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Abstract

A social choice rule (SCR) is a mapping from preference profiles to lotteries over out-

comes. When preference profiles are close to being common knowledge among players,

an SCR is continuously virtually fully implementable if there exists a mechanism such

that all its equilibrium outcomes are arbitrarily close to the outcomes recommended

by the SCR. When there are at least three players and a domain condition is satisfied,

we obtain the following result: any SCR is continuously virtually fully implementable

in Bayesian Nash equilibria, as well as in interim correlated rationalizable strategies,

by a finite mechanism.
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1 Introduction

A traditional assumption of implementation theory is that of complete information, meaning

that the state (of nature) is common knowledge among players (but unknown of course to

the designer). However, a fundamental contribution of game theory shows that predictions

of strategic situations are sensitive to common knowledge assumptions (see, for example,

Rubinstein, 1989 and Weinstein and Yildiz, 2007). This paper considers the question of

when an SCR is virtually implementable not only when the state is common knowledge

among players but also when it is close to common knowledge.1 Thus, the paper studies vir-

tual continuous implementation, and it provides a characterization of continuously virtually

implementable SCRs in the preference environment introduced by Abreu and Matsushima

(1992a).2

Instead of exact implementation, in which every outcome recommended by the SCR is

achieved with probability one, our designer wishes to achieve outcomes specified by an SCR

with probability arbitrarily close to one: he requires virtual implementation.

By following Oury and Tercieux (2012), we use the model of incomplete information

introduced in Harsanyi (1967) and developed in Mertens and Zamir (1985). Our notion of

continuous virtual implementation requires that in any “nearby”model in the universal type

space that embeds our baseline complete information model, all Bayesian Nash equilibrium

outcomes of the devised mechanism are ε-close to the recommendations provided by a given

SCR, at all types close to the initial common knowledge types, and for every ε > 0. If such

a mechanism exists, we say that the SCR is continuously virtually implementable.

We consider continuity with respect to the uniform—weak topology (see, for example,

Monderer and Samet, 1989; and Chen et al., 2010). Roughly speaking, this topology pre-

serves common knowledge. That is, types close to the common knowledge types in this

topology have approximately common knowledge of the state in the following sense: for

some number p close to one, they assign probability of at least p to the state, assign proba-

bility of at least p to the event that the state occurs in and the other players assign probability

of at least p to the state, and so forth, ad infinitum.

Under a well-known domain restriction due to Abreu and Matsushima (1992a), we show

that any SCR is continuously virtually implementable in Bayesian Nash equilibria when there

are at least three players. Moreover, we also achieve continuous virtual implementation in

interim correlated rationalizable (ICR) strategies, which assures that the outcomes generated

by a given SCR are achieved despite the presence of strategic uncertainty. These results are

obtained by devising a finite mechanism. As a consequence, every player’s best response

correspondence is always well-defined, and it does not rely on any tail-chasing procedure to

1In this paper, “implementation”without qualification always refers to full-implementation, which means

that every equilibrium outcome of the devised mechanism is socially optimal. This contrasts with partial-

implementation where only some equilibria need to be desirable.
2They impose a weak domain restriction ruling out identical preferences.
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eliminate unwanted best replies, such as integer games. Although we use a module game in

our construction, our characterization result accounts for mixed-strategy equilibria, unlike

existing results that rely on modulo games. We also show that for the devised mechanism,

virtual implementation in strict Nash equilibria, and in rationalizable strategies, suffi ces

for continuous virtual implementation when the state is common knowledge among players.

Similar to Chung and Ely (2003), strict incentives are used in order to attain continuous

virtual implementation in uniform—weak topology for any “nearby”model.

In a seminal paper, Abreu and Sen (1991) characterize the class of correspondences

that are virtually implementable in Nash equilibria. This result relies on a tail-chasing

construction, which is typical in the classical literature on implementation theory. Following

Abreu and Matsushima (1991), we characterize the class of correspondences that are virtually

implementable by a finite mechanism.

There are several reasons why focussing only on social choice functions can be considered

unsatisfactory (see, for instance, Thomson (1996)). Firstly, multi-valued SCRs typically

represent many social decisions. Prominent examples include the Pareto, the Walrasian, the

Condorcet, and the no-envy correspondences. Secondly and foremost, since F represents the

social objectives that the society or its representative want to achieve, its full implementation

is the correct objective of the society. It would be unacceptable to partially implement F

by implementing a social choice function f which systematically picks, for each θ, a socially

optimal outcome f (θ) ∈ F (θ).3 The reason is that the implementation of this subselection

f ∈ F may violate some of the normative properties that led the society or its representatives
to choose F . As Thomson (1986, p. 135) aptly noted “it most certainly will be unacceptable

when the correspondence embodies some minimal concerns about fairness distribution.”

An argument made in favor of a partial implementation of F is based on the interpreta-

tion that the mechanism designer views the outcomes in F (θ) as equally good (Abreu and

Sen, 1991; Mezzetti and Renou, 2012). A shortcoming of this interpretation is that in some

situations we do not know whether the mechanism designer is indifferent between socially

optimal outcomes or not. Moreover, the classical interpretation of implementation of F re-

quires that each outcome in F (θ) must be supported by a distinct equilibrium (Maskin, 1999;

Abreu and Sen, 1991) and it does not assume planner’s indifference. This paper shows that

this classical interpretation is not restrictive when the objective is to implement F virtually.

This is in sharp contrast to the case of "exact" implementation where implementation in the

classical sense is more restrictive than implementation under the assumption of planner’s

indifference (Mezzetti and Renou, 2012).

The remainder of the paper is organized as follows. Section 2 defines the implementation

model. Section 3 presents the characterization result and provides an informal discussion

of the implementing mechanism, with the proof offered in Section 4. This result builds on

3Here, partial implementation means that the set of equilibrium outcomes is a non-empty subset of the

socially optimal outcomes.
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the existing literature on implementation theory, which is discussed in Section 5. Section 6

concludes by highlighting possible extensions.

2 Model

Preliminaries

Let N = {1, ..., n} be a finite set of players with n ≥ 3. The finite set of (pure) outcomes

is denoted by X. The set of all lotteries over X is denoted by Y . Player i’s utility function

is indexed by a parameter θi. We refer to θi as player i’s payoff type. The set of admissible

payofftypes for player i is assumed to be finite, and it is denoted by Θi. Player i’s preferences

over lotteries is described by a continuous and bounded utility function ui : Y × Θi → R,
where ui (y, θi) is player i’s utility of the lottery y when he is of payoff type θi. For each

θi ∈ Θi, ui (·, θi) satisfies the expected utility hypothesis. A payoff type profile is described
by an n-tuple of types θ ∈

∏
i∈N

Θi = Θ. For any θ ∈ Θ, θ−i denotes the n − 1-tuple

(θ1, ..., θi−1, θi+1, ..., θn).

Following Abreu and Matsushima (1992a), we introduce a domain restriction that will

play a key role in our analysis.

Assumption 1 (Abreu and Matsushima, 1992a) For every i ∈ N and θ ∈ Θ, lotteries

ā (i, θ) , a (i, θ) ∈ Y exist such that

ui (ā (i, θ) , θi) > ui (a (i, θ) , θi) and uj (a (i, θ) , θj) ≥ uj (ā (i, θ) , θj) for each j ∈ N\ {i} .

Assumption 1 requires that for each payoff type profile θ and each player i, there exist

two lotteries that are strictly ranked by player i, but every other player has just the opposite

ranking. This assumption is satisfied in environments with transferable private goods that

are positively valued by players. In the implementation literature, this kind of assumptions

is often made in studies relating to well-behaved implementing mechanisms (Jackson et al.,

1994; Kartik et al., 2014). Kunimoto and Serrano (2011) even argue that Assumption 1 is

indispensable.

The goal of the designer is to implement a (stochastic) SCR F , which is a mapping

F : Θ � Y from Θ to a nonempty compact set of Y .4 The common interpretation is that F

represents the social objectives that the planner wants to achieve. If x ∈ F (θ), we say that

x is socially optimal at θ. A social choice function (SCF) f : Θ→ Y is a single-valued SCR.

The implementation problem arises from the fact that the planner’s goal depends on

the true payoff type profile and he does not know it. To elicit it, the planner designs a

4The compactness of F (θ) is needed to make sure that the players’strategy space is compact (see below).

This assumption also appears in Kunimoto and Serrano (2019), and it is consistent with the implementation

model of Mezzetti and Renou (2012). The latter authors study Nash implementation in terms of the support

of the equilibrium, with a finite set of outcomes and deterministic SCRs.
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(stochastic) mechanism. A mechanism is a game form Γ = (M1, ...,Mn, g), where Mi is

player i’s compact set of pure strategies, and g :
∏
i∈N

Mi → Y is the outcome function. We

denote a pure strategy of player i by mi ∈Mi and a profile of pure strategies is denoted by

m = (m1, ...,mn) ∈ M =
∏
i∈N

Mi. A mechanism is finite if Mi is a finite set for each player

i ∈ N .

Universal type space and topologies

Our goal is to study virtual implementation when the designer entertains some doubts

about whether the true model is of complete information. To model this, we embed the

complete information model in the general model of incomplete information introduced in

Harsanyi(1967) and developed in Mertens and Zamir (1985). According to Oury and Ter-

cieux (2012), a model T is a pair (T, κ), where T =
∏
i∈N

Ti is a countable type space and

κ [ti] ∈ 4 (Θ× T−i) is the associated belief for each type ti ∈ Ti. An incomplete information
model T and a mechanism Γ induce an incomplete information game, which is denoted by

U (Γ, T ). Let T̄ =
(
T̄ , κ̄

)
denote the complete information model, that is, T̄i =

{
tθi |θ ∈ Θ

}
and κ̄

[
tθi
] (
θ, tθ−i

)
= 1 for each θ ∈ Θ.

For any two models T and T ′, we write T ′ ⊆ T if T ′ ⊆ T , and for each ti ∈ T ′i ,

κ [ti] (E) = κ [ti]
((

Θ× T ′−i
)
∩ E

)
for any measurable set E ⊆ Θ× T−i.

For any type ti of the model T , we can compute the first-order belief of ti (that is, her
belief about Θ), denoted by h1

i [ti], by setting h1
i [ti] equal to the marginal distribution of κ [ti]

on Θ. Also, her second-order belief (that is, her belief about θ and the others’first-order

beliefs) can be computed by setting

h2
i [ti] (E) = κ [ti]

({
(θ, t−i) |

(
θ, h1

1 [t1] , ..., h1
n [tn]

)
∈ E

})
for each measurable E ⊆ Θ× (4 (Θ))n. An entire hierarchy of beliefs

hi [ti] = (h1
i [ti] , h

2
i [ti] , ..., h

k
i [ti] , ...)

of type ti can be computed by proceeding in this way. Note that h1
i [ti] ∈ 4 (Θ), h2

i [ti] ∈
4 (Θ× (4 (Θ))n), and so on.

Let us now introduce the notion of distance used in this paper. As in Chen et al. (2018a),

let Z0 = Θ and let Zk =
[
4
(
Zk−1

)]n×Zk−1 for each k ≥ 1. Note that hki [ti] ∈ 4
(
Zk−1

)
for

every k ≥ 1. Let d0 denote the discrete metric on Θ and let d1 denote the Prohorov distance

on the space of first-order beliefs.5 Recursively, for any k ≥ 2, we endow 4
(
Zk−1

)
with the

5Given a metric space (X, d), the Prohorov distance between any two µ, µ′ ∈ 4 (X) is

inf {γ > 0|µ′ (E) ≤ µ (Eγ) + γ}

for every Borel set E ⊆ X, where Eγ = {x ∈ X| infy∈E d (x, y) < γ}.
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Prohorov distance dk, where Zk−1 is endowed with the sup-metric induced by d0, d1, ..., dk−1.

Let T ∗i ⊆
∞∏
k=0

4
(
Zk
)
be the player i’s universal type space constructed by Mertens and Zamir

(1985). This space has the property that hi [ti] ∈ T ∗i if there exists some type t
′
i in some

model such that ti and t′i have the same k-th-order belief for every k. Each T
∗
i is endowed

with a product topology.

A sequence of types {ti,n}∞n=1 in T
∗
i converges uniform—weakly to a type ti if

duw
i (ti,n, ti) ≡ sup

k≥1
dki
(
hki [ti,n] , hki [ti]

)
→ 0.

We write that duw (tn, t)→ 0 if duw
i (ti,n, ti)→ 0 for each i.6

A sequence of types {ti,n}∞n=1 in T
∗
i converges in product topology to a type ti if

dp
i (ti,n, ti) ≡

∞∑
k=1

1

2k
dki
(
hki [ti,n] , hki [ti]

)
→ 0.

Again, we write that dp (tn, t)→ 0 if dp
i (ti,n, ti)→ 0 for each i.

Solution concepts

Fix any game with incomplete information U (Γ, T ). In this game, player i’s (mixed) strategy

is any measurable function σi : Ti → 4 (Mi). We write σi (mi|ti) for the probability that
strategy σi assigns to message mi when player i is of type ti. For each player i ∈ N , player
i’s best response correspondence BRi : 4 (Θ×M−i) �Mi is defined by

BRi (πi|U (Γ, T )) = arg max
mi∈Mi

∫
(θ,m−i)∈Θ×M−i

ui (g (mi,m−i) , θ)dπi (θ,m−i) ,

for each belief πi ∈ 4 (Θ×M−i), where arg max is the set of maximizers.

A strategy profile σ = (σ1, ..., σn) is a Bayes-Nash equilibrium of U (Γ, T ) if, for each

i ∈ N and each ti ∈ Ti,

mi ∈ Supp (σi (ti)) =⇒ mi ∈ BRi (πi (·|ti, σ−i) |U (Γ, T )) ,

where πi (·|ti, σ−i) ∈ 4 (Θ×M−i) denotes the joint distribution on the underlying uncer-
tainty and the messages of other players induced by type ti and strategy profile σ−i. We

denote by BNE (U (Γ, T )) the set of Bayes-Nash equilibria of the game of incomplete infor-

mation U (Γ, T ). The set of Nash equilibria of the game of complete information U
(
Γ, T̄

)
at type profile tθ ∈ T̄ is denote by NE

(
tθ,U

(
Γ, T̄

))
. Given a model of incomplete infor-

mation U (Γ, T ) such that T ⊇ T̄ , a strategy σ ∈ BNE (U (Γ, T )) and a profile tθ ∈ T̄ ,

we write σ|tθ for the strategy restricted to the profile tθ. It can easily be checked that

σ|tθ ∈ NE
(
tθ,U

(
Γ, T̄

))
.

6We refer the reader to Chen et al. (2010) for further details about this topology.
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The second solution concept that we study is that of interim correlated rationalizability

(ICR), which was introduced by Dekel et al. (2007). As with rationalizability in complete-

information games, ICR is defined by an iterative deletion procedure. In line with Weinstein

and Yildiz (2017), fix any game with incomplete information U (Γ, T ). For each player i ∈ N
and integer k ∈ Z+, define the family of correspondences Rk

i : Ti �Mi iteratively, by setting

R0
i (ti,U (Γ, T )) = Mi, and for each k > 0,7

Rk
i (ti,U (Γ, T )) =


there exists a belief λi ∈ 4 (T−i ×Θ×M−i) such that:

mi ∈Mi (1) mi ∈ BRi (πi|U (Γ, T )) such that πi = margΘ×M−iλi

(2) margΘ×T−iλi = κ [ti]

(3) λi
({

(θ, t−i,m−i) |m−i ∈ Rk−1
−i (t−i,U (Γ, T ))

})
= 1

 .
Property 1 requires that mi is the best response to belief λi; property 2 requires consistency

of λi with type ti’s beliefs about T−i×Θ; and the last property requires that the other players

play according to Rk−1
−i (t−i,U (Γ, T )) under λi. The limiting correspondence Ri : Ti � Mi

is defined by

Ri (ti,U (Γ, T )) =
⋂
k≥0

Rk
i (ti,U (Γ, T )) .

The set of ICR strategy profiles of the game of incomplete information U (Γ, T ) at type

profile t ∈ T is denoted by R (t,U (Γ, T )). The set of rationalizable strategy profiles of the

game of complete information U
(
Γ, T̄

)
at type profile tθ ∈ T̄ is denoted by R

(
tθ,U

(
Γ, T̄

))
.

Implementation

An SCR F is virtually implementable if there exists a “nearby”nonempty correspondence H

that is “exactly”implementable in a solution concept. Formally, let d(x, y) be the Euclidean

distance between any pair of lotteries. The SCR F : Θ � Y is ε-close to a nonempty

correspondence H : Θ � Y if for each θ ∈ Θ, dh (F (θ) , H (θ)) ≤ ε, where dh is the

the Hausdorff distance.8 Our notion of closeness is inspired by Abreu and Sen (1991),

but is weaker than their definition (p. 1005).9 Our definition of continuous virtual (full)

implementation can be stated as follows.

Definition 1 A finite mechanism Γ continuously virtually implements F : Θ � Y in

Bayesian Nash equilibria (resp., in ICR strategies) with respect to (w.r.t.) duw if for each

ε > 0, a nonempty correspondence H : Θ � Y exists which is ε-close to F such that for any

θ ∈ Θ and any model T ⊇ T̄ :10

7margA takes the marginal with respect to the set A.
8For a definition of Hausdorff distance see, for instance, Taylor (1986; p. 127).
9It is weaker because Abreu and Sen’s (1991) notion of closeness requires the existence of a bijection

τθ : F (θ)→ H (θ) such that the Euclidean distance ρ (x, τθ (x)) ≤ ε for all x ∈ F (θ).
10Let Supp(σ (tn)) ≡

∏
i∈N

Supp(σi (ti,n)).
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(a) for each x ∈ F (θ), there exists σ ∈ BNE (U (Γ, T )) such that (i) g
(
σ
(
tθ
))
∈ ρθH (x)

and σ|tθ ∈ NE
(
tθ,U

(
Γ, T̄

))
[resp., σ|tθ ∈ R

(
tθ,U

(
Γ, T̄

))
] and (ii) for any sequence of

types {tn} in T with duw
(
tn, t

θ
)
→ 0, there exists n large enough such that for any

n ≥n: g (σ (tn)) ∈ ρθH (x) [resp., σ (tn) ∈ R (tn,U (Γ, T ))].

(b) for each σ ∈ BNE (U (Γ, T )) [resp., σ (tn) ∈ R (tn,U (Γ, T ))],
⋃

m∈Supp(σ(tn))

g (m) ⊆ H (θ).

When there exists a finite mechanism that continuously virtually implements F in Bayesian

Nash equilibria (resp., in ICR strategies) w.r.t. duw, we say that F is continuously virtually

implementable in Bayesian Nash equilibria (resp., in ICR strategies) w.r.t. duw by a finite

mechanism.

Only part (a) of Definition 1 is directly comparable with Definition 2 of Oury and Tercieux

(2012) when F is an SCF. Part (a) requires that if x is socially optimal at θ, then a Bayes-

Nash equilibrium σ exists such that for some large enough n and each n ≥n, it holds that
the outcome corresponding to g (σ (tn)) is ε-close to x, and such that σ is a Nash equilibrium

strategy profile for type profile θ ∈ Θ when it restricted to tθ. Part (b) requires that for

every Bayes-Nash equilibrium strategy profile σ and every “nearby” type tn, it holds that

any outcome of any pure strategy profile in the support of the equilibrium profile σ (tn) must

be ε-close to some outcome in F at θ.

Definition 2 above is closely related to the definition of continuous implementation of

Oury and Tercieux (2012). However, there are important differences. First, our continuity

notion is based on the uniform weak topology, whereas Oury and Tercieux (2012)’s notion of

continuity relies on the product topology. Second, we require full implementation, wheares

Oury and and Tercieux (2021)’s notion of implementation is that of partial implementation.

Specifically, if we replace the uniform weak topology with product topology and drop part

(b), Definition 2 is exactly the definition of continuous implementation of Oury and Tercieux

(2012).

The following lemma, due to Abreu and Matsushima (1992a; p. 999), will be used

throughout the paper. It requires the existence of a set of lotteries for player i such that

each of her type has a distinct maximal element within this set. Recall that different payoff

types induce different preferences over lotteries, like in Abreu and Matsushima (1992).

Lemma 1 (Abreu and Matsushima, 1992a) Let Assumption 1 hold. Let i ∈ N . Then,
a function fi : Θi → Y exists such that for each θi ∈ Θi, it holds that

ui (fi (θi) , θi) > ui (fi (θ
′
i) , θi)

for all θ′i ∈ Θi\ {θi}.
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3 Result

The characterization result is stated below. Its proof is constructive and can be found in

the next section. The devised mechanism is a variant of the Abreu-Matsushima mechanism

(Abreu and Matsushima, 1992a), henceforth, AM-mechanism, which virtually implements

any SCF in iteratively undominated strategies when there are at least three players and

Assumption 1 is satisfied. It is worth mentioning that the result does not depend on the

private-value assumption because the original benchmark model is the complete information

model.

Theorem 1 Let Assumption 1 hold and let n ≥ 3. Then, any SCR F : Θ � Y is contin-

uously virtually implementable in Bayesian Nash equilibria (resp., in ICR strategies) w.r.t.

duw by a finite mechanism.

Remark 1 In Theorem 1, continuity is with respect to the uniform—weak topology. For

continuity with respect to the coarser product topology, that is, with respect to the topology

of weak convergence of k—order beliefs, for each k ≥ 1, we can show that part (b) of Definition

1 holds. The reason is that we achieved full implementation in rationalizable strategies on the

complete information model T̄ , and in every game induced by our finite mechanism the ICR
correspondence is upper hemicontinuous in the product topology. However, it is not clear

whether part (a) of Definition 1 holds. The reason is that it is generally impossible to obtain

multiple equilibria for “nearby”types in product topology (Rubinstein, 1989; Weinstein and

Yildiz, 2007). Note that one of the equilibria is continuous with respect to the product

topology.

In what follows, we intuitively discuss the basic arguments in the proof of the complete

information model. In the devised mechanism, each player makes (K + 2) simultaneous

announcements. A typical announcement is indexed by k ∈ {−1, 0, 1, ..., K}, where K is an

integer that is yet to be specified.

Fix any δ > 0. For each θ ∈ Θ, F (θ) is δ-closed to a finite set A (δ, F (θ)) in the

Hausdorff distance such that the union of the delta open balls of the elements of A (δ, F (θ))

covers F (θ).11 Let FF,δ = {f : Θ→ Y |for every θ ∈ Θ, f (θ) ∈ A (δ, F (θ))} be a collection
of SCFs, each of which assigns, to each type profile θ, an element f (θ) ∈ A (δ, F (θ)). Since

Θ is finite and the SCR is compact-valued, the collection FF,δ is finite.12

11Look at the collection of open balls Bδ (x), where x runs over all elements of F (θ). Since F (θ) is

compact, this open covering has a finite sub-covering—i.e., using finitely many of these open balls. The

centres of the balls is the finite set A (δ, F (θ)) we were looking for. We are grateful to a referee for having

drawn our attention to this point, which has allowed us to devise a finite implementing mechanism. Jain

and Lombardi (2019) provide a characterization result via a bounded (not necessarily finite) mechanism.
12To understand it, suppose that the cardinality of |Θ| = J . Then, FF,δ ≡ A (δ, F (θ1))× ...×A (δ, F (θJ))

and A (δ, F (θj)) is finite for each state θj ∈ Θ, with j = 1, ..., J .
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Each player i reports an ε-approximated SCF in the k = −1 announcement, her type in

the k = 0 announcement, and an entire type profile in each of the remaining announcements.

That is, player i’s message space is

Mi = FF,δ ×Θi ×Θ× ...×Θ = M−1
i ×M0

i ×M1
i × ...×MK

i .

By construction, player i’s strategy space Mi is finite. Therefore, Γ is a finite mechanism.

The devised mechanism is, roughly speaking, an augmented AM-mechanism with a voting

scheme over the elements of FF,δ, which happens in stage k = −1. The voting scheme can be

described as follows. Suppose that the designer has designated f ∗ ∈ FF,δ as the default SCF
to be implemented. Players can change f ∗ into f ∈ FF,δ if all players agree on this change.
The selected SCF is used to determine the outcome of the decision rule of the mechanism

in each stage k ≥ 1. The mechanism is augmented without loss of the attractive properties

of the AM-mechanism. Moreover, as the AM-mechanism, in our implementing mechanism

there is no tail—chasing and there are not integer games. Finally, it satisfies the best response

property: optimal strategies always exists.

Though the constructed mechanism is a simultaneous mechanism, it can be useful to

think of it as a sequential mechanism with K + 2 stages, where players make simultaneous

announcements in each stage.

Suppose that the default SCF f ∗ is to be virtually implemented by an arbitrarily small

ε > 0. Then, the outcome function selects a lottery over the following three components:

Dictator rule: With probability ε
n
, player i is selected as a dictator. Based on her an-

nouncement at the stage k = 0, her best outcome from a predetermined set of outcomes

is selected.

Audit rule: With probability ε2

n
, player i is audited for consistency. To conduct this audit,

the designer considers all announcements made by the players from stage k = 1 to

stage K, and compares them with the message profile, m0, reported by the players at

stage k = 0. Player i is punished by selecting a(i,m0) if she is the first one to announce

a type profile different from m0. Otherwise, she is rewarded by selecting ā (i,m0).

Decision rule: With probability 1−ε−ε2
K

, at each stage k ≥ 1, the outcome is determined as

follows:

• If all players make exactly the same announcement, θ′, then the selected lottery
is f̂ (θ′, f ∗), which is arbitrarily close to f ∗ (θ′).

• If all but player i make exactly the same announcement, θ′, then the outcome
function selects the lottery f̂i (θ

′, f ∗), which is arbitrarily close to f ∗ (θ′), where,

10



for a small number α > 0, f̂ and f̂i are defined by:

f̂ (θ′, f ∗) = (1− nα) f ∗ (θ′) + α
∑
j∈N

ā (j, θ′)

f̂i (θ
′, f ∗) = (1− nα) f ∗ (θ′) + α

∑
j∈N\{i}

ā (j, θ′) + αa (i, θ′) .

• In all other cases, an arbitrary lottery y is selected by the mechanism.

An important feature of the AM-mechanism is that if every player reports her true type θi
in her k = 0 announcement, and everyone reports the true type profile θ in each stage k ≥ 1,

then f ∗ (θ) is implemented with probability 1 − ε − ε2, where ε > 0 is an arbitrarily small

parameter chosen by the designer. Another important feature is that truthful reporting is

the uniquely rationalizable strategy for each player i. This feature is due to the following

two main insights.

First, each player i’s strictly dominant strategy is to truthfully report her type θi in stage

k = 0. The possibility that each player is nominated as a dictator is key to an understanding

of this insight. To understand this, suppose that player i plays any strategy m̂i such that

m̂0
i = θ̂i 6= θi. By changing m̂i into mi, where m0

i = θi and mk
i = m̂k

i for each k ≥ 1, player

i has a utility gain of ui (fi (θi) , θi)− ui
(
fi

(
θ̂i

)
, θi

)
> 0, by Lemma 1, when she is chosen

as the dictator. To provide player i with incentives to truthfully report in stage k = 0, this

utility gain must be greater than the maximal utility gain from lying. Since the gain from

lying comes only from the auditing component of the mechanism, with a probability that

depends on ε, the designer provides incentives to truthfully report to player i by choosing ε

appropriately.13

The second insight is that the audit component of the mechanism, as well as the appro-

priate choice of K, provides players with incentives to be truthful in each stage k ≥ 1. To

understand this, recall that by the above discussion, everyone is truthful in stage k = 0. Let

θ be the true profile, so that m0 = θ. Fix k = 1 and any player i. Suppose that player i

plays the strategy m̂i such that m̂1
i 6= θ = m0 and that every other player j plays mj.

Let us suppose that player i is not the only player who makes a k = 1 announcement that

is inconsistent withm0 = θ. By changing m̂i intomi such thatm1
i = θ andmk

i = m̂k
i for each

k > 1, player i has a utility gain of ui (ā (i, (θi, θ−i)) , θi)−ui (a (i, (θi, θ−i)) , θi) > 0 when she

is audited– by the domain assumption. When some other player is audited, truthtelling by

player i does not affect the outcome of the mechanism. However, a truthful report by player

i may cause herself a utility loss in the decision component of the mechanism when stage

k = 1 is selected by the designer. Given that this loss can happen with probability 1−ε−ε2
K

,

the designer can make this loss arbitrarily small by choosing K appropriately.

13To understand why lying can be profitable, let us consider a case where everyone else is truthful in all

stages. In this case, a lie of player i induces punishments for other players in the auditing component, which

may be beneficial to her.
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Let us suppose that player i is the only player who makes a k = 1 announcement that is

inconsistent with m0 = θ. By changing m̂i into mi such that m1
i = θ and mk

i = m̂k
i for each

k > 1, player i does not suffer any utility loss when she is audited as ui (ā (i, (θi, θ−i)) , θi)−
ui (a (i, (θi, θ−i)) , θi) > 0. When some other player is audited, truthtelling by player i can

not harm her. The reason is that player i can only harm other players in the auditing phase

by truthtelling– player i may only have a utility gain by the domain assumption. Player i

has incentives to change m̂i into mi because when stage k = 1 is selected by the designer,

given that all players but player i make the same k = 1 announcement, player i’s utility is

ui (f
∗
i (θ) , θi), which, by the domain assumption, is strictly lower than the utility she obtains

under truthtelling; that is, ui (f ∗i (θ) , θi) < ui (f
∗ (θ) , θi).

Since our goal is to virtually implement F , by implementing f ∗ ∈ FF,δ we have achieved
our goal partially. To virtually implement F , as mentioned earlier, we augment the AM-

mechanism with a voting rule over FF,δ, which happens in stage k = −1.

Recall that in our augmented mechanism, players can coordinate on any f ∈ FF,δ by
reaching an unanimous consensus on f . If they fail to do so, then f ∗ is implemented. Note

that the “elected”SCF is used when stage k ≥ 1 is chosen to determine the outcome of the

decision component of the mechanism.

An attractive feature of the voting game is that any unanimous agreement on f ∈ FF,δ
forms a strict Nash equilibrium. This feature allows us to create multiple strict Nash equi-

libria in the augmented mechanism. Indeed, we show that the strategy profile in which every

player i plays mi = (f, θi, θ, ..., θ) forms a strict Nash equilibrium. Moreover, we also show

that player i’s rationalizable strategies are of the form mi = (·, θi, θ, ..., θ) (see Lemma 4
below). Thus, even though the players fail to coordinate on one strict Nash equilibrium

(that is, one SCF), or even though they are playing some mixed equilibrium, the realized

outcome will be ε-close to an f ∈ FF,δ.
It is worth emphasizing that our mechanism does not rely on any tail chasing construction.

The reason is that the constructed mechanism is a finite mechanism.

4 Proof of the result

Suppose that n ≥ 3 and that Assumption 1 holds. We proceed by breaking the proof in two

cases. Case 1 provides the proof for the complete information model T̄ . Case 2 extends the
implementation result for T̄ to any “nearby”model of incomplete information T such that
T ⊇ T̄ .

12



Case 1: The complete information model T̄
Let us define Γ = (M, g) as follows.

M =
∏
i∈N

Mi,

Mi = M−1
i ×M0

i ×M1
i × ...×MK

i ,

where the integer K is yet to be specified, and where14

M−1
i = FF,δ, M0

i = Θi and Mk
i = Θ for all k ∈ {1, ..., K} .

Since Lemma 1 holds and since Θi is finite, it follows that a real number η > 0 exists

such that for each θi ∈ Θi, it holds that

ui (fi (θi) , θi)− ui (fi (θ′i) , θi) > η

for each θ′i ∈ Θi\ {θi}.
By using the lotteries specified by Assumption 1, let us define the function ξ : N×M → Y

by:

ξ (i,m) =


a (i,m0) if for some k ∈ {1, ..., K} , mh

j = m0 for all h = 1, ..., k − 1

and all j ∈ N\ {i} , and mk
i 6= m0;

ā (i,m0) otherwise.

Since Assumption 1 holds, for every f ∈ FF,δ, a nearby SCF f̂ : Θ → Y exists and, for

each i ∈ N , a nonempty single-valued function f̂i : Θ→ Y exists such that

ui

(
f̂ (θi) , θi

)
− ui

(
f̂i (θ) , θi

)
> 0 (1)

for all θ ∈ Θ. To see it, for a small number α > 0, let us define f̂ and f̂i by:

f̂ (θ, f) = (1− nα) f (θ) + α
∑
j∈N

ā (j, θ)

f̂i (θ, f) = (1− nα) f (θ) + α
∑

j∈N\{i}

ā (j, θ) + αa (i, θ) .

By definition of f̂ and f̂i, it can be checked that (1) holds. Moreover, by definition, it

also follows that f , f̂ and f̂i are all ε-close to each other.

For every k ∈ {1, ..., K}, define the function ρk : Mk ×M−1 → Y as follows.

Rule 1 (Universal agreement): If
∣∣{i ∈ N |m−1

i = f
}∣∣ = n for some f ∈ FF,δ, then:

(a) If mk
i = θ for all i ∈ N , then ρk

(
mk,m−1

)
= f̂ (θ, f).

14FF,δ has been defined in the previous section.
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(b) For all i ∈ N , if mk
j = θ for all j ∈ N\ {i} and mk

i 6= θ, then ρk
(
mk,m−1

)
= f̂i (θ, f).

(c) Otherwise, ρk
(
mk,m−1

)
= y for some y ∈ Y .

Rule 2 (n− 1 agreement): If
∣∣{i ∈ N |m−1

i = f
}∣∣ = n− 1 for some f ∈ FF,δ and m` 6= f

for some ` ∈ N , then:

(a) If mk
i = θ for all i ∈ N , then ρk

(
mk,m−1

)
= f̂` (θ, f).

(b) For all i ∈ N , if mk
j = θ for all j ∈ N\ {i} and mk

i 6= θ, then ρk
(
mk,m−1

)
= f̂i (θ, f).

(c) Otherwise, ρk
(
mk,m−1

)
= y for some y ∈ Y .

Rule 3 (Disagreement): Otherwise, for some f ∗ ∈ FF,δ,

(a) If mk
i = θ for all i ∈ N , then ρk

(
mk,m−1

)
= f̂ (θ, f ∗).

(b) For all i ∈ N , if mk
j = θ for all j ∈ N\ {i} and mk

i 6= θ, then ρk
(
mk,m−1

)
= f̂i (θ, f

∗).

(c) Otherwise, ρk
(
mk,m−1

)
= y for some y ∈ Y .

Let ε > 0 be an arbitrary small number such that 1− ε− ε2 > 0. The outcome function

g : M → Y is defined, for all m ∈M , by:

g (m) =
ε

n

∑
i∈N

fi
(
m0
i

)
+
ε2

n

∑
i∈N

ξ (i,m) +
1− ε− ε2

K

K∑
k=1

ρk
(
mk,m−1

)
. (2)

For each player i’s type θi, let

Ei (θi) = max
m∈M

(∑
j∈N
|ui (ξ (j,m) , θi)|

)
.

We fix ε > 0 such that for all i ∈ N ,

η > 2εEi (θi) (3)

for all θi ∈ Θi.

For each i ∈ N and each θ ∈ Θ, define

Bi (θ) = ui (ā (i, θ) , θi)− ui (a (i, θ) , θi)

and for each k = 1, ..., K, define

Di (θ) = max
(mk,m−1)∈Mk×M−1

[
ui
(
ρk
(
mk,m−1

)
, θi
)
− ui

(
ρk
((
mk
−i, m̄

k
i

)
,m−1

)
, θi
)]
,

where m̄k
i = θ.

14



By Assumption 1, it follows that for all i ∈ N , Bi (θ) > 0 for all θ ∈ Θ. Thus, an integer

K > 0 exists such that for all i ∈ N ,

K
ε2

n
Bi (θ) >

(
1− ε− ε2

)
Di (θ) (4)

for all θ ∈ Θ.

Fix any SCR F . Clealy, Γ is a finite mechanism. To prove that Γ virtually implements

F in Nash equilibria (resp., in rationalizable strategies), we need the following lemmata for

any tθ ∈ T̄ .

Lemma 2 For all m ∈M , m ∈ R
(
tθ,U

(
Γ, T̄

))
=⇒ mi = (·, θi, θ, ..., θ) for all i ∈ N .

Proof. The proof of this statement is based on the proof of Abreu and Matsushima (1992a).
We report it for the sake of completeness. Take any m ∈ R

(
tθ,U

(
Γ, T̄

))
. We proceed by

cases.

Case 0 : m0
i 6= θi for some i ∈ N .

Suppose that m0
i 6= θi for some i ∈ N . Let m̄i ∈ Mi be such that m̄0

i = θi and m̄k
i = mk

i

for each k ∈ {−1, 1, ..., K}. Fix any m−i ∈ M−i. To save space, let m̄ = (m̄i,m−i) and

m = (mi,m−i). Note that, by construction, m̄k and mk fall into the same rule for each

k ∈ {1, ..., K}. By definition of g, Lemma 1 and the fact that m̄−1
i = m−1

i , we have that

ui (g (m̄) , θi)− ui (g (m) , θi) =
ε

n

[
ui
(
fi
(
m̄0
i

)
, θi
)
− ui

(
fi
(
m0
i

)
, θi
)]

(5)

+
ε2

n

∑
j∈N

[ui (ξ (j, m̄) , θi)− ui (ξ (j,m) , θi)]

>
ε

n
(η − 2εEi (θi))

> 0,

where the last inequality uses (3). This means that m̄i strictly dominates mi, and so mi /∈
Ri

(
tθi ,U

(
Γ, T̄

))
, which is a contradiction. Then, mi ∈ Ri

(
tθi ,U

(
Γ, T̄

))
is such thatm0

i = θi.

It follows that if m ∈ R
(
tθ,U

(
Γ, T̄

))
, then m0

i = θi for all i ∈ N .
For each h ∈ {0, 1, ..., K}, let P (h) be the statement “If m ∈ Rh

(
tθ,U

(
Γ, T̄

))
, then for

all i ∈ N , it holds that

m0
i = θi and m`

i = θ for each ` = 1, ..., h.”

By the above arguments, we know that P (0) holds. Assume that P (h− 1) holds for

0 ≤ h− 1 < K. We show that P (h) holds.

Assume, to the contrary, that P (h) is false, that is, mh
i 6= θ for some i ∈ N . Recall

that m ∈ R
(
tθ,U

(
Γ, T̄

))
. Let m̄i ∈ Mi be such that m̄h

i = θ and m̄k
i = mk

i for all

k ∈ {−1, 0, ...K} \ {h}.
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Take any m−i ∈ Rh−1
−i
(
tθ−i,U

(
Γ, T̄

))
. To save space, let m̄ = (m̄i,m−i) and m =

(mi,m−i). Again, note that, by construction, m̄k and mk fall into the same rule for each

k ∈ {1, ..., K} \ {h}. We proceed according to the following two cases.

Case 1 : There exists an player j 6= i such that mh
j 6= θ

By definition of g, Assumption 1 and the fact that m̄−1
i = m−1

i , we have that

ui (g (m̄) , θi)− ui (g (m) , θi) =
ε2

n

[
ui
(
ā
(
i, m̄0

)
, θi
)
− ui

(
a
(
i,m0

)
, θi
)]

(6)

+
1− ε− ε2

K

[
ui
(
ρh
(
m̄h, m̄−1

)
, θi
)
− ui

(
ρh
(
mh,m−1

)
, θi
)]

=
ε2

n
Bi (θ)−

1− ε− ε2

K

[
ui
(
ρ
(
mh,m−1

)
, θi
)
− ui

(
ρh
(
m̄h, m̄−1

)
, θi
)]

≥ ε2

n
Bi (θ)−

1− ε− ε2

K
Di (θ)

> 0,

where the last inequality uses (4). Since the choice ofm−i ∈ Rh−1
−i
(
tθ−i,U

(
Γ, T̄

))
is arbitrary,

it follows that mi /∈ Rh
i

(
tθi ,U

(
Γ, T̄

))
, which is a contradiction.

Case 2 : For all j 6= i, mh
j = θ

We proceed according to whether ξ (i, m̄) = ξ (i,m) or not.

Suppose that ξ (i, m̄) = ξ (i,m). It simplifies the argument, and causes no loss of gener-

ality, to assume that m−1
j = f = m̄−1

i for all j 6= i. Then, m̄ and m fall into Rule 1. Then,

by definition of g and the fact that mh
j = θ for all j 6= i, we have that

(7)

ui (g (m̄) , θi)− ui (g (m) , θi) =
1− ε− ε2

K

[
ui
(
ρh
(
m̄h, m̄−1

)
, θi
)
− ui

(
ρh
(
mh,m−1

)
, θi
)]

=
1− ε− ε2

K

[
ui

(
f̂ (θ, f) , θi

)
− ui

(
f̂i (θ, f) , θi

)]
> 0,

where the last inequality uses (1). Suppose that ξ (i, m̄) 6= ξ (i,m). Then, by applying

the same reasoning used in Case 1, we have that ui (g (m̄) , θi) − ui (g (m) , θi) > 0. In

either case, since the choice of m−i ∈ Rh−1
−i
(
tθ−i,U

(
Γ, T̄

))
is arbitrary, it follows that mi /∈

Rh
i

(
tθi ,U

(
Γ, T̄

))
, which is a contradiction.

By the principle of mathematical induction, it follows that P (h) holds for each h ∈
{1, ..., K}. SinceR

(
tθ,U

(
Γ, T̄

))
= ∩Kk=1Rk

(
tθ,U

(
Γ, T̄

))
, it follows that ifm ∈ R

(
tθ,U

(
Γ, T̄

))
,

then mi = (·, θi, θ, ..., θ) for all i ∈ N .
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Lemma 3 For all f ∈ FF,δ and all m ∈ M , if mi = (f, θi, θ, ..., θ) for all i ∈ N , then

m ∈ NE
(
tθ,U

(
Γ, T̄

))
such that for all i ∈ N , ui (g (m) , θi) > ui (g (m′i,m−i) , θi) for all

m′i ∈Mi\ {mi}.

Proof. Take any m ∈ M such that mi = (f, θi, θ, ..., θ) for all i ∈ N . We show that

m is a (pure) strict Nash equilibrium of
(
tθ,U

(
Γ, T̄

))
. To this end, and without loss of

generality, we can just focus on the set of rationalizable strategies. Fix any i ∈ N and any

m̄i ∈ Ri

(
tθi ,U

(
Γ, T̄

))
\ {mi}. Lemma 2 implies that m̄i = (·, θi, θ, ..., θ). Since m̄i 6= mi, it

must be the case that m̄−1
i = f̄ 6= f for some f̄ ∈ FF,δ. It follows from the definition of g

that

ui (g (mi,m−i) , θi)− ui (g (m̄i,m−i) , θi) =
(
1− ε− ε2

) [
ui

(
f̂ (θ, f) , θi

)
− ui

(
f̂i (θ, f) , θi

)]
> 0,

where the last inequality follows from (1). Since the choice of both player i and m̄i ∈
Ri

(
tθi ,U

(
Γ, T̄

))
\ {mi} is arbitrary, it follows that for each i ∈ N , ui (g (m) , θi) > ui (g (m̄i,m−i) , θi)

for all m̄i ∈ Ri

(
tθi ,U

(
Γ, T̄

))
\ {mi}. This implies that m is a strict Nash equilibrium of(

tθ,U
(
Γ, T̄

))
.

Lemma 4 For all m ∈M , m ∈ R
(
tθ,U

(
Γ, T̄

))
⇐⇒ mi = (·, θi, θ, ..., θ) for all i ∈ N .

Proof. Lemma 2 implies the “only if”of the statement. Thus, let us show the “if”part. Take
any m ∈M such that mi = (·, θi, θ, ..., θ) for all i ∈ N . We show that mi ∈ Ri

(
tθi ,U

(
Γ, T̄

))
for each i ∈ N . Fix any i ∈ N and suppose that m−1

i = f . Let m̄−j ∈ M−j be such that
mj = (f, θj, θ, ..., θ) for all j ∈ N\ {i}. Lemma 3 implies that (mi, m̄−j) ∈ NE

(
tθ,U

(
Γ, T̄

))
.

It follows that mi ∈ Ri

(
tθi ,U

(
Γ, T̄

))
. Since the choice of i is arbitrary, we conclude that

m ∈ R
(
tθ,U

(
Γ, T̄

))
.

To show that Γ virtually implements F in Nash equilibria (resp., in rationalizable strate-

gies) we need first to define the correspondence H : Θ � Y that is ε-close to F . To this end,

for each x ∈ A (δ, F (θ)) and each i ∈ N , define γ (x, θ) and γi (x, θ) as follows.

γ (x, θ) =
ε

n

∑
i∈N

fi (θi) +
ε2

n

∑
i∈N

ā (i, θ) +
1− ε− ε2

K

[
(1− nα)x+ α

∑
j∈N

ā (j, θ)

]

γi (x, θ) =
ε

n

∑
i∈N

fi (θi) +
ε2

n

∑
i∈N

ā (i, θ) +
1− ε− ε2

K

(1− nα)x+ α
∑

j∈N\{i}

ā (j, θ) + αa (i, θ)

 .
By definition and the fact that α > 0 is a small number, it follows that for all x ∈ A (δ, F (θ)),

d (x, γ (x, θ)) ≤ ε and that d (x, γi (x, θ)) ≤ ε for all i ∈ N . Thus, H can be defined as follows.

For all θ ∈ Θ,

H (θ) =
{{
γ (x, θ) , {γi (x, θ)}i∈N

}
|x ∈ A (δ, F (θ))

}
. (8)
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For all θ ∈ Θ, consider the surjection ρθH : F (θ) � H (θ) defined by ρθH (x) =
{
γ (x, θ) , {γi (x, θ)}i∈N

}
,

for each x ∈ A (δ, F (θ)). By using the mapping ρθH and by choosing δ > 0 small enough, it

can be checked that H is ε-close to F . To complete the proof, we need the following useful

result.

Lemma 5 For all m ∈ R
(
tθ,U

(
Γ, T̄

))
, g (m) ∈ ρθH (x) for some x ∈ F (θ).

Proof. Take any m ∈ R
(
tθ,U

(
Γ, T̄

))
. Lemma 2 implies that mi = (·, θi, θ, ..., θ) for

all i ∈ N . This means that either Rule 1(a), Rule 2(a) or Rule 3(a) applies to m. If

Rule 1(a) applies, then g (m) = γ (f (θ) , θ) ∈ ρθH (f (θ)) and m−1
i = f for all i ∈ N . If

Rule 3(a) applies, then g (m) = γ (f ∗ (θ) , θ) ∈ ρθH (f ∗ (θ)). Finally, suppose that Rule 2(a)

applies. Then, m−1
j = f for all j ∈ N\ {i} and m−1

i 6= f , for some i ∈ N . By definition,

g (m) = γi (f (θ) , θ) ∈ ρθH (f (θ)).

We now show that, for each tθ ∈ T̄ , it holds that:

(a) for all x ∈ F (θ), there exists m ∈ NE
(
tθ,U

(
Γ, T̄

))
(resp., m ∈ R

(
tθ,U

(
Γ, T̄

))
) such

that g (m) ∈ ρθH (x).

(b) for each σ ∈ NE
(
tθ,U

(
Γ, T̄

))
(resp., σ ∈ R

(
tθ,U

(
Γ, T̄

))
),

⋃
m∈Supp(σ)

g (m) ⊆ H (θ).

To show part (a), suppose that x ∈ F (θ). Let m be such that mi = (f, θi, θ, ..., θ) ∈
Mi for each i ∈ N and f (θ) = x. By Lemma 3, m ∈ NE

(
tθ,U

(
Γ, T̄

))
(and so m ∈

R
(
tθ,U

(
Γ, T̄

))
). Moreover, by definition of g, g (m) = γ (x, θ). Since the choice of x ∈ F (θ)

is arbitrary, it follows that part (a) is satisfied.

Let us now show part (b). For every m ∈ R
(
tθ,U

(
Γ, T̄

))
, Lemma 5 implies that

g (m) ∈ ρθH (x) for some x ∈ F (θ). By definition of H, it follows that g (m) ∈ H (θ).

This completes the proof of part (b) for the case of rationalizable strategies. Finally, take

any σ ∈ NE
(
tθ,U

(
Γ, T̄

))
and any m ∈Supp(σ). By definition of R

(
tθ,U

(
Γ, T̄

))
, we have

that Supp(σ) ⊆ R
(
tθ,U

(
Γ, T̄

))
, and so m ∈ R

(
tθ,U

(
Γ, T̄

))
. Again, Lemma 5 implies that

g (m) ∈ ρθH (x) for some x ∈ F (θ), and so g (m) ∈ H (θ), by definition of H.

Case 2: Extension to any “nearby”model

Fix any model T ⊇ T̄ , any θ ∈ Θ and any ε > 0 such that Γ virtually implements F in strict

Nash equilibria (resp., in rationalizable strategies). Let us show that Definition 1 is met.

Let us first show that part (a) of Definition 1 is met. Fix any x ∈ F (θ). Lemma 3

shows that the strategy profile m∗ (θ), where m∗i (θ) = (f, θi, θ, ..., θ) for all i ∈ N and where

f (θ) = x, is a strict Nash equilibrium of
(
tθ,U

(
Γ, T̄

))
. From the above, we know that

g (m∗ (θ)) ∈ ρθH (x). We will use the existence of m∗ (θ) to show the existence of strategy

profile satisfying part (a) of Definition 1. We distinguish two cases.
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Case A: Bayesian Nash equilibria

The fact thatm∗ (θ) is a strict Nash equilibrium at
(
tθ,U

(
Γ, T̄

))
implies that there exists

n such that for each n ≥ n and each mi 6= m∗i , it holds that

(1− ε)
[
ui
(
g
(
m∗i (θ) ,m∗−i (θ)

)
, θi
)
− ui

(
g
(
mi,m

∗
−i (θ)

)
, θi
)]
> εA (9)

where ε > 0 and

A ≡ max
i,m,m′,θ̂

∣∣∣ui (g (m) , θ̂i

)
− ui

(
g (m′) , θ̂i

)∣∣∣ .
The following two conditions can be satisfied by further decreasing the real number ε:

C1 For all i ∈ N and all θ′ 6= θ, the (duw
i , ε)-ball around

(
θ, tθi

)
, denoted by

{(
θ, tθi

)}ε
, is

disjoined from
{(
θ′, tθ

′
i

)}ε
.

C2 For all ti ∈ Ti, duw
i

(
ti, t

θ
i

)
< ε =⇒ κ [ti]

({(
θ, tθ−i

)}ε)
> 1− ε,

where
{(
θ, tθ−i

)}ε
denotes the

(
duw
−i , ε

)
-ball around

(
θ, tθ−i

)
.

Let us consider the agent normal form of the game U (Γ, T ) with the restriction that

every type ti of player i in (duw
i , ε)-ball around

(
θ, tθi

)
plays m∗i (θ). Let us denote this game

by Ũ (Γ, T ). Since T is countable and M is finite, a standard fixed-point argument implies

that BNE
(
Ũ (Γ, T )

)
6= ∅. Let σ ∈ BNE

(
Ũ (Γ, T )

)
. For any sequence {tn} in T with

duw
(
tn, t

θ
)
→ 0, there exists n such that σ (tn) = m∗ (θ) for all n ≥ n, by construction of

Ũ (Γ, T ) and by C2 and (9).

Let us now consider the original game U (Γ, T ). Observe that for every type ti of player i

in (duw
i , ε)-ball around

(
θ, tθi

)
, the unique best response for ti is to play σ (ti) = m∗i (θ). This

is due to C2 and (9). Moreover, for every ti of player i that is not in (duw
i , ε)-ball around(

θ, tθi
)
, σ (ti) is a best response to σ−i. This is because σ ∈ BNE

(
Ũ (Γ, T )

)
. Therefore,

σ ∈ BNE (U (Γ, T )). Finally, observe that, by construction, σ|tθ ∈ NE
(
tθ,U

(
Γ, T̄

))
. This

shows that part (a) of Definition 1 holds for BNE.

Case B: Interim correlated rationalizability

Let us now show that part (a) of Definition 1 holds for ICR. To this end, we need to

show that there exists a large enough n such that for all n ≥n,

R (tn,U (Γ, T )) ⊆ R
(
tθ,U

(
Γ, T̄

))
. (10)

Since FF,δ is finite, (10) follows directly from Lemma 1 of Dekel et al. (2006).

To complete the proof of Theorem 1, we are left to show part (b) of Definition 1.

Let us first show it for the set of ICR strategies. Take any σ (tn) ∈ R (tn,U (Γ, T )). Note

that Supp(σ (tn)) ⊆ R (tn,U (Γ, T )). Recall that ε > 0 is such that Γ virtually implements

F in strict Nash equilibria (resp., in rationalizable strategies). Since there exists n such

that for all n ≥n, mi = (·, θi, θ, ..., θ) for all i ∈ N and all m ∈Supp(σ (tn)). Lemma 4
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implies that Supp(σ (tn)) ⊆ R
(
tθ,U

(
Γ, T̄

))
. Fix any m ∈Supp(σ (tn)). Lemma 5 implies

that g (m) ∈ ρθH (x) for some x ∈ F (θ). By definition of H, it follows that g (m) ∈ H (θ).

Finally, take any σ ∈ BNE (U (Γ, T )) and any m ∈Supp(σ (tn)). By the arguments in the

preceding paragraph, we have that m ∈ R
(
tθ,U

(
Γ, T̄

))
. Thus, g (m) ∈ H (θ), by Lemma 5

and definition of H.

5 Related literature

This paper contributes to two new strands on the literature on mechanism design and im-

plementation theory.

Robust mechanism design

The first strand is that of robust mechanism design, pioneered by Bergemann and Morris

(2005). In this literature, many works, such as Bergemann and Morris (2005, 2009a,b,

2011a) and Chung and Ely (2007), adopt a “global”approach by studying settings in which

the designer does not have any idea of the information structure prevailing among players.

The designer’s objective is to implement an SCF on all models (that is, all information

structures) that he deems possible. By contrast, Chung and Ely (2003), Oury and Tercieux

(2012), Jehiel et al. (2012), Aghion et al. (2012), Chen et al. (2018a) follow a “local”

approach. They consider settings in which the designer knows the initial model under study,

but not perfectly (for example, our designer knows that the state is common knowledge

among players). The designer wishes to implement an SCF not only at all types of the

initial model but also at all types “close” to initial types. An intermediate approach is

followed by Ollár and Penta (2017), who study settings in which the designer rules out some

possible beliefs among players. Given that we follow a local approach to robust mechanism

design, in what follows, we discuss only papers on local robustness.

Oury and Tercieux (2012) relate partial implementation of an SCF on the neighborhood

of a type space to its full implementation. More precisely, under a domain assumption (of

costly messages), they show that partial continuous implementation in product topology

is equivalent to full implementation in rationalizable strategies. In a recent paper, Chen

et al. (2018a) study partial continuous implementation of SCFs under the uniform—weak

topology. Specifically, by focussing on direct revelation mechanisms, they show that partial

continuous implementation is tightly connected to partial implementation in strict Nash

equilibrium in the initial model. In contrast to these contributions, we focus on continuous

full implementation in rationalizable strategies under the uniform—weak topology. Moreover,

we allow for multi-valued SCRs.15

15Jehiel et al. (2012) also study partial implementation of SCFs via mechanisms that are incentive com-

patible only for beliefs that lie in a neighborhood of some benchmark beliefs (which may be derived from

some common prior as usually assumed in the mechanism design literature).
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Indeed, this paper belongs more to the literature on the robustness of full implementation

under complete information, pioneered by Chung and Ely (2003). They show, by assum-

ing an arbitrarily small uncertainty about the state and strict preferences among players,

that only Maskin monotonic SCFs can be implemented in undominated Nash equilibria, by

requiring that any Bayesian Nash equilibria of the implementing mechanism must be ar-

bitrarily close to the SCF.16 This is in contrast with the permissive result of Palfrey and

Srivastava (1991), who show that any SCF can be fully implemented in undominated Nash

equilibria. Aghion et al. (2012) study full implementation in subgame-perfect equilibria

under similar perturbations and uncover a similar negative result, in the sense that when-

ever an extensive form mechanism implements a non-Maskin monotonic SCF, there exists

an undesirable equilibrium in some nearby environment. In contrast to these authors, we

focus on implementation via finite mechanisms which are robust to strategic uncertainty.

Robustness to strategic uncertainty

A game theoretic solution that is weaker than Nash equilibrium is that of rationalizabil-

ity, pioneered by Bernheim (1984) and Pearce (1984). This solution, which builds solely on

the assumption of common knowledge of rationality, asks “What might a rational player

do?”.17 By allowing players’beliefs to be correlated, Brandenburger and Dekel (1987) pro-

pose a weaker version of rationalizability, which is fully characterized by the set of strategies

that survive the thought process of iterative deletion of never best responses. This is the de-

finition of rationalizable strategies used in the literature on implementation in rationalizable

strategies. We adopt this definition as well.

Bergemann et al. (2011b) study the implementation of SCFs under complete information

in rationalizable strategies. They show that a necessary and almost suffi cient condition for

implementation is strict Maskin monotonicity∗, which is stronger than Maskin monotonicity

(1999). In recent studies, Kunimoto and Serrano (2019) and Jain (2019) examined imple-

mentation of correspondences in rationalizable strategies. All characterization results on

implementation in rationalizable strategies are far from complete and, moreover, are derived

by devising implementing mechanisms that rely on questionable tail-chasing procedures to

eliminate unwanted best responses, such as integer or modulo games (Jackson, 1992). Our

result show that any SCR is virtually implementable in rationalizable strategies by a finite

mechanism.

Chen et al. (2018b) have recently studied the implementation of SCFs under complete

information in rationalizable strategies by finite mechanisms in an environment with transfers

16Maskin monotonicity is a remarkably strong invariance condition, which is necessary for the full imple-

mentation in Nash equilibria (Maskin, 1999). For exaple, Maskin monotonicity is precisely the property that

the SCFs typically studied in contract theory do not satisfy.
17The type of rationality captured by the notion of Nash equilibrium can be described by two rationality

assumptions: (1) common knowledge of rationality, that is, the best responses of players to their beliefs and

(2) rational expectations, that is, players’beliefs are correct.
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and lotteries, as in Abreu and Matsushima (1992a, 1994). Similar to our mechanism, their

mechanism borrows ideas from the mechanism devised by Abreu and Matsushima (1992a,

1994). Chen et al.’s (2018b) contribution is an attempt to unify the classical approach of

exact implementation, which usually relies on mechanisms having questionable features, with

the approach of virtual implementation, which relies on well-behaved mechanisms.

6 Concluding remarks

We characterized the class of SCRs that are virtually implementable not only when the state

is common knowledge among players but also when it is “close”to common knowledge. The

closeness between types is measured in terms of the uniform—weak topology. This result is

achieved by devising a finite mechanism. We also show that virtual implementation in strict

Nash equilibria, and in rationalizable strategies, imply continuous virtual implementation

when the state is common knowledge among players. As in Chung and Ely (2003), in the

true model, strict incentives are used to attain continuous implementation in uniform—weak

topology.

The results of the paper provide a theoretical benchmark for continuous virtual imple-

mentation of SCRs. We obtain our results under the assumption that the baseline model is

that of complete information. This assumption may not be satisfied in certain situations.

Abreu and Matsushima (1992b) have generalized the AM—mechanism to Bayesian environ-

ments. They show that any SCF that can be virtually Bayesian Nash implemented in these

environments must satisfy a measurability condition, namely AM-measurability. To char-

acterize the class of social choice sets which are virtually implementable in both Bayesian

Nash and ICR strategies, we believe that a construction like the one presented in this paper

would be useful. We believe that such a construction will hinge on the identification of an

appropriate variant of the AM-measurability condition. We leave this subject for future

research.

Finally, let us remark that the AM-mechanism has been the focus of attention in several

recent strands of implementation theory, such as robust virtual implementation (Bergemann

and Morris, 2009a; Muller, 2016), level-k implementation (Serrano et al., 2018), and imple-

mentation with verification (Matsushima, 2019). Indeed, these papers provide constructive

proofs that rely, directly or indirectly, on the AM-mechanism. We believe that our construc-

tion may play an important role in these strands of the literature when the objective of the

designer is represented by an SCR.
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