)
41-R 181.0 TDS 165.0 162.9 160.0 163.2 229.0 186.9 114.7 124.3 172.0 172.0 0.95 114.7 0.63 (DSS)
42-R 67.0 TDS 98.8 97.1 94.6 97.3 173.6 145.6 61.9 92.6 84.5 84.5 1.26 61.9 0.92 (DSS)
43-R 223.0 DSS 394.1 387.2 377.3 388.2 346.8 290.6 178.4 201.5 244.0 178.4 0.80 178.4 0.80 (DSS)
44-R 187.0 TDS 311.1 299.1 281.9 300.9 275.6 253.9 207.1 214.6 232.2 232.2 1.24 207.1 1.11 (DSS)
45-R 178.0 TDS 311.1 299.1 281.9 300.9 275.6 253.9 207.1 214.6 232.2 232.2 1.30 207.1 1.16 (DSS)
46-R 145.0 TDS 405.6 380.4 344.5 384.2 364.3 342.6 279.4 297.3 256.8 256.8 1.77 256.8 1.77 (TDS)
47-R 135.0 TDS 172.6 169.6 165.3 170.1 175.8 154.1 125.7 146.3 201.0 201.0 1.49 125.7 0.93 (DSS)
48-R 154.0 TDS 172.6 169.6 165.3 170.1 175.8 154.1 125.7 146.3 201.0 201.0 1.31 125.7 0.82 (DSS)
49-R 48.0 DSS 43.6 43.4 43.2 43.5 198.9 152.6 65.1 73.7 52.4 65.1 1.36 43.2 0.90 (DSS)

50-R 119.0 DSS 124.4 122.7 120.2 122.9 272.6 226.3 96.5 142.5 67.2 96.5 0.81 67.2 0.56
(TDS)

51-R 164.0 TDS 173.4 169.9 164.7 170.4 321.8 275.5 117.5 179.0 75.5 75.5 0.46 75.5 0.46 (TDS)

52-R 263.0 DSS 497.6 490.7 480.9 491.7 545.3 452.7 289.6 319.5 201.7 289.6 1.10 201.7 0.77
(TDS)

53-R 341.0 TDS 693.7 679.4 658.9 681.6 643.5 550.9 352.5 389.3 226.5 226.5 0.66 226.5 0.66 (TDS)

NOTE: Bold Italics is used to identify the cases in which the predicted failure mechanism does not correspond with the experimental one.
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As indicated in Section 3, some formulations are plotted together because they provide
the same results, assuming the average values of strength in all the calculations. In addition
to the theoretical results provided by the different formulations, Table 6 also reports: (1)
the minimum value of the strength provided by the formulations predicting the same
failure mode observed in the tests, Vth,min,exp; (2) the minimum value of the theoretical
strength within all the formulations, Vth,min; (3) the ratios of Vth,min,exp and Vth,min to
the experimental strengths, i.e., ρmin,exp and ρmin, respectively. Note that for ρmin the
corresponding theoretical failure mode is reported in brackets too.

It is important to note that among all the formulations for the shear strength for regular
masonry walls discussed in Section 2.2.1, only Equation (12), which provides the diagonal
shear strength for the tensile failure (TDS), uses the tensile strength of the units, fbt. Since
this parameter was not provided by the authors and in order to calculate Equation (12), fbt
has been evaluated by means of the correlation proposed by Eurocode 6 [55]: fbt = 0.032fbc,
being fbc the compressive strength of the masonry unit. Such a formulation seems to be
more realistic in comparison with the one suggested by the Commentary to the Italian
code [54], which provides fbt = 0.1fbc and tends to overestimate too much the experimental
TDS capacities of the wall. Conversely, the equation proposed by Eurocode 6 [55] leads to
theoretical TDS capacities more comparable with the experimental ones.

Table 6 shows that the failure modes associated with the minimum capacities, Vth,min,
agree with the experimentally observed ones in most of the cases. The main differences
with the experimental results are provided by Equations (9)–(12), especially when the
related theoretical values are comparable. In some cases, in fact, the predicted failure
mode is DSS, while the experimentally observed one is TDS or vice versa. However, this
disagreement can be explained because the experimentally observed failure modes were
often characterized by cracks initially starting from the units and, then, moving across the
mortar joints, or vice versa. This is confirmed by the comparable values of the DSS and
TDS strengths and means that the activation of one or the other failure mode as the first
one is also related to the experimental scatter of the mechanical properties of the material
within the wall.

The experimental failure modes also confirm that the slenderness of the walls, λ, and
of the units, hb/bb, influence the prevalence of the DSS or the HSS failure mode (Figure 9),
as already discussed in Section 3.2.

Figure 11 shows the comparisons between the experimental and the theoretical val-
ues of the shear capacity. In particular, in Figure 11a, the experimental failure loads are
compared with the ranges of strengths provided by all the formulations predicting the
same failure modes observed in the tests. In Figure 11b, each experimental value is only
compared with Vth,min,exp, which is the minimum strength provided by all the formulations
predicting the same failure mode experimentally observed. In Figure 11c the minimum val-
ues of strengths, Vth,min, within all the theoretical results provided by the Equations (1)–(12)
listed in Table 6 are considered, independently of the experimental failure mode. Finally,
Figure 11d shows the correlation between the theoretical-to-experimental TDS capacities
and the compressive strength of the unit, fbc.
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In order to numerically define the differences between the experimental and the
theoretical capacities, the mean, the standard deviation and the coefficient of variation
(CoV) relative to the factors ρmin,exp and ρmin are calculated and listed in Table 7. It is
worth highlighting that these factors are referred to the theoretical values plotted in
Figure 11b,c, respectively.

Table 7. Mean, standard deviation and CoV associated with the ratios ρmin and ρmin,exp.

Statistical Values ρmin,exp ρmin

Mean (−) 0.94 0.82
Stand. Dev. (−) 0.28 0.24

CoV (%) 30.4% 29.4%

More in detail, Figure 11a shows that in the cases of the flexural failure, the agreement
between the experimental results and theoretical predictions is very good and there is a
very low scattering among the values provided by the different theoretical formulations, as
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already observed in Section 3.1. In fact, for the 3 specimens that attained a flexural failure
the average value of the theoretical capacities is equal to the experimental one.

Conversely, in the cases of the HSS failure, Equations (7) and (8) significantly under-
estimate the experimental results (57% on average), but only 2 specimens attained such a
failure mode and, thus, the results are not statistically significant. The underestimation of
the horizontal sliding shear capacities may also be related to the assumption of a reduced
length of the cross section equal to half length of the specimen, i.e., B’ = 0.5B.

Finally, Figure 11a shows that for the 15 specimens failed for DSS, there is a significant
variability among the results provided by Equations (9)–(11), as already observed in
Section 3.2. For these specimens, it is highlighted that Equations (9) and (11) provide an
average value of the theoretical capacities very close to the ones experimentally obtained,
while Equation (10) tends to overestimate the actual shear capacity of about 15%.

However, if only the minimum values of strengths associated with the same experi-
mentally observed failure modes are plotted, Figure 11b shows that the agreement between
these theoretical and experimental results is quite good. This agreement is already ev-
idenced by the average value of ρmin,exp (0.94, CoV = 30.4%) and is mainly due to the
higher reliability of Equations (9), (11) and (12) into predicting the DSS and TDS failures,
respectively. Besides, no substantial differences can be observed for the flexural failure,
while for HSS the few experimental results are underestimated by both Equations (7)
and (8). Figure 11b also shows that in most cases the minimum values of the theoreti-
cal formulations associated with the same experimental failure are safe or close to the
experimental strength.

If the actual failure mode is not known ‘a priori’, the prediction of the strength is based
on the assessment of the minimum value within the strengths associated with different
failure modes; therefore, in Figure 11c, the minimum values of strength among all the
theoretical predictions are compared with the experimental results. It can be noted that the
graph is similar to Figure 11b because in few cases the ‘predicted’ failure mode does not
correspond to the experimental one, while the theoretical predictions are conservative, i.e.,
the average value of ρmin is 0.82 (CoV = 29.4%).

Finally, focussing on the 33 specimens failed for TDS, it can be observed that Equation (12)
provides theoretical capacities that are on average only 8% lower than the experimen-
tal ones, i.e., the average value of the ratio Vth,TDS/Vexp is 0.92, but the CoV is 34.3%.
Figure 11d shows that the theoretical predictions for TDS are safe until the compressive
strength of the units is lower than 25 MPa; for higher values of fbc, also the correlation
suggested by Eurocode 6 [55], i.e., fbt = 0.032fbc, becomes not safe, since Equation (12) tends
to overestimate the experimental capacities too much.

In conclusion, it can be derived that the flexural capacities for regular masonry walls
can be reliably provided by the available formulations, while the shear strength for DSS
is safely predicted by Equation (9) proposed by Mann and Muller [58], which is the
same as Equation (11) recalled in the Italian code [53]. For the HSS failure, Equation (7)
seems to be quite reliable in predicting the experimental results because it provides a low
underestimation, but the available data are not enough to obtain conclusive remarks. For
the TDS failure, Equation (12) provides safe values of the shear strengths if the tensile
strength of the unit is calculated as about 3% of the compression strength of the unit,
according to Eurocode 6 [55], and, however, for compressive strength not higher than
25 MPa.

When the failure mode is not known ‘a priori’, the wall strength can reasonably be
predicted by the minimum value among the ones provided by Equations (3), (8), (9), (11)
and (12).

4.3. The Experimental Database on Irregular/Rubble Masonry Walls

For irregular/rubble masonry walls, the available formulations for the shear capacity
can all be referred to the Turnšek and Čačovič approach [14], which is only based on the
geometrical parameters of the wall and the tensile strength of masonry, assumed as a
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homogeneous material. Thus, the formulations for irregular/rubble masonry walls are
simpler to be applied than the ones based on the Mohr-Coulomb criterion for regular
masonry, and some codes, i.e., the Commentary to the Italian code [54], allow to use them
in favor of safety for predicting the diagonal shear strength also in walls made of regular
masonry. This aspect will be addressed in detail in Section 4.5.

Regarding the irregular/rubble masonry walls, the experimental tests carried out
by [10,26,27,76–78] are herein considered to define a database of a total of 27 tests. In
particular, the selected experiments were performed according to shear-compression tests
on walls made of single-leaf stones [10,26,27,76,78], double-leaf stones [27,76,78] and three-
leaf stones [77]. The constraint condition of the walls was in all the cases ‘double-fixed’ and
quasi-static cyclic actions were applied in all the testing procedures. The slenderness, λ,
varies from 1.0 to 2.0 and the normal compressive stress, σ0, in the range 0.1–1.5 MPa. The
compressive strength, fc, of the masonry varies in 2.5–21.0 MPa, while the tensile strength, ft,
obtained according to the ASTM indication, i.e., ft = 0.707N/A, varies in 0.04–0.25 MPa. The
compressive strength of the unit, fbc, was evaluated by means of experimental compressive
tests and varies from 7.5 MPa to 165.0 MPa. In Table 8 the main geometrical and mechanical
parameters of the walls are summarized, together with the experimental failure modes,
loads and average shear stress. It can be observed that, as expected for such a masonry
typology, all the collected walls failed for diagonal shear with cracks in the units and/or in
the mortar (i.e., DS failure, Figure 1b).

Table 8. Experimental data on irregular/rubble masonry walls.

Case Authors
Type of

Masonry
B H λ s σ0 ft fc fbc Failure

Mode

Vexp τav

(mm) (mm) (−) (mm) (MPa) (MPa) (MPa) (MPa) (kN) (MPa)

94-R

Borri et al., 2015 [27] Double-leaf
stone

860 910 1.06 480 0.15 0.05 20.99 36.00 DS 34.3 0.08
95-R 860 900 1.05 480 0.18 0.05 20.99 36.00 DS 37.0 0.09
96-R 900 900 1.00 480 0.18 0.05 20.99 36.00 DS 62.5 0.14
97-IR 880 915 1.04 480 0.31 0.07 20.99 36.00 DS 88.3 0.21
98-IR 930 915 0.98 480 0.29 0.10 20.99 36.00 DS 100.5 0.23
99-IR 880 910 1.03 480 0.12 0.06 20.99 36.00 DS 74.4 0.18

100-IR

Borri et al., 2015 [27] Double-leaf
stone

900 903 1.00 510 0.21 0.04 20.99 36.00 DS 109.3 0.24
101-IR 900 905 1.01 490 0.21 0.04 20.99 36.00 DS 52.0 0.12
102-IR 900 903 1.00 510 0.19 0.04 20.99 36.00 DS 80.7 0.18
103-IR 900 950 1.06 490 0.21 0.04 20.99 36.00 DS 87.6 0.20

104-IR Vasconcelos and
Lourenço, 2009 [10]

Irregular
stone

1000 1200 1.20 200 0.88 0.12 18.40 18.40 DS 55.7 0.28
105-IR 1000 1200 1.20 200 1.25 0.12 18.40 18.40 DS 83.0 0.41

106-IR Vasconcelos and
Lourenço, 2009 [10] Rubble stone

1000 1200 1.20 200 0.88 0.12 18.40 18.40 DS 63.8 0.32
107-IR 1000 1200 1.20 200 1.25 0.12 18.40 18.40 DS 66.0 0.33

108-IR
Magenes et al.,

2010 [76]
Double-leaf

stone

1250 2500 2.00 320 0.20 0.14 3.28 165.00 DS 48.0 0.12
109-IR 2500 2500 1.00 320 0.50 0.14 3.28 165.00 DS 234.0 0.29
110-IR 2500 2500 1.00 320 0.20 0.14 3.28 165.00 DS 154.0 0.19

111-IR
Silva et al., 2014 [77] Three-leaf

stone

1000 1200 1.20 500 0.50 0.05 2.50 93.40 DS 64.7 0.13
112-IR 1000 1200 1.20 500 0.75 0.05 2.50 93.40 DS 84.5 0.17
113-IR 1000 1200 1.20 500 1.00 0.05 2.50 93.40 DS 93.5 0.19

114-IR

Godio et al., 2019 [26] Irregular
stone

900 900 1.00 200 0.74 0.25 10.34 65.60 DS 76.0 0.42
115-IR 900 900 1.00 200 0.99 0.25 10.34 65.60 DS 90.0 0.50
116-R 900 900 1.00 200 1.52 0.25 10.34 65.60 DS 138.0 0.77
117-R 900 900 1.00 200 1.15 0.25 10.34 65.60 DS 110.0 0.61
118-R 900 900 1.00 200 1.15 0.25 10.34 65.60 DS 108.0 0.60
119-R 900 900 1.00 200 1.15 0.25 10.34 65.60 DS 103.0 0.57

120-R Gattesco et al.,
2015 [78]

Double-leaf
stone 1500 2000 1.33 350 0.90 0.13 4.50 7.50 DS 155.0 0.30

4.4. Theoretical vs. Experimental Capacities for Irregular/Rubble Masonry Walls

As indicated in Section 2, irregular/rubble masonry walls can exhibit only one type of
shear failure, i.e., diagonal shear (DS). The theoretical shear strengths are herein evaluated
for the tests collected in Table 8 by means of the formulations usually adopted for diagonal
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shear failure in irregular/rubble masonry walls, i.e., Equations (13)–(16). Thus, in Table 9,
the experimental maximum loads, Vexp, and the theoretical capacities, Vth,DS, are listed,
together with their ratio, ρDS. The theoretical flexural capacities provided by Equation (3),
i.e., the minimum ones within all the formulations predicting the flexural failure, Vth,F, are
also listed with their ratio, ρF = Vth,F/Vexp. It can be observed that the theoretical flexural
strengths are in most cases greater than the experimental failure loads (average value of ρF
is 1.64 with CoV = 30.4%) and always greater than the diagonal shear strengths provided
by Equations (13) and (16), confirming, thus, the experimental occurrence of the DS failure.

Table 9. Theoretical results and comparison with the experimental results for irregular/rubble masonries.

Case Vexp(kN) Fail.
Mode

Flexural
Failure

(F), Vth ,F
(kN)

Diagonal Shear
(DS), Vth ,DS (kN)

ρF =
Vth ,F/Vexp(−) ρDS = Vth ,DS/Vexp(−)

Equation
(3)

Equations
(13) and (16)

Equation
(14)

Equation
(15)

Equation
(3)

Equations
(13) and (16)

Equation
(14)

Equation
(15)

94-R 34.3 DS 56.77 37.0 33.3 37.0 1.66 1.08 0.97 1.08
95-R 37.0 DS 71.67 40.8 36.8 40.8 1.94 1.10 0.99 1.10
96-R 62.5 DS 78.07 44.6 40.2 44.6 1.25 0.71 0.64 0.71
97-IR 88.3 DS 122.50 67.2 60.5 67.2 1.39 0.76 0.68 0.76
98-IR 100.5 DS 127.67 87.8 79.0 89.3 1.27 0.87 0.79 0.89
99-IR 74.4 DS 49.42 42.2 38.0 42.2 0.66 0.57 0.51 0.57

100-IR 109.3 DS 93.86 48.2 43.4 48.2 0.86 0.44 0.40 0.44
101-IR 52.0 DS 89.93 46.2 41.6 46.2 1.73 0.89 0.80 0.89
102-IR 80.7 DS 84.95 46.2 41.6 46.2 1.05 0.57 0.52 0.57
103-IR 87.6 DS 86.08 44.1 39.7 44.1 0.98 0.50 0.45 0.50
104-IR 55.7 DS 135.93 57.6 51.8 57.6 2.44 1.03 0.93 1.03
105-IR 83.0 DS 188.11 67.6 60.8 67.6 2.27 0.81 0.73 0.81
106-IR 63.8 DS 135.93 57.6 51.8 57.6 2.13 0.90 0.81 0.90
107-IR 66.0 DS 188.11 67.6 60.8 67.6 2.85 1.02 0.92 1.02
108-IR 48.0 DS 76.52 57.3 51.6 43.0 1.59 1.19 1.07 0.90
109-IR 234.0 DS 312.89 236.3 212.7 236.3 1.34 1.01 0.91 1.01
110-IR 154.0 DS 196.06 171.9 154.7 171.9 1.27 1.12 1.00 1.12
111-IR 64.7 DS 148.81 69.1 62.2 69.1 2.30 1.07 0.96 1.07
112-IR 84.5 DS 178.57 83.3 75.0 83.3 2.11 0.99 0.89 0.99
113-IR 93.5 DS 178.57 95.5 85.9 95.5 1.91 1.02 0.92 1.02
114-IR 76.0 DS 120.22 89.7 80.8 89.7 1.58 1.18 1.06 1.18
115-IR 90.0 DS 153.68 100.2 90.2 100.2 1.71 1.11 1.00 1.11
116-R 138.0 DS 215.79 119.6 107.7 119.6 1.56 0.87 0.78 0.87
117-R 110.0 DS 174.11 106.5 95.8 106.5 1.58 0.97 0.87 0.97
118-R 108.0 DS 174.11 106.5 95.8 106.5 1.61 0.99 0.89 0.99
119-R 103.0 DS 174.11 106.5 95.8 106.5 1.69 1.03 0.93 1.03
120-R 155.0 DS 253.13 144.1 129.7 144.1 1.63 0.93 0.84 0.93

The comparison between the experimental and theoretical values of the shear strength
of irregular/rubble masonry walls is plotted in Figure 12, collecting the 27 examined
walls into three groups of slenderness values, i.e., λ < 1, 1 ≤ λ ≤ 1.5, λ > 1.5. Such a
distinction is related to the fact that Equations (13)–(16) provide the same strength values
when 1 ≤ λ ≤ 1.5 and different values for λ < 1 or λ > 1.5 (see Figure 10a). Figure 12
shows that the formulations are mostly conservative and, in particular, Equation (14) is
always the safest one due to the 10% reduction of the strength related to cyclic actions. For
Equation (14), the average value of ρDS = Vth,DS/Vexp is, indeed, 0.83 with a CoV = 22.4%.
Provisions given by Equations (13), (15) and (16) are practically coincident since most walls
(25 out of 27) have slenderness 1 ≤ λ ≤ 1.5; the average value of ρDS is, thus, about 0.91,
i.e., about 10% higher than the value associated to Equation (14), with a similar CoV.

In this table, the whole database for regular masonry walls reported in Table 5 is
considered, with the exception of the three specimens that attained a flexural failure.
Independently of the experimental failure modes, the maximum experimental loads are
compared with the theoretical shear capacities, Vth,DS, provided by Equations (13)–(16),
usually adopted for predicting the DS failure of irregular/rubble masonry walls. The single
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values of the theoretical-to-experimental shear strength ratios, ρDS, with reference to the
DS strength values provided by Equations (13)–(16) are also reported.

Finally, in Table 10, the minimum value within all the theoretical-to-experimental
shear strength ratios, ρmin, calculated with all the formulations, i.e., from Equations (1) to
(16) valid for regular or irregular masonry walls, is listed too for the only cases from 1-R to
53-R for which all the data are available. For the other tests, i.e., from 54-R to 93-R, such a
ratio is not listed since not all the theoretical formulations can be calculated. For each value
of ρmin, the failure mode corresponding to the minimum theoretical strength is reported in
brackets. It can be noted that, because the theoretical failure modes are always due to DSS,
HSS or TDS, the strength models for regular masonry walls, i.e., from Equations (13) to
(16), are always safer than those provided for irregular masonry ones.
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4.5. Reliability of Diagonal Shear Design Formulations for Regular Masonry Walls

In order to check the safety of using the design formulations for the diagonal shear
failure of irregular/rubble masonries also for regular masonry walls, as suggested by the
Commentary to the Italian code [54], a further comparison with the collected experimental
results is presented in Table 10.

Table 10. Comparison between experimental and theoretical capacities.

Case λ
(−)

Vexp
(kN)

Failure
Mode

Diagonal Shear
(DS), Vth ,DS (kN) ρDS = Vth ,DS/Vexp(−) ρmin

= Vth ,min/Vexp(−)

Equations (13)
and (16)

Equation
(14)

Equation
(15)

Equations (13)
and (16)

Equation
(14)

Equation
(15) Min

1-R 1.35 75.0 DSS 85.4 76.8 85.4 1.14 1.02 1.14 0.96 (DSS)
3-R 2.00 75.0 DSS 85.4 76.9 64.0 1.14 1.02 0.85 0.69 (TDS)
4-R 2.00 50.0 DSS 66.5 59.8 49.9 1.33 1.20 1.00 0.83 (TDS)
5-R 2.00 140.0 DSS 114.2 102.8 85.6 0.82 0.73 0.61 0.48 (TDS)
6-R 2.00 100.0 DSS 85.4 76.9 64.0 0.85 0.77 0.64 0.51 (TDS)
7-R 1.04 309.0 DSS 372.2 334.9 372.2 1.20 1.08 1.20 1.10 (TDS)
8-R 1.04 340.0 DSS 372.2 334.9 372.2 1.09 0.99 1.09 1.00 (TDS)

11-R 2.45 27.7 DSS 32.7 29.4 20.0 1.18 1.06 0.72 0.61 (DSS)
12-R 2.45 15.0 DSS 26.8 24.1 16.4 1.78 1.61 1.09 0.80 (DSS)
13-R 0.68 119.0 HSS 157.5 141.8 233.4 1.32 1.19 1.96 0.61 (HSS)
14-R 0.68 102.0 HSS 133.5 120.2 197.8 1.31 1.18 1.94 0.54 (HSS)
15-R 1.60 130.0 TDS 178.2 160.3 167.0 1.37 1.23 1.28 0.77 (TDS)
16-R 1.60 166.0 TDS 196.8 177.1 184.5 1.19 1.07 1.11 0.65 (TDS)
17-R 1.60 198.0 TDS 221.8 199.6 207.9 1.12 1.01 1.05 0.61 (TDS)
18-R 0.80 401.0 TDS 534.5 481.0 668.1 1.33 1.20 1.67 0.75 (TDS)
19-R 0.80 500.0 TDS 590.3 531.3 737.9 1.18 1.06 1.48 0.65 (TDS)
20-R 1.43 140.6 TDS 137.7 123.9 137.7 0.98 0.88 0.98 0.76 (TDS)
21-R 1.43 92.0 TDS 102.4 92.2 102.4 1.11 1.00 1.11 0.77 (DSS)
22-R 1.48 133.7 TDS 132.0 118.8 132.0 0.99 0.89 0.99 0.57 (TDS)
23-R 1.48 90.9 TDS 102.7 92.4 102.7 1.13 1.02 1.13 0.66 (TDS)
24-R 1.48 118.0 TDS 119.9 107.9 119.9 1.02 0.91 1.02 0.59 (TDS)
25-R 1.41 128.7 TDS 127.4 114.7 127.4 0.99 0.89 0.99 0.68 (TDS)
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Table 10. Cont.

Case λ
(−)

Vexp
(kN)

Failure
Mode

Diagonal Shear
(DS), Vth ,DS (kN) ρDS = Vth ,DS/Vexp(−) ρmin

= Vth ,min/Vexp(−)

Equations (13)
and (16)

Equation
(14)

Equation
(15)

Equations (13)
and (16)

Equation
(14)

Equation
(15) Min

26-R 1.41 84.2 TDS 97.3 87.5 97.3 1.16 1.04 1.16 0.77 (DSS)
27-R 1.43 141.7 TDS 139.9 125.9 139.9 0.99 0.89 0.99 0.52 (TDS)
28-R 1.43 93.9 TDS 114.6 103.1 114.6 1.22 1.10 1.22 0.66 (TDS)
29-R 1.37 131.0 TDS 138.2 124.4 138.2 1.05 0.95 1.05 1.04 (TDS)
30-R 1.37 91.6 TDS 107.7 96.9 107.7 1.18 1.06 1.18 1.19 (DSS)
31-R 0.69 213.2 TDS 215.6 194.0 311.4 1.01 0.91 1.46 0.98 (TDS)
32-R 1.20 99.1 TDS 103.6 93.3 103.6 1.05 0.94 1.05 1.01 (TDS)
33-R 0.69 157.4 TDS 159.2 143.3 230.0 1.01 0.91 1.46 1.01 (DSS)
34-R 1.20 65.5 DSS 76.5 68.9 76.5 1.17 1.05 1.17 1.17 (DSS)
35-R 1.07 91.0 TDS 99.5 89.5 99.5 1.09 0.98 1.09 0.81 (DSS)
36-R 1.07 103.0 TDS 116.0 104.4 116.0 1.13 1.01 1.13 0.91 (DSS)
37-R 1.03 131.0 TDS 116.6 104.9 116.6 0.89 0.80 0.89 0.63 (DSS)
38-R 1.03 148.0 TDS 136.7 123.0 136.7 0.92 0.83 0.92 0.72 (DSS)
39-R 0.96 141.0 TDS 184.5 166.1 191.6 1.31 1.18 1.36 0.95 (DSS)
40-R 0.96 88.0 DSS 148.7 133.8 154.4 1.69 1.52 1.75 1.13 (DSS)
41-R 0.96 181.0 TDS 165.7 149.2 172.1 0.92 0.82 0.95 0.63 (DSS)
42-R 1.44 67.0 TDS 85.2 76.7 85.2 1.27 1.14 1.27 0.92 (DSS)
43-R 0.72 223.0 DSS 245.9 221.3 340.5 1.10 0.99 1.53 0.80 (DSS)
44-R 1.12 187.0 TDS 209.0 188.1 209.0 1.12 1.01 1.12 1.11 (DSS)
45-R 1.12 178.0 TDS 209.0 188.1 209.0 1.17 1.06 1.17 1.16 (DSS)
46-R 1.12 145.0 TDS 209.0 188.1 209.0 1.44 1.30 1.44 1.77 (TDS)
47-R 1.12 135.0 TDS 221.7 199.5 221.7 1.64 1.48 1.64 0.93 (DSS)
48-R 1.12 154.0 TDS 195.5 176.0 195.5 1.27 1.14 1.27 0.82 (DSS)
49-R 1.59 48.0 DSS 99.6 89.7 94.3 2.08 1.87 1.96 0.90 (DSS)
50-R 1.59 119.0 DSS 131.8 118.6 124.7 1.11 1.00 1.05 0.56 (TDS)
51-R 1.59 164.0 TDS 149.4 134.5 141.4 0.91 0.82 0.86 0.46 (TDS)
52-R 0.79 263.0 DSS 395.3 355.8 498.8 1.50 1.35 1.90 0.77 (TDS)
53-R 0.79 341.0 TDS 448.3 403.4 565.6 1.31 1.18 1.66 0.66 (TDS)
54-R 1.00 124.0 DDS 83.7 75.4 83.7 0.68 0.61 0.68 -
55-R 1.00 68.0 DDS 83.7 75.4 83.7 1.23 1.11 1.23 -
56-R 1.00 104.0 DDS 83.7 75.4 83.7 0.81 0.72 0.81 -
57-R 1.73 160.0 TDS 153.7 138.3 133.4 0.96 0.86 0.83 -
58-R 1.73 140.0 DSS 153.7 138.3 133.4 1.10 0.99 0.95 -
59-R 1.73 118.0 TDS 153.7 138.3 133.4 1.30 1.17 1.13 -
60-R 1.73 147.0 TDS 153.7 138.3 133.4 1.05 0.94 0.91 -
61-R 1.73 120.0 TDS 153.7 138.3 133.4 1.28 1.15 1.11 -
62-R 1.73 149.0 TDS 153.7 138.3 133.4 1.03 0.93 0.90 -
63-R 1.73 60.0 TDS 76.8 69.1 66.7 1.28 1.15 1.11 -
64-R 1.73 56.0 TDS 76.8 69.1 66.7 1.37 1.23 1.19 -
65-R 0.43 72.0 DSS 148.3 133.5 171.7 2.06 1.85 2.39 -
66-R 1.73 150.0 TDS 153.7 138.3 133.4 1.02 0.92 0.89 -
67-R 1.73 162.0 TDS 153.7 138.3 133.4 0.95 0.85 0.82 -
68-R 1.73 70.0 TDS 76.8 69.1 66.7 1.10 0.99 0.95 -
69-R 1.76 91.0 DSS 85.4 76.9 72.8 0.94 0.84 0.80 -
70-R 1.76 86.0 TDS 85.4 76.9 72.8 0.99 0.89 0.85 -
71-R 1.76 90.0 DSS 81.5 73.4 69.5 0.91 0.82 0.77 -
72-R 1.76 98.0 DSS 81.5 73.4 69.5 0.83 0.75 0.71 -
73-R 0.88 65.0 DSS 94.7 85.2 107.6 1.46 1.31 1.66 -
74-R 0.88 61.0 DSS 94.7 85.2 107.6 1.55 1.40 1.76 -
75-R 1.76 49.0 DSS 81.5 73.4 69.5 1.66 1.50 1.42 -
76-R 1.00 125.0 DSS 189.4 170.5 189.4 1.52 1.36 1.52 -
77-R 1.00 140.0 DSS 189.4 170.5 189.4 1.35 1.22 1.35 -
78-R 1.00 230.0 DSS 244.6 220.1 244.6 1.06 0.96 1.06 -
79-R 1.00 230.0 DSS 244.6 220.1 244.6 1.06 0.96 1.06 -
80-R 1.02 84.1 TDS 53.9 48.5 53.9 0.64 0.58 0.64 -
81-R 0.99 61.3 TDS 51.2 46.1 51.5 0.84 0.75 0.84 -
82-R 0.97 70.8 TDS 52.3 47.1 54.1 0.74 0.67 0.76 -
83-R 1.06 132.0 TDS 139.3 125.3 139.3 1.05 0.95 1.05 -
84-R 0.96 82.4 TDS 84.9 76.4 88.3 1.03 0.93 1.07 -
85-R 0.96 83.0 TDS 84.9 76.4 88.3 1.02 0.92 1.06 -
86-R 0.96 107.7 TDS 124.6 112.1 129.6 1.16 1.04 1.20 -
87-R 0.96 124.4 TDS 124.6 112.1 129.6 1.00 0.90 1.04 -
88-R 0.96 102.4 TDS 129.0 116.1 134.1 1.26 1.13 1.31 -
89-R 0.96 165.7 TDS 180.1 162.1 187.3 1.09 0.98 1.13 -
90-R 1.00 22.0 HSS 22.4 20.2 22.4 1.02 0.92 1.02 -
91-R 1.00 23.0 HSS 22.4 20.2 22.4 0.98 0.88 0.98 -
92-R 1.00 42.0 TDS 39.9 36.0 39.9 0.95 0.86 0.95 -
93-R 1.00 49.0 TDS 39.9 36.0 39.9 0.82 0.73 0.82 -

NOTE: Bold is used to identify the cases in which the predicted failure mechanism does not correspond with the experimental one.

In Table 11, the average value, the standard deviation and the coefficient of variation
(CoV) of the ratio ρDS are listed for the three groups of equations and for the three ranges
of λ.
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Table 11. Mean, standard deviation and CoV associated with the ratio ρDS.

Slenderness Statistical
Values

ρDS
Equations (13)

and (16)

ρDS
Equation (14)

ρDS
Equation (15)

λ < 1
(23 data)

Mean (−) 1.23 1.10 1.45
Stand. Dev. (−) 0.30 0.27 0.41

CoV (%) 24.2% 24.2% 28.1%

1 ≤ λ ≤ 1.5
(39 data)

Mean (−) 1.09 0.98 1.09
Stand. Dev. (−) 0.20 0.18 0.20

CoV (%) 18.3% 18.3% 18.3%

λ > 1.5
(28 data)

Mean (−) 1.17 1.05 0.99
Stand. Dev. (−) 0.29 0.26 0.27

CoV (%) 25.1% 25.1% 27.5%

all tests
(90 data)

Mean (−) 1.15 1.03 1.15
Stand. Dev. (−) 0.26 0.23 0.34

CoV (%) 22.7% 22.7% 29.3%

The values of ρDS in Table 10 evidence that the theoretical diagonal shear capacities
are greater than the experimental ones since they vary in average in the range 1.10–1.23.
Moreover, as previously discussed, they are generally greater than ρmin provided by the
formulations for regular masonry.

The minimum values of ρDS are provided by Equation (15) for slender walls, i.e.,
for λ > 1.5, and by Equation (14) for squat walls, i.e., for λ ≤ 1.5, in agreement with the
sensitivity analyses discussed in Section 3. This result can be explained by considering that
the shear capacities provided by Equations (13), (14) and (16)) are affected by the shape
factor, b, which is limited in the range 1.0–1.5, while Equation (15) is influenced by the
aspect ratio, ψλ, without any limitation. Note that Equation (14) considers a 10% reduction
with respect to Equations (13) and (16) to take into account cyclic loads and, thus, it should
be more reliable than the other formulations because cyclic loads are applied in all the tests
of the collected database.

The comparisons between the experimental and theoretical strengths provided by
Equations (13)–(16) are firstly plotted in Figure 13a with reference to the whole database
of regular masonry walls, collected by different ranges of slenderness; successively, the
data are plotted with reference to each range of slenderness in order to better compare
the results. For walls with λ ≤ 1.5 (Figure 13a,b), the theoretical formulations tend to
overestimate the experimental shear capacities, while a better agreement is observed for
slender walls, i.e., for λ > 1.5 (Figure 13c).

Tables 10 and 11 and Figure 13 highlight that Equations (13) and (16), i.e., the same
formulation proposed by Turnšek and Čačovič [14] and the Italian code [53], provide the
highest values of the shear capacities for λ ≥ 1, since their average value of ρDS is equal to
1.09 (CoV =18.3%) for 1 ≤ λ ≤ 1.5 and to 1.17 (CoV = 25.1%) for λ > 1.5. Conversely, for
λ < 1, Equation (15) provides the highest predictions with an average value of ρDS equal to
1.45 (CoV = 28.1%). Finally, Tables 10 and 11 also highlight that Equation (14), provided by
Tomaževič and Lutman [50], is the safest one independently of the wall slenderness, since
it provides the lowest average value of ρDS, which is 1.03 (CoV = 22.7%) for all tests.
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A Proposal for Correcting the Shape Factor b

Considering that Equations (13), (14) and (16) are affected by the shape factor b, if b
is assumed equal to 1.5 also for squat walls, which are the majority part of the collected
database, the theoretical values reduce and, thus, become safer on average. This is high-
lighted in Figure 14, where the same experimental loads plotted in Figure 13 are compared
with the results provided by Equations (13) and (16) and Equation (14) modified with the
assumption b = 1.5 for whatever value of the wall slenderness.

The mean, the standard deviation and the CoV associated with the already defined
ratio ρDS, but calculated with reference to Equations (13), (14) and (16) modified assuming
b = 1.5, indicated in the following as Equations (13), (14)* and (16)*, are summarized in
Table 12.

Under the assumption b = 1.5, Equation (14)* always provides the lowest values of
the shear capacities with an average value of ρDS = 0.85 for all tests (CoV = 29.3%), while
Equations (13) and (16)* provides an average value of ρDS equal to 0.94. These values
correspond to a reduction by about 18% with respect to the ones listed in Table 11 and
show that the assumption on the shape factor allows the results are safer and more reliable
for both the theoretical predictions. It is worth noting that, with respect to the values
listed in Table 11, the correction proposed for the factor b only influences the values of ρDS
concerning the cases with λ ≤ 1.5.
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Table 12. Mean, standard deviation and CoV associated with the ratio ρ.

Slenderness Statistical Values ρDS
Equations (13) and (16)*

ρDS
Equation (14)*

λ < 1
(23 data)

Mean (−) 0.82 0.74
Stand. Dev. (−) 0.20 0.18

CoV (%) 24.2% 24.2%

1 ≤ λ ≤ 1.5
(39 data)

Mean (−) 0.86 0.77
Stand. Dev. (−) 0.21 0.19

CoV (%) 24.0% 24.0%

λ > 1.5
(28 data)

Mean (−) 1.17 1.05
Stand. Dev. (−) 0.29 0.26

CoV (%) 25.1% 25.1%

all tests
(90 data)

Mean (−) 0.94 0.85
Stand. Dev. (−) 0.28 0.25

CoV (%) 29.3% 29.3%

Finally, it is worth noting that the average value of ρDS and the CoV related to
Equation (14)*, i.e., 0.85 and 29.3%, are comparable with the values associated with the min-
imum shear strength for regular masonry walls, i.e., 0.82 and 29.4% (see Tables 7 and 11),
though they are calculated on a smaller database (93 vs. 53 data). This should imply that
in the lack of information about the cohesion and the friction angles for regular masonry
walls, a reliable prediction of their shear strength can be represented by the formulations as-
sessing the diagonal shear failure of irregular/rubble masonry walls, based on the Turnšek
and Čačovič model [14] if the shape factor b is assumed equal to 1.5 for whatever value of
wall slenderness.

5. Conclusions

In this research work, an in-depth literature review of the theoretical formulations
used to predict the in-plane capacities of masonry walls is reported with reference to both
flexural and shear failures. For shear failures, the literature formulations were classified
according to the types of masonry, i.e., regular and irregular/rubble, because different
failure mechanisms may activate depending on the masonry types. Walls made of regular
masonry are, indeed, mainly subjected to a sliding shear failure according to horizontal



Materials 2021, 14, 3063 33 of 37

cracks along adjacent bed joints (HSS) or to diagonal stepped cracks involving both vertical
and horizontal mortar joints (DSS); in both cases, the parameters influencing the shear
strength are related to sliding phenomena and, thus, to the assessment of the cohesion and
the friction angle. On the other hand, irregular/rubble masonry walls mainly exhibit a
diagonal shear failure with cracks crossing both the units and the mortar joints (DS) and
the shear strength is related to the tensile strength of masonry. Moreover, a diagonal shear
for the tensile failure of the units (TDS) can also be observed for regular masonry walls.

Sensitivity analyses were carried out to investigate the effect of the main parameters
on the different literature strength models and to quantify the variability among the
formulations. In particular, slight differences were observed among the formulations used
to predict the flexural capacities of both regular and irregular masonry walls. Conversely,
the shear capacities of regular walls are strongly dependent on the parameters used to
identify the shear properties of masonry, i.e., local or global values of the cohesion and the
friction coefficient. The values of the shear strength associated with horizontal or diagonal
sliding phenomena, i.e., HSS and DSS failure modes, are different and, also within the
same strength model, different formulations are available in the literature. Moreover, it
was observed that the dimensions of the units have a significant effect on the failure modes
and loads because it influences the global properties of masonry and, coupled with the
wall slenderness, may drive the sliding shear failure mode towards the HSS or the DSS
failure. Concerning the irregular/rubble masonry walls, the available formulations for
predicting the diagonal shear failure have similar trends, because all depend on the same
parameters, with the exception of the wall slenderness, which is limited to the range 1.0–1.5
in one formulation and can attain whatever value in the other ones.

An accurate literature review of several experimental shear-compression tests on
masonry walls was carried out to collect a database of experimental results, with reference
to both regular and irregular/rubble masonry walls. The collected experimental results
(120 data in total) were compared with the outcomes from the literature formulations for
flexural and shear strength models to verify their reliability.

Firstly, a reduced sample of regular masonry walls (53 data), for which all the data
necessary for calculating the flexural and sliding shear strengths were available, was
considered. The comparisons between experimental and theoretical results evidenced a
good agreement in the case of flexural failure, while, in the case of shear failure, the DSS
strength is safely predicted by the strength model proposed by Mann and Muller and
recalled by the current Italian code too. For the HSS failure, the classical Mohr-Coulomb
criterion underestimates the experimental results, but the available experimental data are
not enough to obtain conclusive remarks. Concerning the unique formulation proposed to
predict the TDS failure, the main issue is the evaluation of the tensile strength of the units,
which is often a missing parameter. If the correlation between the tensile and compressive
strengths provided by the Eurocode 6 is assumed, i.e., the tensile strength of the units
equal to about 3.2% of the compressive one, reliable predictions of the TDS failure loads for
the walls that experimentally attained such a failure mode were obtained. Finally, when
the failure mode is not known ‘a priori’, it was evidenced that the in-plane strength of
regular masonry walls and the corresponding failure mode can reasonably be predicted by
the minimum among all the values provided by the formulations for the DSS, HSS and
TDS failures.

Successively, for the whole database made of both regular and irregular/rubble
masonry, the experimental results were compared with the formulations predicting the DS
failure usually adopted for irregular/rubble masonry, i.e., the formulations based on the
Turnšek and Čačovič model. Such an expression uses the only tensile strength of masonry
as a mechanical parameter and, being simpler to be used, is suggested by some codes
for predicting the shear strength in walls made of regular masonry too. The comparisons
evidenced that for irregular/rubble masonry walls the theoretical predictions are safe in
most cases, while the contrary occurs for regular masonry walls. However, since their
reliability is influenced by the value of the shape factor b, it was verified that, under the
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assumption of b = 1.5, these formulations become reasonably safer for regular masonry too.
Moreover, it was found that both the average values of the theoretical-to-experimental load
ratio and the associated CoV referred to the modified Turnšek and Čačovič formulation
are comparable with the values associated with the minimum shear strength given by
the specific formulations for regular masonry walls. This should imply that in the lack
of information about the cohesion and the friction angles for regular masonry walls, a
reliable prediction of their shear strength can be represented by the Turnšek and Čačovič
formulation if b is assumed 1.5 for whatever value of the wall slenderness.

The outcomes of this critical literature review will be very useful to any further
investigation on the in-plane behavior of masonry walls and future work will be carried
out, using finite element analysis, to better investigate the effect of the mechanical properties
herein discussed.
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