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Topological order characterizes those phases of matter that defy a description in terms of symmetry and
cannot be distinguished in terms of local order parameters. Here we show that a system of n spins forming
a lattice on a Riemann surface can undergo a second order quantum phase transition between a spin-
polarized phase and a string-net condensed phase. This is an example of a quantum phase transition
between magnetic and topological order. We furthermore show how to prepare the topologically ordered
phase through adiabatic evolution in a time that is upper bounded by O�

���
n
p
�. This provides a physically

plausible method for constructing and initializing a topological quantum memory.
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The notion of topological order [1] can explain phase
transitions that depart from the standard Landau theory of
symmetry breaking, long range correlations, and local
order parameters. It plays a key role in condensed matter
theory of strongly correlated electrons; e.g., it provides a
means to understand the different phases arising in the
fractional quantum Hall effect [2]. These phases have
exactly the same symmetries. No local order parameter
can distinguish them. The internal order that characterizes
these phases is topological and can be characterized in
terms of a nonlocal order parameter, e.g., the expectation
value of string operators (operators formed by tensor prod-
ucts of local operators taken along a string).

Another arena in which topological order has found
profound applications is quantum computation, in particu-
lar, in the context of systems exhibiting natural fault tol-
erance [3,4]. Central to this application is the ability to
prepare certain topologically ordered states, which are the
ground states of a Hamiltonian describing a spin system
occupying lattice links on a Riemann surface of genus g. In
a topologically ordered phase the ground state degeneracy
depends on g. Because any two orthogonal states in the
ground state manifold L are coupled only by loop opera-
tors with loops that wind around the holes of the Riemann
surface, this encoding is robust against any local perturba-
tion. Such a system constitutes a very robust memory
register [3].

Here we address the problem of preparation of topologi-
cally ordered states via adiabatic evolution. Our motivation
for studying this problem is at least threefold. First, while
quantum phase transitions (QPTs) between deconfined and
confined phases have been studied extensively in quantum
chromodynamics [5], this has not been the case in con-
densed matter physics. Here we study a second order QPT
between a magnetically ordered phase (deconfined, topo-
logically disordered) and a string-net condensed phase [6]
(confined, topologically ordered). Second, we are moti-
vated by the aforementioned need for topologically or-
dered states as the input to topological quantum
computers. In Ref. [7] it was shown how to prepare a

ground state of the toric code via O�
���
n
p
� repeated syn-

drome measurements, where n� L2 is the number of spins
on a lattice of linear dimension L. Such ground state
preparation is an essential step in constructing a topologi-
cally fault tolerant quantum memory. However, prepara-
tion via syndrome measurements has certain drawbacks,
most notably that the measurements are assumed to be as
fast as logic gates and must be fast compared to the
decoherence time scale, assumptions that are likely to be
hard to satisfy in practice. A system in which the phase
transition predicted here can potentially be realized experi-
mentally, as well as used for topological quantum memory,
is a Josephson junction array [8]. Third, we believe that the
methods presented here will also find applications in the
field of adiabatic quantum computing [9], for the prepara-
tion time in our adiabatic method is O�

���
n
p
� (as in the

syndrome measurement method [7]), which is optimal in
the sense that it saturates the Lieb-Robinson bound [10].

The toric code model.—Consider an (irregular) lattice
on a Riemann surface of genus g. At every link of the
lattice we place a spin 1=2. If n is the number of links, the
Hilbert space of such a system is H �H �n

1 , where
H 1 � Spanfj0i; j1ig is the Hilbert space of a single spin.
In the usual computational basis we define a reference
basis vector j0i � j0i1 � . . . � j0in, i.e., all spins up. This
string-free state is the vacuum state for strings. We define
the Abelian group X as the group of all spin flips on H . Its
elements can be represented in terms of the standard Pauli
matrices as x� � ��x1�

�1 � . . . � ��xn�
�n , where �j 2 f0; 1g

and � � f�jg
n
j�1. Every x� 2 X squares to identity I,

dimH � jXj � 2n, and any computational basis vector
can be written as j�i � x�j0i.

Now we associate a geometric interpretation with the
elements of X, as in Fig. 1.

To every string � connecting any two vertices of the
lattice we can associate the string operator x� operating
with �x on all the spins covered by �. The product of two
string operators is a string-net operator: x� � x�1

x�2
, and

we can view X as the group of string-net operators on the
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lattice. A particularly interesting subgroup of X is formed
by the products of all closed strings; we denote this closed
string-nets group [1] by �X. If the Riemann surface has
genus g, we can also draw 2g incontractible strings around
the holes in the surface: T � ht1; . . . ; t2gi; see Fig. 1. The
group of contractible closed strings is denoted by B and is
generated by the elementary closed strings: Bp �Q
j2@p�

x
j , where j labels all the spins located on the

boundary @p of a plaquette p. A star operator is defined
as acting with �z on all the spins coming out of the vertex
s: As �

Q
j2s�

z
j. Then �X splits into 2g topological sectors

labeled by the ti: �X � T �B [11].
Topological order in the toric code model.—Consider

the Hamiltonian H�g;U� � �g
P
pBp �U

P
sAs. For g �

U � 1 this is the Hamiltonian introduced by Kitaev [3],
and we refer to it as the Kitaev Hamiltonian. It is an
example of a Z2-spin liquid, a model that features string
condensation in the ground state. The operators As, Bp all
commute, so the model is exactly solvable, and the ground
state manifold is given by L � fj�i 2H jAsj�i �
Bpj�i � j�ig. The vector in the trivial topological sector
of L is explicitly given by [11]

 j�0i � jBj
��1=2�

X

x2B

xj0i: (1)

On a torus the ground state manifold L is fourfold degen-
erate. A vector in L can be written as the superposition of
the four orthogonal ground states in different topological
sectors j�ki � ti1t

j
2j�0i, i, j 2 f0; 1g, k � i	 2j. On an

arbitrary lattice (regular or irregular) on a generic Riemann
surface of genus g there are 2g such operators ti and thus

the degeneracy of the ground state manifold is, in general,
22g. This is a manifestation of topological order [1].

A quantum phase transition.—Consider the Hamiltonian
obtained by applying a magnetic field in the z direction to
all the spins:

 H� � ��
Xn

j�1

�zj 	 �nI: (2)

The zero-energy ground state of this Hamiltonian is the
magnetically ordered, spin-polarized string-vacuum state
j0i. In the presence of H� a string state x�j0i, with x� �Q
j2��

x
j � I, pays an excitation energy that depends only

on the string length l�, namely h0jx�H�x�j0i � 2�l�. Thus
H� is a tension term. If we add the star term HU �

�U
P
sAs to H�, the ground state is still j0i [its energy is

Eg�U� � �Uns], but the spectrum is quite different. Now
there is a drastic difference between open and closed
x-type strings. Closed strings commute with all the As
and hence only pay the tension, whereas open strings
also pay an energy of 2U for every spin that is flipped
due to anticommutation (�Uh0j�xjAs�

x
j j0i � 	U). So

every open string pays a total energy of 4U. In the U

� limit, open strings are energetically forbidden. On the
other hand, the plaquette operators Bp deform x strings: the
plaquette term Hg � �g

P
pBp acts as a kinetic energy for

the (closed) strings and induces them to fluctuate. In light
of these considerations the total model H � H� 	H�g;U�
has two different phases. The first phase is the spin-
polarized phase described above, when U
 �
 g� 0.
Here the string fluctuations are energetically suppressed by
the tension, so the ground state is j0i. The other phase
arises whenU
 g
 �� 0. Now the tension is too weak
to prevent the closed loops from fluctuating strongly.
Nevertheless, open x-type strings cost the large energy
4U, so are forbidden in the ground state. The ground state
consists of the superposition with equal amplitude of all
possible closed strings, L. This is the string-net condensed
phase. As the tension decreases, and the fluctuations in-
crease, the ground state becomes a superposition of an
increasingly larger number of closed strings. Open strings
cannot be present in the ground state because their energy
is too large. In the thermodynamic limit, for some critical
value of the ratio between tension and fluctuations �=g, the
gap between the ground state and the first excited state
closes and the system undergoes a second order QPT [12].
Notice that the gap between the ground and the first excited
states is given only by the interplay between tension and
fluctuations, and is unaffected byHU. The second phase we
have described cannot be characterized by a local order
parameter, such as magnetization: we have phases without
symmetry breaking. This is an example of topological
order. The low-energy sector has energy much smaller
than U, and it thus comprises closed strings: Llow �
spanfxj0i; x 2 �Xg. This subspace also splits into four sec-
tors labeled by the elements of T: Lij

low � spanfxti1t
j
2j0i;

x 2 B; i; j � 0; 1g. Thus dimLlow � dim�H �=�2n=2	1�.
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FIG. 1 (color online). The square lattice on a torus. Closed x
strings [solid (red) lines] commute with the star operator As
because they have an even number of links in common. The
elementary closed x string is the plaquette Bp. Dashed z strings
connect plaquettes p. The two incontractible x strings are
denoted t1;2. The dual string variable [dashed (blue) lines]
connects the reference lines t1, t2 with the vertices p in the
dual lattice. Thus the dual operator �z

!�"�
�p� anticommutes with

the plaquette variable �x�p� � Bp.
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Within each sector, low level excitations have an energy
Elow � g and become gapless only at the critical point in
the thermodynamic limit.

Adiabatic evolution.—We now show how to prepare the
topologically ordered state j�0i through adiabatic evolu-
tion. The idea is to adiabatically interpolate between an
initial Hamiltonian H�0� whose ground state is easily
preparable, and a final Hamiltonian H�1� whose ground
state is the desired one. The interpolation between two
such Hamiltonians has been used as a paradigm for adia-
batic quantum computation [9]. This process must be
accomplished such that the error � between the actual final
state and the desired (ideal adiabatic) ground state ofH�1�,
is as small as possible. The problem is that real and virtual
excitations can mix excited states with the desired final
state, thus lowering the fidelity [13]. Rigorous criteria are
known [14,15], and used below, which improve on the first-
order approximation typically encountered in quantum
mechanics textbooks. For smooth interpolations and one
relevant excited state, it has been proven that an arbitrarily
small error � is obtained when the evolution time T obeys
T � O�1=�Emin�, where �Emin is the minimum energy
gap encountered along the adiabatic evolution [16].

Consider the following time-dependent Hamiltonian:

 H��� � HU 	 �1� f���
H� 	 f���Hg; (3)

where U
 g, �� 1, and f: � 2 �0; 1
� �0; 1
 such that
f�0� � 0 and f�1� � 1, � � t=T is a dimensionless time.
At � � 0 the Hamiltonian is H�0� � HU 	H� whose
ground state is the spin-polarized phase j0i. At � � 1 the
Hamiltonian is the Kitaev Hamiltonian H�1� � HU 	Hg

whose ground state is in L, the string-net condensed phase.
The tension strength is given by ��1� f���
, while the
fluctuations have strength gf���. Adiabatic evolution from
the initial state j0iwill cause the fluctuations to prepare the
desired ground state j�0i. Notice that because of the inter-
play between the tension termH� and the large termHU, at
every � the ground state is in L00

low. As the tension de-
creases, the gap between the ground state and states in the
other sectors Lij

low (i	 j > 0) diminishes. Beyond the
critical point, the gap scales down exponentially with the
number of spins. Nevertheless, this does not cause transi-
tions: irrespective of how small the gap is, the Hamiltonian
does not couple between different sectors. Indeed, the
adiabatic theorem states that the probability of a transi-
tion between the instantaneous eigenstate j j���i the
system occupies and another eigenstate j j���i [with
respective energies Ei���, Ej���] is given by pij �
jh i���j _Hj j���i=�Ei��� � Ej���
2j2. In our case,
h i���j _Hj j���i � 0 whenever j i���i, j j���i belong to
two different sectors [17]. Thus transitions between differ-
ent Llow sectors are completely forbidden, and the adia-
batic evolution keeps the ground state in the sector it starts
in. The situation is different in the presence of an arbitrary
k-local (k � 1; 2; 3) perturbation V: time evolution can
then, in principle, couple the different sectors, and this

requires a careful analysis. Before topological order is
established, different sectors remain gapped because of
the tension, and the adiabatic criterion applies. Once in
the topologically ordered phase, the exponentially small
gap requires us to apply time-dependent perturbation the-
ory to compute the probability of tunneling between differ-
ent sectors. It turns out that only the L=kth order in the
Dyson series is nonvanishing, and the result is that as long
as V < �, these transitions are suppressed exponentially in
L=k at arbitrary times [17]. Namely, the probability of
transition between two different sectors a and b is

 Wb a��� � L�V2=�U
�������
U�

p
�
L: (4)

This result is confirmed by numerical analysis [18]: topo-
logical order protects the adiabatic evolution from tunnel-
ing to other sectors. Note that, in contrast, preparing the
ground state by cooling would result in an arbitrary super-
position in the ground state manifold. Therefore we are
concerned with the gap to the excited states within L00

low.
We next show that this gap scales as �E�n; �c� � n

�1=2 at
the critical point �c. To do this, we must understand the
lattice gauge theory that represents the low-energy sector
of the model.

Lattice gauge theory and mapping to the Ising model.—
We briefly review the lattice gauge theory invented by
Wegner [19], showing that the low-energy sector (E�
U) of Kitaev’s model maps onto this theory. The lattice
gauge Hamiltonian is given by

 Hgauge � �	1

X

s;k̂

�z�s; k̂� � 	2

X

p

Bp: (5)

A local gauge transformation consists in flipping the
phases of all the spins originating from s, so it can be
defined as As �

Q
j2s�

z
j. It is simple to check thatHgauge is

invariant under this local gauge transformation. In a gauge
theory the Hilbert space is restricted to the gauge-invariant
states. Thus the Hilbert space for this model is given by
H gauge�fj i2H jAsj i� j ig�H , the Hilbert space
spanned by all possible spin configurations. The Hamilton-
ian (5) clearly resembles our H���, apart from the absence
of the star term HU. Consequently, H gauge is just the low-
energy sector E� U of H���. In the limit U ! 1 the
Hamiltonian H��� maps to Hgauge with 	2=	1 �

gf���=��1� f���
. For a critical value of 	1=	2 � 0:43
[18,20], the system undergoes a second order QPT.

The lattice gauge theory is dual to the �2	 1�-
dimensional Ising model [21]. To show this, we define a
duality mapping, as follows. With every plaquette of the
original lattice we associate a vertex p on the new lattice,
and we define the first dual variable �x�p� � Bp. In order
to obtain the correct mapping, the second dual variable
must realize the Pauli algebra with �x�p�. Consider now
the string �!�"��p� from the reference line t2�t1� to the
vertex p on the new lattice; see Fig. 1. With
this string we associate the operator that consists of �z
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on every link intersected by �!�"��p� and denote it by
�z
!�"�
�p�. This is the second dual variable. These variables

realize the Pauli algebra: ��x�p��2 � ��z�p��2 � 1 and
f�x�p0�; �z�p�g	 � �p0p. In order to write Hgauge in terms
of the dual variables, we note that �z

" �p��
z
" �p� ŷ� �

�z�s; x̂� and �z
!�p��

z
!�p� x̂� � �z�s; ŷ�. Then the map-

ping ��x; �z�� ��x;�z� yields

 Hg �HIsing��	2

X

p

�x�p��	1

X

p;i

�z�p��z�p	 i�; (6)

where �z is of the ! , " type if i � x̂, ŷ, respectively. We
recognize this Hamiltonian as the quantum Hamiltonian
for the �2	 1�-dimensional Ising model [21]. This model
has two phases with a well understood second order QPT
separating them. The gap between the ground state and the
first excited state of this model are known to scale at the
critical point as ��L� � L�1 where L � n1=2 is the size of
the system [22]. The first excited state is nondegenerate.
Returning to our H���, and recalling that its low-energy
sector E� U corresponds to the spectrum of the gauge
theory Hamiltonian (5), it now follows that also the gap of
H��� to the first excited state scales as ��n� � n�1=2 near
the critical point. Hence we know that for a smooth inter-
polation the adiabatic time T � O�1=�Emin� scales as n1=2,
with the final state arbitrarily close to j�0i [16].

Error estimates.—The rest of the spectrum consists of
two large bands with gaps of order g, U. We now estimate
how well the actual final state j �t � T�i [the solution of
the time-dependent Schrödinger equation with H���] ap-
proximates the desired adiabatic state j�0i at t � T [the
instantaneous eigenstate ofH�1�], given that there is ‘‘leak-
age’’ to the rest of the spectrum. To this end we use the
exponential error estimate [14]: for an infinitely differen-
tiable Hamiltonian H��� the error � � k �T� ��0�T�k
can be made smaller than any polynomial in T� (i.e., � �
O��T���N
 for arbitrary N > 0), where � is the relevant
gap. Since g� U, transitions with � � g into the lower
band dominate. Hence an adiabatic time T � O�n1=2� gives
an arbitrarily small error � and completely suppresses
errors due to leakage to other gapped excited states. We
have thus shown that the topologically ordered state j�0i
can be prepared via adiabatic evolution in a time that scales
as n1=2. This is consistent with the strategy devised in [7],
where a toric code (the ground state j�0i) is prepared via a
number of syndrome measurements of order L � n1=2.
This scaling has recently been shown to be optimal using
the Lieb-Robinson bound [10], thus proving that the adia-
batic scaling found here is optimal too.

Outlook.—In this work we have shown how to prepare a
topologically ordered state, the ground state of Kitaev’s
toric code model, using quantum adiabatic evolution. The
adiabatic evolution time scales as O�n1=2� where n is the
number of spins in the system. This method gives a
measurement-free physical technique to prepare a topo-

logically ordered state or initialize a topological quantum
memory for topological quantum computation [3,4,23].

The robustness of the ground state of the Kitaev model
to thermal excitations [3] endows our preparation method
with topological protection against decoherence for t � T;
how to extend this robustness to all times t is another
interesting open question, the study of which may benefit
from recent ideas merging quantum error correcting codes
and dynamical decoupling with adiabatic quantum compu-
tation [24]. An example of the robustness of the topological
phase studied here, when the spin system interacts with an
Ohmic bath, has recently been provided in Ref. [25].

We thank S. Haas, A. Kitaev, M. Freedman, S. Trebst,
P. Zanardi, and especially A. Joye, M. B. Ruskai, and X.-G.
Wen for important discussions. This work was supported in
part by ARO No. W911NF-05-1-0440 and by NSF
No. CCF-0523675.

[1] X.-G. Wen, Quantum Field Theory of Many-Body Systems
(Oxford University Press, Oxford, 2004).

[2] X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
[3] A. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003).
[4] M. H. Freedman, A. Kitaev, M. J. Larsen, and Z. Wang,

Bull. Am. Math. Soc. 40, 31 (2003).
[5] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[6] M. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005).
[7] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math.

Phys. (N.Y.) 43, 4452 (2002).
[8] L. B. Ioffe et al., Nature (London) 415, 503 (2002).
[9] E. Farhi et al., Science 292, 472 (2001).

[10] S. Bravyi, M. N. Hastings, and F. Verstraete, Phys. Rev.
Lett. 97, 050401 (2006); J. Eisert and T. J. Osborne, Phys.
Rev. Lett. 97, 150404 (2006).

[11] A. Hamma, R. Ionicioiu, and P. Zanardi, Phys. Rev. A 71,
022315 (2005).

[12] E. Ardonne, P. Fendley, and E. Fradkin, Ann. Phys. (N.Y.)
310, 493 (2004).

[13] M. S. Sarandy and D. A. Lidar, Phys. Rev. Lett. 95, 250503
(2005).

[14] G. A. Hagedorn and A. Joye, J. Math. Anal. Appl. 267,
235 (2002).

[15] S. Jansen, M.-B. Ruskai, and R. Seiler, J. Math. Phys.
(N.Y.) 48, 102111 (2007).

[16] G. Schaller, S. Mostame, and R. Schutzhold, Phys. Rev. A
73, 062307 (2006).

[17] A. Hamma and D. A. Lidar (to be published).
[18] A. Hamma, W. Zhang, S. Haas, and D. A. Lidar,

arXiv:0705.0026.
[19] F. Wegner, J. Math. Phys. (N.Y.) 12, 2259 (1971).
[20] C. Castelnovo and C. Chamon, arXiv:0707.2084.
[21] B. Kogut, Rev. Mod. Phys. 51, 659 (1979).
[22] C. J. Hamer, J. Phys. A 33, 6683 (2000).
[23] M. H. Freedman Proc. Natl. Acad. Sci. U.S.A. 95, 98

(1998).
[24] S. P. Jordan, E. Farhi, and P. W. Shor, Phys. Rev. A 74,

052322 (2006); D. A. Lidar, arXiv:0707.0021.
[25] S. Trebst et al., Phys. Rev. Lett. 98, 070602 (2007).

PRL 100, 030502 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
25 JANUARY 2008

030502-4


