
Journal of Scientific Computing (2021) 89:44
https://doi.org/10.1007/s10915-021-01650-5

Numerical solution and bifurcation analysis of nonlinear
partial differential equations with extreme learning
machines

Gianluca Fabiani1 · Francesco Calabrò2 · Lucia Russo3 · Constantinos Siettos2

Received: 12 April 2021 / Revised: 14 July 2021 / Accepted: 19 August 2021
© The Author(s) 2021

Abstract
We address a new numerical method based on a class of machine learning methods, the so-
called Extreme Learning Machines (ELM) with both sigmoidal and radial-basis functions,
for the computation of steady-state solutions and the construction of (one-dimensional) bifur-
cation diagrams of nonlinear partial differential equations (PDEs). For our illustrations, we
considered two benchmark problems, namely (a) the one-dimensional viscous Burgers with
both homogeneous (Dirichlet) and non-homogeneous boundary conditions, and, (b) the one-
and two-dimensional Liouville–Bratu–Gelfand PDEs with homogeneous Dirichlet boundary
conditions. For the one-dimensional Burgers and Bratu PDEs, exact analytical solutions are
available and used for comparison purposes against the numerical derived solutions. Further-
more, the numerical efficiency (in terms of numerical accuracy, size of the grid and execution
times) of the proposed numerical machine-learning method is compared against central finite
differences (FD) and Galerkin weighted-residuals finite-element (FEM) methods. We show
that the proposed numerical machine learning method outperforms in terms of numerical
accuracy both FD and FEM methods for medium to large sized grids, while provides equiv-
alent results with the FEM for low to medium sized grids; both methods (ELM and FEM)
outperform the FD scheme. Furthermore, the computational times required with the proposed

B Constantinos Siettos
constantinos.siettos@unina.it

Gianluca Fabiani
gianluca.fabiani@unina.it

Francesco Calabrò
francesco.calabro@unina.it

Lucia Russo
lucia.russo@stems.cnr.it

1 Scuola Superiore Meridionale, Università degli Studi di Napoli Federico II, Naples, Italy

2 Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università degli Studi di Napoli
“Federico II”, Naples, Italy

3 IIstituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, Consiglio Nazionale delle
Ricerche, Naples, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01650-5&domain=pdf
http://orcid.org/0000-0002-9568-3355

 44 Page 2 of 35 Journal of Scientific Computing (2021) 89:44

machine learning scheme were comparable and in particular slightly smaller than the ones
required with FEM.

Keywords Numerical analysis · Nonlinear partial differential equations · Numerical
bifurcation analysis · Machine learning · Extreme learning machines

Mathematics Subject Classification 65N35 · 65N75 · 65P30

1 Introduction

The solution of partial differential equations (PDEs) with the aid of machine learning as an
alternative to conventional numerical analysis methods can been traced back in the early ’90s.
For example, Lagaris et al. [42] presented a method based on feedforward neural networks
(FNN) that can be used for the numerical solution of linear and nonlinear PDEs. The method
is based on the construction of appropriate trial functions, the analytical derivation of the
gradient of the error with respect to the network parameters and collocation. The training of
the FNN was achieved iteratively with the quasi-Newton BFGS method. Gonzalez-Garcia
et al. [24] proposed a multilayer neural network scheme that resembles the Runge-Kutta
integrator for the identification of dynamical systems described by nonlinear PDEs.

Nowadays, the exponentially increasing- over the last decades- computational power and
recent theoretical advances, have allowed further developments at the intersection between
machine learning and numerical analysis. In particular, on the side of the numerical solution of
PDEs, the development of systematic and robust machine-learning methodologies targeting
at the solution of large scale systems of nonlinear problems with steep gradients constitutes
an open and challenging problem in the area. Very recently [51,52] addressed the use of
numerical Gaussian Processes and Deep Neural Networks (DNNs) with collocation to solve
time-dependent non-linear PDEs circumventing the need for spatial discretization of the
differential operators. The proposed approach is demonstrated through the one-dimensional
nonlinearBurgers, the Schrödinger and theAllen-Cahn equations. In [28],DNNswere used to
solve high-dimensional nonlinear parabolic PDEs including theBlack-Scholes, theHamilton-
Jacobi-Bellman and the Allen-Cahn equation. In [55], DNNs were used to approximate the
solution of PDEs arising in engineering problems by exploiting the variational structure
that may arise in some of these problems. In [10,22,26] DNNs were used to solve high-
dimensional semi-linear PDEs; the efficiency of the method was compared against other
deep learning schemes. In [62], the authors used FNN to solve modified high-dimensional
diffusion equations: the training of the FNN is achieved iteratively using an unsupervised
universal machine-learning solver. Most recently, in [21], the authors have used DNN to
construct non-linear reduced-order models of time-dependent parametrized PDEs.

Over the last few years, extreme learning machines (ELMs) which belong to the more
general family of random projection neural networks (RPNN) together with randomized
and random vector functional link network (RVFLN) [35,47,57], echo-state neural networks
and reservoir computing [37,38,45,48,54] have been used as an alternative to other machine
learning schemes, thus providing a good generalization at a low computational cost [34]. The
idea behind ELMs is to randomly set the values of the weights between the input and hidden
layer, the biases and the parameters of the activation/transfer functions and determine the
weights between the last hidden and output layer by solving a least-squares problem. The
solution of such a least-squares problem is the whole “training” procedure; hence, no iterative

123

Journal of Scientific Computing (2021) 89:44 Page 3 of 35 44

training is needed for ELMs, in contrast with what happens with the other aforementioned
machine learning methods. Extensions to this basic scheme include multilayer ELMs [14,30,
59] and deep ELMs [60]. As with conventional neural networks, convolutional networks and
deep learning, ELMs have been mainly used for classification purposes [4,11,12,32,59,61].
On the other hand, the use of ELMs for “traditional” numerical analysis tasks and in particular
for the numerical solution of PDEs is still widely unexplored. Very recently in [20], it has
been proposed a physics-informed ELM to solve stationary and time dependent linear PDEs,
where the authors however report a failure of ELMs to deal, for example, with PDEs which
solutions exhibit steep gradients. In [46], the authors used ELMs to solve ordinary and linear
PDEs. In [18], the authors proposed a neural network for solving linear and nonlinear partial
differential equations, based on the concepts of ELMs, domain decomposition and local
neural networks: the domain is tessellated into sub-domains, and the solution on each sub-
domain is represented by a local shallow feed-forward neural network (ELMs). The authors
solved the linear and the nonlinear 1D Helmotz equation, the 1D diffusion equation and
the 1D viscous Burger’s Equation. A comparison with Finite Elements with respect to the
maximumerror approximation aswell as the computational time is also performed.Moreover,
in [19], the authors addressed a modified batch intrinsic plasticity method for pre-training the
random internal weights of the ELMs and applied the method to solve linear PDEs, namely
the 2D Poisson equation and the 1D time-dependent problems of the wave equation and the
diffusion equation. In [8], we have proposed an ELMscheme to deal with such steep gradients
appearing in linear elliptic PDEs demonstrating through several benchmark problems that
the proposed approach is efficient.
Here, we propose a problem-independent numerical scheme based on ELMs for the solu-
tion of steady-state problems of nonlinear 1D and 2D PDEs that exhibit sharp gradients.
As nonlinear PDEs may also exhibit non-uniqueness and/or non-existence of solutions, we
also show how one can use ELMs for the construction of (one-dimensional) bifurcation
diagrams of PDEs. The efficiency of the proposed numerical scheme is demonstrated and
discussed through two well-studied benchmark problems: the 1D viscous Burgers equa-
tion, a representative of the class of advection-diffusion problems and the 1D- and 2D
Liouville–Bratu–Gelfand PDE, a representative of the class of reaction-diffusion problems.
The numerical accuracy of the proposed scheme is compared against the analytical solutions
and the exact locations of the limit points that are known for the one-dimensional PDEs,
but also against the corresponding numerical approximations obtained with central Finite
Differences (FD) and Galerkin Finite Elements Method (FEM).

2 Extreme LearningMachines

ELMs are a class of machine-learning techniques for defining functions derived by artificial
neural networks (ANNs) with fixed internal weights and biases. Thus, ELMs have the same
structure of a single hidden layer FNN with N neurons. Next, we report the definition of
ELM functions which we denote by v(x) : Rd → R.

Definition 1 (ELM network with a single hidden layer) Assuming:

– An infinitely differentiable non polynomial functionψ , the activation (transfer) function
for the neurons in the hidden layer.

– A randomly-generated matrix A ∈ R
N×d , made up of N rows

123

 44 Page 4 of 35 Journal of Scientific Computing (2021) 89:44

A =

⎛
⎜⎜⎝

α1
α2
. . .

αN

⎞
⎟⎟⎠ , α j = (α j,1, α j,2, . . . , α j,d) ∈ R

d ,

containing the internal weights connecting the input layer and the hidden layer.
– A randomly-generated vector β ∈ R

N , containing the biases
in the hidden layer.

Then, we say that v is an ELM function with a single hidden layer, if there exists a choice of
w ∈ R

N , (the external weights vector between the hidden layer and the output layer) such
that:

v(x; A,β;w) =
N∑
j=1

w jψ(α j · x + β j), (1)

where x ∈ R
d is the input column vector.

We remark that the regularity assumption in the above definition is not mandatory for the
approximation properties, but in our case some regularity is needed to write the collocation
method, thus for this case, we also briefly present the necessary theory. It is well-known,
that for ANNs, where A and β are not a-priori fixed, holds the universal approximation
theorem, if ψ is a non-polynomial function: the functional space is spanned by the basis
functions {ψ(α j · x + β j),α j ∈ R

d , β j ∈ R} that is dense in L2. Moreover, with some
regularity assumptions on the activation function(s), the approximation holds true also for
the derivatives (see e.g. Theorem 3.1 and Theorem 4.1 in [49]). Besides, fixing A and β a
priori is not a limitation, because the universal approximation is still valid in the setting of
ELMs (see Theorem 2 in [29]):

Theorem 1 (Universal approximation) Let the coefficients α j , β j in the function sequence
{ψ(α j ·x+β j)}Nj=1 be randomly generated according to any continuous sampling distribution

and call ṽN ∈ span{ψ(α j · x+β j) , j = 1 . . . N } the ELM function determined by ordinary
least square solution of ‖ f (x) − ṽN (x)‖, where f is a continuous function.
Then, one has with probability one that limN→∞ ‖ f − ṽN‖ = 0.

We remark that in the ANN framework, the classical way is to optimize the parameters of
the network (internal and external weights and biases) iteratively, e.g. by stochastic gradient
descent algorithms that have a high computational cost and don’t ensure a global but only
local convergence. On the other hand, ELM networks are advantageous because the solution
of an interpolation problem leads to a system of linear equations, where the only unknowns
are the external weights w. For example, consider M points xi such that yi = v(xi) for
i = 1, . . . , M . In the ELM framework (1) the interpolation problem becomes:

N∑
j=1

w jψ j (xi) = yi , i = 1, . . . , M,

where N is the number of neurons and ψ j (x) is used to denote ψ(α j · x + β j). Thus, this is
a system of M equations and N unknowns that in a matrix form can be we written as:

Sw = y, (2)

where y = (y1, . . . , yM) ∈ R
M and S ∈ R

M×N is the matrix with elements (S)i j = ψ j (xi).
If the problem is square (N = M) and the parameters α j and β j are chosen randomly, it

123

Journal of Scientific Computing (2021) 89:44 Page 5 of 35 44

can be proved that the matrix S is invertible with probability 1 (see i.e. Theorem 1 [29])
and so, there is a unique solution, than can be numerically found; if one has to deal with an
ill-conditioned matrix, one can still attempt to find a numerically robust solution by applying
established numerical analysis methods suitable for such a case (e.g. by constructing the
Moore–Penrose pseudoinverse using QR factorization or SVD). If the problem is under-
determined (N > M), the linear system has (infinite) many solutions and can be solved by
applying regularization in order to pick the solution, with e.g. the minimal L2 norm. Such
an approach provides the best solution to the optimization problem related to the magnitude
of the calculated weights (see [33]).

Thus, in ELM networks, one has to choose the type of the activation/transfer function
and the values of the internal weights and biases. Since the only limitation is that ψ is a
non-polynomial function, there are infinitely many choices. The most common choice are
the sigmoidal functions (SF) (also referred as ridge functions or plane waves) and the radial
basis functions (RBF) [2,49].

Below, we describe the construction procedure and main features of the proposed ELM
scheme, based on these two transfer functions. In the case of the logistic sigmoid transfer
function, this investigation was made in our work for one-dimensional linear PDEs [8]. Here,
we report the fundamental arguments and address a new numerical scheme for the numerical
solution of one and two-dimensional steady-state nonlinear problems. Furthemore, we show
how the proposed scheme can be coupled with tools from the numerical bifurcation theory
for the construction of bifurcation diagrams.

2.1 ELMwith Sigmoidal Functions

For the SF case, we select the logistic sigmoid, that is defined by

ψ j (x) ≡ σ j (x) = 1

1 + exp(−α j · x − β j)
. (3)

For this function, it is straightforward to compute the derivatives. In particular, the derivatives
with respect to the k-th component of x, x(k) are given by

∂

∂x(k)
σ j (x) = α j,k

exp(z j)

(1 + exp(z j))2
,

∂2

∂x2k
σ j (x) = α2

j,k
exp(z j) · (exp(z j) − 1)

(1 + exp(z j))3
,

(4)

where z j = α j · x + β j .
A crucial point in the ELM framework is how to fix the values of the internal weights and
biases in a proper way. Indeed, despite the fact that theoretically any random choice should
be good enough, in practice, it is convenient to define an appropriate range of values for the
parameters α j,k and β j that are strictly related to the selected activation function. For the
one-dimensional case (d = 1), the logistic sigmoid σ j is a monotonic function such that:

α j,1 > 0 ⇒ lim
x→+∞ σ j (x) = 1, lim

x→−∞ σ j (x) = 0

α j,1 < 0 ⇒ lim
x→+∞ σ j (x) = 0, lim

x→−∞ σ j (x) = 1.

123

 44 Page 6 of 35 Journal of Scientific Computing (2021) 89:44

This function has a inflection point, that we call center c j defined by the following property:

σ j (α j,1c j + β j) = 1

2
. (5)

Now since σ(0) = 1/2, the following relation between parameters holds:

c j = − β j

α j,1
.

Finally, σ j has a steep transition that is governed by the amplitude of α j,1: if |α j,1| → +∞,
then σ j approximates theHeaviside function, while if |α j,1| → 0, then σ j becomes a constant
function. Now, since in the ELM framework, these parameters are fixed a priori, what one
needs to avoid is to have some function that can be “useless”1 in the domain, say I = [a, b].
Therefore, for the one-dimensional case, our suggestion is to choseα j,1 uniformly distributed
as:

α j,1 ∼ U
(

−N − 55

10|I | ,
N + 35

10|I |
)

,

where N is the number of neurons in the the hidden layer and |I | = b − a is the domain
length. Moreover, we also suggest to avoid too small in module coefficients a j by setting:

|α j,1| >
1

2|I | .

Then, for the centers c j , we select equispaced points in the domain I , that are given by
imposing the β j s to be:

β j = −α j,1 · c j .
In the two-dimensional case (d = 2),wedenote as x = (x, y)T ∈ R

2 the input and A ∈ R
N×2

the matrix with rows α j = (α j,1, α j,2). Then, the condition (5) becomes:

σ j (x, y) = σ(α j,1x + α j,2y + β j) = 1

2
.

So, now we have:

s ≡ y = −α j,1

α j,2
x − β j

α j,2

where s is a straight line of inflection points that we call central direction. As the direction
parallel to the central direction σ j is constant, while the orthogonal direction to s, the sigmoid
σ j is exactly the one-dimensional logistic sigmoid. So considering one point c j = (c j,1, c j,2)
of the straight line s, we get the following relation between parameters:

β j = −α j,1 · c j,1 − α j,2 · c j,2.
Now, the difference with the one-dimensional case is the fact that in a domain I 2 = [a, b]2
discretized by a grid of n × n points, the number of neurons N = n2 grows quadratically,

1 In Huang [31], it is suggested to take in I = [−1, 1] the α j ,1 randomly generated in the interval [−1, 1] and
β j randomly generated in [0, 1]. This construction leads to functions that are not well suited for our purposes:
ad example if α j,1 = 0.1 and β j = 0.9, the center is c j = −9. Moreover if α j,1 is small, the function φ j is
very similar to a constant function in [−1, 1], therefore this function is useless for our purposes.

123

Journal of Scientific Computing (2021) 89:44 Page 7 of 35 44

while the distance between two adjacent points decreases linearly, i.e. is given by |I |/(n−1).
Thus, for the two-dimensional case, we take α j,k uniformly distributed as:

α j,k ∼ U
(

−
√
N − 60

20|I | ,

√
N + 40

20|I |
)

, k = 1, 2

where N is the number of neuron in the network and |I | = b − a.

2.2 ELMwith Radial Basis Functions

Here, for the RBF case, we select the Gaussian kernel, that is defined as follows:

ψ j (x) ≡ ϕ j (x) = exp(−ε2j ||x − c j ||22) = exp

(
−ε2j

d∑
k=1

(x(k) − c j,k)
2
)

, (6)

where c j ∈ R
d is the center point and ε j ∈ R is the inverse of the standard deviation. For

such functions, we have:

∂

∂x(k)
ϕ j (x) = −2ε2j (xk − c j,k)exp(−ε2j r

2
j),

∂2

∂x2k
ϕ j (x) = −2ε2j (1 − 2ε2j (xk − c j,k)

2)exp(−ε2j r
2
j),

(7)

where r j = ||x − c j ||2. In all the directions, the Gaussian kernel is a classical bell function
such that:

lim‖x−c j‖→+∞ φ j (x) = 0, φ j (c j) = 1.

Moreover, the parameter ε2j controls the steepness of the amplitude of the bell function: if
ε j → +∞, then φ j approximates the Dirac function, while if ε → 0, φ j approximates a
constant function. Thus, in the case of RBFs one can relate the role of ε j to the role of α j,k for
the case of SF. For RBFs, it is well known that the center has to be chosen as a point internal to
the domain and also more preferable to be exactly a grid point, while the steepness parameter
ε is usually chosen to be the same for each function. Here, since we are embedding RBFs
in the ELM framework, we take randomly the steepness parameter ε j in order to have more
variability in the functional space, while for the centers c j we select equispaced points in the
domain. Thus, as for the SF case, we set the parameters ε2j random uniformly distributed as:

ε2j ∼ U
(

1

|I | ,
N + 65

15|I |
)

,

where N denotes the number of neurons in the hidden layer and |I | = b − a is the domain
length. Besides, note that for theRBF case, it is trivial to extend the above into themultidimen-
sional case, since ϕ j is already expressed with respect to the center. For the two-dimensional
case, we do the same reasoning as for the SF taking:

ε2j ∼ U
(

1

2|I | ,
√
N + 50

30|I |
)

.

123

 44 Page 8 of 35 Journal of Scientific Computing (2021) 89:44

3 Numerical Bifurcation Analysis of Nonlinear Partial Differential
Equations with Extreme LearningMachines

In this section, we introduce the general setting for the numerical solution and bifurcation
analysis of nonlinear PDEs with ELMs based on basic numerical analysis concepts and tools
(see e.g. [7,9,13,23,50]). Let’s start from a nonlinear PDE of the general form:

Lu = f (u, λ) in Ω, (8)

with boundary conditions:

Blu = gl , in ∂Ωl , l = 1, 2, . . . ,m , (9)

where L is the partial differential operator acting on u, f (u, λ) is a nonlinear function of u
and λ ∈ R

p is the vector of model parameters, and {∂Ωl}l denotes a partition of the boundary.
A numerical solution ũ = ũ(λ) to the above problem at particular values of the parameters

λ is typically found iteratively by applying e.g. Newton-Raphson or matrix-free Krylov-
subspace methods (Newton-GMRES) (see e.g. [39]) on a finite system of M nonlinear
algebraic equations. In general, these equations reflect some zero residual condition, or
exactness equation, and thus the numerical solution that is sought is the optimal solution
with respect to the condition in the finite dimensional space. Assuming that ũ is fixed via the
degrees of freedom w ∈ RN - we use the notation ũ = ũ(w) - then these degrees of freedom
are sought by solving:

Fk(w1, w2, . . . w j . . . wN ; λ) = 0 , k = 1, 2, ...M . (10)

Many methods for the numerical solution of Eq. (8), (9) are written in the above form after
the application of an approximation and discretization technique such as Finite Differences
(FD), Finite Elements (FEM) and Spectral Expansion (SE), as we detail next.
The system of M algebraic equations (10) is solved iteratively (e.g. by Newton’s method),
that is by solving until a convergence criterion is satisfied, the following linearized system:

∇wF(w(n), λ) · dw(n) = −F(w(n), λ), w(n+1) = w(n) + dw(n). (11)

∇wF is the Jacobian matrix:

∇wF(w(n), λ) =
[

∂Fk
∂w j

]
∣∣(w(n),λ)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F1
∂w1

∂F1
∂w2

. . . ∂F1
∂w j

. . . ∂ F1
∂wN

∂F2
∂w1

∂F2
∂w2

. . . ∂F2
∂w j

. . . ∂F2
∂wN

...
...

. . .
...

. . .
...

∂Fk
∂w1

∂Fk
∂w2

. . .
∂Fk
∂w j

. . .
∂Fk
∂wN

...
...

. . .
...

. . .
...

∂FM
∂w1

∂FM
∂w2

. . . ∂FM
∂w j

. . . ∂FM
∂wN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∣∣(w(n),λ)

(12)

If the system is not square (i.e. when M �= N), then at each iteration, one would perform
e.g. QR-factorization of the Jacobian matrix

∇wF(w(n), λ) = RT QT = [RT
1 0
] [QT

1
QT

2

]
, (13)

where Q ∈ R
N×N is an orthogonal matrix and R ∈ R

N×M is an upper triangular matrix.
Then, the solution of Eq. (11) is given by:

dw(n) = −Q1R
−1
1 · F(w(n), λ).

123

Journal of Scientific Computing (2021) 89:44 Page 9 of 35 44

Branches of solutions in the parameter space past critical points on which the Jacobianmatrix

∇F with elements
∂Fk
∂w j

becomes singular can be traced with the aid of numerical bifurcation

analysis theory (see e.g. [15–17,25,40,41,56]). For example, solution branches past saddle-
node bifurcations (limit/turning points) can be traced by applying the so called “pseudo”
arc-length continuation method [9]. This involves the parametrization of both ũ(w) and λ by
the arc-length s on the solution branch. The solution is sought in terms of both ũ(w; s) and
λ(s) in an iterative manner, by solving until convergence the following augmented system:

[∇wF ∇λF
∇wN ∇λN

]
·
[
dw(n)(s)
dλ(n)(s)

]
= −

[
F(w(n)(s), λ(s))

N (ũ(w(n); s), λ(n)(s))

]
, (14)

where

∇λF = [∂F1
∂λ

∂F2
∂λ

. . . FM
∂λ

]T
,

and

N (ũ(w(n); s), λ(n)(s))

= (ũ(w(n); s) − ũ(w; s)−2)
T · (ũ(w)−2 − ũ(w)−1)

ds

+ (λ(n)(s) − λ−2) · (λ−2 − λ−1)

ds
− ds,

is one of the choices for the so-called “pseudo arc-length condition” (for more details see
e.g. [9,16,23,25,41]); ũ(w)−2 and ũ(w)−1 are two already found consequent solutions for
λ−2 and λ−1, respectively and ds is the arc-length step for which a new solution around the
previous solution (ũ(w)−2, λ−2) along the arc-length of the solution branch is being sought.

3.1 Finite Differences and Finite Elements Cases: The Application of Newton’s
Method

In FD methods, one aims to find the values of the solution per se (i.e. u j = w j) at a
finite number of nodes within the domain. The operator in the differential problem (8) and
the boundary conditions (9) are approximated by means of some finite difference operator:
Lh ≈ L ; Bh

l ≈ Bl : the finite operator reveals in some linear combination of the function
evaluations for the differential part, while keeping non-linear requirement to be satisfied due
to the presence of nonlinearities. Then, approximated equations are collocated in internal
and boundary points xk giving equations that can be written as residual equations (10).

With FEM and SE methods, the aim is to find the coefficients of a properly chosen basis
function expansion of the solution within the domain such that the boundary conditions are
satisfied precisely. In the Galerkin-FEMwith Lagrangian basis (see e.g. [44,50]), the discrete
counterpart seeks for a solution of Eq. (8), (9) in N points x j of the domain Ω according to:

u =
N∑
j=1

w jφ j , (15)

where the basis functionsφ j are defined so that they satisfy the completeness requirement and
are such that φ j (xk) = δ jk . This, again with the choice of nodal variables to be the function
approximation at the points, gives that u(x j) = w j are exactly the degrees of freedom for

123

 44 Page 10 of 35 Journal of Scientific Computing (2021) 89:44

the method. Then, the numerical approximation of the solution is achieved by setting zero
the weighted residuals Rk, k = 1, 2, . . . N defined as:

Rk =
∫

Ω

(Lu − f (u, λ))φk dΩ +
m∑
l=1

∫
∂Ωk

(Bku − gl)φl dσ, (16)

where the weighting functions φi are the same basis functions used in Eq. (15) for the
approximation of u. The above constitutes a nonlinear system of N algebraic equations that
for a given set of values for λ are solved by Newton-Raphson, thus solving until conver-
gence the following linearized system seen in equation (11), where Rk plays the role of
Fk .

Note that the border rows and columns of the Jacobian matrix (12) are appropriately
changed so that Eq. (11) satisfy the boundary conditions. Due to the construction of the
basis functions, the Jacobian matrix is sparse, thus allowing the significant reduction of the
computation cost for the solution of (11) at each Newton’s iteration.

3.2 Extreme LearningMachine Collocation: The Application of Newton’s Method

In an analogous manner to FE methods, Extreme Learning Machines aim at solving the
problem (8), (9), using an approximation ũN of u with N neurons as an ansatz. The difference
is that, similarly to FD methods, the equations are constructed by collocating the solution on
MΩ points xi ∈ Ω and Ml points xk ∈ ∂Ωl , where Ωl are the parts of the boundary where
boundary conditions are posed, see e.g. [3,50]:

LũN (xi ;w) = f (ũN (xi ;w), λ), i = 1, . . . , MΩ

Bl ũN (xk;w) = gl(xk), k = 1, . . . , Ml , l = 1, . . . ,m.

Then, if we denote M = MΩ +∑m
l=1 Ml , we have a system of M nonlinear equations with

N unknowns that can be rewritten in a compact way as:

Fk(w, λ) = 0, k = 1, . . . , M,

where for k = 1, . . . , MΩ , we have:

Fk(w, λ) = L

(N∑
i=1

w jψ(α j · xi + β j)

)
− f

(N∑
i=1

w jψ(α j · xi + β j)

)
= 0,

while for the l-th boundary condition, for k = 1, . . . , Ml we have:

Fk(w, λ) = Bl

(N∑
i=1

w jψ(α j · xi + β j)

)
− g

(N∑
i=1

w jψ(α j · xi + β j)

)
= 0.

At this system of non-linear algebraic equations, herewe applyNewton’smethod (11). Notice
that the application of the method requires the explicit knowledge of the derivatives of the
functions ψ ; in the ELM case as described, we have explicit formulae for these (see Eq. (4),
(7)).

Remark 1 In our case, Newton’s method is applied to non-squared systems.When the rank of
the Jacobian is small, herewehave chosen to solve the problemwith the use ofMoore–Penrose
pseudo inverse of ∇wF computed by the SVD decomposition; as discussed above, another

123

Journal of Scientific Computing (2021) 89:44 Page 11 of 35 44

choice would be QR-decomposition (13). This means that we cut off all the eigenvectors
correlated to small eigenvalues,2 so:

∇wF = UΣV T , (∇wF)+ = VΣ+UT ,

where U ∈ R
M×M and V ∈ R

N×N are the unitary matrices of left and right eigenvectors
respectively, andΣ ∈ R

M×N is the diagonal matrix of singular values. Finally, we can select
q ≤ rank(∇F) to get:

∇wF = UqΣqV
T
q , (∇wF)+ = VqΣ

+
q UT

q , (17)

where Uq ∈ R
M×q and V ∈ R

N×q and Σq ∈ R
q×q . Thus, the solution of Eq. (11) is given

by:

dw(n) = −VqΣ
+
q UT

q · F(w(n), λ).

Branches of solutions past turning points can be traced by solving the augmented, with the
pseudo-arc-length condition, problem given by Eq. (14). In particular in (14), for the ELM
framework (1), the term ∇wN becomes:

∇wN = ST
(ũ(w)−2 − ũ(w)−1)

ds
,

where S is the collocation matrix defined in equation (2).

Remark 2 The three numerical methods (FD, FEM and ELM) are compared with respect to
the dimension of the Jacobian matrix J , that in the case of FD and FEM is square and related
to the number N of nodes, i.e. J ∈ R

N×N , and in the case ELM is rectangular and related
to both the number M of collocation nodes and the number N of neurons, i.e. J ∈ R

M×N .
Actually, N is the parameter related to the computational cost, i.e. the inversion of the J for
FD and FEM is done by LU factorization that has a computational cost of O(N 3). For the
ELM case, which leads to an under-determined system, the computational cost is related to
the inversion of the matrix J T J ∈ R

N×N , that therefore has the same leading computational
cost O(N 3). Moreover, if the solution is computed with the Moore–Penrose pseudo–inverse,
the computational cost is based on Singular Value Decomposition which has a computational
cost of O(MN 2 + M2N). Finally, we make explicit that in all the rest of the paper, we use
ELMnetworks with a number ofM of collocation points that is half the number N of neurons
in the hidden layer. Such a choice is justified by our previous work [8] that works better for
linear PDEs with steep gradients. In general, we pinpoint that by increasing the number M
to be 2N

3 , 3N
4 , etc.3 one gets even better results.

Thus, in the case of collocation methods, such as FD and the proposed machine learning
(ELMs) scheme, most of the computational cost is related to the solution of the linear system.
In the case of isoparametric Galerkin methods, there is an extra computational cost related
with the computation of the quantities of interest, such as the derivatives of the shape functions
and the computation of the integrals.

2 The usual algorithm implemented in Matlab is that any singular value less than a tolerance is treated as zero:
by default, this tolerance is set to max(size(A)) * eps(norm(A)).
3 The case M = N can be solved only by the use of a (Moore–Penrose) pseudo-inverse (17), because the
invertibility of the Jacobian of the nonlinear PDE operator cannot be guaranteed in advance.

123

 44 Page 12 of 35 Journal of Scientific Computing (2021) 89:44

4 Numerical Analysis Results: The Case Studies

The efficiency of the proposed numerical scheme is demonstrated through two bench-
mark nonlinear PDEs, namely (a) the one dimensional nonlinear Burgers equation with
Dirichlet boundary conditions and also mixed boundary conditions, and, (b) the one- and
two-dimensional Liouville–Bratu–Gelfand problem. These problems have been widely stud-
ied as have been used to model and analyse the behaviour of many physical and chemical
systems (see e.g. [1,6,9,23,27,36,53]).
All computations were made with a CPU Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz,
RAM 16.0 GB using MATLAB R2020b.
In this section, we present some known properties of the proposed problems and provide
details on their numerical solution with FD, FEM and the proposed machine learning (ELM)
scheme with both logistic and Gaussian RBF transfer functions.

4.1 The Nonlinear Viscous Burgers Equation

Here, we consider the one-dimensional steady state viscous Burgers problem:

ν
∂2u

∂x2
− u

∂u

∂x
= 0 (18)

in the unit interval [0, 1], where ν > 0 denotes the viscosity. For our analysis, we considered
two different sets of boundary conditions:

– Dirichlet boundary conditions

u(0) = γ , u(1) = 0 , γ > 0 ; (19)

– Mixed boundary conditions: Neumann condition on the left boundary and zero Dirichlet
on the right boundary:

∂u

∂x
(0) = −ϑ , u(1) = 0 , ϑ > 0 . (20)

The two sets of boundary conditions result to different behaviours (see [1,5]). We summarize
in the next two lemmas some of the main results.

Lemma 1 (Dirichlet case) Consider Eq. (18) with boundary conditions given by (19). More-
over, take (notice that γ −−→

ν→0
1):

γ = 2

1 + exp(−1
ν

)
− 1.

Then, the problem (18)–(19) has a unique solution given by:

u(x) = 2

1 + exp(x−1
ν

)
− 1 . (21)

We will use this test problem because the solution has a boundary layer and for this simple
case, we can also implement and discuss the efficiency of a fixed point iteration by lin-
earization, while in the mixed-boundaries case, we implement only the Newton’s iterative
procedure.

123

Journal of Scientific Computing (2021) 89:44 Page 13 of 35 44

Lemma 2 (Mixed case) Consider Eq. (18) with boundary conditions given by (20). The
solution of the problem can be written as [1] :

u(x) = √
2c tanh

(√
2c

2ν
(1 − x)

)
, (22)

where c is constant value which can be determined by the imposed Neumann condition.
Then, for ϑ sufficiently small the viscous Burgers problem with mixed boundary conditions
admits two solutions:

(a) a stable lower solution such that ∀x ∈ (0, 1):

u(x) −−−→
ϑ→0

0,
∂u(x)

∂x
−−−→
ϑ→0

0,

(b) an unstable upper solution u(x) > 0 ∀x ∈ (0, 1) such that:

∂u(0)

∂x
−−−→
ϑ→0

0,
∂u(1)

∂x
−−−→
ϑ→0

−∞ ,

and

∀x ∈ (0, 1) , u(x) −−−→
ϑ→0

∞ .

Proof The spatial derivative of (22) is given by:

∂u(x)

∂x
= − c

ν
sech2

(√
2c

2ν
(1 − x)

)
. (23)

(a) When c → 0 then from Eq. (22), we get asymptotically the zero solution, i.e. u(x) → 0,
∀x ∈ (0, 1) and from Eq. (23), we get ∂u(x)

∂x → 0, ∀x ∈ (0, 1). At x = 1, the Dirichlet
boundary condition u(1) = 0 is satisfied exactly (see Eq. (22)), while at the left boundary
x = 0 theNeumann boundary condition is also satisfied as due to Eq. (23) and our assumption
(ϑ → 0): ∂u(0)

∂x = −ϑ → 0, when c → 0.

(b) When ∂u(1)
∂x → −∞, then (23) is satisfied ∀x ∈ (0, 1) when c → ∞. In that case, at

x = 0, the Neumann boundary condition is satisfied as due to Eq. (23) is easy to prove that
∂u(0)
∂x → 0. Indeed, from Eq. (23):

lim
c→∞

∂u(x)

∂x
= − lim

c→∞
ν

exp
√
2c
ν

= 0. (24)

Finally Eq. (22) gives u(x) → ∞, ∀x ∈ (0, 1). ��

To better understand the behaviour of the unstable solution with respect to the left boundary
condition, we can prove the following.

Corollary 1 Consider Eq. (18) with boundary conditions given by (20). For the non-zero
solution, when ϑ = ε → 0 the solution at x = 0 goes to infinity with values:

u(0) = ν log
(ν

ε

)
tanh

(
1

2
log
(ν

ε

))
. (25)

123

 44 Page 14 of 35 Journal of Scientific Computing (2021) 89:44

Proof By setting the value of ϑ in the Neumann boundary condition to be a very small
number, i.e. ϑ = ε � 1, then from Eq. (24), we get that the slope of the analytical solution
given by Eq. (23) is equal to ε, when

c = 1

2
ν2 log2

(ν

ε

)
. (26)

Plugging the above into the analytical solution given by Eq. (22), we get Eq. (25). ��

The above findings imply also the existence of a limit point bifurcation with respect to ϑ that
depends also on the viscosity. For example, as shown in [1], for ϑ > 0 and ν = 1/10, there
are two equilibria arising due to a turning point at ϑ∗ = 0.087845767978.

4.1.1 Numerical Solution of the Burgers Equation with Finite Differences and Finite
Elements

The discretization of the one-dimensional viscous Burgers problem in N points with second-
order central finite differences in the unit interval 0 ≤ x ≤ 1 leads to the following system
of N − 2 algebraic equations ∀x j = (j − 1)h, j = 2, . . . N − 1, h = 1

N−1 :

Fj (u) = ν

h2
(u j+1 − 2u j + u j−1) − u j

u j+1 − u j−1

2h
= 0 .

At the boundaries x1 = 0, xN = 1, we have u1 = γ , uN = 0, respectively for the Dirichlet
boundary conditions (19) and u1 = (2hϑ +4u2 −u3)/3, uN = 0, respectively for the mixed
boundary conditions (20).

The above N − 2 nonlinear algebraic equations are the residual equations (10) that are
solved iteratively using Newton’s method (11). The Jacobian (12) is now triagonal: at each
i-th iteration, the non-null elements are given by:

∂Fj

∂u j−1
= ν

h2
+ u j

2h
; ∂Fj

∂u j
= −ν

2

h2
− u j+1 − u j−1

2h
; ∂Fj

∂u j+1
= ν

h2
− u j

2
.

The Galerkin residuals (16) in the case of the one-dimensional Burgers equation read:

Rk =
∫ 1

0

(
ν
∂2u(x)

∂x2
− u

∂u(x)

∂x

)
φk(x)dx . (27)

By inserting the numerical solution (15) into Eq. (27) and by applying the Green’s formula
for integration, we get:

Rk = νφk(x)
du

dx

∣∣∣1
0
− ν

N∑
j=1

u j

∫ 1

0

dφ j (x)

dx

dφk(x)

dx
dx

−
∫ 1

0

N∑
j=1

u jφ j (x)
N∑
j=1

u j
dφ j (x)

dx
φk(x)dx .

(28)

123

Journal of Scientific Computing (2021) 89:44 Page 15 of 35 44

At the above residuals, we have to impose the boundary conditions. If Dirichlet boundary
conditions (19) are imposed, Eq. (28) becomes:

Rk = − ν

N∑
j=1

u j

∫ 1

0

dφ j (x)

dx

dφk(x)

dx
dx

−
∫ 1

0

N∑
j=1

u jφ j (x)
N∑
j=1

u j
dφ j (x)

dx
φk(x)dx .

(29)

In the case of the mixed boundary conditions (20), Eq. (28) becomes:

Rk = νϑφk(0) − ν

N∑
j=1

u j

∫ 1

0

dφ j (x)

dx

dφk(x)

dx
dx

−
∫ 1

0

N∑
j=1

u jφ j (x)
N∑
j=1

u j
dφ j (x)

dx
φk(x)dx .

(30)

In this paper, we use a P2 Finite Element space, thus quadratic basis functions using an affine
element mapping in the interval [0, 1]d . For the computation of the integrals, we used the
Gauss quadrature numerical scheme: for the one-dimensional case, we used the three-points
gaussian rule:

{(
1

2
−
√

3

20
,
5

18

)
,

(
0.5,

8

18

)
,

(
1

2
+
√

3

20
,
5

18

)}
.

When writing Newton’s method (11), the elements of the Jacobian matrix for both (29) and
(30) are given by:

∂Rk

∂u j
= −ν

∫ 1

0

dφ j (x)

dx

dφk(x)

dx
dx − 2

∫ 1

0

N∑
j=1

u jφ j (x)
dφ j (x)

dx
φk(x)dx . (31)

Finally, with all the above, the Newton’s method (11) involves the iterative solution of a
linear system. For the Dirichlet problem this becomes:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 . . . 0
∂R2
∂u1

∂R2
∂u2

. . . ∂R2
∂u j

. . . ∂R2
∂uN

...
...

. . .
...

. . .
...

∂Rk
∂u1

∂Rk
∂u2

. . .
∂Rk
∂u j

. . .
∂Rk
∂uN

...
...

. . .
...

. . .
...

0 0 . . . 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∣∣u(n)

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

du(n)
1

du(n)
2
...

du(n)
j
...

du(n)
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
R2
...

Rk
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∣∣u(n)

, (32)

123

 44 Page 16 of 35 Journal of Scientific Computing (2021) 89:44

while for the problemwith the mixed boundary conditions, at each iteration, we need to solve
the following system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂R1
∂u1

∂R1
∂u2

. . . ∂R1
∂u j . . . ∂R1

∂uN
∂R2
∂u1

∂R2
∂u2

. . . ∂R2
∂u j

. . . ∂R2
∂uN

...
...

. . .
...

. . .
...

∂Rk
∂u1

∂Rk
∂u2

. . .
∂Rk
∂u j

. . .
∂Rk
∂uN

...
...

. . .
...

. . .
...

0 0 . . . 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∣∣u(n)

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

du(n)
1

du(n)
2
...

du(n)
j
...

du(n)
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1

R2
...

Rk
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∣∣u(n)

. (33)

4.1.2 Numerical Solution of the Burgers Equation with Extreme Learning Machine
Collocation

Collocating the ELM network function for the one-dimensional Burgers equation leads to
the following nonlinear algebraic system for i = 2, . . . , M − 1:

Fi (w, ν) = ν

N∑
j=1

w j
d2ψ j (xi)

dx2
−
(N∑

j=1

w jψ j (xi)

)(N∑
j=1

w j
dψ j (xi)

dx

)
= 0 . (34)

Then, the imposition of the boundary conditions (19) gives:

F1(w, ν) =
N∑
j=1

w jψ j (0) − γ = 0, FM (w, ν) =
N∑
j=1

w jψ j (1) = 0 , (35)

while boundary conditions (20) lead to:

F1(w, ν) =
N∑
j=1

w j
dψ j (0)

dx
+ ϑ = 0, FM (w, ν) =

N∑
j=1

w jψ j (1) = 0 . (36)

These equations are the residual equations (10) that we solve by Newton’s method (11). The
elements of the Jacobian matrix ∇wF are given by:

∂Fi
∂w j

= ν
d2ψ j (xi)

dx2
− ψ j (xi)

(N∑
j=1

w j
dψ j (xi)

dx

)
−
(N∑

j=1

w jψ j (xi)

)
dψ j (xi)

dx
.

For i = 2, . . . , M − 1 and due to the Dirichlet boundary conditions (35), we have:

∂F1
∂w j

(w, λ) = ψ j (0)
∂FM

∂w j
(w, λ) = ψ j (1).

On the other hand, due to the mixed boundary conditions given by (36), we get:

∂F1
∂w j

(w, λ) = dψ j (0)

dx

∂FM

∂w j
(w, λ) = ψ j (1).

At this point, the application of Newton’s method (11) using the exact computation of the
derivatives of the basis functions is straightforward (see (4) and (7)).

123

Journal of Scientific Computing (2021) 89:44 Page 17 of 35 44

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ELM SF
ELM RBF
FD
FEM
Exact

(a)

101 102 103

log10 N

10-20

10-15

10-10

10-5

100

lo
g1

0
er

ro
r

ELM SF L2 error
ELM RBF L2 error
FD L2 error
FEM L2 error

(b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
ELM SF
ELM RBF
FD
FEM
Exact

(c)

101 102 103

log10 N

10-10

100

lo
g1

0
er

ro
r

ELM SF L2 error
ELM RBF L2 error
FD L2 error
FEM L2 error

(d)

Fig. 1 Numerical solution and accuracy of the FD, FEM and the proposed machine learning (ELM) schemes
for the one-dimensional viscous Burgers problem with Dirichlet boundary conditions (18), (19), (a,b) with
viscosity ν = 0.1: (a) Solutions for a fixed problem size N = 40; (b) L2-norm of differences with respect
to the exact solution (21) for various problem sizes. (c,d) with viscosity ν = 0.007: (c) Solutions for a fixed
problem size N = 40; (d) L2-norm errors with respect to the exact solution for various problem sizes

4.1.3 Numerical Results

In all the computations with FD, FEM and the proposed machine learning (ELM) scheme,
the convergence criterion for Newton’s iterations was the L2 norm4 of the relative error
between the solutions resulting from successive iterations; the convergence tolerance was
set to 10−6. In fact, for all methods, Newton’s method converged quadratically also up to
the order of 10−10, when the bifurcation parameter was not close to zero where the solution
of both Burgers with mixed boundary conditions and Bratu problems goes asymptotically
to infinity. The exact solutions that are available for the one-dimensional Burgers and Bratu
problems are derived using Newton’s method with a convergence tolerance of 10−12.

First, we present the numerical results for the Burgers equation (18) with Dirichlet bound-
ary conditions (19). Recall that for this case, the exact solution is available (see Eq. (21)). For
our illustrations, we have selected two different values for the viscosity, namely ν = 0.1 and
ν = 0.007. Results were obtained with Newton’s iterations starting from an initial guess that

4 The relative error is the L2-norm of the difference between two successive solutions ||u(w)−2−u(w)−1||2.
In particular for the ELM framework is given by ||ST · (w−2 − w−1)||2, where S is the collocation matrix
defined in Eq. (2).

123

 44 Page 18 of 35 Journal of Scientific Computing (2021) 89:44

Table 1 Execution times (s) for the Burgers equation (18) with Dirichlet boundary conditions (19) and ν = 0.1

ELM SF ELM RBF

N 5% Mean 95% 5% mean 95%

80 2.73e−03 4.70e−03 4.38e−03 2.31e−03 2.67e−03 3.16e−03

160 8.46e−03 9.97e−03 1.12e−02 7.16e−03 8.20e−03 9.08e−03

320 3.72e−02 4.23e−02 4.60e−02 3.52e−02 3.89e−02 4.28e−02

640 1.60e−01 1.67e−01 1.75e−01 1.56e−01 1.69e−01 1.97e−01

FD FEM

N 5% mean 95% 5% mean 95%

80 1.72e−04 3.37e−04 3.48e−04 2.33e−02 2.49e−02 2.76e−02

160 4.31e−04 4.55e−04 5.26e−04 5.68e−02 6.39e−02 6.95e−02

320 1.29e−03 1.33e−03 1.44e−03 1.22e−01 1.24e−01 1.31e−01

640 1.05e−02 1.10e−02 1.16e−02 3.34e−01 3.40e−01 3.55e−01

is a linear segment that satisfies the boundary conditions. Figure 1 shows the corresponding
computed solutions for a fixed size N = 40 as well as the relative errors with respect to the
exact solution. As it is shown, the proposed machine learning scheme outperforms both the
FD and FEM schemes for medium to large sizes of the grid; from low to medium sizes of the
grid, all methods perform equivalently. However, as shown in Fig. 1c, for ν = 0.007, and the
particular choice of the size (N = 40), the FD scheme fails to approximate sufficiently the
steep-gradient appearing at the right boundary. Table 1, summarizes the execution times of
the four methods (ELM SF, ELM RBF, FD and FEM), when applied for the solution of the
Burgers equation (18) with Dirichlet conditions (19) and ν = 0.1 for various sizes of the grid.
The computations are performed 100 times and we also provide the 5% and 95% percentiles.
For all practical means, the execution times obtained with ELMS are comparable with the
ones obtained with FD and FEM (with the ones obtained with the proposed machine learning
scheme to be slightly faster that the ones obtained with FEM), while, as seen, numerical
approximation accuracy is better in the ELMs case; the execution times when using the FD
are smaller but as shown the FD scheme fails to approximate solutions with steep gradients
while its numerical accuracy is generally lower when compared with FEM and the proposed
machine learning scheme.

Then, we considered the case of the non-homogeneous Neumann condition on the left
boundary (18)- (20); here, we have set ν = 1/10. In this case, the solution is not unique and
the resulting bifurcation diagram obtained with FD, FEM and the proposed machine learning
(ELM) scheme is depicted in Fig. 2. In Table 2, we report the error between the value of
the bifurcation point as computed with FD, FEM and the proposed machine learning (ELM)
scheme for various problem sizes N , with respect to the exact value of the bifurcation point
(occurring for the particular choice of viscosity at ϑ∗ = 0.087845767978). The location of
the bifurcation point for all numerical methods was estimated by fitting a parabola around
the four points (two on the lower and two on the upper branch) of the largest values of λ

as obtained by the pseudo-arc-length continuation. As shown, the proposed ELM scheme
performs equivalently to FEM for low to medium sizes of the grid, thus outperforming FEM
formedium to large grid sizes; bothmethods FEM and the proposedmachine learning (ELM)
scheme outperform FD for all sizes of the grid.

123

Journal of Scientific Computing (2021) 89:44 Page 19 of 35 44

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

2

2.5
Exact
FD
FEM
ELM SF
ELM RBF

(a)

0.087835 0.08784 0.087845 0.08785

0.197

0.198

0.199

0.2

0.201

0.202

0.203
Exact
FD
FEM
ELM SF
ELM RBF

(b)

Fig. 2 a One-dimensional Burgers equation (18) with mixed boundary conditions (20). Bifurcation diagram
with respect to the Neumann boundary value θ as obtained for ν = 1/10, with FD, FEM and ELM schemes
with a fixed problem size N = 400; b Zoom near the turning point

Table 2 One-dimensional
Burgers equation (18) with mixed
boundary conditions (20)

N FD FEM ELM SF ELM RBF

20 −3.32e−04 −4.86e−09 2.75e−08 −4.37e−06

50 −5.35e−05 −7.67e−09 −2.06e−09 −2.14e−09

100 −1.34e−05 −2.16e−09 −9.84e−09 −9.85e−09

200 −3.34e−06 −5.93e−09 −9.62e−09 −9.61e−09

400 −8.35e−07 4.15e−09 9.38e−10 9.33e−10

Comparative results with respect to the error between the estimated value
of the turning point as obtained with FD, FEM and proposed machine
learning (ELM) schemes and the exact value of the turning point at
ϑ∗ = 0.087845767978 for ν = 1/10. The value of the turning point
was estimated by fitting a parabola around the four points with the largest
λ values as obtained by the arc-length continuation

In this case, steep gradients arise at the right boundary related to the presence of the upper
unstable solution, as discussed in Lemma 2 and Corollary 1. In Table 3, we report the error
between the numerically computed and the exact analytically obtained value (see Eq. (22))
at x = 0 when the value of boundary condition ϑ at the left boundary is ϑ = 10−6. Again
as shown, near the left boundary, the proposed ELM scheme outperforms both FEM and FD
for medium to larger sizes of the grid.

Remark 3 (Linearization of the Burgers equation for its numerical solution.) For the numer-
ical solution of the Burgers equation (18) with boundary conditions given by (19), one can
also consider the following simple iterative procedure that linearizes the equation:

123

 44 Page 20 of 35 Journal of Scientific Computing (2021) 89:44

Table 3 One-dimensional
Burgers equation (18) with mixed
boundary conditions (20)

N FD FEM ELM SF ELM RBF

20 −1.81e−01 2.05e−02 −6.55e−01 −6.14e−01

50 −2.66e−02 7.67e−04 −5.83e−01 −6.09e−01

100 −6.52e−03 1.58e−04 −2.00e−01 −1.05e−01

200 −1.61e−03 8.99e−05 −2.50e−06 −5.05e−06

400 −4.00e−04 6.28e−05 −3.47e−06 −9.52e−06

Comparative results with respect to the error between the computed solu-
tion (at x = 0) with FD, FEM and proposed machine learning (ELMs)
scheme (with both sigmoidal and radial basis functions) and the exact
solution u(0) = 1.798516682636303 (see Eq. (22)) for ϑ = 1e−6 (the
value of the Neumann condition at the left boundary)

101 102 103

log10 N

10-15

10-10

10-5

100

lo
g1

0
er

ro
r

ELM SF L2 error
ELM RBF L2 error
FD L2 error

(a)

101 102 103

log10 N

10-10

10-5

100

lo
g1

0
er

ro
r

ELM SF L2 error
ELM RBF L2 error
FD L2 error

(b)

Fig. 3 Numerical accuracy of FD and ELM schemes with respect to the exact solution, for the case of the
one-dimensional Burgers equation (18) with Dirichlet boundary conditions given by (19), as obtained by the
fixed point scheme described in Remark 3 for a ν = 0.1 and b ν = 0.007. We depict the L2-norm of the
difference between the solutions obtained with FD and the proposed machine learning (ELMs) scheme and
the exact solution (21)

⎧⎨
⎩
Given u(0), do until convergence

find u(k) such that ν
∂2u(k)

∂x2
− u(k−1) ∂u

(k)

∂x
= 0 .

In thisway, the nonlinear termbecomes a linear advection termwith a non-constant coefficient
given by the evaluation of u at the previous iteration. This results to a fixed point scheme.
Such linearized equations can be easily solved, being linear elliptic equations, and thus in
this case one can perform the analysis for linear systems presented in [8]. The results of this
procedure are depicted in Fig. 3.

We point out that such iterations converge generally very slowly and, what is most impor-
tant from our point of view, is that convergence is obtained only for a very “good” guess of
the solution.

123

Journal of Scientific Computing (2021) 89:44 Page 21 of 35 44

4.2 The One- and Two-Dimensional Liouville–Bratu–Gelfand Problem

The Liouville–Bratu–Gelfand model arises in many physical and chemical systems. It is an
elliptic partial differential equation which in its general form is given by [6]:

Δu(x) + λeu(x) = 0 x ∈ Ω, (37)

with homogeneous Dirichlet conditions

u(x) = 0 , x ∈ ∂Ω. (38)

The domain that we consider here is the Ω = [0, 1]d in Rd , d = 1, 2.
The one-dimensional problem admits an analytical solution given by [43]:

u(x) = 2 ln
cosh θ

cosh θ(1 − 2x)
, whereθ is such that cosh θ = 4θ√

2λ
. (39)

It can be shown that when 0 < λ < λc, the problem admits two branches of solutions that
meet at λc ∼ 3.513830719, a limit point (saddle-node bifurcation) that marks the onset of
two branches of solutions with different stability, while beyond that point no solutions exist.

For the two-dimensional problem, to the best of our knowledge, no such (as in the one-
dimensional case) exact analytical solution exist that is verified by the numerical results that
have been reported in the literature (e.g. [9,27]), in which the authors report the value of the
turning at λc ∼ 6.808124.

4.2.1 Numerical Solution with Finite Differences and Finite Elements

The discretization of the one-dimensional problem in N points with central finite differences
at the unit interval 0 ≤ x ≤ 1 leads to the following system of N − 2 algebraic equations
∀x j = (j − 1)h, j = 2, . . . N − 1, h = 1

N−1 :

Fj (u) = 1

h2
(u j+1 − 2u j + u j−1) + λeu j = 0,

where, at the boundaries x1 = 0, xN = 1, we have u1 = uN = 0.
The solution of the above N − 2 nonlinear algebraic equations is obtained iteratively

using the Newton-Raphson method. The Jacobian is now tridiagonal; at each n-th iteration,

the elements at the main diagonal are given by
∂Fj
∂u j

(n) = − 2
h2

+ λeu
(n)
j and the elements of

the first diagonal above and the first diagonal below are given by
∂Fj+1
∂u j

(n) = ∂Fj
∂u j+1

(n) = 1
h2
,

respectively.
The discretization of the two-dimensional Bratu problem in N × N points with central

finite differences on the square grid 0 ≤ x, y ≤ 1 with zero boundary conditions leads to
the following system of (N − 2) × (N − 2) algebraic equations ∀(xi = (i − 1)h, y j =
(j − 1)h), i, j = 2, . . . N − 1, h = 1

N−1 :

Fi, j (u) = 1

h2
(ui+1, j + ui, j+1 − 4ui, j + ui, j−1 + ui−1, j) + λeui, j = 0.

123

 44 Page 22 of 35 Journal of Scientific Computing (2021) 89:44

The Jacobian is now a (N − 2)2 × (N − 2)2 block diagonal matrix of the form:

∇F = 1

h2

⎡
⎢⎢⎢⎢⎢⎣

T2 I 0 0 0
I T3 I 0 0
0 I T4 I 0 . . . 0
...

...
. . .

. . .
. . .

. . .
...

0 I TN−1

⎤
⎥⎥⎥⎥⎥⎦

,

where I is the (N − 2)× (N −2) identity matrix and Ti is the (N −2)× (N −2) tridiagonal
matrix with non null elements on the j-th row:

1 , −4 + h2λeui+ j,i+ j , 1

Regarding the FEM solution, for the one-dimensional Bratu problem, Eq. (16) gives:

Rk =
∫

Ω

(
∂2u

∂x2
+ λeu(x)

)
φk(x)dx . (40)

By inserting Eq. (15) into Eq. (40) and by applying the Green’s formula for integration, we
get:

Rk = φk(x)
du

dx

∣∣∣1
0
−

N∑
j=1

u j

∫ 1

0

dφ j (x)

dx

dφk(x)

dx
dx + λ

∫ 1

0
e
∑N

j=1 u jφ j (x)φk(x)dx (41)

and because of the zero Dirichlet boundary conditions, Eq. (41) becomes:

Rk = −
N∑
j=1

u j

∫ 1

0

dφ j (x)

dx

dφk(x)

dx
dx + λ

∫ 1

0
e
∑N

j=1 u jφ j (x)φk(x)dx .

The elements of the Jacobian matrix are given by:

∂Rk

∂u j
= −

∫ 1

0

dφ j (x)

dx

dφk(x)

dx
dx + λ

∫ 1

0
e
∑N

j=1 u jφ j (x)φ j (x)φk(x)dx (42)

Due to the Dirichlet boundary conditions, Eq. (42) becomes:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 . . . 0
∂R2
∂u1

∂R2
∂u2

. . . R2
∂u j

. . . R2
∂uN

...
...

. . .
...

. . .
...

∂Rk
∂u1

∂Rk
∂u2

. . .
Rk
∂u j

. . .
Rk

∂uN
...

...
. . .

...
. . .

...

0 0 . . . 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∣∣u(n)

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

du(n)
1

du(n)
2
...

du(n)
j
...

du(n)
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
R2
...

Rk
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∣∣u(n)

. (43)

For the two-dimensional Bratu problem , the residuals are given by:

Rk =
∫∫

Ω

(
∂2u(x, y)

∂x2
+ ∂2u(x, y)

∂ y2
+ λeu(x,y)

)
φk(x, y)dxdy.

123

Journal of Scientific Computing (2021) 89:44 Page 23 of 35 44

By applying the Green’s formula for integration, we get:

Rk =
∮

∂Ω

∇u(x, y)d� −
∫∫

Ω

∇u(x, y)∇φk(x, y)dxdy

+
∫∫

Ω

λeu(x,y)φk(x, y)dxdy.

By inserting Eq. (15) and the zero Dirichlet boundary conditions, we get:

Rk = −
N∑
j=1

u j

∫∫
Ω

∇φ j (x, y)∇φk(x, y)dxdy

+
∫∫

Ω

λe
∑N

j=1 u jφ j (x,y)φk(x, y)dxdy.

Thus, the elements of the Jacobian matrix for the two-dimensional Bratu problem are given
by:

∂Rk

∂u j
= −

∫∫
Ω

∇φ j (x, y)∇φk(x, y)dxdy

+
∫∫

Ω

λe
∑N

j=1 u jφ j (x,y)φ j (x, y)φk(x, y)dxdy.

As before, for our computations we have used quadratic basis functions using an affine
element mapping in the domain [0, 1]2.

4.2.2 Numerical Solution with Extreme Learning Machine Collocation

Collocating the ELMnetwork function (1) in the 1DBratu problem (37) leads to the following
system:

Fi (w, λ)=
N∑
j=1

w j
d2ψ j (xi)

dx2
+λexp

(N∑
j=1

w jψ j (xi)

)
=0, i=2, . . . , M − 1,

with boundary conditions:

F1(w, λ) =
N∑
j=1

w jψ j (0) = 0, FM (w, λ) =
N∑
j=1

w jψ j (1) = 0.

Thus, the elements of the Jacobian matrix ∇wF are given by:

∂Fi
∂w j

= d2ψ j (xi)

dx2
+ λψ j (xi)exp

(N∑
j=1

w jψ j (xi)

)
, i = 2, . . . , M − 1,

and

∂F1
∂w j

(w, λ) = ψ j (0)
∂FM

∂w j
(w, λ) = ψ j (1).

The application of Newton’s method (11) is straightforward using the exact computation of
derivatives of the basis functions (see (4) and (7)).

123

 44 Page 24 of 35 Journal of Scientific Computing (2021) 89:44

For the two-dimensional Bratu problem (37), we have:

Fi (w, λ) =
N∑
j=1

w j
∂2ψ j (xi , yi)

∂x2
+

N∑
j=1

w j
∂2ψ j (xi , yi)

∂ y2

+ λ exp

(N∑
j=1

w jψ j (xi , yi)

)
= 0, i = 1, . . . , MΩ

with boundary conditions:

Fk(w, λ) =
N∑
j=1

w jψ j (xk, yk) = 0, k = 1, . . . , M1.

Thus, the elements of the Jacobian matrix ∇wF read:

∂Fi
∂w j

= ∂2ψ j (xi , yi)

∂x2
+ ∂2ψ j (xi , yi)

∂ y2
+ λψ j (xi , yi) exp

(N∑
j=1

w jψ j (xi , yi)

)
, i = 1, . . . , MΩ

and

∂Fk
∂w j

(w, λ) = ψ j (xk, yk) = 0, k = 1, . . . , M1 .

Also in this case, with the above computations the application of Newton’s method (11) is
straightforward.

4.2.3 Numerical Results for the One-Dimensional Problem

First, we show the numerical results for the one-dimensional Liouville–Bratu–Gelfand equa-
tion (37)with homogeneousDirichlet boundary conditions (38). Recall that an exact solution,
although in implicit form, is available in this case (see equation (39)); thus, as discussed, the
exact solutions are derived using Newton’s method with a convergence tolerance of 10−12.
Figure 4 depicts the comparative results between the exact, FD, FEM and ELM solutions on
the upper-branch as obtained by applying Newton’s iterations, for two values of the param-
eter λ and a fixed N = 40, namely for λ = 3 close to the turning point (occurring at
λc ∼ 3.513830719) and for λ = 0.2. For our illustrations, we have set as initial guess u0(x)
a parabola that satisfies the homogeneous boundary conditions, namely:

u0(x) = 4l0(x − x2),

with a fixed L∞-norm ||u||∞ = l0 close to the one obtained from the exact solution.
In particular, for λ = 3, we used as initial guess a parabola with l0 = 2.2; in all cases

Newton’s iterations converge to the correct unstable upper-branch solution. For λ = 0.2, we
used as initial guess a parabola with l0 = 6.4 (the exact solution has l0 ∼ 6.5); again in all
cases, Newton’s iterations converged to the correct unstable upper-branch solution. To clarify
more the behaviour of the convergence, in Fig. 5, we report the regimes of convergence for
a grid of L∞ norms of the initial guesses (parabolas) and λs. In Table 4, we compare the
execution times of the four methods when applied for the solution of the Bratu equation
(37) with Dirichlet boundary condition (38) and λ = 1. Computations are performed 100
times and we also provide the 5% and 95% percentiles. Again, for all practical means, the
execution times obtained with the proposed machine learning scheme are comparable with

123

Journal of Scientific Computing (2021) 89:44 Page 25 of 35 44

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
ELM SF
ELM RBF
FD
FEM
Exact

(a)

101 102 103

log10 N

10-15

10-10

10-5

100

lo
g1

0
er

ro
r

ELM SF L2 error
ELM RBF L2 error
FD L2 error
FEM L2 error

(b)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
ELM SF
ELM RBF
FD
FEM
Exact

(c)

101 102 103

log10 N

10-15

10-10

10-5

100

lo
g1

0
er

ro
r

ELM SF L2 error
ELM RBF L2 error
FD L2 error
FEM L2 error

(d)

Fig. 4 Numerical solutions and accuracy of the FD, FEM and the proposed machine learning (ELMs) schemes
for the one-dimensional Bratu problem (37). a Computed solutions at the upper-branch unstable solution at
λ = 3 for a fixed problem size N = 40. b L2-norm of differences with respect to the exact unstable solution
(39) at λ = 3 for various values of N . c Computed solutions at the upper-branch unstable solution at λ = 0.2
with a fixed problem size N = 40. d L2-norm of differences with respect to the exact unstable solution (39) at
λ = 0.2 for various values of N . The initial guess of the solutions was a parabola satisfying the homogeneous
boundary conditions with a fixed L∞-norm ||u||∞ = l0 close to the one resulting from the exact solution

the ones obtainedwith FD and FEM (note that the execution times obtainedwith the proposed
machine learning scheme are slightly smaller that the ones obtained with FEM), while, as
seen, numerical approximation accuracy is better in the ELMs case; the execution times when
using the FD are slightly smaller but as shown the FD scheme results to a lower numerical
accuracy compared with FEM and the proposed machine learning (ELMs) scheme.

Remark 4 (Linearization of the equation for the numerical solution of the Liouville–Bratu–
Gelfand problem)

For the solution of the equation (37) with boundary conditions given by (38), one can
consider the following iterative procedure that linearizes the equation:

{
Given u(0), do until convergence

find u(k) such that Δu(k) + λeu
(k−1)

u(k) = λ(u(k−1) − 1)eu
(k−1)

.

In this way, the nonlinear term becomes a linear reaction term with a non-constant coefficient
given by the evaluation of the nonlinearity at the previous step. Then, we implemented fixed
point iterations until convergence. Such a linearization procedure is used, for example, in

123

 44 Page 26 of 35 Journal of Scientific Computing (2021) 89:44

Fig. 5 Convergence regimes (basin of attraction) of Newton’s method with the a FD, b FEM, and c, d ELM
numerical schemes for the one-dimensional Bratu problem (37) for a grid of initial guesses (L∞-norms
of parabolas that satisfy the boundary conditions (38)) and λs. Green points indicate convergence to the
lower-branch solutions; Red points indicate convergence to the upper-branch solutions; Blue points indicate
divergence. c ELM with logistic SF (3). d ELM with Gaussian RBF (6) (Color figure online)

Table 4 Execution times (s) for the Bratu equation (37) with Dirichlet boundary condition (38) and λ = 1

N ELM SF ELM RBF
5% mean 95% 5% mean 95%

80 7.16e−03 8.14e−03 9.27e−03 2.07e−03 2.31e−03 2.61e−03

160 3.81e−02 4.23e−02 4.93e−02 3.53e−03 4.31e−03 4.96e−03

320 1.09e−02 1.16e−02 1.30e−02 7.12e−03 7.96e−03 8.57e−03

640 3.19e−02 3.38e−02 3.58e−02 2.81e−02 3.01e−02 3.17e−02

N FD FEM
5% mean 95% 5% mean 95%

80 1.93e−04 2.60e−04 2.65e−04 2.58e−03 2.88e−03 3.03e−03

160 5.72e−04 7.01e−04 8.24e−04 5.76e−03 6.32e−03 6.89e−03

320 1.59e−03 1.86e−03 2.08e−03 1.15e−02 1.17e−02 1.20e−02

640 8.77e−03 9.07e−03 9.49e−03 3.00e−02 3.11e−02 3.21e−02

123

Journal of Scientific Computing (2021) 89:44 Page 27 of 35 44

101 102 103

log10 N

10-15

10-10

10-5

100
lo

g1
0

er
ro

r
ELM SF L2 error
ELM RBF L2 error
FD L2 error

(a)

101 102 103

log10 N

10-15

10-10

10-5

100

lo
g1

0
er

ro
r

ELM SF L2 error
ELM RBF L2 error
FD L2 error

(b)

Fig. 6 Fixed point iterations: L2-norm of the difference errors for the low and up branch Liouville–Bratu–
Gelfand solution (39) for λ = 2: a L2 errors with respect to N of the low branch solution, b L2 errors with
respect to N of the upper branch

Table 5 One-dimensional Bratu
problem (37)

N FD FEM ELM SF ELM RBF

20 −4.57e−03 3.44e−05 8.76e−05 3.00eq−02

50 −7.31e−04 8.44e−07 2.98e−07 6.61e−05

100 −1.83e−04 5.06e−08 −3.71e−08 6.13e−08

200 −4.57e−05 2.36e−08 −4.55e−09 −2.68e−09

400 −1.14e−05 1.36e−08 2.02e−09 2.03e−09

Accuracy of FD, FEM and the proposed machine learning (ELMs)
scheme in the approximation of the value of the turning pointwith respect
to the exact value λ = 3.513830719125162. Values express the differ-
ence with the computed turning point and the exact one. The value of the
turning point was estimated by fitting a parabola around the four points
with the largest λ values as obtained with arc-length continuation

[36]. In Fig. 6, we report some results on the application of this method. We note that this
scheme converges more slowly and it is not so robust compared to the Newton’s method.

4.2.4 Bifurcation Diagram and Numerical Accuracy

In this section, we report the numerical results obtained by the numerical bifurcation analysis
of the one-dimensional Bratu problem (37). Figure 7 shows the constructed bifurcation dia-
gram with respect to the parameter λ and in Table 5, we report the accuracy of the computed
value as obtained with FD, FEM and the proposed machine learning (ELMs) scheme, ver-
sus the exact value of the turning point. As shown, our proposed machine learning scheme
provides a bigger numerical accuracy for the value of the turning point for medium to large
sizes of the grid, and equivalent results (ELM with SF) to FEM, both outperforming the FD
scheme.

In Figs. 8 and 9, we depict the contour plots of the L∞-norms of the differences between
the computed solutions by FD, FEM and the proposed machine learning (ELMs) scheme and
the exact solutions for the lower-Fig. 8 and upper-branch Fig. 9, respectively with respect to
N and λ.

123

 44 Page 28 of 35 Journal of Scientific Computing (2021) 89:44

0 1 2 3 4
0

2

4

6

8

10

12
Exact
FD
FEM
ELM SF
ELM RBF

(a)

3.5137 3.51375 3.5138 3.51385 3.5139
1.175

1.18

1.185

1.19

1.195
Exact
FD
FEM
ELM SF
ELM RBF

(b)

Fig. 7 a Bifurcation diagram for the one-dimensional Bratu problem (37), with a fixed problem size N = 400.
b Zoom near the turning point

Fig. 8 One-dimensional Bratu problem (37). Contour plots of the L∞-norms of the differences between the
computed and exact (39) solutions for the lower stable branch: a FD, b FEM, c ELM with logistic SF (3), d
ELM with Gaussian RBF (6)

123

Journal of Scientific Computing (2021) 89:44 Page 29 of 35 44

Fig. 9 One-dimensional Bratu problem (37). Contour plots of the L∞-norms of the differences between the
computed and exact (39) solutions for the upper unstable branch: a FD, b FEM, c ELM with logistic SF (3),
d ELM with Gaussian RBF (6)

As it is shown, the proposed machine learning schemes outperform both FD and FEM
methods for medium to large problem sizes N , and provide equivalent results with FEM for
low to medium problem sizes, thus both (FEM and the proposed machine learning (ELMs)
scheme) outperforming the FD scheme.

4.2.5 Numerical Results for the Two-Dimensional Problem

For the two-dimensional problem (37)–(38), no exact analytical solution is available. Thus,
for comparing the numerical accuracy of the FD, FEM and the proposed machine learning
(ELM) schemes, we considered the value of the bifurcation point that has been reported in
key works as discussed in Sect. 4.2. Figure 10 depicts the computed bifurcation diagram as
computed via pseudo-arc-length continuation (seeSect. 3). Table 6, summarizes the computed
values of the turning point as estimated with the FD, FEM and ELM schemes for various
sizes N of the grid.

Remark 5 (The Gelfand–Bratu model) The Liouville–Bratu–Gelfand equation (37) in a uni-
tary ball B ⊂ R

d with homogeneous Dirichlet boundary conditions is usually refereed as
Gelfand–Bratu model. Such equation posses radial solutions u(r) of the one-dimensional

123

 44 Page 30 of 35 Journal of Scientific Computing (2021) 89:44

0 2 4 6 8
0

2

4

6

8
||u

||

FD
FEM
ELM SF
ELM RBF

(a)

6.78 6.8 6.82 6.84

1.25

1.3

1.35

1.4

1.45

1.5

1.55

||u
||

FD
FEM
ELM SF
ELM RBF

(b)

Fig. 10 a Computed bifurcation diagram for the two-dimensional Bratu problem (37), with a grid of 40× 40
points. b Zoom near the turning point

Table 6 Turning point estimation
of the two-dimensional Bratu
problem

N Grid FD FEM ELM SF ELM RBF

64 8 × 8 6.783434 7.083742 6.845015 7.207203

100 10 × 10 6.792626 6.984260 6.723902 6.930798

196 14 × 14 6.800361 6.900313 6.855055 6.882435

400 20 × 20 6.804392 6.856401 6.799440 6.829754

784 28 × 28 6.806235 6.835771 6.801689 6.806149

1600 40 × 40 6.807220 6.824770 6.806899 6.804600

The value that has been reported in the literature in key works (see e.g.
[9]) is λ∗ = 6.808124. The value of the turning point was estimated
by fitting a parabola around the four points with the largest λ values as
obtained by the arc-length continuation

non-linear boundary-value problem [58]:

{
u′′(r) + d − 1

r
u′(r) + λeu(r) = 0 0 < r < 1

u(1) = u′(0) = 0
(44)

In the case d = 2 this equation gives multiple solutions if λ < λc = 2. For example, in [53],
the authors have used Mathematica to give analytical solutions at various values of λ; for our
tests we consider:

λ = 1
2 → u(r) = log

⎛
⎜⎝

16
(
7 + 4

√
3
)

(
7 + 4

√
3 + r2

)2

⎞
⎟⎠

λ = 1 → u(r) = log

⎛
⎜⎝

8
(
3 + 2

√
2
)

(
3 + 2

√
2 + r2

)2

⎞
⎟⎠ .

(45)

Figure 11depicts the numerical accuracyof the proposedmachine learning (ELM)collocation
scheme with respect to the exact solutions for two values of λ, namely for λ = 1/2 and for
λ = 1. Because no meshing procedure is involved, and because the collocation equation

123

Journal of Scientific Computing (2021) 89:44 Page 31 of 35 44

102 103

log10 N

10-12

10-10

10-8

10-6

10-4
lo

g 10
 e

rr
or

ELM SF L2 error
ELM RBF L2 error

(a)

102 103

log10 N

10-10

10-5

lo
g 10

 e
rr

or

ELM SF L2 error
ELM RBF L2 error

(b)

Fig. 11 Numerical accuracy of ELMs for the radial two-dimensional Gelfand–Bratu problem (44). L2-norm
of differences of the analytical solutions (45) w.r.t. the number of neurons N in ELMs with both logistic SF
(3) and Gaussian RBF (6): a λ = 1/2, b λ = 1

seeks no other point, the implementation of the Newton’s method is straightforward when
changing the geometry of the domain.

5 Conclusions

We proposed a machine learning numerical method based on Extreme Learning Machines
(ELMs) and collocation for the approximation of steady-state solutions of non-linear PDEs.
The proposed numerical scheme takes advantage of the property of the ELMs as univer-
sal function approximators, bypassing the need of the computational very expensive - and
most-of-the times without any guarantee for convergence of-the training phase of other types
of machine learning such as single or multilayer ANNs and Deep-learning networks. The
base of the approximation subspace on which a solution of the PDE is sought are the ran-
domized transfer functions of the hidden layer which are weighted by the only unknown
parameters, that is the weights of the hidden to output layer. For linear PDEs, these can be
computed by solving a linear regularization problem in one step. In our previous work [8], we
demonstrated that ELMs can provide robust and accurate approximations of the steady-state
solution of benchmark linear PDEs with steep gradients, for which analytical solutions were
available. Here, we address a new numerical scheme based on ELMs that can be used to
solve steady state problems of non-linear PDEs, and by bridging them with numerical con-
tinuation methods, we show how one can exploit the arsenal of numerical bifurcation theory
to trace branches of solutions past turning points. For our demonstrations, we considered two
celebrated classes of nonlinear PDEs whose solutions bifurcate as parameter values change:
the one-dimensional viscous Burgers equation (a fundamental representative of advection-
diffusion PDEs) and the one- and two-dimensional Liouville–Bratu–Gelfand equation (a
fundamental representative of reaction-diffusion PDEs). By coupling the proposed numerical
scheme with Newton-Raphson iterations and the “pseudo” arc-length continuation method,
we constructed the corresponding bifurcation diagrams past turning points. The efficiency
of the proposed numerical machine learning collocation method was compared against two
of the most established numerical solution methods, namely central Finite Differences and
Galerkin Finite Elements. By doing so, we showed that (for the same problem size) the pro-

123

 44 Page 32 of 35 Journal of Scientific Computing (2021) 89:44

posed machine-learning approach outperforms FD and FEM schemes for relatively medium
to large sizes of the grid, both with respect to the accuracy of the computed solutions for a
wide range of the bifurcation parameter values and the approximation accuracy of the turn-
ing points. Thus, we show that the computational times of the proposed machine learning
method are comparable with the ones obtained with the other two schemes (actually the
computational times obtained with the proposed method are slightly smaller than the ones
obtained with FEM; the FD scheme provides slightly smaller times but fails to approximate
solutions with steep gradients and in general results to poorer numerical approximations).
Hence, the proposed method arises as an alternative and powerful new numerical technique
for the approximation of steady-state solutions of non-linear PDEs. Furthermore, its imple-
mentation is far simpler than the implementation of FEM, thus providing equivalent or even
better numerical accuracy, and in all cases is shown to outperform the simple FD scheme,
which fails to approximate steep gradients as here arise near the boundaries. Of course there
are many open problems linked to the implementation of the proposed numerical method that
ask for further and deeper investigation, such as the theoretical investigation of the impact of
the type of transfer functions and the probability distribution of their parameter values func-
tions to the approximation of the solutions. Further directions could be towards the extension
of the method for the solution of time-dependent non-linear PDEs as well as the solution of
inverse-problems in PDEs. Finally, we should note that the aim of the current work was to
show how random projection neural networks and namely, ELMs can be efficiently used for
the numerical solution of steady-state problems of nonlinear PDEs, the comparison of the
performance of the proposed method with other traditional methods such as FD and FEM
and by exploiting the tools of numerical bifurcation theory, the construction of the corre-
sponding bifurcation diagrams. Thus, a comparison with other machine learning approaches
such as deep-learning or other schemes that have been used for the numerical solution of
time-dependent PDEs (see e.g. [18,52]) is out of the scope of this work. Such a comparison
is still a challenging task that we aim to confront in a future work.

Acknowledgements Gianluca Fabiani is supported by a 4-year scholarship by the Scuola Superiore Merid-
ionale, Ph.D. Program in Modeling and Engineering Risk and Complexity, Università degli Studi di Napoli
Federico II, Italy Francesco Calabrò and Constantinos Siettos were partially supported by INdAM, through
GNCS research projects. Constantinos Siettos acknowledges also support by the Italian program Fondo Inte-
grativo Speciale per la Ricerca (FISR) - B55F20002320001.

Funding Open access funding provided byUniversità degli Studi diNapoli Federico IIwithin theCRUI-CARE
Agreement.

Data availability Not applicable.

Declarations

Conflict of interest Not applicable.

Code availability The code will be made available upon publication of the manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory

123

Journal of Scientific Computing (2021) 89:44 Page 33 of 35 44

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Allen, E.J., Burns, J.A., Gilliam, D.S.: Numerical approximations of the dynamical system generated by
burgers’ equation with neumann-dirichlet boundary conditions. ESAIM: Mathematical Modelling and
Numerical Analysis-Modélisation Mathématique et Analyse Numérique 47(5), 1465–1492 (2013)

2. Asprone, D., Auricchio, F., Manfredi, G., Prota, A., Reali, A., Sangalli, G.: Particle methods for a 1 d
elastic model problem: Error analysis and development of a second-order accurate formulation. Computer
Modeling in Engineering & Sciences (CMES) 62(1), 1–21 (2010)

3. Auricchio, F., Da Veiga, L.B., Hughes, T.J., Reali, A., Sangalli, G.: Isogeometric collocation for elas-
tostatics and explicit dynamics. Computer methods in applied mechanics and engineering 249, 2–14
(2012)

4. Bai, Z., Huang, G.B., Wang, D., Wang, H., Westover, M.B.: Sparse extreme learning machine for classi-
fication. IEEE transactions on cybernetics 44(10), 1858–1870 (2014)

5. Benton, E.R., Platzman, G.W.: A table of solutions of the one-dimensional burgers equation. Quarterly
of Applied Mathematics 30(2), 195–212 (1972)

6. Boyd, J.P.: An analytical and numerical study of the two-dimensional bratu equation. Journal of Scientific
Computing 1(2), 183–206 (1986)

7. Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximation of nonlinear problems.Numerische
Mathematik 38(1), 1–30 (1982)

8. Calabrò, F., Fabiani, G., Siettos, C.: Extreme learning machine collocation for the numerical solution of
elliptic pdes with sharp gradients. arXiv preprint arXiv:2012.05871 (2020)

9. Chan, T.F., Keller, H.: Arc-length continuation and multigrid techniques for nonlinear elliptic eigenvalue
problems. SIAM Journal on Scientific and Statistical Computing 3(2), 173–194 (1982)

10. Chan-Wai-Nam, Q., Mikael, J., Warin, X.: Machine learning for semi linear pdes. Journal of Scientific
Computing 79(3), 1667–1712 (2019)

11. Chaturvedi, I., Ragusa, E.,Gastaldo, P., Zunino,R., Cambria, E.: Bayesian network based extreme learning
machine for subjectivity detection. Journal of The Franklin Institute 355(4), 1780–1797 (2018)

12. Chen, J., Zeng, Y., Li, Y., Huang, G.B.: Unsupervised feature selection based extreme learning machine
for clustering. Neurocomputing 386, 198–207 (2020)

13. Cliffe, K., Spence, A., Tavener, S.: The numerical analysis of bifurcation problems with application to
fluid mechanics. Acta Numerica 9(00), 39–131 (2000)

14. Dai, H., Cao, J., Wang, T., Deng, M., Yang, Z.: Multilayer one-class extreme learning machine. Neural
Networks 115, 11–22 (2019)

15. Dhooge, A., Govaerts,W., Kuznetsov, Y.A.,Meijer, H.G.E., Sautois, B.: New features of the softwaremat-
cont for bifurcation analysis of dynamical systems. Mathematical and ComputerModelling of Dynamical
Systems 14(2), 147–175 (2008)

16. Doedel, E., Tuckerman, L.S.: Numerical methods for bifurcation problems and large-scale dynamical
systems, vol. 119. Springer Science & Business Media (2012)

17. Doedel, E.J., Champneys, A.R., Dercole, F., Fairgrieve, T.F., Kuznetsov, Y.A., Oldeman, B., Paffenroth,
R., Sandstede, B., Wang, X., Zhang, C.: Auto-07p: Continuation and bifurcation software for ordinary
differential equations. Available for download from http://indy.cs.concordia.ca/auto (2007)

18. Dong, S., Li, Z.: Local extreme learning machines and domain decomposition for solving linear and
nonlinear partial differential equations. arXiv preprint arXiv:2012.02895 (2020)

19. Dong, S., Li, Z.: A modified batch intrinsic plasticity method for pre-training the random coefficients of
extreme learning machines. arXiv preprint arXiv:2103.08042 (2021)

20. Dwivedi, V., Srinivasan, B.: Physics informed extreme learning machine (pielm)-a rapid method for the
numerical solution of partial differential equations. Neurocomputing 391, 96–118 (2020)

21. Fresca, S., Dede, L., Manzoni, A.: A comprehensive deep learning-based approach to reduced order
modeling of nonlinear time-dependent parametrized pdes. Journal of Scientific Computing 87(61),(2021)

22. Gebhardt, C.G., Steinbach, M.C., Schillinger, D., Rolfes, R.: A framework for data-driven structural
analysis in general elasticity based on nonlinear optimization: The dynamic case. International Journal
for Numerical Methods in Engineering 121(24), 5447–5468 (2020)

23. Glowinski, R., Keller, H.B., Reinhart, L.: Continuation-conjugate gradient methods for the least squares
solution of nonlinear boundary value problems. SIAM journal on scientific and statistical computing 6(4),
793–832 (1985)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2012.05871
http://indy.cs.concordia.ca/auto
http://arxiv.org/abs/2012.02895
http://arxiv.org/abs/2103.08042

 44 Page 34 of 35 Journal of Scientific Computing (2021) 89:44

24. González-García, R., Rico-Martìnez, R., Kevrekidis, I.G.: Identification of distributed parameter systems:
A neural net based approach. Computers & chemical engineering 22, S965–S968 (1998)

25. Govaerts, W.J.: Numerical methods for bifurcations of dynamical equilibria. SIAM (2000)
26. Hadash, G., Kermany, E., Carmeli, B., Lavi, O., Kour, G., Jacovi, A.: Estimate and replace: A novel

approach to integrating deep neural networks with existing applications. arXiv preprint arXiv:1804.09028
(2018)

27. Hajipour, M., Jajarmi, A., Baleanu, D.: On the accurate discretization of a highly nonlinear boundary
value problem. Numerical Algorithms 79(3), 679–695 (2018)

28. Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial differential equations using deep
learning. Proceedings of the National Academy of Sciences 115(34), 8505–8510 (2018)

29. Huang, G., Huang, G.B., Song, S., You, K.: Trends in extreme learning machines: A review. Neural
Networks 61, 32–48 (2015)

30. Huang, G., Kasun, L., Zhou, H., Vong, C.: Representational learning with extreme learning machine for
big data. IEEE Intelligent Systems 28(6), 31–34 (2013)

31. Huang, G., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass
classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42(2), 513–
529 (2012). https://doi.org/10.1109/TSMCB.2011.2168604

32. Huang, G.B., Ding, X., Zhou, H.: Optimizationmethod based extreme learningmachine for classification.
Neurocomputing 74(1–3), 155–163 (2010)

33. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass
classification. IEEETransactions on Systems,Man, and Cybernetics, Part B (Cybernetics) 42(2), 513–529
(2011)

34. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learningmachine: theory and applications. Neurocomputing
70(1–3), 489–501 (2006)

35. Husmeier, D.: Random vector functional link (rvfl) networks. In: Neural Networks for Conditional Prob-
ability Estimation, pp. 87–97. Springer (1999)

36. Iqbal, S., Zegeling, P.A.: A numerical study of the higher-dimensional gelfand-bratu model. Computers
& Mathematics with Applications 79(6), 1619–1633 (2020)

37. Jaeger, H.: Adaptive nonlinear system identification with echo state networks. Advances in neural infor-
mation processing systems 15, 609–616 (2002)

38. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless
communication. science 304(5667), 78–80 (2004)

39. Kelley, C.T.: Numerical methods for nonlinear equations. Acta Numerica 27, 207–287 (2018). https://
doi.org/10.1017/S0962492917000113

40. Krauskopf, B., Osinga, H.M., Galán-Vioque, J.: Numerical continuation methods for dynamical systems,
vol. 2. Springer (2007)

41. Kuznetsov, Y.A.: Elements of applied bifurcation theory, vol. 112. Springer Science & Business Media
(2013)

42. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differ-
ential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998)

43. Mohsen, A.: A simple solution of the bratu problem. Computers &Mathematics with Applications 67(1),
26–33 (2014)

44. Olson, L.G., Georgiou, G.C., Schultz, W.W.: An efficient finite element method for treating singularities
in laplace’s equation. Journal of Computational Physics 96(2), 391–410 (1991)

45. Ozturk, M.C., Xu, D., Principe, J.C.: Analysis and design of echo state networks. Neural computation
19(1), 111–138 (2007)

46. Panghal, S., Kumar, M.: Optimization free neural network approach for solving ordinary and partial
differential equations. Engineering with Computers pp. 1–14 (2020)

47. Pao, Y.H., Park, G.H., Sobajic, D.J.: Learning and generalization characteristics of the random vector
functional-link net. Neurocomputing 6(2), 163–180 (1994)

48. Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M., Massar, S.: Optoelec-
tronic reservoir computing. Scientific reports 2(1), 1–6 (2012)

49. Pinkus, A.: Approximation theory of the mlp model. Acta Numerica 1999: Volume 8 8, 143–195 (1999)
50. Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations, vol. 23. Springer

Science & Business Media (2008)
51. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Numerical gaussian processes for time-dependent and non-

linear partial differential equations. SIAM Journal on Scientific Computing 40(1), A172–A198 (2018)
52. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning frame-

work for solving forward and inverse problems involving nonlinear partial differential equations. Journal
of Computational Physics 378, 686–707 (2019)

123

http://arxiv.org/abs/1804.09028
https://doi.org/10.1109/TSMCB.2011.2168604
https://doi.org/10.1017/S0962492917000113
https://doi.org/10.1017/S0962492917000113

Journal of Scientific Computing (2021) 89:44 Page 35 of 35 44

53. Raja, M.A.Z., Samar, R., et al.: Neural network optimized with evolutionary computing technique for
solving the 2-dimensional bratu problem. Neural Computing and Applications 23(7), 2199–2210 (2013)

54. Sakemi, Y., Morino, K., Leleu, T., Aihara, K.: Model-size reduction for reservoir computing by concate-
nating internal states through time. Scientific reports 10(1), 1–13 (2020)

55. Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X.,
Rabczuk, T.: An energy approach to the solution of partial differential equations in computationalmechan-
ics via machine learning: Concepts, implementation and applications. Computer Methods in Applied
Mechanics and Engineering 362, 112790 (2020)

56. Schilder, F., Dankowicz, H.: Continuation core and toolboxes (coco). Source-Forge. net, project cocotools
(2017)

57. Schmidt, W.F., Kraaijveld, M.A., Duin, R.P., et al.: Feed forward neural networks with random weights.
In: International Conference on Pattern Recognition, pp. 1–1. IEEE COMPUTER SOCIETY PRESS
(1992)

58. Syam,M.I.: Themodified broyden-variationalmethod for solving nonlinear elliptic differential equations.
Chaos, Solitons & Fractals 32(2), 392–404 (2007)

59. Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE transactions
on neural networks and learning systems 27(4), 809–821 (2015)

60. Tissera, M.D., McDonnell, M.D.: Deep extreme learningmachines: supervised autoencoding architecture
for classification. Neurocomputing 174, 42–49 (2016)

61. Wang, Y., Cao, F., Yuan, Y.: A study on effectiveness of extreme learning machine. Neurocomputing
74(16), 2483–2490 (2011)

62. Wei, Q., Jiang, Y., Chen, J.Z.: Machine-learning solver for modified diffusion equations. Physical Review
E 98(5), 053304 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Numerical solution and bifurcation analysis of nonlinear partial differential equations with extreme learning machines
	Abstract
	1 Introduction
	2 Extreme Learning Machines
	2.1 ELM with Sigmoidal Functions
	2.2 ELM with Radial Basis Functions

	3 Numerical Bifurcation Analysis of Nonlinear Partial Differential Equations with Extreme Learning Machines
	3.1 Finite Differences and Finite Elements Cases: The Application of Newton's Method
	3.2 Extreme Learning Machine Collocation: The Application of Newton's Method

	4 Numerical Analysis Results: The Case Studies
	4.1 The Nonlinear Viscous Burgers Equation
	4.1.1 Numerical Solution of the Burgers Equation with Finite Differences and Finite Elements
	4.1.2 Numerical Solution of the Burgers Equation with Extreme Learning Machine Collocation
	4.1.3 Numerical Results

	4.2 The One- and Two-Dimensional Liouville–Bratu–Gelfand Problem
	4.2.1 Numerical Solution with Finite Differences and Finite Elements
	4.2.2 Numerical Solution with Extreme Learning Machine Collocation
	4.2.3 Numerical Results for the One-Dimensional Problem
	4.2.4 Bifurcation Diagram and Numerical Accuracy
	4.2.5 Numerical Results for the Two-Dimensional Problem

	5 Conclusions
	Acknowledgements
	References

