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Abstract

This research develops a continuous-time optimal growth model that accounts for

population dynamics resembling the historical pattern of the demographic transition.

The Ramsey model then becomes able to generate multiple determinate or indeterminate

stationary equilibria and explain the process of the transition from a state with high

fertility and low income per capita to a state with low fertility and high income per

capita.
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1 Introduction

For several centuries - until about 1750 AD - the similar trend in (high) birth and death

rates determined a relatively stable or moderately growing population worldwide (Fogel, 2004;

Lorentzen et al., 2008; Galor, 2011; Livi-Bacci, 2017).1 Following the abandonment of nomadic
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1Of course, changes in death (or mortality) rates modify the individual incentives to give birth to children.

In a society where mortality rates are high, the marginal bene�t of having an additional child (in a context

where the number of children is still high) is larger than in a society where mortality rates are low. This is

because a high number of children is indeed required to guarantee that some of them will survive at the onset

of childhood and let themselves be in the condition of having their own children.
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life in favour of permanent settlements, the invention of the wheel, the development of agricul-

tural tools (e.g., the hoe, the plough) as well as new techniques and technologies for farming

land and raising animals, allowing for an improvement in both the quantity and quality of

foods, there was an initial increase in birth rates (with death rates continuing to �uctuate

around high levels) that eventually produced a �rst - though moderate - acceleration in popu-

lation growth in Europe. Then, before the beginning of the �rst Industrial Revolution people

in Europe experienced a remarkable increase in life expectancy due to another (substantial)

improvement in food supply and, most importantly, an improvement in sanitation that con-

tributed to reduce diseases (the second agricultural revolution). However, the lengthening in

the lifetime was counterbalanced by the high birth rates, essentially because of the strengthened

sociocultural traditions of people. The second phase of the Demographic Transition (i.e., the

transition from high birth and death rates to low birth and death rates as long as a country

develops) begun some years after the Industrial Revolution (see Galor, 2011, and references

therein). At that time, a downward trend in birth rates (initially caused by the rising costs

of upbringing large families) and a general change in the society as a whole (migration from

countrysides to cities) followed the drop in mortality rates. Total population started increasing

dramatically and there was an acceleration in income per person. This contributed to promote

investments in education, thus favouring the switch in children�s demand from �quantity�to

�quality�. The subsequent increases in human capital, female labour participation and wages,

the process of urbanization, the development of contraceptive methods, the scienti�c research,

the improvement in private and public health services, the development of welfare states (child

care policies, public pensions, diseases control and so on), the reduction in the value of chil-

dren�s work and perhaps other reasons not mentioned here, contributed to explain the observed

drop in birth and death rates that started settling down around low levels, as well as a tremen-

dous increase in income per person following the process of industrialization.2 This story is

well documented and summarised in Livi-Bacci (2017) and it is an essential part of the de-

velopment economics on the side of demo-economic outcomes (Fogel, 2004; Galor, 2011). To

sum up, along the process of economic growth and development of nations, especially in the

Western world, fertility �rst increased and then decreased with income and the behaviour of

total population over time has the well known S-shaped course depicted by the demographic

transition pattern.3 This is a stylised fact considered in this article, whose purpose is to build

on a continuous-time optimal growth (Ramsey) model in which individuals choose the con-

sumption path in a context where population (fertility) evolves according to the demographic

transition rules. The model then considers the number of children as an exogenous variable

2See the recent works of Bhattacharya and Chakraborty (2017) and Prettner and Strulik (2017) for an

interesting analysis on contraception and the fertility transition in industrialised countries.
3An exception is represented by Sub-Saharan Africa (SSA), where the coexistence of several infectious dis-

eases, especially HIV/AIDS, contributed to halt the trend in mortality decline in the 1980s and reverse the

long-term positive trend in life expectancy (see Gori et al., 2020, and references therein).
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following a sort of biological behaviour (i.e., driven by reasons di¤erent from utility maximi-

sation) determined by the environment. Distinguishing between exogenous and endogenous

fertility is a relevant feature in the development economics. In the former case, fertility is ex-

plained by everything but economic constraints and incentives: one may think that the number

of children follows some biological rules (sexual drive leading to reproduction), which are not

taken into account in an economic model. Therefore, population may be exogenous (Solow,

1956; Diamond, 1965) or it may depend on something not driven by individual choices (e.g.,

aggregate income). In the latter case, instead, the number of children is chosen by rational

individuals (possibly with a di¤erent degree of sel�shness) by comparing (marginal) bene�ts

and costs of having an additional child. This literature has seen a tremendous improvement

after the end of World War II, growing rapidly since the seminal contributions of Leibenstein

(1957) and Becker (1960), that have originated the so-called New Home Economics, until the

more recent works belonging to the Uni�ed Growth Theory (Galor and Weil, 2000; Blackburn

and Cipriani, 2002; Kalemli-Ozcan, 2002; Tabata, 2003; Bloom et al., 2003, 2009; Yakita, 2010;

Lagerlöf, 2006; Galor, 2011; Gori et al., 2020). These theories aim at explaining the reasons

why some countries follow a development trajectory, where capital accumulation is high and

fertility and death rates are low and others remain instead entrapped in stagnation or poverty

following an under-development trajectory, where capital accumulation is low and fertility and

death rates are high. The most common conclusion of this kind of models is that history mat-

ters. Therefore, what eventually determines the reasons why some countries have moved to a

lower level of economic activity - leading also to an impoverishment of sociocultural conditions

- is the initial state of an economy. The trigger towards economic development is often given

by the improvement in education allowing a drop in adult mortality and fertility (Blackburn

and Cipriani, 2002) or it is determined by a drop in child mortality so that the path of sur-

viving children becomes relevant (Galor and Weil, 2000; Kalemli-Ozcan, 2002; Lagerlöf, 2006)

or the gender gap in working income between men and women generating an increase in the

opportunity cost of raising children for women when their wage become larger (Galor and Weil,

1996). The reasons to follow a development or an underdevelopment trajectory based on path

dependence (history) do not allow giving an explanation for why some countries with similar

initial values of a state variable (e.g., the capital stock) have actually experienced very di¤erent

scenarios.4 Amongst the contributions for which indeterminacy (expectations matter) becomes

a theoretical reason to explain the development of some countries and the lack of development

of others (coordination failures) are the works of Palivos (1995) and Gori and Sodini (2019)

that analyse growth models with endogenous fertility, and the work of Gori and Sodini (2020)

that analyses a growth model with endogenous longevity and health expenditures.

However, it still remains di¢ cult understanding whether demographics a¤ects economics or

viceversa when inquiring into the causes of poverty or prosperity of nations. Models belonging

4See the seminal works of Krugman (1991) and Matsuyama (1991) for a debate about history versus expec-

tations.
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to the above literature are not able to explain economic development based on an a priori

explicit dynamics of some population variables (two exceptions are the cited works of Palivos,

1996 and Gori and Sodini, 2019, who study models that endogenously generate a law of motions

of fertility). In contrast, they generally begin with by an opposite point of view: population

variables are generally endogenous to the model and a¤ect the formation of physical capital,

human capital and GDP.

Population dynamics has certainly relevant consequences on the economic activity and then

encompassing a theoretical view in which fertility is exogenous or endogenous is sometimes

an ideological issue, as both contexts can provide interesting bases to build on conceptual

frameworks allowing to explain economic development (Azariadis and Drazen, 1990; Galor

and Weil, 1996, 2000). The main aim of this work is to account for a population growth

function that resembles the demographic transition pattern in an optimal growth framework,

i.e. total population (for simplicity represented only by the fertility rate) �rst increases and

then decreases with income. With this simple assumption, the one-sector optimal growth

model à la Ramsey becomes able to characterise di¤erent paths of economic development and

indeterminacy matters.

Surprisingly, even at the time of writing, there is a few number of articles belonging to

the economic growth literature dealing explicitly with population dynamics in continuous-time

models (e.g., Accinelli et al., 2007; Canton and Meijdam, 1997; Brida and Accinelli, 2007;

Marsiglio and La Torre, 2012).5 None of the aforementioned works, however, has analysed the

in�uence of the pattern of the demographic transition for economic development in the basic

Ramsey-type growth set up. The present article points out that this patter of demo-economic

outcomes dramatically matters for explaining the reasons why some countries accumulate a

large amount of capital and enter an impressive development trajectory and others instead

accumulate a small amount of capital entering a phase of moderate growth or poor development.

The rest of the article is organised as follows. Sections 2 outlines the model. Section 3

studies the optimality conditions and the dynamics of the continuous-time system. Section 4

concentrates on an economy where consumers have preferences captured by a Constant Inter-

temporal Elasticity of Substitution (CIES) utility function and �rms produce with a Cobb-

Douglas (CD) technology. Section 5 concludes the article.

5The article by Accinelli et al. (2007) is the most closely related to ours in terms of modelling, perspectives

and aims. Speci�cally, the authors�will is to consider a Ramsey-like model (augmented with a non-linear process

in the dynamics of capital accumulation) to study the di¤erent stages of the historical pattern of the economic

transition (abstaining, however, from including the stages of the demographic transition) to describe essentially

the economic transition of Western countries. Unlike them, the present work concentrates on the analysis of

the demo-economic transition by considering a non-linear dynamic evolution of the population growth rate.
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2 The model

The model we are herewith considering describes an economy comprised of a continuum of

in�nite-lived identical agents whose population size is L(t). There is no unemployment, so

that population entirely belongs to the labour force.6 At every time t 2 [0;1), the represen-
tative agent produces output Y (t) by using the following technology satisfying the properties

of constant returns to scale, positive and diminishing returns to labour and capital and Inada

conditions:

Y (t) = F (K(t); L(t)); (1)

where K(t) is the stock of physical capital, L(t) is the labour input employed in production

and function F satis�es the usual neoclassical properties.

We assume that human reproduction is a biological phenomenon dictated by the environ-

ment (i.e. it is driven by reasons di¤erent from constrained utility maximisation), which is

in turn a¤ected the economic activity. Therefore, population is exogenous in the sense that

fertility is not a control variable for the rational agent. However, demographic changes would

possibly be considered as endogenous as they depend on income, which is a variable determined

within the model, as will be clear later in this article. About the law governing population dy-

namics, two alternatives are generally considered in the literature (Canton and Meijdam, 1997;

Guerrini, 2006; Brida and Accinelli, 2007; Bucci and Guerrini, 2009; Marsiglio and La Torre,

2012): constant population growth and logistic population growth. In the former case, the

instantaneous change in the labour force ( _L(t)) is proportional to the existing labour force,

_L(t) = gL(t); (2)

where g � 0 is the constant growth rate of population (fertility or birth rate) and gL(t) is

the number of birth per unit of time.7 By assuming an initial value L(0) > 0, the expression

in (2) can be solved to give the exponential function L(t) = L(0)egt. This equation says

that population steadily increases with no upper bound at rate g. However, this kind of

behaviour is at odds with the observed pattern of the demographic transition, so that it cannot

be satisfactorily included into the analysis (see Roser et al., 2013, for details about the time

evolution of the population growth rate and its main characteristics).8 In the latter case (logistic

6In addition, we assume a �xed relationship between labor supply and population. This means that we

consider no changes in labour-force participation or in working hours and e¤ort. Then, we use the terms

population, labour force or labour supply interchangeably.
7Without loss of generality, we abstract from including mortality rates into the analysis. Therefore, the

growth rate g represents the birth rate net of mortality rates, which however is not explicitly included into

the analysis. If one decided to distinguish between birth rates and mortality rates, the expression in (2) would

change becoming _L(t) = (eg � �)L(t), where eg � 0 is the gross birth rate, � > 0 is the mortality rate and the
term eg � � is the net growth rate of population.

8"A common question we�re asked is: is the global population growing exponentially? The answer is

no [...] since the 1960s the growth rate has been falling. This means the world population is not grow-
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law), the di¤erential equation governing population growth has the form introduced �rst by

the Belgian mathematician Verhulst in 19th century. Given two positive parameters, a and b,

this law can be written as follows:

_L(t) = L(t)[a� bL(t)]: (3)

The linear term in (3) acts as a positive device allowing to capture the trend in total population

resembling the second and third stages of the demographic transition. The quadratic term,

instead, introduces a negative feedback capturing the e¤ects of the quantity-quality trade o¤

and resembling the subsequent trends of (moderately growing or declining) total population

of the demographic transition pattern. Given a positive initial value L(0), by integrating the

expression in (3) by parts, verifying a� bL(0) > 0 and de�ningM := L(0)=[a� bL(0)], one gets
the solution L(t) = aM= (bM + e�at). Then, total population asymptotically takes the upper

bound a=b as t ! +1. This threshold represents a sort of �carrying capacity�of the system
due, for instance, to the overcrowding of a given territory. The logistic law has then the merit

of being much more prone to describe the actual behaviour of total population compared to the

constant population growth function in (2). However, it represents only a part of the story as the

demographic transition is a long-term phenomenon relating the trend in population variables

with the historical pattern of GDP per capita. Then, in order to build on a demographically

founded formulation for the dynamics of L(t) one should make the rate of change in population

(labour force) be dependent also on income per person, allowing for a non-monotonic behaviour

resembling the Malthusian epoch (positive relationship between fertility and income) and the

modern regime of growth (negative relationship between fertility and income).9

The idea that the growth rate of the labour force g should not be constant but rather a

function depending on current income (endogenous process) already existed in the seminal work

of Solow (1956). This idea is formalised in the following way:

_L(t)=L(t) = g(y(t)); (4)

where y(t) = f(k(t)) is the neoclassical intensive-form production function that comes from

(1), with f(k(t)) satisfying the conditions lim
k!0+

f 0(k(t)) = +1 and lim
k!+1

f 0(k(t)) = 0, k(t) :=

K(t)=L(t) is the capital-labour ratio and y(t) := Y (t)=L(t) is income per person. The function

f(k(t)) satis�es the usual Inada conditions, that is lim
k!0+

f 0(k(t)) = +1 and lim
k!+1

f 0(k(t)) =

0: Solow gave some qualitative insights about the macroeconomic e¤ects of a general non-

monotonic function g that can potentially generate multiple long-term stationary states. Along

the line of this intuition, several decades later Fanti and Manfredi (2003) analysed a Solowian

growth model with an exogenous saving rate and considered a Cobb-Douglas version for the

ing exponentially � for decades now, growth has been more similar to a linear trend." (Roser et al., 2013:

https://ourworldindata.org/world-population-growth).
9See Galor and Weil (2000).
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intensive-from production function f , i.e. f(k(t)) = k(t)� (0 < � < 1), and a linear and

increasing (with respect to income) version of function g, i.e. g(f(k(t))) = �k(t)�, where

� > 0 is a constant parameter.10 From these assumptions, they found that _L(t)=L(t) = �k(t)�.

However, this speci�cation for the growth rate of population (used essentially for reasons of

analytical tractability) is a bit unsatisfying as it does not allow having a complete description

of the pattern of the demographic transition by capturing only a part of it.

In order to overcome the lacunae of each of the previous versions for the law of motion of

population and the criticism of a macroeconomic framework with an exogenous saving rate, in

this work we consider a model with consumer optimisation and exogenous growth (the Ramsey

model) and take into account a population dynamic equation in which the instantaneous change

in the labour force is related to both the historical pattern of demography and economic activity.

Then, we assume the following generic dynamic expression:

_L(t) = L(t)n(f(k(t)); L(t)); (5)

where n(f(k); L) is a C2 function on the positive orthant with @n(f(k); L)=@L < 0 (the

growth rate is decreasing with respect to the population size due to a natural saturation ef-

fect: the larger the population size, the lower its growth rate; this is in line with the data

on world population growth, see Roser et al., 2013) and lim
L!+1

n(f(k); L) = �1 8k > 0,

lim
f(k)!+1

n(f(k); L) = n < +1 8L > 0. The latter two conditions reveal that the growth rate of

population is negative when its size (L) is large (due, for instance, to scarcity of resources) and

cannot exceed a given threshold though it is positively a¤ected by the accumulation of capital.

The expression in (5) implies that the growth rate of population at any time depends on

the size of the population and the intensive form production function (i.e., income per capita).

The choice of employing a version for the dynamics of population that includes the value of the

per capita stock of capital instead of its level is due to analytical convenience. However, it is in

line with the choice made by Solow (1956) as well as the historical pattern of the demographic

transition contrasting the evolution of total population to the historical pattern of per capita

income.

The instantaneous utility function at time t of the representative agent is

U(C(t)=L(t)); (6)

where C(t) is the consumption bundle, U 0(�) > 0 and U 00(�) < 0 and U satis�es the Inada

conditions. Lifetime welfare is determined by the in�nite discounted �ow of the instantaneous

utility times the population size weighted by the degree of inter-temporal altruism towards

10Their main aim was to include a demographic delay into the analysis, thus letting the rate of change in the

supply of labour depend on past (rather than current) values of fertility and wage. This is because they wanted

to model out demographic changes in a more accurate way than in the standard formulation of Solow (1956).
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future generations, i.e. L(t)", where " 2 [0; 1]. This �ow is formalised by considering the

following integral:
+1Z
0

U(C(t)=L(t))L(t)"e��tdt; (7)

where � > 0 is the inter-temporal discount rate. The case " = 0 (resp. " = 1) boils down

to average (resp. total) utilitarianism, i.e. lifetime welfare accords with the Millian (resp.

Benthamite) criterion. Intermediate values of " represent impure altruism with di¤erent degrees.

We will see that the degree of inter-temporal altruism will not a¤ect stability outcomes and

the possibility of having determinate or indeterminate �xed points.

By assuming that capital depreciates at rate � > 0, the dynamics of K(t) is given by the

following di¤erential equation

_K(t) = Y (t)� �K(t)� C(t); (8)

where _K(t) is the time derivative of the state variable K(t) and production Y (t) is determined

by the neoclassical technology in (1).

The representative agent faces the following inter-temporal maximisation problem:

max
C(t)

1Z
0

U(C(t)=L(t))L(t)"e��tdt; (9)

subject to

_K(t) = F (K(t); L(t))� �K(t)� C(t);
_L(t) = L(t)n(f(k(t)); L(t)); (10)

L(0) = L0 > 0; K(0) = K0 > 0:

It is important to recall that in what follows we will not characterise the dynamics of the

optimal choices of a social planner but rather the choices of the representative agent about the

dynamics of L(t), which are not the result of an optimising behaviour whereas being dictated

by biological and macroeconomic rules. At the same time, however, the dynamics of L(t) a¤ects

the consumption pattern over time and then it may have relevant consequences for the outcome

of the model.

The constrained maximisation problem expressed in (9) and (10) can be reformulated in

terms of per capita variables in the following way:

max
c(t)

1Z
0

U(c(t))L(t)"e��tdt; (11)
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subject to

_k(t) = f(k(t))� c(t)�
h
� + _L(t)=L(t)

i
k(t);

_L(t) = L(t)n(f(k(t)); L(t)); (12)

L(0) = L0 > 0; K(0) = K0 > 0;

where c(t) := C(t)=L(t). This reformulation allows us to clarify that the dynamics of stock of

capital per person, k(t), depends on the growth rate of population, which is in turn a generic

function of both the size of population, L(t), and income per person, f(k(t)).

3 Optimality conditions and dynamics

The model is solved by introducing the current-value Hamiltonian function (we omit the time

index for convenience henceforth):

H = U(c)L" + �[f(k)� c� (� + n(f(k); L))k]; (13)

from which we get the necessary and su¢ cient conditions for optimisation11

H 0
c = 0() U 0(c)L" � � = 0;
_k = f(k)� �k � c� n(f(k); L)k; (14)

_� = �
�
�� f 0(k) + � + n0f (f(k); L)f 0(k)k + n(f(k); L)

�
;

and the transversality condition

lim
t!+1

k�e��t = 0: (15)

The Hamiltonian function in (13) includes one and only multiplier (�). This is because the

dynamics of population is not a¤ected by the choices of the representative agent. In other

words, each agent cannot modify the growth rate of L, which is instead determined by aggregate

(macro)economic and demographic conditions. In addition, the agent does not consider how his

choices about consumption smoothing a¤ects the evolution of the population in this context.

By eliminating the multiplier, we get the following dynamic system12:8>><>>:
�
k = f(k)� �k � c� n(f(k); L)k
�
c = �c

�
("� 1)n(f(k); L)� �� � + f 0(k)� n0f (f(k); L)f 0(k)k

�
�
L = Ln(f(k); L)

; (16)

11Given a generic function X = X(M;P ), we use X 0
M and X

00

M;P to denote @X=@M and @2X=@M@P ,

respectively.
12By the regularity hypotheses on the functions get involved in the model, it follows the existence and

uniqueness of the solution of the dynamical system (16), given a positive initial condition (k0; c0; L0).
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where � := �U 0(c)= [U 00(c)c] represents the reciprocal of the elasticity of marginal utility or,
alternatively, the elasticity of inter-temporal substitution.

A stationary state equilibrium of (16) (k�; c�; L�) is a solution of the following system:8><>:
f(k) = �k + c

�+ � = f 0(k)� n0f (f(k); L)f 0(k)k
0 = n(f(k); L)

: (17)

As @n(f(k); L)=@L < 0, from the third equation in (17) we obtain L as a function of k, that is

L = T (f(k)): (18)

Substitution of (18) in the second equation of (17) for L allows us to get the stationary state

equilibrium value of k as a solution of the following:

�+ � = R(k) := f 0(k)� n0f (f(k); T (f(k))f 0(k)k: (19)

Once this value has been determined, the stationary state values of c and L are obtained from

the �rst and third equations of the system in (17), respectively. In order to study the existence

and number of solutions of (19) we now introduce the following assumption.

Assumption 1 We assume that

lim
k!0+

n0f (f(k); L)f
0(k)k

n(f(k); L)

exists and is �nite 8L > 0:

Assumption 1 requires that the elasticity of the growth rate of the population n, with respect

to the stock of capital k assumes a �nite value as k approaches 0 from the right. In economic

terms, this means that the increase in the growth rate of population is not in�nite as k ! 0+.

In this regard, the following lemma holds:

Lemma 2 Let R be the function de�ned in (19). We have that lim
k!0+

R(k) = +1; lim
k!+1

R(k) =

+1 if lim
k!+1

n0f (f(k); T (f(k)) < 0; lim
k!+1

R(k) = �1 if lim
k!+1

n0f (f(k); T (f(k)) > 0.

Under Assumption 1, the behaviour of R as k ! 0+ is independent of the speci�cations on

utility, production and growth rate of population. Di¤erently, the behaviour of R as k ! +1
depends on the functional forms of f and n (but not on the functional form of U). We can

now state a result on existence and multiplicity of the stationary state equilibria of the model.

Generally, by neglecting the cases in which the stationary points coincide, we have the following

proposition.
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Proposition 3 Let Assumption 1 hold. If lim
k!+1

n0f (f(k); T (f(k)) > 0, the number of stationary

state equilibria is generically odd. If lim
k!+1

n0f (f(k); T (f(k)) < 0, then the number of stationary

state equilibria is generically even (and can be zero).

Proof. As already shown in the text, the existence and number of stationary state equilibria
is determined by the study of the number of intersection points of the graph of function R with

the horizontal line whose ordinate is � + �. As lim
k!0+

R(k) = +1, if lim
k!+1

n0f (f(k); T (f(k)) > 0

then at least one intersection point exists and and generically there is an odd number. If

lim
k!+1

n0f (f(k); T (f(k)) < 0 then an intersection point may not exist, but if it does, an even

number of intersection points will exist.

By considering the expressions in (17), the Jacobian matrix evaluated at a generic stationary

state equilibrium (c�; k�; L�) reads as:

J� := J(k�; c�; L�) =

264 � �1 J�13
J�21 0 J�23
J�31 0 J�33

375 ; (20)

where

J�13 := �n0L(f(k�); L�)k�; (21)

J�21 := �c
�((("� 2)f 0(k�)� k�f 00(k�))n0f (f(k�); L�)�n

00

f;f (f(k
�); L�) [f 0(k�)]

2
k�+ f 00(k�)); (22)

J�23 := �c
�("n0L(f(k

�); L�)� n00f;L(f(k�); L�)f 0(k�)k� � nL(f(k�); L�)); (23)

J�3;1 := n
0
f (f(k

�); L�)f 0(k�)L�; (24)

J�3;3 := n
0
L(f(k

�); L�)L�: (25)

The dynamic properties of the model around (c�; k�; L�) (local dynamics) are characterised by

the eigenvalues of (20), that is the roots of the characteristic polynomial

P (z) = z3 � Tr(J�)z2 + w(J�)z � det(J�); (26)

where

Tr(J�) = �+ J�33; (27)

det(J�) =

����� J�21 J�23
J�31 J�33

����� = L� �J�21n0L(f(k�); L�)� J�23n0f (f(k�); L�)f 0(k�)� ; (28)

are the trace and determinant of (20), whereas

w(J�) =

����� � �1
J�21 0

�����+
����� 0 J�23
0 J�33

�����+
����� � J�13
J�31 J�33

����� = J�21 + J�33 ��+ n0f (f(k�); L�)f 0(k�)k�� : (29)
11



We recall that in our model we have two state variables and one control variable. Then,

a stationary equilibrium is determinate if there exists a unique two-dimensional manifold on

which the dynamics converge to the steady state. This occurrence is guaranteed when the

Jacobian matrix (evaluated at the stationary state) exhibits one positive eigenvalue and two

negative (or negative real part) eigenvalues. Di¤erently, a stationary state equilibrium is locally

indeterminate if, for initial values of k and L close to the stationary state values of the same

variables, there exists a continuum of initial conditions of the control variable such that the

dynamics of the system converge to the stationary state equilibrium. This result occurs when

the Jacobian matrix (at the stationary state) has three negative real eigenvalues or one negative

real eigenvalue and a pair of conjugate complex eigenvalues with negative real part. A stationary

state equilibrium is completely unstable if no trajectory starting from initial conditions di¤erent

from the stationary state equilibrium converges towards the equilibrium. This result holds if

the Jacobian matrix evaluated at the stationary state has three positive (or positive real part)

eigenvalues. The stationary state equilibrium is saddlepoint unstable if the stable manifold is

one-dimensional. This con�guration is classi�ed as unstable because, given the initial values

of the two state variables, a level of the control variable allowing the generated trajectory to

converge towards the equilibrium does not generally exist. This result holds if the Jacobian

matrix evaluated at the stationary state has one negative real eigenvalue and two positive (real

or real part) eigenvalues.

With regard to the classi�cations introduced above the following lemmas hold (see Wirl,

1997):

Lemma 4 If det(J�) > 0 and w(J�) < 0 then the stationary state equilibrium is saddlepoint

stable.

Lemma 5 If det(J�) < 0 then the stationary state equilibrium is indeterminate or saddlepoint
unstable.

From Lemma 5 the following remark holds.

Remark 6 A necessary condition for indeterminacy of the stationary state equilibrium is

det(J�) < 0.

As we will show in the next sections, Lemma 4 and Lemma 5 will play a critical role in

de�ning the dynamic properties of the model under appropriate speci�cations of the functions

f , n and U . In addition, they allow us to state the following proposition:

Proposition 7 The stationary state equilibria with an odd index are saddlepoint stable or repul-
sive, whereas the stationary state equilibria with an even index are indeterminate or saddlepoint

unstable.

12



Proof. We show that the study of the sign of det(J�) can be reduced to the study of the

derivative of R as the graph of R intersects the horizontal line � + �, that is at the stationary

state values of k (k�). By applying the Implicit Function Theorem, from the equilibrium

condition (18) we get T 0(f(k)) = � n0f (f(k);L)

n0L(f(k);L)
. By direct calculations it follows that

dR(k)

dk

����
k=k�

= R0k(k
�) =

1

n0L(f(k
�); L�)

M;

and

det(J�) = �c�L�M;

where

M : = n0f (f(k
�); L�)(f 0(k�))2n00f;L(f(k

�); L�)k� + (30)

+n0L(f(k
�); L�)[(f 0(k�))2 � n00f (f 0(k�))2k� � n0f (f(k�); L�)(f 0(k�) + f 00(k�)k�)]:

Therefore, as n0L(f(k); L) < 0 we have that

sgn(det(J�)) = �sgn(R0k(k�)):

Consequently, from Proposition 3 every stationary state equilibrium with odd index, showing

R0k(k
�) < 0, is generically either saddlepoint stable or repulsive. Instead, every stationary

state equilibrium with even index, showing R0k(k
�) > 0, is generically either indeterminate or

saddlepoint unstable.

4 The CIES-CD economy

In the general context studied so far it is di¢ cult to interpret the conditions on the functions

to get stability outcomes and give simple and clear economic intuitions. This is even more

important in the light of the results stated in Propositions ?? and ??. In addition, though
it is not di¢ cult to give a simple and clear interpretation to the conditions that guarantee

the existence of a stationary state equilibrium, it is not possible to rule out the case of an

indeterminate equilibrium in the aforementioned analysis. Another relevant feature of the

model is the possibility to observe cycles in both the short term (transition) and long term

(steady state). In this regard, we can go one step further and study how the population

growth rate reacts to changes in both k and L as well as how these changes interact with

the dynamics of capital accumulation and the consumption path. In order to show these

results more clearly, we consider speci�c functional forms regarding preferences, technology

and population dynamics. In particular, we follow the common practice (Spataro and Fanti,

2011; Fanti and Gori, 2013; Gori et al., 2019) and use the Constant Inter-temporal Elasticity of

Substitution (CIES) formulation for the instantaneous utility function capturing the preferences

13



of the representative agent and the standard Cobb-Douglas (CD) technology on the production

side of the economy. Therefore, the instantaneous utility function takes the form:

U(c) =
c1�1=� � 1
1� 1=� ; (31)

where � > 0 (� 6= 1) is the constant elasticity of inter-temporal substitution. When � = 1, the
CIES utility function in (31) boils down to the standard log-utility U(c) = ln(c). Empirical

evidence (Hall, 1988; Jones and Schoonbroodt, 2010; Havranek et al., 2015) �nds that the

elasticity of substitution is consistently smaller than 1. The higher is �, the larger the decline

in the marginal utility of consumption following an increase in the consumption bundle c.

Then, an increase in the elasticity of substitution has the consequence of letting consumption

smoothing more desirable. On the side of production, we use the standard CD technology, so

that:

y = f(k) = k�; (32)

where 0 < � < 1 is the usual output elasticity of capital, whose value is around 1=3 (Krueger

1999; Gollin, 2002, Jones, 2004).

In the following three subsections we will consider three di¤erent speci�cations of the pop-

ulation growth rate n(f(k); L) as a function of population size, L, and income per capita, f(k)

to generalise as much as possible the main �ndings of the paper. In particular, considering the

negative relationship between population growth rate and population size still holds, we will

start by assuming the existence of a monotonic relationship between n(f(k); L) and f(k) (Sub-

section 4.1). In this case, the model accounts only for the positive e¤ect of economic growth on

the standard of living of the overall population. This allows to describe only the initial phase of

the demographic transition (i.e., the Malthusian phase), occurring prior to the quantity/quality

switch. The analysis will proceed further (Subsection 4.2) considering an inverted U-shaped

relationship between n(f(k); L) and f(k) to allow for the phases of demographic transition

subsequent to the Malthusian one to be included into the analysis. In these phases, the average

birth rate tends to become negatively related to income per capita due to the occurrence of the

quantity/quality switch, according to which individuals prefer to give birth to a lower number

of more educated children as their income rises departing from the subsistence level. In these

two cases, we assume �for reasons of analytical tractability �that n(f(k); L) is 1) an additively

separable function with respect to its arguments, f(k) and L, and 2) a linear function with

respect to L. Then, we consider the following formulation for the growth rate of population:

_L=L = a� bL+G (f(k)) ; (33)

where the �rst term a� bL describes the evolution of the population growth rate (in line with
Brida and Accinelli, 2007) neglecting however the role of the economic transition within the

demographic transition. Based on this term, population will approach to a=b in the long-term.

The second term G of the expression in (33) captures the relationship between the growth rate
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of population and income per capita. It will be speci�ed as a positive monotonic function of f(k)

in Subsection 4.1 and an inverted U-shaped function of f(k) in Subsection 4.2. The expression

in (33) combines two di¤erent approaches: the logistic population growth function and the idea

of Solow of letting population dynamics be endogenous to the system, i.e., dependent on a

variable explained in the model.

Unlike the previous assumptions, Subsection 4.3 relaxes the hypothesis of separability be-

tween f(k) and L, and considers the population growth rate being a non-linear function of f(k)

and L. This will be useful to show how the inter-relationship between the these two variables

can indeed generate cycles both in the evolution of population and the evolution of capital and

income.

4.1 The Malthusian case (saddle-path stability)

Let us now specify G(f(k)) as a monotonic increasing function of f(k). Speci�cally, we assume

that

G(f(k)) = �k�; � > 0: (34)

In this case, both the (unique) equilibrium and the dynamics of the model can be easily char-

acterised and the following proposition holds.

Proposition 8 The system admits a unique stationary state equilibrium, which is saddle point
stable.

Proof. By recalling Proposition 3, the number of stationary state equilibria are determined
by the intersections between the graph of function R, de�ned in (19), and the horizontal line

�+ �. As lim
k!0+

R(k) = +1 from Lemma 2 and

dR(k)

dk
= �2�k�

��
�� 1

2

�
(��k� � 1)

�
< 0;

the graph of R intersects once the horizontal line �+ � and the stationary state equilibrium is

then unique. In terms of stability, dR(k)
dk

< 0 implies that det(J�) > 0. In addition, by writing

the Jacobian matrix J� in terms of k� (using conditions given in the system (17)), we have that

J�21 = �
1

�

�
�((k�)� � �k�)

�
�(1 + �� ")(k�)��1 + (1� �)(k�)��2

��
< 0

and

J�33 = �(a+ �(k�)�) < 0:

Consequently, w(J�) < 0. Then, the result follows by Lemma 4.

Figure 1 shows a portion of the stable manifold, obtained through a shooting algorithm,

on which the trajectories converging to the unique stationary state equilibrium of the system
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(P �) develop. From an economic point of view, this characterisation allows us to show the

existence of a positive relationship between population and income, as in the Malthusian phase

of the demographic transition (Fanti and Manfredi, 2003), which, however, gives only a partial

description of the overall trend of economic and demographic variables. To overcome this gap,

in the next section we will introduce a more general formulation of G(f(k)) for a thorough

characterisation of the demographic transition allowing for a more accurate description of the

various phases of the overall process.

Figure 1. A portion of the stable manifold on which the trajectories converging to the

steady state P � occur. Parameter set: � = 0:18, � = 0:84, � = 0:13, " = 0:4, � = 0:3, � = 1:25,

a = 40:5, b = 0:5. Stationary state equilibrium: P � := (k�; c�; L�) = (0:257; 0:749; 82:315).

4.2 The non-monotonic case (multiple equilibria)

This section assumes the existence of a non-monotonic relationship (inverted U-shaped) between

the population growth rate and income per capita. In particular, function G now takes the

form:

G (f(k)) = �k�(x� k�); � > 0; x > 0; (35)

Eq. (35) reveals that G is a function that modi�es the natural long-term level of population a=b,

as dictated by the logistic law. In addition, the constant x determines the threshold (x=2)1=�

below (resp. above) which there exists positive (resp. negative) relationship between the growth

rate of population and the accumulation of capital. The thresholds (x=2)1=� and a=b contribute

to de�ne the carrying capacity of the system. In the literature, there are several points of view

around the concept of carrying capacity. In fact, it seems more appropriate to consider it not as

an exogenously given threshold but rather a variable determined by endogenous variables (see

Seidl and Tisdell, 1999). The rationale for the use of the formulation in (35) stems from the fact
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that the demo-economic transition was characterised by a �rst phase experiencing a dramatic

growth of both population and income per capita due essentially to technological changes (for

example, the use of new tools in agriculture) and improved hygiene practices (allowing to

reduce mortality substantially), the Malthusian epoch, followed by a phase of stagnation that

eventually ended up in the Modern Growth Regime, in which technological progress allowed

to greatly increase income and the quantity/quality switch contributed to reduce the demand

for the quantity of children and increase the demand for their education, eventually pushing

down birth and death rates and up the rate of income growth. The dynamic equation for the

evolution population that we propose here takes account of this fact. The expression in (33),

where G(f(k)) is speci�ed as in (35), accords with the historical pattern of the demographic

transition allowing for a non-monotonic behaviour resembling the Malthusian epoch (positive

relationship between total population and income, and high birth rate with death rates falling

rapidly) and the Modern Growth Regime (negative relationship between total population and

income, and low birth and death rates). Indeed, it may also be in line with the theoretical

speculation about stage �ve of the demographic transition implying birth rate declining and

low death rates (the birth rate declines to below-replacement levels becoming lower than the

death rate), causing negative growth rates in the overall population that starts then declining.

This could potentially be due to population ageing, the widespread use of contraception, the

high costs of raising children in several cities of the Western world and the phenomenon of

postponing the entry in the labour market because of education activities, implying delaying

giving birth to the �rst child (Lorentzen et al., 2008; Bhattacharya and Chakraborty, 2017;

Prettner and Strulik, 2017). However, the stage �ve trend is currently merely speculative and

greatly depends on population dynamics in Sub-Saharan Africa. Speculations in this direction

may show a di¤erent stage �ve implying increasing birth rates coexisting with low death rates

eventually producing a further sharp increase in total population worldwide. However, this

view could support the idea that fertility rates should rise also at very high levels of economic

development, which is at odds with the main view of the demographic literature (e.g., Gaddy,

2021) unless considering the catastrophic e¤ects of infectious diseases, with speci�c regard to the

fertility reversal e¤ect of HIV/AIDS in SSA (Kalemli-Ozcan and Turan, 2011; Kalemli-Ozcan,

2012; Gori et al., 2020).

By using the versions of utility function, production function and population dynamics as

expressed in (31), (32) and (33) �where G(f(k)) is speci�ed in (35) �, respectively, we obtain

the following dynamic system:8>><>>:
�
k = k� � �k � c� k [a� bL+ �k�(x� k�)]
�
c = �c f("� 1) [a� bL+ �k�(x� k�)]� �� � + �k��1 � [��k�(x� k�)� ��k2�)]g
�
L = L [a� bL+ �k�(x� k�)]

:

(36)

Given the expression in (35), it is not possible to state in explicit form the non-trivial
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stationary state equilibria of the system, i.e. those with positive values of L and c.13 However,

we are able to characterise the number of stationary state equilibria by concentrating on the

second equation in (36) having previously used the third one, i.e. a � bL + �k�(x � k�) = 0.
This is because once one has obtained the stationary state values of k, the corresponding

stationary state values of L and c are respectively given by L� = [a+� (k�)� (x� (k�)�)]=b and
c� = (k�)� � �k�. Then, the values of k� are solutions of the following equation:

��� � + k��1��
�
�k��(x� k�)� ��k2�)

�
= 0: (37)

It is important to note that the classical result of uniqueness of the stationary state equilibrium

of the Ramsey model does not hold when one augments the setting by including a demograph-

ically founded formulation for the dynamics of population, i.e. when _L=L also depends on

income per capita in a way compatible with the trend of the demographic transition. In fact,

for every � > 0, the system produces zero or two equilibria. This result actually changes the

perspective we had until now of the Ramsey set up and it is independent of the degree of

altruism of individuals. This is because this modi�ed version is able to explain the coexistence

of countries with high accumulation of capital and countries with low accumulation of capital.

These �ndings are summarised in the following proposition.

Proposition 9 In this modi�ed version of the Ramsey model, there exist two thresholds �
and �, with � < �, such that for every 0 < � < � there exist two stationary state equilibria

P �1 := (k�1; c
�
1; L

�
1) and P

�
2 := (k�2; c

�
2; L

�
2), for every � < � < � there exist no equilibria and

for every � > � there exist two stationary state equilibria P �1 and P
�
2 . We denote with P

�
1 the

stationary point with the lowest values of the stock of capital.

Proof. The proof follows from the characterisation of the shape of the graph of the function

de�ned by the equation:

h(k) = 2��k2�+1 � ��xk�+1 + �k� � �k � �k: (38)

Results of Proposition 9 are qualitatively illustrated in Figure 2.

13The case c� = 0 is ruled out by the transversality condition.
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Figure 2. Existence of multiple equilibria depending on �.

Given the result on the number of stationary state equilibria it is important to study their

stability properties, that is the possibility for the economic system to approach or to move away

from them. The following proposition aims at clarifying this problem.

Proposition 10 Fixed point P �1 can be saddlepoint stable or unstable. Fixed point P
�
2 can be

saddlepoint unstable or locally indeterminate.

Proof. These results directly follow by the general statement in Proposition 7.
Proposition 10 shows that the stationary state equilibria P �1 and P

�
2 stated in Proposition

9 can indeed be reached by the economic system. This opens the route for the Ramsey model

to explain the existence of di¤erent development scenarios with di¤erent trajectories of capital

accumulation and population. In order to illustrate these results, we consider the following

parameter set: � = 0:18, � = 0:84, � = 0:13, " = 0:4, � = 0:3, � = 1:25, a = 40:5, b = 0:5 and

x = 0:7. There exist two stationary state equilibria, P �1 (saddlepoint stable) and P
�
2 (locally

indeterminate). Therefore, the non-linear relationship between population growth rate and

capital accumulation as that given in the expression in (35) allows for the existence of trajecto-

ries converging towards two distinct long-term scenarios characterised by di¤erent development

paths: one with by high population size, low capital accumulation and consumption per capita

(P �1 ), explaining a development trap, and the other with by a lower population size and larger

values of capital accumulation consumption per capita (P �2 ), explaining a development trajec-

tory. This can just happen also to two economies starting from the same initial conditions of

the state variables (population and capital). Observing di¤erent long-term outcomes starting

from identical economic conditions is referred to global indeterminacy (Figure 3). Ending up

in one or another scenario is a matter of individual consumption decisions. This make expec-

tations (namely, the coordination of individuals) important for obtaining a long-term outcome,

which is therefore not history-dependent. Nonetheless, the convergence towards P �1 seems quite

unlikely as there exists one and only one value of initial value of c (c10) driving the economy to

P �1 . We note, however, that there is an in�nite number of c0 allowing for an in�nite number of
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trajectories leading to P �2 , each one giving rise to (and thus characterised by) a di¤erent devel-

opment path (to this purpose Figure 3 depicts only �ve initial values of c0 each with its own

trajectory). Observing di¤erent transition outcomes leading to the same long-term stationary

state equilibrium is referred to local indeterminacy.

Finally, we pinpoint that the expression of the growth rate of population n(f(k); L) adopted

in this section allows to characterise non-permanent cycles of the trajectories convergent towards

to the long-term development scenario P �2 (Figure 4).

Figure 3. Global indeterminacy. Starting from the same initial conditions k0 = 0:455

and L0 = 104:843, an in�nity of initial choices on c0 lead to the indeterminate stationary

state equilibrium P �2 , while there exists a unique choices (c
1
0 = 0:833) leading to the saddle

P �1 . Parameter set: � = 0:18, � = 0:84, � = 0:13, " = 0:4, � = 0:3, � = 1:25, a = 40:5,

b = 0:5 and x = 0:7. Stationary state equilibria: P �1 := (k
�
1; c

�
1; L

�
1) = (0:594; 0:833; 80:677) and

P �2 := (k
�
2; c

�
2; L

�
2) = (4:372; 2:925; 79:676).

(a) (b)
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Figure 4. Local indeterminacy scenario in terms of capital (Panel A) and population size
(Panel B).

4.3 The non-linear case (permanent cycles)

The previous sections considered speci�c functional forms for the population growth rate

n(f(k); L) to capture additive separability of n(f(k); L) with respect to its arguments, that

is f(k) and L. This section relaxes this assumption and introduces a non-linear speci�cation

of n(f(k); L) with respect to f(k) and L by assuming the following formulation:

n(f(k); L) = 
 arctan [a� bL+ �k�(x� k�)] : (39)

From a qualitative point of view, the expression in (39) describes the same reactions of the

population growth rate as those described in Subsection 4.2 when f(k) and L change. This

means that, given the levels of f(k) and L, the sign of _L=L coincides with the sign of _L=L

as speci�ed in the previous section (indeed, the arctan function is an increasing monotonic

transformation of the argument). The nonlinearity in (39) allows us to greatly enrich the

dynamics of the system. In this regard, in addition to the phenomena of local and global

indeterminacy, the new system is able to generate oscillatory dynamics in the two state variables

k and L and the control variable c. Starting from a situation analogous to the one described in

the previous section with one locally indeterminate stationary state equilibrium and the other

determined stationary state equilibrium, an increase in 
 let the indeterminate equilibrium

undergo a super critical Hopf bifurcation. Increasing 
 further gives rise to an attracting limit

cycle, as shown in Figure 5.

Figure 5. Three-dimensional phase portrait in the space (k; c; L) showing: (i) the trajectory
converging to P �1 starting from the initial condition (k0; c10; L0) = (0:346; 0:565; 3:178), and

(ii) a trajectory converging to a limit cycle � around P �2 starting from the initial condition
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(k0; c
2
0; L0) = (0:346; 0:452; 3:178). Economic and demographic variables permanently �uctuate

around P �2 . Parameter set: � = 0:54, � = 1, 
 = 1:5672, � = 0:7, " = 0:4, � = 0:3, � = 7:04, a =

0:37, b = 0:2 and x = 1:1. Stationary state equilibria: P �1 := (k
�
1; c

�
1; L

�
1) = (0:221; 0:288; 3:305)

and P �2 := (k
�
2; c

�
2; L

�
2) = (0:673; 0:336; 3:03).

5 Conclusions

"The concept of development is by no means unproblematic. The di¤erent problems underlying

the concept have become clearer over the years on the basis of conceptual discussions as well

as from insights emerging from empirical work" (Sen, 1988, p. 23). The Ramsey growth model

is a classical set up where studying problems of economic growth. In its basic formulation

it does not allow, however, getting insights about economic development, as there exists a

unique saddle path the economy may follow to approach the stationary state equilibrium, that

is countries starting with a low stock of capital grow faster than countries starting with a high

stock of capital but eventually they all will end up in the same stationary state. This is the

result formerly based on the work of Ramsey (1928), who considered a (benevolent) central

planner aiming at maximising the consumers�stream of consumption bundle over an in�nite

time horizon. Only some decades later, was the model extended by Cass (1965) and Koopmans

(1965) to a decentralised competitive market context, showing that the market solution is

Pareto optimal. The concept of economic growth is substantially di¤erent from the concept of

economic development. The former is essentially a phenomenon of market productivity related

to the change in GDP per person over time. The latter has a deeper meaning and relates

economic, institutional, demographic and environmental issues amongst them. To explain

economic development, therefore, it is necessary to include at least demographic variables in

an economic model, which should also be able to produce a multiplicity of long-term stationary

state equilibria. In this way, a model may be prone to explain a long-term (or very long-term)

phenomenon such as the demographic transition by which the change in income per capita

is accompanied by a dramatic change in birth and death rates, according to the well-known

non-monotonic historical pattern.

Amongst the several extensions of the Ramsey model studied by scholars over time, only

a few of them has dealt with demographic changes (Canton and Meijdam, 1997; Brida and

Accinelli, 2007; Marsiglio and La Torre, 2012). The basic Ramsey model, whose formulation

was also popularised by Barro and Sala-i-Martin (2003) in their economic growth textbook (us-

ing essentially the Benthamite criterion of total utilitarianism), does generally account for the

non-realistic assumption of exponential growth by which population (alternatively, the labour

force in a full employment context) grows with no upper bounds at a constant rate. Unfor-

tunately, this is at odds with the empirical evidence. A �rst solution was given by including

the logistic population growth function, which is a law that can more accurately describe the
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historical (non-monotonic) behaviour of birth and death rates. However, also this solution is

not completely satisfying as the demo-economic transition is not (entirely) characterised by

the trend in population variables but it does also incorporate the trend in income, allowing to

range from the Malthusian epoch (positive relationship between total population and income)

to the modern regime of growth (negative relationship between total population and income)

and beyond.

To overcome this (surprising) lacuna, this work has included a demographically founded for-

mulation for the time-varying population process within the standard Ramsey set up. As the

demographic transition is a long-term macro phenomenon, the fertility rate has been assumed

as an exogenous variable (i.e., a variable not dictated by economic constraints and incentives).

This apparent �aw is actually in line with the growth literature with exogenous fertility and

aims at emphasising that reproduction is a biological phenomenon not necessarily driven by

the behaviour of rational agents. However, the whole demographic transition pattern should

necessarily be endogenous to the model as it depends - amongst other things - on the eco-

nomic activity. Then, the growth rate of population comprises two wings: the current level of

population (that evolves according to the logistic law), and a non-monotonic dependency on

income per person (following the well-known idea of Solow, 1956). Then, the Ramsey model

becomes able to produce multiple (determinate or indeterminate) stationary states and explain

the reasons why some countries develop whereas others remain entrapped in poverty. From

a theoretical perspective, the results of this work complement those of the Uni�ed Growth

Theory.
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