
Environmental degradation and indeterminacy

of equilibrium selection

Angelo Antoci∗, Marcello Galeotti†,‡, Mauro Sodini§,¶,�

June 16, 2021

Abstract

This paper analyzes an intertemporal optimization problem in which
agents derive utility from three goods: leisure, a public environmental
good and the consumption of a produced good. The global analysis of the
dynamic system generated by the optimization problem shows that global
indeterminacy may arise: given the initial values of the state variables,
the economy may converge to different steady states, by choosing different
initial values of the control variable.
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1 Introduction

In this paper we analyze global dynamics of the system proposed in Antoci et
al. (2020), where only local stability analysis of steady states was developed,
while other dynamic features were suggested via numerical simulations.

Antoci et al. (2020) consider an economy constituted by a continuum of
identical economic agents, which have to solve an intertemporal optimization
problem where the state variables are the stock of physical capital K accumu-
lated by each agent and the stock E of a free access renewable environmental
resource. The control variables are agents’ labour input L and consumption C
of a produced good. At each instant of time t ∈ [0,∞), each agent produces the
output Y by the following production function:

Y = KαL1−α (1)
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where 1 > α > 0. In each instant of time, economic agents’ utility is measured
by the function:

U(C,L,E) =

�
CEβ(1− L)γ

�1−δ
− 1

1− δ
(2)

where 1 − L(t) represents leisure and parameters satisfy the conditions: β,
γ, δ > 0, δ �= 1. This function is jointly concave in C and 1 − L if δ > γ

1+γ .
Each agent solves the following maximization problem:

MAX
C, L

�
∞

0

�
CEβ(1− L)γ

�1−δ
− 1

1− δ
e−ρtdt (3)

subject to the constraints:

·

K = KαL1−α −C (4)

·

E = E(E −E)− εY (5)

with K(0) > 0 and E(0) > 0 given, K(t), E(t), C(t) ≥ 0 and 1 ≥ L(t) ≥ 0
for every t ∈ [0,+∞). The parameter ρ > 0 measures the subjective discount

rate. The symbols
·

K and
·

E represent, respectively, the time derivatives of K
and E.

Equation (4) models the accumulation process of productive capital; accord-
ing to it, the (net) investment in new capital is equal to the difference between
the produced output Y and consumption C. Equation (5) gives the time evo-
lution of the stock of the environmental resource E; Y is the economy-wide
average output and the parameter ε > 0 measures the negative impact of Y on
E. The parameter E > 0 represents the value of E to which the stock of the
environmental resource converges starting from an initial value E(0) > 0, in
absence of the negative impact due to the production process of output Y (E is
the “carrying capacity” of the natural resource).

In solving problem (3)-(5), each agent considers Y as exogenously deter-
mined. Indeed, as there exists a continuum of economic agents, each of them
considers her own impact on Y as negligible. However, since agents are identi-
cal, ex post Y = Y holds. This implies that the trajectories resulting from our
model are not optimal (i.e. they do not describe the social optimum). However,
they represent Nash equilibria in the sense that, along them, no agent has an
incentive to modify her choices if the others don’t modify theirs.

Antoci et al. (2020) analyzed the dynamic system obtained by applying
the Maximum Principle to problem (3)-(5), focusing on local analysis. They
showed that there exist at most two steady states P1 = (K

∗, E1, L
∗) and P2 =

(K∗, E2, L
∗), with E1 < E2, and analyzed their local stability properties. In

the present paper, we complete the analysis by studying global dynamics. Our
analysis highlights the dynamic regimes that may be observed, and proves that
global indeterminacy may occur. That is, given the initial conditions K(0) and
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E(0), both steady states can be reached by choosing different initial values of the
control variable L. Antoci et al. (2020) only touched upon questions of global
indeterminacy and used numerical simulations to illustrate such a phenomenon.

Indeterminacy scenarios may be observed because economic agents are un-
able to coordinate their choices, since each of them takes the economy-wide
average output Y (and, consequently, the time evolution of E) as exogenously
given. This result implies that one cannot predict a priori where the economy
will eventually converge to.

Our work derives global indeterminacy results through an analytical charac-
terization of the invariant surfaces separating different regimes of the trajectories
(the same approach is followed in Antoci et al. 2011). Our approach differs from
previous contributions to the global indeterminacy literature, which are based
only on bifurcation techniques (e.g., Bella et al. 2017, Mattana et al. 2009).
For a review of the literature on global indeterminacy see, among the others,
Mino (2017).

Differently from previous studies in the literature on global indeterminacy
(see, for a review, Bella et al. 2017, Mino 2017), where indeterminacy occurs in
contexts in which economic agents do not take into account the positive effects
(positive externalities) of their decisions on the production activity or on the ac-
cumulation process of human capital, in our model global indeterminacy results
from the assumption that agents do not internalize the negative effects (negative
externalities) of their decisions on the environmental resource. Other growth
models with environmental assets exhibit global indeterminacy scenarios; see,
among the others, Antoci et al. (2011, 2019), Yanase (2011), Fernández et al.
(2012), Carboni and Russu (2013), Bella and Mattana (2018), Russu (2020).
However, they analyze global indeterminacy in very different theoretical con-
texts (see Caravaggio and Sodini, 2018, for a review of the literature).

Finally, it is worth to stress that in the present work we are not dealing with
another important problem of dynamic optimization, that is, the existence of
indifference points. Starting from these points, two or more optimal solutions
exist, giving rise to the same value of the objective function (see the seminal
contributions of Sethi, 1977, and Skiba, 1978). Vice versa, in our optimization
problem, the trajectories that an economy may follow, in a global indeterminacy
scenario, are Nash equilibria but do not represent optimal solutions, in that each
economic agent does not take into account the negative impact that her choices
have on the dynamics of E. Therefore, when multiple equilibrium trajectories
exist, starting from the same initial values of the state variables, economic agents
may select one along which the value of the objective function is lower than in
others, due to a coordination failure.

The paper will be structured as follows. In Section 2 the dynamic system
generated by the maximization problem is derived. Sections 3 and 4 deal, re-
spectively, with local and global analysis of the system.
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2 The dynamic system

The current value Hamiltonian function associated to problem (3)-(5) is:

H =

�
CEβ(1− L)γ

�1−δ
− 1

1− δ
+ λ

�
KαL1−α −C

�

where λ is the co-state variable associated to K. By applying the Maximum
Principle, we obtain:

·

K =
∂H

∂λ
= KαL1−α −C (6)

·

λ = ρλ−
∂H

∂K
= λ

�
ρ− αKα−1L1−α

�
(7)

where C and L satisfy the following conditions1 :

∂H

∂C
= C−δEβ(1−δ) (1− L)γ(1−δ) − λ = 0 (8)

∂H

∂L
= 0 i.e. −γC1−δEβ(1−δ) (1− L)γ(1−δ)+(1−α)λ(1−L)KαL−α = 0 (9)

Each agent considers the time evolution of E, given by equation (5), as
exogenously determined. The context is that considered by Wirl (1997).

In Antoci et al. (2020) it is showed that equations (6)-(7) and conditions
(8)-(9) give rise to the following dynamic system:

·

K =
1

γ

Kα

Lα
[L(1− α+ γ)− (1− α)] (10)

·

E = E(E −E)− εKαL1−α (11)

·

L = f(L)

�
ρ− α

L1−α

K1−α
+
αδ

K

·

K −
β(1− δ)

E

·

E

�
(12)

where:

f(L) =
L(1− L)

[(γ + 1)δ − γ − αδ]L+ αδ

and f(L) > 0, for 1 > L > 0, recalling δ > γ/(γ + 1).
We will analyze the dynamics of the system (10)-(12) in the set:2

1 It is easy to check that, according to the utility and production functions we adopted, the
representative agent always chooses C > 0 and 0 < L < 1.

2Notice that equation (12) is not defined for E = 0 and K = 0, and remember that the
parameter E represents the value to which the variable E tends (for t→ +∞) in absence of
the negative impact due to the production process of output Y .
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S =
�
K > 0, 0 < E < E, 0 < L < 1

	
(13)

The variables K and E are state variables, while the variable L is a control
variable. So, the initial values K(0) and E(0) are determined by the “history”
of the economy (according to the terminology used by Krugman, 1991), while
the initial value L(0) is determined by the “expectations” of economic agents.

3 Steady states in the set S

Antoci et al. (2020) showed that there exist at most two steady states of system
(10)-(12), P1 = (K∗, E1, L∗) and P2 = (K∗, E2, L∗) with 0 < E1 ≤ E2, where:

a) L∗ = (1− α)/(1− α+ γ);

b) K∗ = (α/ρ)1/(1−α) L∗;

c) E1 and E2 are the real solutions of the equation E(E−E) = ε(K∗)α(L∗)1−α,

which exist if and only if ε ≤ E
2

4(K∗)α(L∗)1−α =
(1−α+γ)E

2

4(1−α)

�
ρ
α

� α

1−α .

The previous paper also investigated the local stability properties of P1 and
P2 and showed that P1 is, generically, either a local attractor or a saddle with
one-dimensional stable manifold, while P2 is, generically, either a repeller or a
saddle with two-dimensional stable manifold. In particular, P1 may be a local
attractor only if δ > 1.

According to such results, the steady state P2 can be (generically) reached by
the economy only when it is a saddle with a two-dimensional stable manifold. In
such a case, given initial conditions K(0) and E(0) close enough to the values of
K and E in P2 (K∗ and E2, respectively), then generically there exists a unique
initial value L(0) of the control variable L such that the trajectory starting from
(K(0), E(0), L(0)) converges to P2.

The steady state P1 can be (generically) reached only when it is attractive.
Remember that the steady state P1 is characterized by a lower level of the
stock of environmental resource, E1 < E2. So, when it is attractive, it is a
poverty trap. Furthermore, a local indeterminacy scenario occurs: given initial
conditions K(0) and E(0) close enough to the values of K and E in P1 (that
is, K∗ and E1), there exists a continuum of initial values L(0) of the control
variable L such that the trajectory starting from (K(0), E(0), L(0)) converges
to P1 (see Benhabib and Farmer, 1999). On the contrary, when P1 is a saddle
with a one-dimensional manifold, then it cannot be, generically, reached.

We remark that P1 can be attractive only if δ > 1. When such condition
holds, we have that consumption C and environmental resource E are “Edge-
worth substitutes”: ceteris paribus, the increase in utility U(C,L,E) (see (2))
deriving from an increase in C depends negatively on the stock E of the envi-
ronmental good:
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∂U(C,L,E)

∂C∂E
= (1− δ)βEβ−1

(1− L)
γ

[CEβ (1− L)
γ
]
δ
< 0 if δ > 1 (14)

So, if δ > 1, environmental degradation induces economic agents to increase
consumption C. That is, they tend to “substitute” the benefits deriving from the
“consumption” of the free access natural resource by the benefits deriving from
the consumption C. To implement such a substitution process, economic agents
have to work more to increase the production of output Y and, consequently,
their consumption level C. Such a substitution process has a self-reinforcing
nature: environmental degradation induces agents to produce more output Y ;
an increase in Y generates further environmental degradation, and so on. This
process may end up leading the economy on a welfare-reducing trajectory con-
verging to P1.

If, on the contrary, δ ∈ (0, 1), then the economy is unlikely to converge to
P1, as such steady state cannot generically be reached. In this context, P2 is the
unique steady state that can be reached. According to (14), if δ < 1, we have
that the increase in utility U(C,L,E) deriving from an increase in C depends
positively on the stock E of the environmental good. In such a case, it is said
that C and E are “Edgeworth complements”. To set ideas, consider playing
sports in a green area. If the quality and the extent of it is high (that is, the value
of E is high), then the utility of buying a bike to go for a ride in the area is high.
In such a case, C and E go hand in hand (they are Edgeworth complements).
The opposite holds if we consider the utility deriving from purchasing a gym
membership, where individuals can use a bike or walk on a treadmill, rather
than play sports en plein air. In such a case, the expensive private consumption
C “replaces” the use of the free access environmental resource E, and the utility
generated by such a consumption choice is negatively related to the value of E
(C and E are Edgeworth substitutes). Similar examples apply to many other
private consumer goods (see, among the others, Antoci and Borghesi, 2012).

4 Global analysis

It is easily observed that there exist, for any value of δ, two open regions whose
trajectories converge, respectively, to K = 0 and E = 0 in a finite time. Then,
such trajectories cannot come back to S. In the following we investigate the case
where the two steady states P1 and P2 exist and are, respectively, a sink and a
saddle (with two-dimensional stable manifold). In fact, in Figure 1 we consider
a set of parameter values for which such a case occurs. More generally, we can
observe that the steady states coordinates do not depend on the parameters β
and δ, which, however, influence their stability. Specifically, given any δ > 1, P1
is a sink and P2 a saddle if β is sufficiently high. Then, letting δ decrease, sooner
or later (for some δ > 1) a supercritical Hopf bifurcation generically occurs:
P1 becomes a saddle with one-dimensional stable manifold and an attracting
limit cycle arises around it. On the other hand, a Hopf bifurcation may also
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concern P2, which may become a source surrounded by a limit cycle with a
two-dimensional stable manifold.

Actually, the conclusion section is devoted to considerations and conjectures
about the global dynamics evolution.

As a first step, we describe the geometric shape of the surfaces
·

K = 0,
·

E = 0

and
·

L = 0.

•
·

K = 0 is clearly given by the plane:

L = L∗ =
1− α

1− α+ γ

•
·

E = 0 is, for any L = L0, 0 < L0 < 1, a “parabolic” curve:

Kα =
1

εL1−α0

E(E −E)

The maximum value of K is is reached when E = E/2. Calling it 
K(L0),
we observe that 
K(L0) decreases when L0 increases, and lim

L0→0


K(L0) =
+∞.

• In order to describe
·

L = 0, we multiply by E the expression in square
brackets in formula (12). Hence, we obtain a second degree equation in E
which, for any given L0 ∈ (0, 1), has two, one or zero solutions. In fact, it
can be checked that there exist two values, 0 ≤ L

′

< L
′′

< 1, such that

when L0 ∈ (L
′

, L
′′

),
·

L = 0 is given, in the positive quadrant of the plane

L = L0, by the union of two curves, E = E
′

(K,L0) and E = E
′′

(K,L0),

E
′

≤ E
′′

, such that there exist two values K and K, K < K, for which:

E
′

(K,L0) = E
′′

(K,L0)

E
′

(K,L0) = E
′′

(K,L0)

Moreover, as L0 ∈ (L
′

, L
′′

),

�
·

L = 0

�
∩ {L = L0} intersects

�
·

E = 0

�
∩

{L = L0} in two points

�K, �E1

�
and


�K, �E2

�
, with K < �K < K. In

other words, as L0 ∈ (L
′

, L
′′

),

�
·

L = 0

�
∩ {L = L0} has an oval shape,

which may or may not intersect the line E = E.

Moreover, one can check that L
′

> 0 if α > 1/2, while L
′

= 0 if α < 1/2.

In the former case, all the trajectories starting from points where L < L
′

tend to K = 0. In both cases, anyway, �K increases as L → L
′

, and, if
L
′

= 0, lim
L0→0

�K = +∞.
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We can also observe that, posed �E = E
′

( �K,L0) = E
′′

( �K,L0), �E <

E/2. In fact, having written
·

L = 0 as a second degree equation in E,

G(K,E,L0) = 0, the pair ( �K, �E) satisfies ∂G/∂E = 0. Since at that

point
·

E > 0, the claim easily follows.

Finally, when L0 ∈ (L
′′

, 1), it can be checked that, in the plane L = L0,
·

L > 0 when
·

E ≥ 0 and the two curves E = E
′

(K,L0) andE = E
′′

(K,L0)
intersect at one point, which, however, may not belong to S.

Now we can prove the following result.

Theorem 1 Assume that the steady states P1 and P2 exist and are, respectively,
a sink and a saddle with two-dimensional stable manifold. Then P2 belongs to
the boundary of the attraction basin of P1. Moreover, the stable manifold of P2
separates trajectories tending to P1 from trajectories tending to K = 0.

Proof. The strategy of the proof consists in following the backward trajec-
tory from a point Q0 belonging to a small discD on the plane L = L∗, contained

in the attraction basin of P1, where
·

L > 0 and
·

E < 0. It is shown, through
some technical steps, that such a trajectory reaches generically a maximum of

E at a point Q1 =

K1, 
E1, L1

�
, with 
E1 > E

2 , L1 < L0 and
·

K < 0,
·

E = 0,
·

L > 0. Next we see that on the plane L = L1 there exists an arc K = K (E,L1),

defined for E
2 ≤ E ≤ 
E1, whose forward trajectories reach K = 0. Therefore

a limit case is represented by a point Q0, possibly coinciding with P1, whose
backward trajectory, after a number (possibly infinite) of rotations, tends to a

point where
·

E = 0 with E > E
2 , but does not cross again

·

E = 0. In fact,
that implies such a trajectory to tend to the saddle P2, while, on the basis of
what has been seen above, it is proved that there exist trajectories tending to
P2 as limit cases of trajectories reaching K = 0. This proves the Theorem’s
statement.

Coming to the details, take, in the plane L = L∗, a disc D centered in P1

contained in the basin of attraction of P1. Take a point of D where
·

L > 0

and
·

E < 0, say Q0 = (K0, E0, L
∗), and follow the backward (i.e. when t < 0)

trajectory of Q0. Clearly, if α > 1/2, one must meet a minimum of L(t), since
all the trajectories starting from some L ∈ (0, L

′

) tend to (0, E, 0). Vice versa,
in the case α < 1/2, we expect that the backward trajectory of Q0 might tend,

as t→−∞, to L = 0 and consequently, recalling lim
L→0

�K = +∞, toK = +∞ and

E = E. To this end, we can study the local stability of (K,E,L) = (+∞, E, 0),
for example by the change of variables H = Kα−1, E = E, M = F (L), such
that F ′(L) = 1/f(L) and F (0) = 0. So the characteristic polynomial of the
Jacobian matrix at (H,E,M) = (0, E, 0) is computed to be:

−λ(λ2 + bλ+ c) = 0
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where the sign of b is ambiguous, but c < 0. Hence such a steady state is a
saddle point and, by an arbitrarily small change of Q0, one can avoid that along
the backward trajectory L→ 0.

Hence, following the backward trajectory of Q0, we will find, sooner or later,
a minimum of L and a maximum of E, while K remains bounded. Precisely,

recalling that a maximum of K corresponds, in the forward trajectory, to
·

L < 0,
the maximum of E will be reached at a point of the forward trajectory where
·

K < 0 and
·

L > 0. Assume, then, it occurs at L = L1 < L∗. Thus the
backward trajectory of Q0 intersects L = L1 at a point Q1 = (K1, 
E1, L1),
with

·

K (Q1) < 0,
·

E (Q1) = 0,
·

L (Q1) > 0,
··

E (Q1) < 0. Therefore, it is easily

observed that 
E1 > E/2.

Moreover, consider the arc of
·

L = 0 on the plane L = L1, defined by

K = K(E,L1), with E ∈
�
E/2, �E2

�
, where

·

E > 0. Then along such an arc K

is increasing and a trajectory crossing it, at a point where
·

L = 0 and
·

K < 0,

cannot cross again
·

L = 0, since, for L2 < L1, K(E,L2) > K(E,L1) when
E ≥ E/2 (by K(E, ·) we mean the lower edge of the oval corresponding to
·

L = 0). Hence, on the plane L = L1 we can consider a curve, from E = E/2

to ( �K, �E2), whose forward trajectories reach K = 0.
Now, we are looking for trajectories separating the basin of P1 from the

region whose trajectories reach K = 0. In fact, as backwards trajectories from
points belonging to the basin of P1 spiral away from P1, we can imagine that

the backward trajectory of Q1 intersects again
·

E = 0 when E > E/2 at a point

Q2 = (K2, 
E2, L2), where E2 > E/2 and K1 > K2 > K∗.
Actually, we can find, as a limit case, a point Q0 = (K0, E0, L∗), possibly

coinciding with P1, belonging to the basin of P1, E1 ≤ E0 < E, where
·

E (Q0) ≤

0 and
·

L (Q0) ≥ 0, such that its backward trajectory, after a number n, 0 ≤ n ≤

+∞, of rotations, tends to a point of
·

E = 0 with E > E/2, but does not cross

again
·

E = 0. Therefore such a point is the saddle P2.
On the other hand, take some L0 ∈ (L

′

, L∗). Consider the segment of

E = E/2 on the plane where K ∈ (K, 
K), defined by
·

L
�
K,E/2, L0

�
= 0 and

·

E


K,E/2, L0

�
= 0. Then the trajectory from

�
K,E/2, L0

�
, as we have ob-

served, reaches K = 0, and so do trajectories starting from points
�
K,E/2, L0

�

where K<K< �K0, �K0 being a suitable point of the interval (K, 
K). Thus the

trajectory from
�
K0, E/2, L0

�
will tend to

·

L = 0 but cannot cross it; hence, it
will converge to P2.

In conclusion, we have proved that there exists a trajectory joining P1 and
P2 and that the stable manifold of P2 separates trajectories tending to P1 from
trajectories reaching K = 0.
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The following global indeterminacy result derives from Theorem 1, recalling

the description of the surface
·

L = 0.

Corollary 2 Given the conditions of Theorem 1, there exists a surface Σ ,
whose equation is K = K (E,L), L′ ≤ 
L < L < L∗, E/2 < E < 
E (L) ≤ �E2 (L),
with the following properties:

• the trajectory through a point Q0 = (K0, E0, L0) ∈ Σ converges to P2;

• for each Q0 ∈ Σ there exists µ > 0 such that: the trajectory from a point
(K0, E0, L), L0 − µ < L < L0, reaches K = 0 in finite time, while the
trajectory from a point (K0, E0, L), L0 < L < L0 + µ, converges to the
sink P1.

Proof. We have shown, in the proof of Theorem 1, that there exist points in
the attraction basin of P1, with an initial E < E/2, whose backward trajectories

cross
·

E = 0 at points, say, 
Q0 = ( 
K0, 
E0, 
L0), with 
L0 < L∗, 
E0 > E/2, 
K0 >
�K


L0
�
. Moreover, as a limit case, one such backward trajectory tends to the

saddle P2. On the other hand, for each 
L0 ∈ (L′, L∗), there exists a non-

decreasing3 arc K = K

E, 
L0

�
, E/2 < E < �E2



L0
�
, on the plane L = 
L0,

along which
·

K < 0,
·

E,
·

L > 0, whose trajectories converge to P2; while the
trajectories starting from points with the same values of E and L, but a lower
value of K, reach K = 0. Hence, the above arc separates the basin of P1 from

the trajectories reaching K = 0, when 
L0 belongs to a suitable interval


L,L∗

�
,


L ≥ L′. Now, omitting the decoration, consider a pointQ0 = (K0, E0, L0) of the
arc and a point Q′0 = (K0, E0, L0 − µ), µ > 0 being sufficiently small. Hence,

since
·

K < 0,
·

E,
·

L > 0 in Q′0, the trajectory of Q′0 will meet L = L0 below
the arc and, thus, will tend to K = 0. Conversely, the trajectory of the point
Q′′0 = (K0,E0, L0 + µ) will necessarily converge to P1, if µ > 0 is small enough.

According to Theorem 1 and Corollary 2, when δ > 1, global indeterminacy
can be observed: given the initial values of the state variablesK and E, different
steady states can be reached by choosing different initial values of the control
variable L. More specifically, under the assumptions of Theorem 1, for each
pointQ0 = (K0, E0, L0), L0 < L∗, belonging to the surface Σ (and so converging

3 In fact, consider a point Q0 = (K0, E0, �L0) lying just below the arc, where
·
K < 0,

·
E,

·
L > 0. Hence, the trajectory of Q0 will cross, first,

·
L = 0 and then will converge to�

0, E, 0
�
. Consider a point Q′

0
= (K0, E

′
0
, �L0), with E′0 − E0 > 0 sufficiently small. Then it

is easily checked that, being
·
E > 0, ∂

·

L

∂E
< 0, while, at parity of E,

·
E is higher if K and L

are lower. As a consequence, it is not difficult to show that the trajectory from Q′
0
reaches

·
L = 0 before the one from Q0, converging as well to P0. This proves that the function

K = K
�
E, �L0

�
, describing the arc, is not decreasing.
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to the saddle point P2), there exists µ > 0 such that the trajectory starting from
a point (K0, E0, L), with L0 < L < L0+µ, converges to the sink P1, which is a
poverty trap (see Fig.1).

That is, they choose to work more with the objective to increase the pro-
duction and consumption of output. This allows them to replace the deterio-
rated environmental resource E by the consumption C of the produced good,
and therefore to protect themselves from environmental degradation. However,
their choices drive the economy towards the poverty trap P1. The convergence
to P1 can be interpreted, in this context, as the consequence of a coordination
failure of economic agents.

In the real world, some consumption goods are Edgeworth substitutes for en-
vironmental resources, others Edgeworth complements. In the aggregate model
like the one proposed in this paper, a value of the parameter δ greater than
1 represents a context in which, at the aggregate level, substitutability pre-
vails over complementarity; vice versa, if δ < 1. At the best of our knowledge,
there does not exist an empirical study giving an estimate of the degree of sub-
stitutability between environmental resources and private consumption goods.
The contribution of our analysis is to show that substitutability between E and
C, which is associated to the well-known notion of weak sustainability (Solow,
1974, 1986, 1993; Hartwick, 1977, 1978), may have a counterintuitive effect,
in that it may favour the emergence of global indeterminacy scenarios and the
consequent existence of trajectories approaching a welfare-reducing outcome.

These findings hold only if the production process of Y has a negative impact
on the environment, that is, if ε > 0. If green technologies are used (i.e. ε = 0),
the model admits only one saddle point with two-dimensional stable manifold,
therefore no indeterminacy occurs in that case (see Antoci et al., 2020). The
same holds if, as showed in Antoci et al. (2020), output Y is taxed at a constant
rate τ ∈ (0, 1), the revenues τY are used for environmental protection (environ-
mental defensive expenditures), and the positive effect of defensive expenditures
on E is high enough with respect to the negative impact of Y (measured by the
parameter ε).

5 Concluding remarks

As we have shown in the previous section, when P1 and P2 are, respectively, a
sink and a saddle (implying, in particular, δ > 1), there exist three open regions
(and generically, we expect, no other one), sayR1, R2 andR3, filled, respectively,
by trajectories reaching (in a finite time) the plane E = 0, converging to the
sink P1 and reaching (in a finite time) the plane K = 0. We have also proven
that R2 and R3 are separated by the stable manifold of P2.

In fact, we can conjecture, on the basis of the previous arguments, a likely
evolution of the system dynamics. Let us start from Theorem 1 hypotheses.
Now, assume δ, initially greater than 1, decreases. Then at some value of δ,
say, δ0, P1 loses its stability and may be “replaced” by an attracting cycle Γ
(Hopf bifurcation, see Fig.2) while P2 continues to be a saddle. So, when δ
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furtherly decreases, we expect Γ to expand (see Fig.3) until, when δ = 1, the
cycle explodes reaching the plane E = 0.

From such a point on, i.e. when δ < 1, there should exist generically two
open regions, R1and R3, whose trajectories reach, respectively, in a finite time
the planes E = 0 and K = 0. Hence, we expect that the separatrix between the
two regions would be, precisely, the stable manifold of P2 (if P2 has remained a
saddle). In particular, the trajectories converging to P2 would be the only ones
staying in S when t→ +∞. This occurrence is shown in Figure 4.

Figure 1. Global indeterminacy scenario. Parameter values: E = 1.3; α = 0.3,
β = 24.84, γ = 1.3, δ = 1.06, ε = 0.4, ρ = 0.04. Initial values of the
state variables E(0) = 1.04025820702807; K(0) = 5.99124478008392. For
L(0) = 0.425697415099600 the trajectory evolves on the stable manifold of
P2 converging to the saddle P2. For a larger value of L(0) (in figure L(0) =
0.681115864159360) trajectories converge to the sink P1. For lower values of
L(0) (in figure L(0) = 0.383127673589640) trajectories reach the plane K = 0
in finite time. The dashed curve shows the branch of the unstable manifold of
P2 converging to the sink P1.
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Figure 2. Hopf bifurcation and global indeterminacy. The parameter values are
the same as in the previous figure except for δ = 1.035. Trajectories converging
to the limit cycle Γ surrounding P1 coexist with trajectories on the stable man-
ifold of the saddle P2. Initial values of the state variables for the trajectories
in figure are E(0) = 2.20617886672602, K(0) = 5.35230152562421. The red
trajectory converging to the saddle P2 starts with L(0) = 0.605972067919661,
the one converging to Γ with L(0) = 0.666569274711627.

Figure 3. Evolution of the attractor of the system. The parameter values
are the same as in the previous figures except for δ. Starting from δ = δ1 >
1.0374 for which P1 = (6.225232325, 0.3491884150, 0.35) is a sink (coordinates
of the stationary states are independent of δ), if we let δ decrease, P1 undergoes
a supercritical Hopf bifurcation (δ ≃ 1.0374). Letting δ decrease further we
observe an expansion of the attractive limit cycle surrounding P1. The labels
near the closed curves indicate the values of δ in the simulation: δ2 = 1.035,
δ3 = 1.03, δ4 = 1.028, δ5 = 1.027.
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Figure 4. Case δ < 1. The parameter values are the same as in the previous
figures except for δ = 0.95. No attractor exists. The phasespace is projected on
the plane K,E. Three trajectories are depicted starting from the same initial
values of the state variables K, E (K(0) = 11.8279, E(0) = 0.6949), but with
different initial values of the jumping variable L. The dashed one reaches (in
finite time) the plane K = 0 (L(0) = L1 = 0.2800); the dash-dot one reaches
(in finite time) the plane E = 0 (L(0) = L2 = 0.4550); the solid one tends (in
infinite time) to the saddle point P2 (L(0) = L3 = 0.3585).
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