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Bipartite entanglement and entropic boundary law in lattice spin systems
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We investigate bipartite entanglement in spin-1/2 systems on a generic lattice. For states that are an equal
superposition of elements of a gro@of spin flips acting on the fully polarized sta@®", we find that the
von Neumann entropy depends only on the boundary between the two subspstemd8. These states are
stabilized by the grougs. A physical realization of such states is given by the ground state manifold of the
Kitaev's model on a Riemann surface of gegu&or a square lattice, we find that the entropy of entanglement
is bounded from above and below by functions linear in the perimeter of the subsisdenhis equal to the
perimeter(up to an additive constantvhenA is convex. The entropy of entanglement is shown to be related
to the topological order of this model. Finally, we find that some of the ground states are absolutely entangled,
i.e., no partition has zero entanglement. We also provide several examples for the square lattice.
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I. INTRODUCTION stabilized by groups of spin flips, which include the ground

Entanglement emerged recently as a quintessential corstate of the Kitaev modgthe von Neumann entropy depends
cept in several fields of physics. In quantum informationOnly on the degrees of freedom belonging to bioeindaryof
theory (QIT) entanglement is @ine qua nonresource for the two subsystems. Hence, our result echoes the holo-
various quantum processing and quantum communication@aphic principle[15]: the geometric entropy of a regioh
protocols, like teleportation, dense coding, cryptography, andepends only on the degrees of freedom ofltbendaryof
is crucial for the exponential speedup of several quantur#\, and not of thebulk
algorithms[1]. The same concept is also essential for our The structure of the paper is the following. In Sec. Il we
understanding of several solid-state systems. Examples agxpose the general formalism for bipartite entanglement in
the entangled ground state for two highly nonclassical sysspin systems and we apply it to states that are stabilized by
tems: superconductivitithe BCS stat¢2,3]) and fractional groups of spin flips. For spins on a lattice we provide a
quantum Hall effectthe Laughlin stat¢4]). Another mani- geometrical interpretation of these results. In Sec. Ill we ex-
festation of the ubiquity of entanglement is found in theemplify this general framework for the Kitaev's modéi3]
study of quantum phase transitions, where it is believed to bend we apply it to calculate the ground state entanglement.
responsible for the appearance of long-range correlaffgins We calculate analytically the entropy of entanglement for

Spin systems are also a distinguished playground for theeveral partitions of the lattice, like spin chains and spin
study of bipartite entanglement and its scaling with the subladders in Sec. IV. We then conclude in Sec. V.
system size. It has been shown that systems in which en-
tanglement scales less than logarithmic can be efficiently

simulated on a classical compufé&]. Hence the amount of IIl. ENTANGLEMENT IN A SPIN SYSTEM
entanglgment present in the system and its scaling is crucial A. The reduced density matrix

for efficient quantum algorithms, i.e., problems that are clas- _ . . .

sically intractable. In the case of a critical spin chainXi In this section we find a general expression for the re-

and Heisenberg models, the entanglement between a Sp%xced density matrix of an arbitrary spin system and we give
block of size L and the rest of the chain scales liige & hecessary and sufficient condition for its diagonality. These
~log, L and thus this system can be simulated classicall _esults sp_ecialize in a very interesting way to those states,
[7]. Several groups have analyzed recently the entanglemelif€ the Kitaev's ground stateg;;) (see Sec. Ilithat can be
properties of various spin systems$8], including written as an equal superposition of all the elements in a
1-dimensional lattice models of théY [7,9], Heisenber7] ~ 9roUpP acting on the reference st¢d. To begin with we do
and Anderson moddHL0]. no't assume any particular geometry or dimensionality of the
In this article we study bipartite entanglement in generafSPIn system. _ o
spin systems extending our previous results found for the CGIV€N a system oh Sffnséﬁlz' its H|Ib_ert space has the
ground state of the Kitaev's modgdl1]. The relevance of this t€NSOr product structurl=",", where?{;=spai|0), |1)} is
model stems from the fact that it was the first example of thdhe Hilbert space of a single spin. In the usual computational
new subject of topological quantum computatja®,13 and  basis we define a reference basis vector
because it featurempological order[14]. This is a type of 0)=1[0); ® ... ® |0) (1)
guantum order which describes states of matter that are not S v
associated to symmetries, like the fractional quantum Hall.e., all spins up. LeN=N{" be the Abelian group of all spin
liquids. We show that for a large class of stateqy., states flips, whereN;={1,5*} acts on a single spin. Obviously dim

1050-2947/2005/712)/02231%10)/$23.00 022315-1 ©2005 The American Physical Society



HAMMA, IONICIOIU, AND ZANARDI PHYSICAL REVIEW A 71, 022315(2005

H=|N|=2"and any vector of the computational basis can becient condition. We prove the necessary conditibp(] (c)
written as|i)=g|0), for somegeN andi=0...2"-1 (as a ex absurdo If there were a nontriviagE G such thatg
binary expansion Moreover, all elements satisfg?=1, =g,®1g, then we can writy=g;-g, with g;=g€ G, and
gEN. A generic state in the Hilbert space can be written asy,=1 & Gg, contradicting the hypothesis.

the superposition of all the possible spin flips on this system,

namely B. Entropy of entanglement for a stabilized space
[y =2 a(9)gl0), (2 We are interested to quantify the entanglement present in
gEN our spin system. Although there is no known entanglement
with a(g) €C, Zga(g)>=1. measure for a general multiqubit system, we can study bipar-

Consider now the statds) that can be written as a su- tite entanglement of a system described by a pure density
perposition of elements obtained only from a subgroup ofMatrix pag. In this case the von Neumann entroBys the
spin flipsGC N acting on|0). Then the corresponding den- Unique measure of bipartite entanglement:
sity matrix is

S=-Tr(palog; pa), (8)
p=lyl= 2  al@a(g)gl0X0lg’ _ _ _
9.9’ EGCN wherep,=Trg(pap) is the reduced density matrix of the sub-
o _ systemA. The von Neumann entropy of a density majsiis
= ~E a(g)a(gg)g|0)0lga (3 bounded by 6=S<log, d, whered is the dimension of the
99=GEN Hilbert space op. The bound is saturated iff=1/d, i.e., the
using the substitutiog’ =gg in the last equation. system is in the totally mixed state. For a bipartite system

We now compute the reduced density matrix of an arbi{A,B) of n spins we can readily obtain a simple bound for
trary subsystenmA of spins, hence tracing out over all the the entropy [using the symmetryS=-Trg(pa 109, pa)=
spins in the complement subsystBnAny elementge G —Tra(pg 109, pg)]:
has a tensor product structuge g, ® gg, With gag €N act-

ing only onA and respectively8 subsystems. It is important 0 =< S<min(nag,n—ngp), 9
to note that in generajjyg ¢ G. Writing |0)=(0,)|0g), we
obtain where n,, Nn—n, are the number of spins in th&é and B
_ _ partition, respectively.
PA= ~E a(9)a(g9)gal0aX0a9aTA We now apply the formalism of Sec. Il A to states of a
9.9SGEN stabilized spaceLet {UJ be a set of mutually commuting
X (0g|90s9s|0s) (4) operators, calledtabilizer operatorsA state|) € H is sta-
o bilizedif is invariant under the action of the stabilizer opera-
whereg=ga® Gg- . tors: UJ#)=|y), Os. Let G be the group generated by the
We introduce now two supgroups Gf acting trivially on  giapilizer operatordJ;. The spacel stabilized byG is £
the subsystemA and respectivelyB: =spad|y): Udv)=|)}.
Gpo={gE Glg=g,® 1}, (5) Suppose now the system is in a state which is an equal
superposition of all elemenge G acting on|0), i.e., a(g)
Gg={gE Glg=1,® gg}. (6) =|G["2for all g. This is obviously a stabilized state because

. _ _ 9l =|G| Y22y cc09'|0y=|1), DgEG. However, there are
We denote their order bga g=|Gag|. With these notations,  states in the stabilized space which are not an equal super-
the only nonzero elements 0s|050s0s/0s) SatisfyGs=ls  position of all elementg € G acting on|0). Any superposi-
(sincegéz}ls) and this implies thafje G,. We finally obtain  tion of the form

pa= 2 aQ)a(gg)gal0a)0agaTa- (7) [EREEDS

gEG,gEG

a(hhg0), (10
heG’ ,geG
In generalp, will contain off-diagonal terms. The follow-

ing lemma gives the necessary and sufficient conditions twvhereG’ is a subset ofN, is still stabilized byG.
have a diagonab, (in the computational basis From now on we will focus on states in the stabilized
Lemma 1The following statements are equivalefd p5 ~ space that are an equal superposition of the elemen®& of
is diagonal;(b) no gEG, g+#1 acts trivially onB, i.e., G5  acting on the reference std@®. The reduced density matrix
={1}; (c) no elemeng in G can be decomposed as the prod-for an equal superposition state is
uct g=g;-g, with both g;, g, nontrivial and inG,, Gg re-
spectively. -Gl T
Proof. (a) = (b): from Eq. (7) p, is diagonal iffga=14, pa=IC| QEG%EGAQA|OA><0A|9A9A (1D
henceG,={1} andd,=1.
(b)O (c): SinceG, contains only the identity, there is no In this case we obtain an analytical formula for the entr8py
9:=0a® I different from the identity and thus there is no depending only on the boundary of the partiti@h B).
0=0; -0, with nontrivial g; ,E€ G, g, which proves the suffi- Define now the quotient/Gg and let
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_lel _lal

Gel  dg

be its order. Notice thdtis the number of elements @ that
act freely onA. If there arel independent generators &f

acting onA, it turns out thatf=2'". Define the groupGag
= G/(GAGB) We haVe|GAB| :|G|/dAdB

(12
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Similar results for the entropy of stabilizer statées., for
a one-dimensional stabilized spadeave been obtained in
[16].

C. Spins on a lattice and the entropic boundary law

The spin systems hitherto considered have no geometrical
structure and hence we have no notion of whatltbendary

In the remaining of this section we generalize to an arbi-yf the two subsystems is. By giving a lattice structure to the

trary group of spin flips the results presentedia]. We can
prove the following result.

system, we can find a geometrical interpretation of @&)
as the number of degrees of freedom living on the boundary

Theorem 1Consider a partitioitA, B) of the spin system, peqween the subsystemsand B.
and suppose the system is in an equal superposition of all the consider ar-dimensional lattice witm links and a spin-

group elementg e GC N, acting on the reference sta®.
The entropy of entanglement iS=log,(f/da) =log,|G|
—log,(dadg) =10g,|Gagl.

Proof. We first compute the reduced density matpix
Consider two elementg=g,®gg and g’'=g,®gg in G.
Theng,=g, if and only if g’=hg, with h€ Gg, and since
f~1=dg/|G|, from Eq.(11) we obtain

pa=f"1 2 gal0a)0a|gaTA-
4EG/Gy
GECA

(13

Let us compute the square of the reduced density matrix:

pa=f? 2
9,0’ €G/Gg
99'€Gx

=f2 E 9al04){(0a|9A0ATA
gEG/GB
G9'€Gp
=120y > 0al0a)X0algaTa = f'dppa.
gEG/Gy
S

9a|04){0a|9ATAGA|Oa){OA|9ATA

(14)

Expanding the logarithm in Taylor series we obtain,lpg
=pafditlog,(da/f). Then the entropy of entanglement is

=log, ﬂ = l0g,|Gagl
dads

S=log,(fd,* (15)

concluding the proof. O
Notice that if G=N, then N=N,-Ng and the entropy is

1/2 attached to each linkhe lattice does not need to be
regulay. Let n, be the number of plaquettes in the lattice.
The Hilbert space is as befote¢=H7". Define the stabilizer
operators

Up= [T & (16)

j€ap
acting on the spins belonging to the boundary of any
plaquettep. The stabilized space is

L={|p) € H:Ugly) =y, Dp}.

Let G be the group generated hy,, hencegl=L for any
geG. If all U, are independent, the@ is generated by the
set of all then,, stabilizer operators. If there ang constraints
on the sef{U,}, then the minimal subset generatitggcon-
tainsn,—n, elements and the order & is |G|=2"%".

Consider now the stabilized state

& =162 gl0).

geEG

17

(18

From theorem 1, the entropy of entanglement for a site
corresponding to a partitiolA,B) of the lattice is S
=log,(fd,") =10g,(|G|/dadg) =10g,|Gagl. For this system
log, dag) is the number of plaquette operatdg acting ex-
clusively onA(B). ThenS is the numbem,g of plaquettes
acting on both the subsysterAsandB.

Hence we can give a geometrical interpretation of Eq.
(15). For anr-dimensional lattice, the entropy is equal to
numbern,g of degrees of freedom living on the boundary
between the two subsysterAs B.

zero as expected, since in this case the state is an equal

superposition of all the basis vectors in the Hilbert space.

Equation(15) generalizes the result of R¢fl1] (obtained
for the group of star operators in the Kitaev's mofiEd)) to
an arbitrary grous of spin flips. We can interpret E¢15)

IIl. THE KITAEV'S MODEL

A. General formalism

So far the stabilized states are just some states in a Hilbert

as follows. The state of a spin system contains some inforspace and they do not have any physical meaning. Now we
mation. If we have a bipartitiofA, B) of the system, we can will analyze a case in which the stabilized states are vectors

consider the information containexclusivelyin A andB as

the information contained in theulk of the two subsystems.

in the ground state manifold of a particular lattice model
constructed by Kitaey13]. This is a 2-dimensional exact

If the system is in a state which is an equal superposition ofolvable spin system on a lattice. Its relevance stems from

the elements of &éstabilizey group G of spin flips acting on
|0y, the bulk information is contained i, and Gg. The

the fact that it was the first example of the new subject of
topological quantum computatig2,13 and because it fea-

order of this groups amounts for the “disorder” in the bulk of turestopological order[14].

the two subsystems. Then Ed5) states that the entropy of

Consider a system af spins on &irregulap lattice on a

entanglemens is given by the difference between the total Riemann surface of genuys Again, the Hilbert space i%(

disorder and the disorder in the bulk.

=H7" and dimH=2",
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FIG. 1. A system of spins on an 2D irregular lattice; a typical ! 7
plaquette and star are denoted pyand s, respectively. The sub- I YZ o
systemA contains all the spins within the thick boundary. The op- I 1 ,Yz
eratorsB, for the plaquettes situated inside the boundary act only 1 2
on the spins of the subsystef The B, of the outside plaquettes 1
that share a link with the boundary act on both subsyst#&rmasdB = m e e e
and there is one such plaquette operator for each link in the bound 1 ’Yf
ary of A. Hence the entropy iS=L —n. (n; is the number of
constraints; see text FIG. 2. (Color onling A kX k square lattice of the torus; oppo-
site boundaries are identified. The end of an opstring anticom-
The stabilizer operators are the plaquettes mutes with the star based at the site where the string is. Similarly,
the end of an oper string anticommutes with the plaquette on the
Bp= H O'JZ (19 square where it ends. The figure also shows that a star on the lattice
i€ap corresponds to a plaquette in the dual lattice and vice versa.
(j labels all the spins belonging to the boundary of a
plaquettep) and the stars We now show that the ground state manifaldfor a
genusg Riemann surface is?-fold degenerate. Since all the
As= H 0),( (20) stars and plaquettes commute, we can latgin,—2=n
I€s —2g spins out ofn and thus the dimension of the ground

wherej labels all the spins sharing a common versefsee ~ state is

Fig. 1). On a Riemann surface of gengsthe number of

sites, links(sping and plaguettegns, n andn,, respectively dim £ = 2~(-29) = 92 (25)
obey the Euler’s formulans—n+n,=2(1-g). By imposing

also ng=n,, it follows n;=n,=n/2+1-g. We have the fol- Hence the system exhibitspological order[14].

lowing two constraints on the stars and plaquettes: Another way to see the same thing is to notice that this
model features string condensatifi¥]. Let v* () be a
ID_[ASZIZID_[BP (21) curve connecting sites along the links of the lattickial
s P

lattice) as in Fig. 2(for a square lattice We can define two
so there are onlyn,—1, ns—1 independent plaquettes and types of string operatorgsimply called “strings): (i) a
stars. z-string is the product of allo* operators along the links
Let G be the group generated by the 2g independent belonging to a curve” running on the lattice(ii) anx-string
stabilizer operatorgAs,B,}. We define the protected sub- is the product of alb™ operators along the links crossed by a

space: curv_ey‘_(hence_z running on th_e dua_l IattD_cé'he action of an
L={p) € H, Aly)= Bp|¢> - o)} (22) )éusrt\:gg(s to flip all the spingi.e., linkg intersected by the
so the states in this set are stabilized®y More formally, a string operator is
The Hamiltonian of the model is
H=-> A~ X B, (23) WA= [] of, a=xz (26)
s P IS

The model is exactly solvable because all the stabilizer op- . _ _
erators commute with each othince they share either 0 or By j € ¥*(j € ¥) we mean all the links belonging terossed

2 links) by) the string * (¥*). A string-netis a product of string
- operators.
[AsBpl=0, Dsp. (24) Closed strings of both types commute with the Hamil-
Its ground state is the protected subspace manifold tonian (23),
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[V\F[T’a],H]:O, a:XYZI (27) WiWi+29:_Wi+29Wi! | = 1,...,29,

where>? is a loop on the lattice or on the dual lattice. This is . )
because a closed string has either 0 or 2 links in common [wi,wi]=0, j#ixt2g,i=1,..4g. (30
with any plaquette or star. However, open strings do notrherefore the ground state manifalds 2%¢-fold degenerate.
commute with the Hamiltonian. More precisely, openThis degeneracy is the sign of the topological order of this
zstrings (x-stringy anticommute, with statplaquett¢ op-  system[14], and is robust against arbitrary perturbations
erators with which they shar@ross a single link(see Fig.  [13,14]. Topological order is the notion needed to describe
2). those states of the matter like fractional quantum Hall liquids
Equation(27) implies that there are closed strings in the [17] which are not explained by the Landau theory of sym-
ground state of the Hamiltonia23). We say that we have metry breaking with local order parametés3].
closed string condensatiofil4] in the sense that closed  we want now to give an explicit expression for the states
strings are present in the ground state and that they are ngf the ground state manifold. Let be the group generated
made of smaller pieces that are still present in the groun@y the stars\,. Let T be the group generated by thg Rdder
state. Smaller pieces are indeed open strings and they pperators ofx-type w;, with i=1,...,2g. Then the elements
energy. The groufs generated by the closed strings is theof T are of the form

group of all the closed string-nets gfand z-type. 2
. On a genugy Rlem_ann surfacég>0) there are gontract— w(s) =1 vvJSJ (31)
ible and noncontractible loops. A loop on the lattice is con- i1

tractible if is homotopic to the boundary of a plaquette. It
turns out that all the string operators based on contractibl@here s=(sy, ..., S;) and §=0, 1, which implies tha{T]|
loops are made of products of stars and plaguettes. This al$62*?. We will call N the group of all closed string-nets of the
implies that string operators based on contractible loops havé&type:
a trivial effect on the ground staté) € £:

N=A-T. (32
_ a| —
V\F[F]|§>_jl;lr o718 =16), (28) For a generic lattice withng stars, n spins andn,
plaquettes, the number of independent star operatorg is
whereI is a contractible loop on the latticer the dual -1=n-n,+1-2 and hence the order oft is | A|=2""
lattice). =2""*1"% The order ofN is [N|=2"s"1+2 =20 Mp+1,

Consider now the noncontractible loops. It is enough to  Since on the lattice any loop intersects the boundary of a
consider only string operators associated to noncontractiblglaquette in an even number of points, it follows immedi-
loops with winding number 1[Since all string operators ately that the state(s)|0) are stabilized by the plaquettes
square to the identity, string operators associated to norB,. Then we have 2 states in the stabilized subspace
contractible loops with winding numberare equalmodulo  given by
a product of stapsto the ones with winding number mod
2.] The associated string operators cannot be written in terms |&(s)) = |A[™Yaw(s) > gl0) = w(s)|£(0)), (33
of products of star and plaquette operators and hence they geEA
have a nontrivial action on the states. But since they stil

commute with the Hamiltonian, they map ground states intoagain that the ground state manifold & 2legenerate. Each
ground states. The a'g‘?b"@ of linear operators acting on of these states is an equal superposition of the elements in
the ground state manifold is the algebra of the closed ,nq g it falls under the hypothesis of theorem 1. Notice that
string operators ok- and z-type. However, the contractible arbitrary superposition of thig(s))'s is still a ground

string operators have a trivial (_effect aty SO only the non- state, but obviously it is not an equal superposition of the
contractible ones matter. Consider the string operators asSQraments of a group:

ciated to the noncontractible loopgy;,i=1,...,4g}

k/vhich are mutually orthogonal by construction. This shows

={Vs 1 Vags Yage1s -+ Vagh the 100ps{ 7], ..., ¥,,} generate &= > alsw(9)g|0), (34)
the homotopy group of the Riemann surface. We label the gEAWSET
loops such thaty and y.,,. intersect, withi=1,...,2g; see
pops Such thay and sz 9 S€€ 5o £=sparl£(s))=spadT|£(0)).
' . We now prove that all the basis statés)) have the same
w =Wyl i=1,..,4g, (290 entanglement.

wherea=x for i=1,...,2g andz otherwise. We refer tov,, Proposition 1.For a given lattice partitioriA,B) all the
i=1,...,2g as “ladder” operators since they flip all the spins Statesi&(s)) have the same entropy of entanglemgnt

along a ladder going around the non contractible loops of the Proof. We can decompose the ladder operatorsvés
surface. The paifw;,w;.,,) has the same commutation rela- =Wa(S) ® Wg(s), wherew,g)(s) acts only on theA (B) sub-
tions as(c*,0?) and generates a 4-dimensional algebra. Wesystem. From the circular property of the trace awffs)
see that for anyi=1,...,2g we have a copy of the same =1, W'(s)=w(s), s=0,...,2%~1, it follows immediately that
algebra. Then we havegganutually commuting copies of the all the basis statef(s)) have isospectral reduced density
same algebra™,¢” and hence. (L) is 4%%-dimensional: matrices. Sinceé(s))=w(s)|&(0)), then
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FIG. 3. (Color onling A lattice region consisting of all the spins
inside or crossed by a loafphick line) on the dual lattice. Th& 4
stars based on the sites inside the reghorfred diamondp act
exclusively on the subsystefand theXy stars based on the black
sites act only on the subsyste®n There areX 5z stars(white dots
acting on both subsysten#s and B. The total number of stars is
Ng=3a+3g+32g=N—Np+2-2g, Wheren (n,) is the number of
spins(plaquettes of the lattice.

pal &(8)] = Trg(|&(s))(&(s)|) = Trg(W(s)|£(0)){£(0)w(s))
=Wa(S) Trg(|£(0))(£(0)[)Wa(S).

Therefore
S(é(s) =S(&0))), Os=0..2%-1 (35)
and all basis states have the same entropy. O

Let us now compute the entropy of entanglement for a
state|&(s)). The number of closed string-nets acting exclu-

sively on A(B) is dag=2"48, where3 g is the number of

independent star operators acting exclusively on the sub-

systemA(B). From theorem 1 we obtain

2ns—l
S=log, =ng—1-3,-3g=n-ny+1-25-3,-2p.
dads

(36)

We notice that theopological orderin this model manifests

itself in both the degeneracy and the entanglement in the
ground state. This suggests the very appealing possibilit

that entanglement could detect topological order.
The total number of lattice sites ig=3,+2g+25=N

—Nnp+2-2g, where2 g is the number of independent star

operators acting oboth subsystem# andB. We obtain
S= EAB -1. (37)

PHYSICAL REVIEW A 71, 022315(2005

S=n_-1. (39)

It is interesting that no partition has zero entanglement for
all the |&(s)) states. The argument is simpl&=0 < |N|
=dadg = A=A, Ag; but this cannot be satisfied, since there
is at least a star or a ladder acting on bétland B for any
partition (A,B), hence S>0. The group.A splits in A
=A,-Ag for any partition only if is the group generated by
the single spin flips, namel). If every spin is shared by at
least two generators ol (which is always the case for star
operators on a lattigethen the entropy cannot be zero and
we have an absolute entropy.

IV. GROUND-STATE ENTANGLEMENT FOR THE
KITAEV'S MODEL ON A TORUS SQUARE LATTICE

In this section we consider a squak k lattice on the
torus (g=1) and we calculate explicitly the entrogy for
several bipartitiongA,B) of the lattice. On such a lattice
there arens=k? sites andh=2k? spins.

We have two ladder operatong andw, corresponding to
the two noncontractible loops which run along the parallel,
and respectively the meridian, of the torus. The grodip
generated by the stars has or¢ldf=2"2"1, Then the group
N is generated by4, w; andw, and hencgN|=2"2*1,

The ground state is fourfold degenerate and the vectors
&), 1, ]=0, 1 form a basis, with

|§ij> = |A|_l/2Wj1WizE gl0).

geA

(39)

An arbitrary vector of the ground staté) € £ can then be
written as

1
&= 2 ayl&) =|A[Y2 2 (age+ agiWy + ayows,
ij=0 geA

+a11W;W,)g|0) = |A|_1/2 E Ug|0),
geEA

(40)

whereU = agol +agW; +a;gW,+aq Wi W, and = _ola;[*=1.
The associated density matrix is
1

p= E aijﬁ{mwjlwipoWT\le.

i,j,l,m=0

(41)

Any elementge A leaves invariant the ground state,
6|§ij>:|§ij>a hencegpy=py, Where

po = €00 {odl-

There is another important issue to point out. Suppose we
have two ladder operatoms; and W, with homotopic sup-
ports. This means that they are related by an elemgent,

(42)

If we choose the partitions in a convenient way, we can givéii=9Wi. Sincegpo=po and[g,wy]=0, then

a clear geometrical picture of the formul37). Let A be the

set of all spins inside or crossed by a contractible loop in the

W1pg = QWi pg = Wy pg. (43

dual lattice(see Fig. 3. The spins intersected by the loop are Therefore bothw; and W, have the same effect om, and

the boundaryof A, while the ones inside are thrilk If the
loop isconvex the number of sping, in the perimetel of
Ais n =3 g (see Fig. 3 Therefore

hence we can work only with a representative
A proposition useful for computing the entropy in some of
the examples below is the specialization of the diagonality
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condition for the general Kitaev model. We first prove that a
generic product of spin flips acting exclusively on the sub-
systemA commutes with the Hamiltonian only if is a product

of closed strings. Lel, be the set of closed string nets that (y) () ©) )
act exclusively oA, Ny={g&E N:g=g,® 1g}. Then we have
the following: FIG. 4. (Color online@ The subsystem# [thick (blug) sping

Lemma 2 Let ga® IgE N, be a generic product of spin used in calculating the entroi® (a) the spin chain(b) the vertical
flips operators _acting exclusively oA. Then [H,ga® lg] ladder;(c) the crossyd) all the vertical spins.
=0= gA®lBE NA'
Proof. The proof is obvious since only closed string netstrix. Since no closed string nete N acts exclusively on the
commute with the Hamiltonian, so @, ® Is commutes with  two spins, the reduced density matgi is diagonal(again
H it must be inN and henceforth ifN. Ll from lemma 1. Let p;=diaga,b,c,d). A simple calculation
Proposition 2 Suppose the system is in the ground stateshows thatC=0 always, hence there is no two-qubit en-
|é00 given by Eq.(39). Then the reduced density matpixis  tanglement between any two spins.
diagonal(i.e., dx=1) if and only if for everyge A, ga# I, We see that although an arbitrary spin is maximally en-

ga does not commute with the Hamiltoniaga,H] # 0. tangled with the rest of the system, the entanglement is zero
Proof. “[1": Let dy=1, and suppose, ex absurdo, thathetween any pair of spins.

there is a nontrivial elemenga €N such that[ga,H]=0.
Then from lemma 2 this means thgt® Iz is a nontrivial
element ofA,, contradicting the hypothesis.

The reverse implication ” obviously holds because for Let A be the set of thé spins belonging to the meridian
any nontrivialg, which does not commute with the Hamil- 7y of the torus as in Fig. (@) and consider the system in the
tonian, then it follows from lemma 2 thg=ga® Iz is notin  state[&y). Since the statg,y is the equal superposition of
A,, and thus only the identity belongs td,, which con- all the group elements ind acting on|0), we can apply
cludes the proof. [0  theorem 1 and the entropy 8 k?-1-log, dx—log, dg. It is

A corollary is that if the system is in the ground stw@, obvious that any spin flip on the chain does not commute
the same proposition holds true by substituting with ~ Wwith the plaquettes sharing that spin, so from the corollary to
wiw,A. If the system is in a generic ground stiie one just ~ proposition 2 no closed string-nge N acts exclusively on
replaces4 with N. A and thusp, is always diagonal for any ground stag. In

In the following we compute the entropy for several sub-particular, for |&p we have da=1. Therefore S
systemsA for both |£&,) and the generi¢é) ground states. =10gy(|G|/dg)=log, f from Eq.(12). The number of possible
Although the general ground stai® is no longer an equal configurations of spins on the chaiy, is 2%, but there are
superposition state and hence we cannot apply theorem 1, imly f=2"1 different configurations of spins iA that enter
some cases we can calculate explicitly the von Neumanthe ground state, namely the ones with an even number of
entropy for|&€). For completeness we also review some ex-spin flips. Indeed, we have-1 stars acting independently on
amples given in Ref.11] for the ground statéyy). the chain and we can obtain all the allowed configurations
applying products of these stafise., elements ind acting
freely on the chaij which givesf=2%"1, Then the entropy is

C. The spin chain

A. One spin
TakeA to be a single spin. In this case it is obvious that S=log, f=k-1. (45)
no closed string neg €N acts exclusively o\, hencep, is Let now the system be in a genefig of the ground state

diagonal(from lemma 1 and both eigenvalues are equal to manifold. This state is a superposition with arbitrary coeffi-

1/2 (from symmetry, the entries for spin-up and spin-downgijents of the four orthogonal stath) in £:
are equdl Since the entropy iS=1, it follows that any spin

is maximally entangled with the rest of the system. ! ~ ! o
&= aij|&;) = | Al vy aijwllwlzz 0l0). (46
i,j=0 i,j=0 geA
B. Two spins . L .
Since this is not an equal superposition of elements of a

We want now to compute the entanglement between tweyroyp (acting on|0)), we cannot apply theorem 1. Nonethe-
arbitrary spins of the lattice. To do this, we first obtain theless, as shown before, the reduced density matrix for this
reduced density matripij of the two spins by tracing out all  gystem is diagonalin the computational basisMoreover,
the other spins. Since we want to calculate the entanglemeaﬁ the possible configurations on the chain are allowed in
betweenthe two spins, we use as an entanglement measuig|o) since all of them can be realized by applying some
the concurrenc& of the mixed statep; of the two qubits  nhorizontal laddem. Thus there are f2=2% configurations of
(i-e., the two spinsdefined a419] the chain that are ilN|0), wheref=2*" is the number of

_ N o~ N - even (odd) spin flips configurations. We see that the states
C=max0, A1~ VA2 = VA= VAdl, (44) |€&5o and |, give states with an even number of spin flips
where\;,\,\3,\, are the eigenvalue@n decreasing ordgr on the chain, whilg&,,) and|&;,) give states with an odd
of the matrixp;;(o¥ ® a'y)p:j(a'y® oY) and ¢V is the Pauli ma- number of spin flips. The eigenvalues corresponding to the
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even spin flip configurations are thdml|dg(|agd®+|a;d?)

=|Aldga, while the eigenvalues corresponding to an odd
number of spin flips on the chain afel|dg(|ag,?+|a;4?) .
:|A|dB(1k—a). If \; are the previous eigenvalues, the entropy 1

is S= _Eizzl)\i |ng \i= k-1-«a |092 a—(1 _oz)logz(l -a). De- | S 0 0(, u O °
fining the binary entropy ®0 0 ma o
Ha(x) = = xlog, x = (1 =x)logx(1 - x), 47 *° L e o8

we obtain

[ ]
[ ]
o
[
[

[
[

S=k-1+Hya). (48) (

) FIG. 5. (Color onling A region A of the lattice obtained by
D. The spin ladder taking all the spingthin (black lines] inside or crossed by a loop
Let A be the set of spins belonging to a “ladder,” i.e., all [thic_k (red line]. §A,B are the number of sites wh(_)se stars a_ct ex-

the spins intersected by the curyg, Fig. 4b). Again, theA cluswely onA [dlamzonds(red) sited and .respe.ctlverB [sglld
partition containsk spins. Consider the system in the state(bIu® circles; dag=2*5. The number of sites with stars acting on
|&0). From proposition 2, n@€ A acts exclusively on the P0th subsystemfopen (white) siteq is Xpp=n;+n,+ng; n; is the
subsysten®, henced,=1. The number of independent stars Xumber Of[Opeq_(Wh't_e)] Is.'te; 2?"2%nefrk§StTrf'ghb?rs 'ns!dg
acting only onB is k?-1-2k+k (there arek?-1-2k stars _rea conservation IMplieskat2p*2ag=. 1N€ €ntropy I
which do not touch the subsystef) plus k pairs of stars ag~1. (3 If the boundary is a convex loofi.e., a rectangle

. L . 3ag is equal to the boundary length, (in lattice unitg, since in
based on the two ends of each spirfifeaving it invariank this casen,=ny=0: the entropy iS=L ;1. (b) If the boundary is

2_|,_ .
Thendy=2"*"" and the entropy is an arbitrary loop,L,a=n;+2n,+3n;, hence the entropy iS=L,
-n,—2n3—1; in the figuren,=1 [open(white) triangle] and n;=1

S=k. (49) [open(white) squaré.
This implies immediately that
_ E. The cross
Tra(po) = 27¥14, (50)

) o ) The subsyster includes all the thickblue) spins in the
since theA system is in the totally mixed state. state Fig. 4c). This is a system ofi2spins. Let the system be

What happens if the system is in a generic ground statg, ine statd&,p). Again, no element ofd is able to flip spins
|&)? In general, the reduced density matrix is no longer diagynly on this subsystem, sd,=1 and the reduced density

onal (in the computational bagisFrom Eq.(41) we find matrix p, is diagonal(in the computational basisThere are
1 k?-1-(2k-1) stars acting independently @ The entropy
pa= X &jaym Tra(WiWhpoWiwh). (51)  is thusS=2k-1.
i.jlm=0
Since the sef is the vertical ladder, both ladder operators F. The vertical spins

have a particularly simple actiomv,;(w,) acts only on sub-
system B (A). Then Tg(wypp)=W, Trg(pg). Moreover,

TrB(WlpO):29'9’,EAXA|OA><0A|XAXA<O*,3|XE3W1|OB>' These scqlar The system is considered in the stgg). Since in this case
produc_ts are d|ffe,rent,fror’n zero if and only_>(§=W1-_'|'h'S no closed string operat@e A acts trivially on either sub-
would imply thatx, ® X=X, ®Ww; is a contractible string net system, we havel,=dgz=1. The entanglement iS=k?-1

in A and this can happen only i, is a ladder operator \yhich s the maximum possible value forg) state.
acting fully on A, which is impossiblgnotice that a double

ladder is a product of stars and hence a contractible string
ned. Thus Tg(wipe)=0. Similarly,  Ti(W,W,pp) G. The disk

=W, Trg(Wypp)=0. We also have Ftw,pgwy) =Trg(po) and In this section we take the systemto be a disk, i.e., a
Trg(WpoWp) =W, Trg(po)w,. From Eq.(50) we know that for  region homeomorphic to a plaquette. Let us start, as usual,

the ladder Ti(po) =215 and we obtain by assuming the system is in the stiig). Consider a con-
=2k + , 52 tra'ctlblle Ipopy on the dual Iattlce_ and leA be the set of
Pa (1+pwe) (52 spins inside or intersected by (Fig. 5. Let 3,5 be the
with p=2 Re(ay@o+an;a1). Sincews=1and T(w,)=0, the  number of sites whose stars act only AnrespectivelyB;
eigenvalues ofv, are +1 and they have the same multiplic- 2 iS the area ofA, B in lattice units. Let2,g be the
ity, namely ¥1 Hence the eigenvalues gf, are A\,  number of sites with stars acting on both subsystems. We

We now takeA to be the set of all vertical spins of the
lattice; thenB is the set of all horizontal spins; see Figdy

=27X(1+p) and the entropy is also haved,g=2*A8. Area conservation implie€+3g
1 +3,5=K°. The entropy isS=k?-1-3,-35=2A5—1. Letn;,
*tp i=1...3, be the number of sites iR,z having i nearest
=k-1+ — . : adie AB
Skl HZ( ) (53) neighbors insidé\. Then
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TABLE I. The entropyS of the systems analyzed in text for two lated the entanglement in 1D spin chains. In the casgYof
ground states|£y and the generigé); for two spins the value and Heisenberg models, the authors in REf$] calculated
shown is the concurrend®. The constants are=|ag?+|a;o> and  the entanglement between a spin block of $izend the rest
p=2 Reag@ ot and;r); Ha(x)=-xlog, x—(1-x)logy(1-x) is the  of the chain. They found two characteristic behaviors. For

binary entropy. critical spin chains, the entanglement scales tkelog, L,
whereas for the noncritical caSesaturates with the size of
|€00) |&) the block. This result is in agreement with the result for
_ black-hole thermodynamics in 1+1 dimensiofi2l,22,
(0) one spin 1 1 which suggested a connection between the entanglement
(1) two spinsij C=0 C=0 measured in quantum information and the entropy of the
(2) spin chain k-1 k-1+Hxa)  Vvacuum in quantum field theories.

(3) spin ladder K k=1+H,(1+p/2) In this article we investigated bipartite entanglement in

(4) cross 2-1 spin systems for states in a stabilized space. For a bipartite
. . system in a pure state, the von Neumann entropy of the re-

(5) vertical spins k*-1 duced density matrix is the unique measure characterizing
(6) the disk Lsa—No—2n3—-1 Lija—np—2n3—1 the entanglement between the two subsystems. We showed
that for states that are an equal superposition of all the ele-

ments of a stabilizer group generated by spin flips, the en-

SAg=N +Ny+ng (54)  tanglement entropy of a bipartitiofA,B) depends only on

. the degrees of freedom belonging to the boundary between

and the boundary length is the two subsystems. This property provides an interesting

L= Ny + 2N, + 3. (55) link to the holographic principle. As an example we studied

the entanglement present in the ground state of the Kitaev’s
If yis a convex loogFig. 5@)], thenZag=L,s (sincen,  model. Apart from its special interest in quantum computa-
=n;=0) and the entropy is equal to the perimeter of thetion (it was the first example of topological quantum com-
boundary (up to a constantS=L,y—1. In general, if the puting, this model is also relevamger se due to the non-
boundary ofA is an arbitrary loopy on the latticg Fig. 5b)], trivial topology and to the specific nature of the spin-spin
the entropy is interaction which generates topological order. On a Riemann
1 surface of genug the degeneracy of the ground state is 4
S=L,-n,-2n3—-1==(L,a+2n,+n,)-1. (56) and itis stable against local perturbations. We found analyti-
3 cal results for the ground state entropy of several bipartitions
We see that for the disB is exactly thegeometric entropy (A.B) of a toroidal square lattice. In this case, although no
[20] of a spatial regiorA. two spins of the lattice are entanglé@te concurrence is zero
It is easy to prove that the entropy is bounded from abovdor any pair of spins the ground state has genuine multi-
and below by two linear functions. From E@5) it follows ~ body entanglement. For a convex regiarof the lattice, its

thatn,<L,a/i and J,+3n;<L,,. Then Eq.(56) implies geometric entropy is linear in the length of the boundary.
L ; Moreover, for states which are an equal superposition of all
SLa-1=S=-L,-1. (57) elementsge GCN acting on|0), no partition has zero en-
3 tanglement, so the system hasabsolute entanglemerfi-

ally, we argued that entanglement can probe the topology of

Let us now consider the system in the generic groundyq system and raised the very interesting question of

stat1e|§>. Thf expan?pn of th? reduced density matrip,s whether it could detedior measurketopological order.
:,Ei,iv|,m=oa1'ia*m Tra(WiwopgWiwp). From Eq. (43), for the It is relevant to put our results in perspective and to com-
disk we can choose the laddesg , such that they act only  pare them with known results. Theolographic principle
onB, hencewj,=1,, i=1, 2. Then it follows immediately that (HP) emerged recently as a paradigmatic universal[l5.
Tra(Wipgw)=Trg(po), =1, 2, and  TEWiWpoWiW) A simplified statement of HP isthe maximum entropy of a
=Trg(po)- As in Sec. IV D, Tg(powy) =0, since the ladder;  region is proportional to the area of its boundary appar-
cannot act exclusively on subsystefnA similar reasoning  ently contradicts the naive expectation that the entropy of a
implies also Tg(pow,) =0=Trg(pow1W2) and we obtainps  region should be proportional to its volume. The entropic
=Trg(po); hence the entropy is the same as in the previougrea law appears as a recurrent pattern and has been recov-
caseS=L,a—n,—2n3-1. Thus for the disk the entropy obeys ered in severalapparently unrelatddphysical systems. In
the boundary law for any ground stg. (see Table ). black hole thermodynamics it is expressed as the
Beckenstein-Hawking lawgs=A/4: the entropy of a black
hole is a quarter of its horizon aréia Planck unit$[23]. For
Apart from being one of the most striking conceptual fea-a scalar field in 2+1 and 3+1 dimensions, Sredn{@d]
tures of quantum mechanics, entanglement proves also to Iskhowed that the entropy of a regiéhis proportional to the
a powerful tool in the study of many body spin systems, asarea of its boundary, and not to its volume. Recently Plenio
several articles pointed out recently. et al. [25] found analytically the same behavior for the en-
The first topic to which our article is related is the studytropy in the case of a harmonic lattice system in
of entanglement in spin systems. Several authors have calcd-dimensions.

V. CONCLUSIONS
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The entropic boundary law recovered in this article forinside a system AThis confluence of diverse fields, like
spin systems provides another instance of the universality dilack hole thermodynamics, QIT, and spin systems, can
HP. Due to the close relationship between concepts like erbring together insights and shed new light on fundamental
tropy and entanglement, the holographic principle gives inproblems.
sights into fundamental questions of quantum information
theory, likeWhat is maximum information content needed to  P.Z. gratefully acknowledges funding by European Union
describe a region R8r How much information can be stored project TOPQIRcontract IST-2001-39215
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