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We investigate bipartite entanglement in spin-1/2 systems on a generic lattice. For states that are an equal
superposition of elements of a groupG of spin flips acting on the fully polarized stateu0l^n, we find that the
von Neumann entropy depends only on the boundary between the two subsystemsA andB. These states are
stabilized by the groupG. A physical realization of such states is given by the ground state manifold of the
Kitaev’s model on a Riemann surface of genusg. For a square lattice, we find that the entropy of entanglement
is bounded from above and below by functions linear in the perimeter of the subsystemA and is equal to the
perimetersup to an additive constantd whenA is convex. The entropy of entanglement is shown to be related
to the topological order of this model. Finally, we find that some of the ground states are absolutely entangled,
i.e., no partition has zero entanglement. We also provide several examples for the square lattice.
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I. INTRODUCTION

Entanglement emerged recently as a quintessential con-
cept in several fields of physics. In quantum information
theory sQITd entanglement is asine qua nonresource for
various quantum processing and quantum communications
protocols, like teleportation, dense coding, cryptography, and
is crucial for the exponential speedup of several quantum
algorithms f1g. The same concept is also essential for our
understanding of several solid-state systems. Examples are
the entangled ground state for two highly nonclassical sys-
tems: superconductivitysthe BCS statef2,3gd and fractional
quantum Hall effectsthe Laughlin statef4gd. Another mani-
festation of the ubiquity of entanglement is found in the
study of quantum phase transitions, where it is believed to be
responsible for the appearance of long-range correlationsf5g.

Spin systems are also a distinguished playground for the
study of bipartite entanglement and its scaling with the sub-
system size. It has been shown that systems in which en-
tanglement scales less than logarithmic can be efficiently
simulated on a classical computerf6g. Hence the amount of
entanglement present in the system and its scaling is crucial
for efficient quantum algorithms, i.e., problems that are clas-
sically intractable. In the case of a critical spin chain inXY
and Heisenberg models, the entanglement between a spin
block of size L and the rest of the chain scales likeS
, log2 L and thus this system can be simulated classically
f7g. Several groups have analyzed recently the entanglement
properties of various spin systemsf8g, including
1-dimensional lattice models of theXY f7,9g, Heisenbergf7g
and Anderson modelf10g.

In this article we study bipartite entanglement in general
spin systems extending our previous results found for the
ground state of the Kitaev’s modelf11g. The relevance of this
model stems from the fact that it was the first example of the
new subject of topological quantum computationf12,13g and
because it featurestopological orderf14g. This is a type of
quantum order which describes states of matter that are not
associated to symmetries, like the fractional quantum Hall
liquids. We show that for a large class of statesse.g., states

stabilized by groups of spin flips, which include the ground
state of the Kitaev modeld the von Neumann entropy depends
only on the degrees of freedom belonging to theboundaryof
the two subsystems. Hence, our result echoes the holo-
graphic principlef15g: the geometric entropy of a regionA
depends only on the degrees of freedom of theboundaryof
A, and not of thebulk.

The structure of the paper is the following. In Sec. II we
expose the general formalism for bipartite entanglement in
spin systems and we apply it to states that are stabilized by
groups of spin flips. For spins on a lattice we provide a
geometrical interpretation of these results. In Sec. III we ex-
emplify this general framework for the Kitaev’s modelf13g
and we apply it to calculate the ground state entanglement.
We calculate analytically the entropy of entanglement for
several partitions of the lattice, like spin chains and spin
ladders in Sec. IV. We then conclude in Sec. V.

II. ENTANGLEMENT IN A SPIN SYSTEM

A. The reduced density matrix

In this section we find a general expression for the re-
duced density matrix of an arbitrary spin system and we give
a necessary and sufficient condition for its diagonality. These
results specialize in a very interesting way to those states,
like the Kitaev’s ground statesuji jl ssee Sec. IIId that can be
written as an equal superposition of all the elements in a
group acting on the reference stateu0l. To begin with we do
not assume any particular geometry or dimensionality of the
spin system.

Given a system ofn spins-1/2, its Hilbert space has the
tensor product structureH=H1

^n, whereH1=spanhu0l , u1lj is
the Hilbert space of a single spin. In the usual computational
basis we define a reference basis vector

u0l ; u0l1 ^ … ^ u0ln, s1d

i.e., all spins up. LetN=N1
^n be the Abelian group of all spin

flips, whereN1=h1 ,sxj acts on a single spin. Obviously dim
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H= uNu=2n and any vector of the computational basis can be
written as uil=gu0l, for someg[N and i =0…2n−1 sas a
binary expansiond. Moreover, all elements satisfyg2=1,
g[N. A generic state in the Hilbert space can be written as
the superposition of all the possible spin flips on this system,
namely

ucl = o
g[N

asgdgu0l, s2d

with asgd[C, oguasgdu2=1.
Consider now the statesucl that can be written as a su-

perposition of elements obtained only from a subgroup of
spin flipsG#N acting onu0l. Then the corresponding den-
sity matrix is

r = uclkcu = o
g,g8[G#N

asgdasg8dgu0lk0ug8

= o
g,g̃[G#N

asgdasgg̃dgu0lk0ugg̃ s3d

using the substitutiong8=gg̃ in the last equation.
We now compute the reduced density matrix of an arbi-

trary subsystemA of spins, hence tracing out over all the
spins in the complement subsystemB. Any elementg[G
has a tensor product structureg=gA ^ gB, with gA,B[N act-
ing only onA and respectivelyB subsystems. It is important
to note that in generalgA,B¹G. Writing u0l;u0Alu0Bl, we
obtain

rA = o
g,g̃[G#N

asgdasgg̃dgAu0Alk0AugAg̃A

3 k0BugBg̃BgBu0Bl, s4d

whereg̃= g̃A ^ g̃B.
We introduce now two subgroups ofG acting trivially on

the subsystemsA and respectivelyB:

GA ; hg [ Gug = gA ^ 1Bj, s5d

GB ; hg [ Gug = 1A ^ gBj. s6d

We denote their order bydA,B;uGA,Bu. With these notations,
the only nonzero elements ink0BugBg̃BgBu0Bl satisfy g̃B=1B

ssincegB
2 =1Bd and this implies thatg̃[GA. We finally obtain

rA = o
g[G,g̃[GA

asgdasgg̃dgAu0Alk0AugAg̃A. s7d

In generalrA will contain off-diagonal terms. The follow-
ing lemma gives the necessary and sufficient conditions to
have a diagonalrA sin the computational basisd.

Lemma 1. The following statements are equivalent:sad rA
is diagonal;sbd no g[G, gÞ1 acts trivially onB, i.e., GA
=h1j; scd no elementg in G can be decomposed as the prod-
uct g=g1·g2 with both g1, g2 nontrivial and inGA, GB re-
spectively.

Proof. sad⇔ sbd: from Eq. s7d rA is diagonal iff g̃A=1A,
henceGA=h1j anddA=1.

sbd⇒ scd: SinceGA contains only the identity, there is no
g1=gA ^ 1B different from the identity and thus there is no
g=g1·g2 with nontrivial g1,2[GA,B, which proves the suffi-

cient condition. We prove the necessary conditionsbd⇐ scd
ex absurdo. If there were a nontrivialg[G such thatg
=gA ^ 1B, then we can writeg=g1·g2 with g1=g[GA and
g2=1[GB, contradicting the hypothesis. h

B. Entropy of entanglement for a stabilized space

We are interested to quantify the entanglement present in
our spin system. Although there is no known entanglement
measure for a general multiqubit system, we can study bipar-
tite entanglement of a system described by a pure density
matrix rAB. In this case the von Neumann entropyS is the
unique measure of bipartite entanglement:

S; − TrsrA log2 rAd, s8d

whererA=TrBsrABd is the reduced density matrix of the sub-
systemA. The von Neumann entropy of a density matrixr is
bounded by 0øSø log2 d, whered is the dimension of the
Hilbert space ofr. The bound is saturated iffr=1 /d, i.e., the
system is in the totally mixed state. For a bipartite system
sA,Bd of n spins we can readily obtain a simple bound for
the entropy fusing the symmetryS=−TrBsrA log2 rAd=
−TrAsrB log2 rBdg:

0 ø Sø minsnA,n − nAd, s9d

where nA, n−nA are the number of spins in theA and B
partition, respectively.

We now apply the formalism of Sec. II A to states of a
stabilized space. Let hUsj be a set of mutually commuting
operators, calledstabilizer operators. A stateucl[H is sta-
bilized if is invariant under the action of the stabilizer opera-
tors: Usucl= ucl, ∀s. Let G be the group generated by the
stabilizer operatorsUs. The spaceL stabilized byG is L
=spanhucl :Usucl= uclj.

Suppose now the system is in a state which is an equal
superposition of all elementsg[G acting onu0l, i.e., asgd
= uGu−1/2 for all g. This is obviously a stabilized state because
gucl= uGu−1/2og8[Ggg8u0l= ucl, ∀g[G. However, there are
states in the stabilized space which are not an equal super-
position of all elementsg[G acting onu0l. Any superposi-
tion of the form

uGu−1/2 o
h[G8,g[G

ashdhgu0l, s10d

whereG8 is a subset ofN, is still stabilized byG.
From now on we will focus on states in the stabilized

space that are an equal superposition of the elements ofG
acting on the reference stateu0l. The reduced density matrix
for an equal superposition state is

rA = uGu−1 o
g[G,g̃[GA

gAu0Alk0AugAg̃A. s11d

In this case we obtain an analytical formula for the entropyS
depending only on the boundary of the partitionsA,Bd.

Define now the quotientG/GB and let
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f =
uGu
uGBu

=
uGu
dB

s12d

be its order. Notice thatf is the number of elements inG that
act freely onA. If there arel independent generators ofG
acting onA, it turns out thatf =2l. Define the groupGAB
;G/ sGA·GBd. We haveuGABu= uGu /dAdB.

In the remaining of this section we generalize to an arbi-
trary group of spin flips the results presented inf11g. We can
prove the following result.

Theorem 1. Consider a partitionsA,Bd of the spin system,
and suppose the system is in an equal superposition of all the
group elementsg[G#N, acting on the reference stateu0l.
The entropy of entanglement isS=log2sf /dAd=log2uGu
−log2sdAdBd=log2uGABu.

Proof. We first compute the reduced density matrixrA.
Consider two elementsg=gA ^ gB and g8=gA8 ^ gB8 in G.
Then gA8 =gA if and only if g8=hg, with h[GB, and since
f−1=dB/ uGu, from Eq. s11d we obtain

rA = f−1 o
g[G/GB

g̃[GA

gAu0Alk0AugAg̃A. s13d

Let us compute the square of the reduced density matrix:

rA
2 = f−2 o

g,g8[G/GB

g̃,g̃8[GA

gAu0Alk0AugAg̃AgA8 u0Alk0AugA8g̃A8

= f−2 o
g[G/GB

g̃,g̃8[GA

gAu0Alk0AugAg̃Ag̃A8

= f−2dA o
g[G/GB

g̃[GA

gAu0Alk0AugAg̃A = f−1dArA. s14d

Expanding the logarithm in Taylor series we obtain log2 rA
=rAfdA

−1 log2sdA/ fd. Then the entropy of entanglement is

S= log2sfdA
−1d = log2

uGu
dAdB

= log2uGABu s15d

concluding the proof. h
Notice that if G=N, then N=NA·NB and the entropy is

zero as expected, since in this case the state is an equal
superposition of all the basis vectors in the Hilbert space.

Equations15d generalizes the result of Ref.f11g sobtained
for the group of star operators in the Kitaev’s modelf13gd to
an arbitrary groupG of spin flips. We can interpret Eq.s15d
as follows. The state of a spin system contains some infor-
mation. If we have a bipartitionsA,Bd of the system, we can
consider the information containedexclusivelyin A andB as
the information contained in thebulk of the two subsystems.
If the system is in a state which is an equal superposition of
the elements of asstabilizerd groupG of spin flips acting on
u0l, the bulk information is contained inGA and GB. The
order of this groups amounts for the “disorder” in the bulk of
the two subsystems. Then Eq.s15d states that the entropy of
entanglementS is given by the difference between the total
disorder and the disorder in the bulk.

Similar results for the entropy of stabilizer statessi.e., for
a one-dimensional stabilized spaced have been obtained in
f16g.

C. Spins on a lattice and the entropic boundary law

The spin systems hitherto considered have no geometrical
structure and hence we have no notion of what theboundary
of the two subsystems is. By giving a lattice structure to the
system, we can find a geometrical interpretation of Eq.s15d
as the number of degrees of freedom living on the boundary
between the subsystemsA andB.

Consider anr-dimensional lattice withn links and a spin-
1/2 attached to each linksthe lattice does not need to be
regulard. Let np be the number of plaquettes in the lattice.
The Hilbert space is as beforeH=H1

^n. Define the stabilizer
operators

Up = p
j[]p

s j
x s16d

acting on the spins belonging to the boundary of any
plaquettep. The stabilized space is

L = hucl [ H:Upucl = ucl, ∀ pj. s17d

Let G be the group generated byUp, hencegL=L for any
g[G. If all Up are independent, thenG is generated by the
set of all thenp stabilizer operators. If there arenc constraints
on the sethUpj, then the minimal subset generatingG con-
tainsnp−nc elements and the order ofG is uGu=2np−nc.

Consider now the stabilized state

ujl = uGu−1/2o
g[G

gu0l. s18d

From theorem 1, the entropy of entanglement for a stateujl
corresponding to a partitionsA,Bd of the lattice is S
=log2sfdA

−1d=log2suGu /dAdBd=log2uGABu. For this system
log2 dAsBd is the number of plaquette operatorsUp acting ex-
clusively onAsBd. Then S is the numbernAB of plaquettes
acting on both the subsystemsA andB.

Hence we can give a geometrical interpretation of Eq.
s15d. For an r-dimensional lattice, the entropy is equal to
numbernAB of degrees of freedom living on the boundary
between the two subsystemsA, B.

III. THE KITAEV’S MODEL

A. General formalism

So far the stabilized states are just some states in a Hilbert
space and they do not have any physical meaning. Now we
will analyze a case in which the stabilized states are vectors
in the ground state manifold of a particular lattice model
constructed by Kitaevf13g. This is a 2-dimensional exact
solvable spin system on a lattice. Its relevance stems from
the fact that it was the first example of the new subject of
topological quantum computationf12,13g and because it fea-
turestopological orderf14g.

Consider a system ofn spins on asirregulard lattice on a
Riemann surface of genusg. Again, the Hilbert space isH
=H1

^n and dimH=2n.

BIPARTITE ENTANGLEMENT AND ENTROPIC… PHYSICAL REVIEW A 71, 022315s2005d

022315-3



The stabilizer operators are the plaquettes

Bp = p
j[]p

s j
z s19d

sj labels all the spins belonging to the boundary of a
plaquettepd and the stars

As = p
j[s

s j
x, s20d

where j labels all the spins sharing a common vertexs ssee
Fig. 1d. On a Riemann surface of genusg the number of
sites, linkssspinsd and plaquettessns, n andnp, respectivelyd
obey the Euler’s formula:ns−n+np=2s1−gd. By imposing
also ns=np, it follows ns=np=n/2+1−g. We have the fol-
lowing two constraints on the stars and plaquettes:

p
∀s

As = 1 = p
∀p

Bp s21d

so there are onlynp−1, ns−1 independent plaquettes and
stars.

Let G be the group generated by then−2g independent
stabilizer operatorshAs,Bpj. We define the protected sub-
space:

L = hucl [ H, Asucl = Bpucl = uclj s22d

so the states in this set are stabilized byG.
The Hamiltonian of the model is

H = − o
s

As − o
p

Bp. s23d

The model is exactly solvable because all the stabilizer op-
erators commute with each otherssince they share either 0 or
2 linksd

fAs,Bpg = 0, ∀ s,p. s24d

Its ground state is the protected subspace manifoldL.

We now show that the ground state manifoldL for a
genus-g Riemann surface is 22g-fold degenerate. Since all the
stars and plaquettes commute, we can labelns+np−2=n
−2g spins out ofn and thus the dimension of the ground
state is

dim L = 2n−sn−2gd = 22g. s25d

Hence the system exhibitstopological orderf14g.
Another way to see the same thing is to notice that this

model features string condensationf14g. Let gz sgxd be a
curve connecting sites along the links of the latticesdual
latticed as in Fig. 2sfor a square latticed. We can define two
types of string operatorsssimply called “strings”d: sid a
z-string is the product of allsz operators along the links
belonging to a curvegz running on the lattice;sii d anx-string
is the product of allsx operators along the links crossed by a
curvegx shence running on the dual latticed. The action of an
x-string is to flip all the spinssi.e., linksd intersected by the
curvegx.

More formally, a string operator is

Wafgag = p
j[ga

s j
a, a = x,z. s26d

By j [gzs j [gxd we mean all the links belonging toscrossed
byd the string gz sgxd. A string-net is a product of string
operators.

Closed strings of both types commute with the Hamil-
tonian s23d,

FIG. 1. A system of spins on an 2D irregular lattice; a typical
plaquette and star are denoted byp and s, respectively. The sub-
systemA contains all the spins within the thick boundary. The op-
eratorsBp for the plaquettes situated inside the boundary act only
on the spins of the subsystemA. The Bp of the outside plaquettes
that share a link with the boundary act on both subsystemsA andB
and there is one such plaquette operator for each link in the bound-
ary of A. Hence the entropy isS=L]A−nc snc is the number of
constraints; see textd. FIG. 2. sColor onlined A k3k square lattice of the torus; oppo-

site boundaries are identified. The end of an openz string anticom-
mutes with the star based at the site where the string is. Similarly,
the end of an openx string anticommutes with the plaquette on the
square where it ends. The figure also shows that a star on the lattice
corresponds to a plaquette in the dual lattice and vice versa.
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†Wafgag,H‡ = 0, a = x,z, s27d

wherega is a loop on the lattice or on the dual lattice. This is
because a closed string has either 0 or 2 links in common
with any plaquette or star. However, open strings do not
commute with the Hamiltonian. More precisely, open
z-strings sx-stringsd anticommute, with starsplaquetted op-
erators with which they sharescrossd a single linkssee Fig.
2d.

Equations27d implies that there are closed strings in the
ground state of the Hamiltonians23d. We say that we have
closed string condensationf14g in the sense that closed
strings are present in the ground state and that they are not
made of smaller pieces that are still present in the ground
state. Smaller pieces are indeed open strings and they pay

energy. The groupG̃ generated by the closed strings is the
group of all the closed string-nets ofx-andz-type.

On a genus-g Riemann surfacesg.0d there are contract-
ible and noncontractible loops. A loop on the lattice is con-
tractible if is homotopic to the boundary of a plaquette. It
turns out that all the string operators based on contractible
loops are made of products of stars and plaquettes. This also
implies that string operators based on contractible loops have
a trivial effect on the ground stateujl[L:

WafGgujl = p
j[G

s j
aujl = ujl, s28d

where G is a contractible loop on the latticesor the dual
latticed.

Consider now the noncontractible loops. It is enough to
consider only string operators associated to noncontractible
loops with winding number 1.fSince all string operators
square to the identity, string operators associated to non-
contractible loops with winding numbern are equalsmodulo
a product of starsd to the ones with winding numbern mod
2.g The associated string operators cannot be written in terms
of products of star and plaquette operators and hence they
have a nontrivial action on the states. But since they still
commute with the Hamiltonian, they map ground states into
ground states. The algebraL sLd of linear operators acting on
the ground state manifoldL is the algebra of the closed
string operators ofx- and z-type. However, the contractible
string operators have a trivial effect onL, so only the non-
contractible ones matter. Consider the string operators asso-
ciated to the noncontractible loopshgi , i =1,… ,4gj
;hg1

x ,… ,g2g
x ,g2g+1

z ,… ,g4g
z j; the loopshg1

x ,… ,g2g
x j generate

the homotopy group of the Riemann surface. We label the
loops such thatgi

x and gi+2g
z intersect, withi =1,… ,2g; see

Fig. 2:

wi ; Wafgig, i = 1,…,4g, s29d

wherea=x for i =1,… ,2g andz otherwise. We refer towi,
i =1,… ,2g as “ladder” operators since they flip all the spins
along a ladder going around the non contractible loops of the
surface. The pairswi ,wi+2gd has the same commutation rela-
tions asssx,szd and generates a 4-dimensional algebra. We
see that for anyi =1,… ,2g we have a copy of the same
algebra. Then we have 2g mutually commuting copies of the
same algebrasx,sz and henceL sLd is 42g-dimensional:

wiwi+2g = − wi+2gwi, i = 1,…,2g,

fwi,wjg = 0, j Þ i ± 2g, i = 1,…,4g. s30d

Therefore the ground state manifoldL is 22g-fold degenerate.
This degeneracy is the sign of the topological order of this
system f14g, and is robust against arbitrary perturbations
f13,14g. Topological order is the notion needed to describe
those states of the matter like fractional quantum Hall liquids
f17g which are not explained by the Landau theory of sym-
metry breaking with local order parametersf18g.

We want now to give an explicit expression for the states
in the ground state manifold. LetA be the group generated
by the starsAs. Let T be the group generated by the 2g ladder
operators ofx-type wi, with i =1,… ,2g. Then the elements
of T are of the form

wssd = p
j=1

2g

wj
sj , s31d

where s=ss1,… ,s2gd and sj =0, 1, which implies thatuTu
=22g. We will call N the group of all closed string-nets of the
x-type:

N = A ·T. s32d

For a generic lattice withns stars, n spins and np
plaquettes, the number of independent star operators isns
−1=n−np+1−2g and hence the order ofA is uAu=2ns−1

=2n−np+1−2g. The order ofN is uNu=2ns−1+2g=2n−np+1.
Since on the lattice any loop intersects the boundary of a

plaquette in an even number of points, it follows immedi-
ately that the stateswssdu0l are stabilized by the plaquettes
Bp. Then we have 22g states in the stabilized subspaceL
given by

ujssdl = uAu−1/2wssd o
g[A

gu0l = wssdujs0dl, s33d

which are mutually orthogonal by construction. This shows
again that the ground state manifold is 22g degenerate. Each
of these states is an equal superposition of the elements inA
and so it falls under the hypothesis of theorem 1. Notice that
an arbitrary superposition of theujssdl’s is still a ground
state, but obviously it is not an equal superposition of the
elements of a group:

ujl = o
g[A,wssd[T

assdwssdgu0l, s34d

so L=spanhujssdlj=spanhTujs0dlj.
We now prove that all the basis statesujssdl have the same

entanglement.
Proposition 1.For a given lattice partitionsA,Bd all the

statesujssdl have the same entropy of entanglementS.
Proof. We can decompose the ladder operators aswssd

;wAssd ^ wBssd, wherewAsBdssd acts only on theA sBd sub-
system. From the circular property of the trace andw2ssd
=1, w†ssd=wssd, s=0,… ,22g−1, it follows immediately that
all the basis statesujssdl have isospectral reduced density
matrices. Sinceujssdl=wssdujs0dl, then
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rAfjssdg = TrB„ujssdlkjssdu… = TrB„wssdujs0dlkjs0duwssd…

= wAssdTrB„ujs0dlkjs0du…wAssd.

Therefore

S„ujssdl… = S„ujs0dl…, ∀ s= 0…22g − 1 s35d

and all basis states have the same entropy. h
Let us now compute the entropy of entanglement for a

stateujssdl. The number of closed string-nets acting exclu-
sively on AsBd is dA,B=2SA,B, whereSA,B is the number of
independent star operators acting exclusively on the sub-
systemAsBd. From theorem 1 we obtain

S= log2
2ns−1

dAdB
= ns − 1 −SA − SB = n − np + 1 − 2g − SA − SB.

s36d

We notice that thetopological orderin this model manifests
itself in both the degeneracy and the entanglement in the
ground state. This suggests the very appealing possibility
that entanglement could detect topological order.

The total number of lattice sites isns=SA+SB+SAB=n
−np+2−2g, where SAB is the number of independent star
operators acting onboth subsystemsA andB. We obtain

S= SAB − 1. s37d

If we choose the partitions in a convenient way, we can give
a clear geometrical picture of the formulas37d. Let A be the
set of all spins inside or crossed by a contractible loop in the
dual latticessee Fig. 3d. The spins intersected by the loop are
the boundaryof A, while the ones inside are thebulk. If the
loop is convex, the number of spinsnL in the perimeterL of
A is nL=SAB ssee Fig. 3d. Therefore

S= nL − 1. s38d

It is interesting that no partition has zero entanglement for
all the ujssdl states. The argument is simple:S=0⇔ uNu
=dAdB⇔A=AA·AB; but this cannot be satisfied, since there
is at least a star or a ladder acting on bothA andB for any
partition sA,Bd, hence S.0. The groupA splits in A
=AA·AB for any partition only if is the group generated by
the single spin flips, namelyN. If every spin is shared by at
least two generators ofA swhich is always the case for star
operators on a latticed, then the entropy cannot be zero and
we have an absolute entropy.

IV. GROUND-STATE ENTANGLEMENT FOR THE
KITAEV’S MODEL ON A TORUS SQUARE LATTICE

In this section we consider a squarek3k lattice on the
torus sg=1d and we calculate explicitly the entropyS for
several bipartitionssA,Bd of the lattice. On such a lattice
there arens=k2 sites andn=2k2 spins.

We have two ladder operatorsw1 andw2 corresponding to
the two noncontractible loops which run along the parallel,
and respectively the meridian, of the torus. The groupA
generated by the stars has orderuAu=2n/2−1. Then the group
N is generated byA, w1 andw2 and henceuNu=2n/2+1.

The ground state is fourfold degenerate and the vectors
uji jl, i, j =0, 1 form a basis, with

uji jl = uAu−1/2w1
j w2

i o
g[A

gu0l. s39d

An arbitrary vector of the ground stateujl[L can then be
written as

ujl = o
i,j=0

1

aij uji jl = uAu−1/2 o
g[A

sa00 + a01w1 + a10w2

+ a11w1w2dgu0l = uAu−1/2 o
g[A

Ugu0l, s40d

whereU;a001+a01w1+a10w2+a11w1w2 andoi,j=0
1 uaij u2=1.

The associated density matrix is

r = o
i,j ,l,m=0

1

aijalmw1
j w2

i r0w1
mw2

l . s41d

Any element g[A leaves invariant the ground state,
guji jl= uji jl, hencegr0=r0, where

r0 ; uj00lkj00u. s42d

There is another important issue to point out. Suppose we
have two ladder operatorsw1 and w̃1 with homotopic sup-
ports. This means that they are related by an elementg[A,
w̃1=gw1. Sincegr0=r0 and fg,w1g=0, then

w̃1r0 = gw1r0 = w1r0. s43d

Therefore bothw1 and w̃1 have the same effect onr0 and
hence we can work only with a representativew1.

A proposition useful for computing the entropy in some of
the examples below is the specialization of the diagonality

FIG. 3. sColor onlined A lattice region consisting of all the spins
inside or crossed by a loopsthick lined on the dual lattice. TheSA

stars based on the sites inside the regionA sred diamondsd act
exclusively on the subsystemA and theSB stars based on the black
sites act only on the subsystemB. There areSAB starsswhite dotsd
acting on both subsystemsA and B. The total number of stars is
ns=SA+SB+SAB=n−np+2−2g, where n snpd is the number of
spinssplaquettesd of the lattice.
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condition for the general Kitaev model. We first prove that a
generic product of spin flips acting exclusively on the sub-
systemA commutes with the Hamiltonian only if is a product
of closed strings. LetNA be the set of closed string nets that
act exclusively onA, NA;hg[N:g=gA ^ 1Bj. Then we have
the following:

Lemma 2. Let gA ^ 1B[NA be a generic product of spin
flips operators acting exclusively onA. Then fH ,gA ^ 1Bg
=0⇔gA ^ 1B[NA.

Proof. The proof is obvious since only closed string nets
commute with the Hamiltonian, so ifgA ^ 1B commutes with
H it must be inN and henceforth inNA. h

Proposition 2. Suppose the system is in the ground state
uj00l given by Eq.s39d. Then the reduced density matrixrA is
diagonalsi.e., dA=1d if and only if for everyg[A, gAÞ1A,
gA does not commute with the Hamiltonian:fgA,HgÞ0.

Proof. “⇒”: Let dA=1, and suppose, ex absurdo, that
there is a nontrivial elementgA[N such thatfgA,Hg=0.
Then from lemma 2 this means thatgA ^ 1B is a nontrivial
element ofAA, contradicting the hypothesis.

The reverse implication “⇐” obviously holds because for
any nontrivialgA which does not commute with the Hamil-
tonian, then it follows from lemma 2 thatg=gA ^ 1B is not in
AA, and thus only the identity belongs toAA, which con-
cludes the proof. h

A corollary is that if the system is in the ground stateuji jl,
the same proposition holds true by substitutingA with
w1

j w2
i A. If the system is in a generic ground stateujl, one just

replacesA with N.
In the following we compute the entropy for several sub-

systemsA for both uj00l and the genericujl ground states.
Although the general ground stateujl is no longer an equal
superposition state and hence we cannot apply theorem 1, in
some cases we can calculate explicitly the von Neumann
entropy for ujl. For completeness we also review some ex-
amples given in Ref.f11g for the ground stateuj00l.

A. One spin

TakeA to be a single spin. In this case it is obvious that
no closed string netg[N acts exclusively onA, hencerA is
diagonalsfrom lemma 1d and both eigenvalues are equal to
1/2 sfrom symmetry, the entries for spin-up and spin-down
are equald. Since the entropy isS=1, it follows that any spin
is maximally entangled with the rest of the system.

B. Two spins

We want now to compute the entanglement between two
arbitrary spins of the lattice. To do this, we first obtain the
reduced density matrixri j of the two spins by tracing out all
the other spins. Since we want to calculate the entanglement
betweenthe two spins, we use as an entanglement measure
the concurrenceC of the mixed stateri j of the two qubits
si.e., the two spinsd defined asf19g

C = maxh0,Îl1 − Îl2 − Îl3 − Îl4j, s44d

wherel1,l2,l3,l4 are the eigenvaluessin decreasing orderd
of the matrixri jssy ^ sydri j

* ssy ^ syd andsy is the Pauli ma-

trix. Since no closed string netg[N acts exclusively on the
two spins, the reduced density matrixri j is diagonalsagain
from lemma 1d. Let ri j =diagsa,b,c,dd. A simple calculation
shows thatC=0 always, hence there is no two-qubit en-
tanglement between any two spins.

We see that although an arbitrary spin is maximally en-
tangled with the rest of the system, the entanglement is zero
between any pair of spins.

C. The spin chain

Let A be the set of thek spins belonging to the meridian
gz1 of the torus as in Fig. 4sad and consider the system in the
stateuj00l. Since the stateuj00l is the equal superposition of
all the group elements inA acting on u0l, we can apply
theorem 1 and the entropy isS=k2−1−log2 dA−log2 dB. It is
obvious that any spin flip on the chain does not commute
with the plaquettes sharing that spin, so from the corollary to
proposition 2 no closed string-netg[N acts exclusively on
A and thusrA is always diagonal for any ground stateujl. In
particular, for uj00l we have dA=1. Therefore S
=log2suGu /dBd=log2 f from Eq.s12d. The number of possible
configurations of spins on the chaingz1 is 2k, but there are
only f =2k−1 different configurations of spins inA that enter
the ground state, namely the ones with an even number of
spin flips. Indeed, we havek−1 stars acting independently on
the chain and we can obtain all the allowed configurations
applying products of these starssi.e., elements inA acting
freely on the chaind, which givesf =2k−1. Then the entropy is

S= log2 f = k − 1. s45d

Let now the system be in a genericujl of the ground state
manifold. This state is a superposition with arbitrary coeffi-
cients of the four orthogonal statesuji jl in L:

ujl = o
i,j=0

1

aij uji jl = uAu−1/2o
i,j=0

1

aijw1
j w2

i o
g[A

gu0l. s46d

Since this is not an equal superposition of elements of a
group sacting onu0ld, we cannot apply theorem 1. Nonethe-
less, as shown before, the reduced density matrix for this
system is diagonalsin the computational basisd. Moreover,
all the possible configurations on the chain are allowed in
Nu0l since all of them can be realized by applying some
horizontal ladderw. Thus there are 2f =2k configurations of
the chain that are inNu0l, where f =2k−1 is the number of
even soddd spin flips configurations. We see that the states
uj00l and uj10l give states with an even number of spin flips
on the chain, whileuj01l and uj11l give states with an odd
number of spin flips. The eigenvalues corresponding to the

FIG. 4. sColor onlined The subsystemsA fthick sblued spinsg
used in calculating the entropyS: sad the spin chain;sbd the vertical
ladder;scd the cross;sdd all the vertical spins.
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even spin flip configurations are thenuAudBsua00u2+ ua10u2d
;uAudBa, while the eigenvalues corresponding to an odd
number of spin flips on the chain areuAudBsua01u2+ ua11u2d
= uAudBs1−ad. If li are the previous eigenvalues, the entropy

is S=−oi=1
2k

li log2 li =k−1−a log2 a−s1−adlog2s1−ad. De-
fining the binary entropy

H2sxd ; − x log2 x − s1 − xdlog2s1 − xd, s47d

we obtain

S= k − 1 +H2sad. s48d

D. The spin ladder

Let A be the set of spins belonging to a “ladder,” i.e., all
the spins intersected by the curvegx1, Fig. 4sbd. Again, theA
partition containsk spins. Consider the system in the state
uj00l. From proposition 2, nog[A acts exclusively on the
subsystemA, hencedA=1. The number of independent stars
acting only onB is k2−1−2k+k sthere arek2−1−2k stars
which do not touch the subsystemA, plus k pairs of stars
based on the two ends of each spin inA, leaving it invariantd.
ThendB=2k2−k−1 and the entropy is

S= k. s49d

This implies immediately that

TrBsr0d = 2−k1A, s50d

since theA system is in the totally mixed state.
What happens if the system is in a generic ground state

ujl? In general, the reduced density matrix is no longer diag-
onal sin the computational basisd. From Eq.s41d we find

rA = o
i,j ,l,m=0

1

aijalm TrBsw1
j w2

i r0w1
mw2

l d. s51d

Since the setA is the vertical ladder, both ladder operators
have a particularly simple action:w1sw2d acts only on sub-
system B sAd. Then TrBsw2r0d=w2 TrBsr0d. Moreover,
TrBsw1r0d=og,g8[AxAu0Alk0AuxAxA8k0BuxB8w1u0Bl. These scalar
products are different from zero if and only ifxB8 =w1. This
would imply thatxA8 ^ xB8 =xA8 ^ w1 is a contractible string net
in A and this can happen only ifxA8 is a ladder operator
acting fully onA, which is impossiblesnotice that a double
ladder is a product of stars and hence a contractible string
netd. Thus TrBsw1r0d=0. Similarly, TrBsw1w2r0d
=w2 TrBsw1r0d=0. We also have TrBsw1r0w1d=TrBsr0d and
TrBsw2r0w2d=w2 TrBsr0dw2. From Eq.s50d we know that for
the ladder TrBsr0d=2−k1A and we obtain

rA = 2−ks1 + pw2d, s52d

with p=2 Resa00a10+a01a11d. Sincew2
2=1 and Trsw2d=0, the

eigenvalues ofw2 are61 and they have the same multiplic-
ity, namely 2k−1. Hence the eigenvalues ofrA are l±
=2−ks1±pd and the entropy is

S= k − 1 +H2S1 + p

2
D . s53d

E. The cross

The subsystemA includes all the thicksblued spins in the
state Fig. 4scd. This is a system of 2k spins. Let the system be
in the stateuj00l. Again, no element ofA is able to flip spins
only on this subsystem, sodA=1 and the reduced density
matrix rA is diagonalsin the computational basisd. There are
k2−1−s2k−1d stars acting independently onB. The entropy
is thusS=2k−1.

F. The vertical spins

We now takeA to be the set of all vertical spins of the
lattice; thenB is the set of all horizontal spins; see Fig. 4sdd.
The system is considered in the stateuj00l. Since in this case
no closed string operatorg[A acts trivially on either sub-
system, we havedA=dB=1. The entanglement isS=k2−1,
which is the maximum possible value for auji jl state.

G. The disk

In this section we take the systemA to be a disk, i.e., a
region homeomorphic to a plaquette. Let us start, as usual,
by assuming the system is in the stateuj00l. Consider a con-
tractible loopg on the dual lattice and letA be the set of
spins inside or intersected byg sFig. 5d. Let SA,B be the
number of sites whose stars act only onA, respectivelyB;
SA,B is the area ofA, B in lattice units. LetSAB be the
number of sites with stars acting on both subsystems. We
also havedA,B=2SA,B. Area conservation impliesSA+SB
+SAB=k2. The entropy isS=k2−1−SA−SB=SAB−1. Let ni,
i =1…3, be the number of sites inSAB having i nearest
neighbors insideA. Then

FIG. 5. sColor onlined A region A of the lattice obtained by
taking all the spinsfthin sblackd linesg inside or crossed by a loop
fthick sredd lineg. SA,B are the number of sites whose stars act ex-
clusively on A fdiamondssredd sitesg and respectively,B fsolid
sblued circlesg; dA,B=2SA,B. The number of sites with stars acting on
both subsystemsfopen swhited sitesg is SAB=n1+n2+n3; ni is the
number offopenswhitedg sites havingi nearest neighbors insideA.
Area conservation impliesSA+SB+SAB=k2. The entropy isS
=SAB−1. sad If the boundary is a convex loopsi.e., a rectangled,
SAB is equal to the boundary lengthL]A sin lattice unitsd, since in
this casen2=n3=0; the entropy isS=L]A−1. sbd If the boundary is
an arbitrary loop,L]A=n1+2n2+3n3, hence the entropy isS=L]A

−n2−2n3−1; in the figuren2=1 fopenswhited triangleg and n3=1
fopenswhited squareg.
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SAB = n1 + n2 + n3 s54d

and the boundary length is

L]A = n1 + 2n2 + 3n3. s55d

If g is a convex loopfFig. 5sadg, then SAB=L]A ssince n2
=n3=0d and the entropy is equal to the perimeter of the
boundary sup to a constantd S=L]A−1. In general, if the
boundary ofA is an arbitrary loopg on the latticefFig. 5sbdg,
the entropy is

S= L]A − n2 − 2n3 − 1 =
1

3
sL]A + 2n1 + n2d − 1. s56d

We see that for the diskS is exactly thegeometric entropy
f20g of a spatial regionA.

It is easy to prove that the entropy is bounded from above
and below by two linear functions. From Eq.s55d it follows
that ni øL]A/ i and 2n2+3n3øL]A. Then Eq.s56d implies

1

3
L]A − 1 ø Sø

7

6
L]A − 1. s57d

Let us now consider the system in the generic ground
stateujl. The expansion of the reduced density matrix isrA
=oi,j ,l,m=0

1 aijalm TrBsw1
j w2

i r0w1
mw2

l d. From Eq. s43d, for the
disk we can choose the laddersw1,2 such that they act only
onB, hencewiA=1A, i =1, 2. Then it follows immediately that
TrBswir0wid=TrBsr0d, i =1, 2, and TrBsw1w2r0w1w2d
=TrBsr0d. As in Sec. IV D, TrBsr0w1d=0, since the ladderw1

cannot act exclusively on subsystemA. A similar reasoning
implies also TrBsr0w2d=0=TrBsr0w1w2d and we obtainrA

=TrBsr0d; hence the entropy is the same as in the previous
case,S=L]A−n2−2n3−1. Thus for the disk the entropy obeys
the boundary law for any ground stateujl. ssee Table I.d

V. CONCLUSIONS

Apart from being one of the most striking conceptual fea-
tures of quantum mechanics, entanglement proves also to be
a powerful tool in the study of many body spin systems, as
several articles pointed out recently.

The first topic to which our article is related is the study
of entanglement in spin systems. Several authors have calcu-

lated the entanglement in 1D spin chains. In the case ofXY
and Heisenberg models, the authors in Refs.f7,8g calculated
the entanglement between a spin block of sizeL and the rest
of the chain. They found two characteristic behaviors. For
critical spin chains, the entanglement scales likeS, log2 L,
whereas for the noncritical caseSsaturates with the sizeL of
the block. This result is in agreement with the result for
black-hole thermodynamics in 1+1 dimensionsf21,22g,
which suggested a connection between the entanglement
measured in quantum information and the entropy of the
vacuum in quantum field theories.

In this article we investigated bipartite entanglement in
spin systems for states in a stabilized space. For a bipartite
system in a pure state, the von Neumann entropy of the re-
duced density matrix is the unique measure characterizing
the entanglement between the two subsystems. We showed
that for states that are an equal superposition of all the ele-
ments of a stabilizer group generated by spin flips, the en-
tanglement entropy of a bipartitionsA,Bd depends only on
the degrees of freedom belonging to the boundary between
the two subsystems. This property provides an interesting
link to the holographic principle. As an example we studied
the entanglement present in the ground state of the Kitaev’s
model. Apart from its special interest in quantum computa-
tion sit was the first example of topological quantum com-
putingd, this model is also relevantper se, due to the non-
trivial topology and to the specific nature of the spin-spin
interaction which generates topological order. On a Riemann
surface of genusg the degeneracy of the ground state is 4g

and it is stable against local perturbations. We found analyti-
cal results for the ground state entropy of several bipartitions
sA,Bd of a toroidal square lattice. In this case, although no
two spins of the lattice are entangledsthe concurrence is zero
for any pair of spinsd, the ground state has genuine multi-
body entanglement. For a convex regionA of the lattice, its
geometric entropy is linear in the length of the boundary.
Moreover, for states which are an equal superposition of all
elementsg[G,N acting onu0l, no partition has zero en-
tanglement, so the system has anabsolute entanglement. Fi-
nally, we argued that entanglement can probe the topology of
the system and raised the very interesting question of
whether it could detectsor measured topological order.

It is relevant to put our results in perspective and to com-
pare them with known results. Theholographic principle
sHPd emerged recently as a paradigmatic universal lawf15g.
A simplified statement of HP is:The maximum entropy of a
region is proportional to the area of its boundary. It appar-
ently contradicts the naïve expectation that the entropy of a
region should be proportional to its volume. The entropic
area law appears as a recurrent pattern and has been recov-
ered in severalsapparently unrelatedd physical systems. In
black hole thermodynamics it is expressed as the
Beckenstein-Hawking law,SBH=A/4: the entropy of a black
hole is a quarter of its horizon areasin Planck unitsd f23g. For
a scalar field in 2+1 and 3+1 dimensions, Srednickif24g
showed that the entropy of a regionR is proportional to the
area of its boundary, and not to its volume. Recently Plenio
et al. f25g found analytically the same behavior for the en-
tropy in the case of a harmonic lattice system in
d-dimensions.

TABLE I. The entropySof the systems analyzed in text for two
ground states,uj00l and the genericujl; for two spins the value
shown is the concurrenceC. The constants area= ua00u2+ ua10u2 and
p=2 Resa00a10+a01a11d; H2sxd=−x log2 x−s1−xdlog2s1−xd is the
binary entropy.

uj00l ujl

s0d one spin 1 1

s1d two spinsi,j C=0 C=0

s2d spin chain k−1 k−1+H2sad
s3d spin ladder k k−1+H2

s1+p/2d
s4d cross 2k−1

s5d vertical spins k2−1

s6d the disk L]A−n2−2n3−1 L]A−n2−2n3−1
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The entropic boundary law recovered in this article for
spin systems provides another instance of the universality of
HP. Due to the close relationship between concepts like en-
tropy and entanglement, the holographic principle gives in-
sights into fundamental questions of quantum information
theory, likeWhat is maximum information content needed to
describe a region R?or How much information can be stored

inside a system A?This confluence of diverse fields, like
black hole thermodynamics, QIT, and spin systems, can
bring together insights and shed new light on fundamental
problems.
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