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We study the entanglement dynamics and relaxation properties of a system of two interacting qubits in
the cases of (I) two independent bosonic baths and (II) one common bath. We find that in the case (II) the
existence of a decoherence-free subspace (DFS) makes entanglement dynamics very rich. We show that
when the system is initially in a state with a component in the DFS the relaxation time is surprisingly
long, showing the existence of semi-decoherence free subspaces.
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1. Introduction

The principle of superposition is the most important feature of
quantum mechanics. It gives rise to interference and to quantum
entanglement. Among its endless implications, is the possibility of
processing information in a way that goes beyond the classical
scheme of the Turing machine, with the fundamental consequence
that information is physical. Computer science is thus not a branch
of pure mathematics. Moreover, quantum computation promises to
be able to solve certain computational problems with an exponen-
tial speed-up (for a review on quantum information, see [1]).

A quantum system will generically lose coherence when inter-
acting with another quantum system. In this case, its evolution
will not be unitary, and there will be quantum correlations with
the environment. The phenomenon of decoherence has been ad-
vocated as the solution of the measurement problem in quantum
mechanics, and the appearance of the classical world [2,3]. For
quantum information, preserving coherence is the most important
and demanding problem in order to build a functioning quantum
computer [4]. For this reason, the discovery of subspaces of the
Hilbert space - the so-called decoherence-free subspaces (DFS) -
that are not affected by interactions with the environment, given
specific symmetries of the interaction Hamiltonian, has opened
the way to considering systems that are resilient at the physi-
cal level [5], instead of resorting to the tools of quantum error
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correction [6]. In the recent years, there has been an increas-
ing attention to the problem whether robust quantum memory
is possible, without error correction. That is, whether it is pos-
sible, for a quantum system in interaction with an environment
at finite temperature, to encode a quantum memory that is long
lived, scaling with the size of the system, without any active
intervention from outside [7]. Typically, states outside the DFS
are extremely short lived, while states in the DFS evolve uni-
tarily remaining in the DFS. Here we show that superpositions
between these two subspaces are long lived, so that enlarging
a DFS with non-DFS states is still useful for quantum computa-
tion.

The loss of quantum behavior in a system can be measured by
the loss of quantum correlations within the system, and the in-
crease of quantum correlations with the environment, or, in other
words, by the entanglement within the system, and with the envi-
ronment. Unfortunately, there is not a general way to study entan-
glement between three parties. A relevant exception is constituted
by the case of two qubits because the concurrence C between
the two qubits is a valid measure of their entanglement even in
a mixed state [8]. Therefore, in the case of a composite quan-
tum system constituted by two qubits and an environment, the
entanglement between the qubits can be characterized by their
concurrence, while the von Neumann entropy S can measure the
entanglement between the system of the two qubits and the envi-
ronment.

In this Letter we study a quantum system made of two inter-
acting qubits coupled to a bosonic bath. We consider the following
two cases: (I) for each spin one independent bath and (II) both
spins coupled to the same bath.
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The non-equilibrium dynamics of the reduced density matrix
p(t) of the two qubits is studied within the Bloch-Redfield ap-
proach [9]. We assume that the environment is in thermal equilib-
rium at temperature T and the system-bath coupling is weak.

With this assumption, one obtains a set of coupled integro-
differential equations for the elements of the reduced density ma-
trix. In the Markov approximation, the equations of motion for p(t)
take then the form of simple linear differential equations that can
be solved analytically. Although quantum systems interacting with
a bath are generically believed to relax, there are only a few exam-
ples where one can carry out all the calculations and prove directly
how relaxation is achieved. In the case (I) we prove that the sys-
tem always relaxes to the Gibbs state. The case (II) is more rich
due to the existence of a DFS [5]. The novelty of our approach is
also in taking in explicit consideration what happens if the system
is initially in a state which has a component in the DFS, which has
very important consequences.

The main object of this work is the study of the quantities C(t)
and S(t) as a function of time and temperature T for both the
cases (I)-(II). Since we are interested in the formation of quantum
correlations, we put emphasis in the case T =0 where the entropy
S has the meaning of entanglement with the bath degrees of free-
dom. The system of two spins in bosonic bath has been studied in
several papers [10-16].

As mentioned above, the existence of the DFS reveals an impor-
tant novel effect. There is an “interference” effect that decreases
dramatically the decoherence rate when the initial state is in a
coherent superposition between the DFS and its complement. We
also see that the system relaxes to a state that is not the Gibbs
state because the amplitude of the singlet state must stay constant.
In [17,18], an approximate DFS is obtained with a different mech-
anism, that of using the environment as a measurement to effec-
tively project the system onto a DFS. In our case, the long lifetime
of the states depends on the interference between a decoherence-
free state with a short lived state. Moreover, we study entangle-
ment dynamics and relaxation behavior for the system (II) as a
function of temperature T and coupling strength. Finally, we study
the case of the mixed state, to show that the dramatic increase of
relaxation time discussed above is genuinely a quantum effect.

2. The model

We consider a simple generalization of the spin-boson problem
[19], where two qubits interact with each other via an Ising type
coupling and are also coupled to a bosonic environment. The sys-
tem Hamiltonian is

q A A v 1
s = 5 Ox ) Tx ZUZTZ- (1)
We take h =kp = 1. Here ¢’s and t’s are the Pauli matrices on the
first and the second spin respectively. For simplicity bias terms are
absent and the tunneling coupling A is the same for both spins.
The system Hamiltonian is trivially diagonalized (see Appendix A)
and we will denote by {|E;)} the basis of its eigenstates. In case (I),
the baths are modeled by the Hamiltonian

Hg)= Z a)a,ibl,iba,i- (2)
a,i=1,2

The interaction Hamiltonian is

1 1
Hl(rll)t = EO‘ZZCO{,] (bl’] + ba,1) + 57,'2 Zcmz(bzl.z —i—ba’z).
a o

(3)

Each spin is subject to one fluctuating force and the two forces
are uncorrelated. The coefficients ¢y ; give the strength of the cou-
pling of the system to each harmonic oscillator of the bath, which

we assume to be weak. For a Gaussian model all the proper-
ties of the baths are described by the spectral density Ji(w) =
Ty ciyiS(wa,i — w) which, in the case of ohmic baths that we
consider here, takes the form J;(w) = 2w Kijwexp(—w/w.). Here
wc is the cut-off frequency which is assumed to be the largest en-
ergy scale in the problem. We study the case K1 = K» =« /27w,
with the two baths at the same temperature T. In the case (II) the
same fluctuating force acts on both spins so that Hg has only one
set of harmonic oscillators. The coupling of the spins to the reser-
voir in this second case reads

1
(In T
Hing = 502 +2) %:ca (bl + ba). (4)

3. Bloch-Redfield approach

In this section we introduce the equations which allow us to
study the time evolution of the reduced density matrix of the two
spins. Within a Markov approximation, the matrix elements of the
reduced density matrix in the eigenvectors basis {|E;)} obey the
following generalized master equation [9]:
pm’,m () = —iwm'mPm'm ) + Ryvmnn Pnrn (t)el(wm’m 7w”’")t» (5)
where Ryymnn is the Redfield tensor defined by Ruyymmnn =
- Zk(sm”Fn:;kkn’ + Snmr Fn;km) + Fn-'r;m’n’ + Fm_nm’n" The rates I'*
are given in Appendix A. The indexes m, m’n, n’ run from 1 to 4.
E1,..., E4 are the eigenvalues of Hs and wmy, = Ep — Ep.

Eq. (5) can be simplified by keeping only secular terms, i.e.
those terms such that the argument of the exponential is zero.
The equation for the diagonal elements (populations) of the den-
sity matrix is

Pmm(6) = Z P (OWmn — Omm () Z Wam, (6)
m#n n#m

with Winn = Linn + Dimmn = 2 Re Timn- For the off-diagonal ele-
ments (coherences) we have

Prn(t) = (—i0mn = Yinn) Prn(®) + Y Ot pia ©), (7)
Kkl

with Yo = Zk(rz;l’_’kkm’ + Dnkem) — Fr:mm’m ~ L and Omng =
1"ln+mk + i if @mn = wg and zero otl;erwise. Due to the sym-
metries of the model the coefficients I, . are identically zero.
To simplify the calculation we disregard the Lamb shift to the
eigenfrequencies due to the imaginary part of the I'’s. Within this

approximation we can write

1
Vi = 5 3 (Wi + Wim). (8)
k

We solve Egs. (6) and (7) by Laplace transform and discuss sep-
arately the cases (I)-(II).

Direct calculation shows that all the coefficients which appear
in Egs. (6) and (7) are not independent. Before we proceed to
brute force solution of the differential equations it is convenient
to employ all the symmetries of the problem. From the spec-
trum of Hs we obtain that w3y = w4y and w43 = wy1. Moreover
Winn = exp[—Bw®mn]Wnm. For both cases (I) and (II) the solution
of Eq. (7) is straightforward once we notice that for this model all
the ®’s are zero. This simplification does not apply when the two
spins have a different A’s and one has to take care of all the terms
appearing in Eq. (7). We obtain

pij(t) = pij(0) exp[—(yij + iwijt], 15 . 9)
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Fig. 1. (Color online.) Entanglement dynamics for the system with A =1, v =0.7 for the case (I) of two independent baths at low temperature 8 = 10. All the graphs show
the von Neumann entropy of the system of two spins and concurrence between the two spins as a function of the time t. The initial states are [¥) = 1/+/2(|14)+[41)) € H1
and |¥) = |11) € H, |¥:) =13) € H', |¥,) = |1]) € H, respectively. The two spins are initially disentangled with the environment. At t = co, the system always thermalizes
in the ground state and therefore is a pure state: at short times the system gets quickly entangled with the environment due to fast decoherence, then it dissipates to reach
the ground state. The relaxation time is of the order of t ~400. Notice the different behavior of the concurrence in the different cases. In particular, there are no oscillations
for the case of the initial singlet state. When the system is very entangled with the environment, the concurrence dynamics changes qualitatively, before dissipation intervenes

to damp its oscillations.

In the case (I) direct calculation shows that W43 = W5 and
W4y = W31 and W41 = W3, = 0. In the case (II) the system is as-
sumed to interact with a single ensemble of harmonic oscillators. It
is well known that in this case a DFS exists, i.e., a subspace of the
non-interacting system which is fully decoupled from the environ-
ment and where the time evolution is unitary [5]. For this simple
model the DFS is one-dimensional and coincides with the singlet
eigenstate |3). It follows that Wq3, W3, Wy3 are all identically
zero. Moreover also W4 is zero as the straightforward calculation
shows. Also in this case we are left with only two parameters W4,
and W5 which in this case are not equal as in the double bath
case. Of course the population ps3 of the singlet state remains con-
stant in time. In both cases (I)-(II), the analytic solution of Eq. (6)
is then obtained by taking the Laplace transform with respect to
the time and by solving a set of algebraic equations. The explicit
expressions are reported in Appendix A. We can write the full so-
lution of Egs. (6)-(7) in a superoperator form: p(t) = & p(0).

4. Entanglement dynamics and the DFS interference

Having found the solution p(t) for the time evolution of the
density matrix of the system, we can proceed to the study of the
entanglement dynamics. Let us call * the subspace of the singlet
state |3) and HL = span{|1), |2), |4)} the subspace orthogonal to it.
We will initialize the system in the pure state p(0) = |¥){(¥| cor-
responding to a generic superposition between the two subspaces;
|¥) = Al¢, )+ B|3), with |¢) € H+. Having obtained the solution

p(t) for the dynamics of the reduced system, we can study the
von Neumann entropy S(p(t)) = —Tr(plogp) and the two-spins
concurrence C(t) defined in [8]

C(p(®)) = max(0, v/a1 — VA2 — VA3 —v/2a), (10)

as a function of time. Here A;’s are the eigenvalues of p(oy ®
oy)p*(0y ® oy). We have performed a study in the space of the
parameters v, A, k, B =1/T and different initial states p(0). The
strength of the coupling x only changes the time scale of the
evolution. The parameters v, A both set the time scale and a tem-
perature scale. Moreover, for the case of the single bath they have
an effect on the concurrence at the equilibrium. The effect of the
temperature is that of making the system dissipating faster, and
mixing the system. Here, we want to focus on the important case
of zero temperature because at T = 0, the entropy S(t) has the
meaning of measuring the entanglement with the bath degrees of
freedom. At T > 0, it is not possible to distinguish the quantum
correlations with the bath and the mixing due to the finite temper-
ature. Initially the system is prepared in a pure state, and therefore
S(0) = 0. Then, the dynamics given by the interaction Hamiltonian
will entangle the system with the environment. Let us examine
now the two cases.

(I) Two independent baths. In Fig. 1 are plotted C(t) and S(t)
for the four initial states |¥;) = 1/v/2(1) + [L1), %) = 111
in the irreducible subspace H,, the singlet state |¥.) = |3) =
1/v/2(111) — 141)), and |¥y) = |1]). The choice of parameters is
v=0.7, A=1, k =0.01 and g =10 that is a very low temper-
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Fig. 2. Entanglement dynamics for the system with A =1, v =0.7 for the case (II)
of a single bath at low temperature 8 = 10. All the graphs show the von Neumann
entropy of the system of two spins (blue) and concurrence between the two spins
(red) as a function of the time t. The initial state is |¥;) = 1/«/§(|TL) + 1) €
‘H . The two spins are initially disentangled with the bath. At t = oo, the system
thermalizes in the ground state and thus is disentangled again. At short times the
system gets quickly entangled with the environment due to fast decoherence, then
it dissipates to reach the ground state. Unlike the double bath case, there is an
important relationship between entanglement with the bath and concurrence. The
concurrence decreases, but when the system is very entangled with the bath, the
structure of the oscillations changes qualitatively before the dissipation becomes
relevant. The relaxation time is of the order of t ~400. (For interpretation of colors
in this figure, the reader is referred to the web version of this article.)

ature for the system. The concurrence C(t) goes to zero as the
system decoheres. Since the time of decoherence is much faster
than dissipation, most of the concurrence is lost at earlier times,
then it degrades more slowly. If the system is initialized in M,
it will be oscillating with damping oscillations. If it is initialized
in the singlet state, it just leaks towards the other states (in par-
ticular, the ground state) without oscillations because |3) is an
eigenstate of Hs (Fig. 1(c)). In all cases the concurrence revives
after having gone to zero, in the point where the entanglement
with the environment is maximum, a sign of monogamy of entan-
glement. An important effect is that, when the system gets more
entangled with the baths, the concurrence dynamics changes qual-
itatively and the some oscillations increase their amplitude (see, in
particular, Fig. 1(b)). A

We can prove that the system relaxes taking the limit péZ” =
lime—, o0 0PV (t), and obtain, for a generic g, pégi) = 7~ 1diag(e #E1,
e PE2 o—BE3s o—BEa) where Z = Zle e PEi is the partition func-
tion of the system. The system thermalizes in the Gibbs state. This
is what everyone would expect, a system is supposed to thermal-
ize in the Gibbs state. It is though always very difficult to prove
relaxation to equilibrium in concrete examples and this is one of
our results. At T =0 the Gibbs state is the ground state and there-
fore the asymptotic value for S is zero. On the other end, the
asymptotic value of C is different from zero, this being an example
of how one can obtain entangled states by cooling down the sys-
tem [20]. At T > 0, the von Neumann entropy will first increase to
a high value due to the fast decoherence, and then, when dissipa-
tion kicks in, slowly decrease to its asymptotic value given by the
entropy of the Gibbs state. Notice that the relaxation time is of the
order of t ~ 400, independently of the initial state.

(1) Single bath. The behavior for the system in a single bath
is completely different. In this case, the singlet subspace H° is a
DFS [5]. If the system is prepared in the singlet state p(0) =|3)(3|,
it will stay there forever, so the case A =0 is trivial. If we prepare
the state in the subspace 7, there can be no effect due to the
DFS. Nevertheless, the entanglement dynamics is very interesting.
In Fig. 2, the concurrence C(t) and the von Neumann entropy S(t)

09
0.8 h J

0.7 1
0.6 1
0.5 1
04
03
02
0.1

0 ) ‘
0 50 100 150 200 250 300 350 400

Fig. 3. (Color online.) Here we show the entanglement dynamics for the same value
of parameters of the previous figure but for the initial state |¥,) =|11) € H_. Since
also this state does not have any component on the DFS Hj, the qualitative features
of S(t), C(t) are the same as for the initial state |¥;) though the details of the
evolution are different. The relaxation time is here t ~ 400 as well.
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Fig. 4. (Color online.) Here we show the entanglement dynamics for the same sys-
tem of Fig. 2 but with initial state [¥4) = [1|). The component in H°® gives a
dramatically longer relaxation time. The von Neumann entropy will not equilibrate
to zero so that there will be a residual significative entanglement with the bath.
The concurrence oscillations are damping very slowly. In the inset, we show the
behavior of C(t) and S(t) at a very large t. The relaxation time is of the order
of t ~ 4 x 10°. Moreover, the system-bath entanglement (von Neumann entropy)
reaches a minimum before slowing rising to the final value at the equilibrium.

are plotted for the initial states |¥;) = 1/+/2(|11) + 14 1)) € H1. At
the beginning, the system is not entangled with the bath, and the
concurrence starts decreasing, due to fast decoherence, in a fashion
very similar to the case of the double bath. Then notice, that also
here, when the system is very entangled with the bath, the concur-
rence dynamics changes again qualitatively. When the dissipation
becomes relevant, the oscillations damp and the system relaxes to
the Gibbs state. At the plotted temperature 8 = 10, this is prac-
tically the ground state so that the entanglement with the bath
is zero. The equilibration time is of the same order of magnitude
than the case (I) with the two independent baths. In Fig. 4 the ini-
tial state is |¥;) = [1{), which is the equal superposition between
|¥,) and the singlet state |¥.) = |3). Now things change dramati-
cally. The concurrence dynamics is qualitatively completely differ-
ent, and it damps in an extremely slower way. In the inset of Fig. 4
is shown the behavior at large times: the equilibration time is of
the order of t ~ 4 x 10°, three orders of magnitude more than the
usual. How is it possible? Why the oscillations of the system are
damped in such a slow way? Even if “half’ of the system is in the
DFS, it could still be that the decoherence time will depend only
on the part that is in 7 . This is exactly the case if we prepare the
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initial state in the mixed state p(0) = 1/2(|Wg) (¥l + 13)(3|). The
evolution equations p(t) = & p are linear and we would expect the
same type of oscillations than for the first term only, since the sec-
ond one is constant in time. But that is not the case. The state is
prepared in a coherent superposition of |¥;) and the singlet state
|3), so this means that the off-diagonal terms in p(0) show up in
p(t) =& p(0) in a way that makes the decoherence much slower.
We say it is an interference effect because it discriminates between
a coherent superposition and a classical mixture. As we shall see
in Section 6, there is no such effect if the initial state p(0) is a
classical mixture of states in * and H" .

In order to understand the long decay time when the system is
initialized in a state with a component in the DFS 5, let us look at
the decay of pi3 and compare it to the one of, say, p12. The oscilla-
tion behaviors are comparable but the exponential decays are very
different. These decays are governed by the rates )43 and i3, as
one can see from Eq. (9). Using Eq. (8) and the fact the W3 is zero
we readily find that at low temperature y13 o coth(Bw;1/2) — 1
while yq3 o coth(Bwz1/2) + 1. With our choice of the parameters
we have y12/y13 ~ 103 as illustrated in the plots.

Not only the system thermalizes with a longer time scale, but
it does not relax to the Gibbs state. After all, we expect the popu-
lation of the singlet state to be a constant of the motion. Taking in
(Mo (¢) the limit for t — co, we find

pe((r;lono) — dlag<

where Z3 = ), 3ePFi is the partition function over the irre-
(mono) |B|2

|AI*
Z3

o—BE1 |AI*
7y

A 2
6—5527 |B|2, Le—ﬂh)’ (11)
Z3

ducible subspace . Because of the constant term P33
the entanglement with the bath can be non- vamshmg even at
the equilibrium at zero temperature. For instance, at T = 0 the
equilibrium value for the von Neumann entropy S is given by
S =1|A)%log|A]?2 + (1 — |A]®)log(1 — |A|?) and is obviously max-
imized by |A|?2 = 1/2 for which we have S =1, as it was also
argued in [13]. The concurrence C at zero temperature still de-
pends also on v, A. For the case study of v =0.7, A =1 the
equilibrium concurrence at T =0 is Ceq 22 0.33.

5. Study in temperature and coupling strengths

In this section we study the behavior of the entanglement dy-
namics in the system (II) as a function of the coupling strength
with the environment «, the temperature 8, and the parameter A.
The initial state is |¥,) = 1/~/2( 1) + [L1)

The results of the study in « are plotted in Fig. 5, for a low
temperature 8 = 10. We expect that a greater coupling with the
environment will not make qualitative changes, as long as the hy-
potheses of weak coupling are still satisfied. We expect that the
time scale of the system will shrink for larger couplings. Fig. 5
confirms this physical insight in the behavior of both C(t) and S(t)
at every time scale.

The second study is the behavior of the system in temperature.
In Fig. 6 we have plotted the time evolution of S(t) and C(t) for
different temperatures S. At high temperature 8 = 0.1, the system
decoheres very rapidly and the entanglement dynamics is trivial:
it entangles and mixes with the environment and the two spins
disentangle from each other. At a medium temperature g =1, the
process of entanglement and dissipation towards the environment
is smoother, and the concurrence dynamics is less trivial, even-
tually though, the two spins disentangle from each other. At low
temperatures 8 = 5, 20, the system shows the most interesting
behavior. Now the von Neumann entropy can be interpreted as
just the entanglement with the environment. Its rising and decay
marks the two phases of decoherence and dissipation. Initially, the
system rapidly decoheres by entangling with the environment. The
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Fig. 5. (Color online.) Von Neumann entropy S(t) (a) and concurrence C(t) (b) as a
function of time for different values of the coupling with the environment « = 0.1,
0.2, 0.3, 0.4, for the initial state is |¥;) = 1/+/2(|14) + |{1)). The temperature is
B=10and v=0.7, A =1. A stronger coupling has the effect of shrinking the time
scale for the entanglement dynamics without any other qualitative changes.

time scale of decoherence is much smaller than the one of dissi-
pation. Then, dissipation intervenes, and at very low temperature
the system must fall into the ground state, which is a pure state
and thus disentangled with the environment.

The behavior of concurrence C(t) is the most interesting as a
function of temperature. At high temperatures, the concurrence is
rapidly damped down because of the entanglement with the envi-
ronment. The entanglement is monogamous so as the system en-
tangles with the environment, the mutual entanglement between
the spins decreases. Once zero, even though the system gets more
and more mixed, the concurrence remains zero. At high temper-
ature there is no quantum correlation left in the system. At low
temperatures instead, the concurrence revives and its behavior is
non-monotonic. The amplitude of the oscillations changes pattern
when the system is very entangled with the environment.

6. The mixed state case

In this section, we study the behavior of the system prepared
in an initial classical mixed state. The common bath is at the ex-
tremely low temperature 8 = 20. Let us define the density matri-
ces pg = [Ya) (Wl = (L) + LN+ U 1D/2, op = W) (W] =
DAL o = W) (Wl = 13)3B] = (1) = LIHUNT = (U1D/2.
We want to show that if we prepare the system in the initial clas-
sical mixture pmlx (pa + pc)/2, there is no trace of the behavior
obtained when we have a coherent superposition of a state in the
DFS Hs with one in . We will compare the entanglement dy-
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Fig. 6. (Color online.) Study in temperature of the entanglement dynamics for the
case (II) of a single common bath. Here v =0.7, A =1, x = 0.01. The initial state
is |¥g) = 1/ﬁ(|T¢) + [41)). In the graph (a) is plotted the von Neumann entropy
S(t) as a function of time for different values of the temperature 8 =20, 5, 1, 0.1.
At low temperatures the state approaches the ground state as equilibrium state.
The non-monotonic behavior of S(t) shows the different time scales of decoherence
and dissipation. In the graph (b) we show C(t) for the same temperatures. At low
temperatures the phenomenon of entanglement revival occurs.

namics with the initial preparation of the classical mixture of two
states in A, namely p(z) = (pa + pp)/2. The plot of Fig. 7 shows

the results. Let us first lrglék at the evolution for the entanglement
S(t) with the bath. The state pr(r}i)x gets very entangled with the
bath during the fast decoherence period. Then when dissipation
becomes important, the entanglement decreases. Nevertheless, the
equilibrium state cannot be the Gibbs state because the popula-
tion in the DFS H* is constant. Therefore the final state is not the
ground state for the system and some mixture is present. This mix-
ture does not mean that there is residual entanglement with the
bath even though we are at extremely low temperature. The state
pr(lfi)x instead, dissipates towards the ground state because there is
no initial population in the initial state and it is, therefore, a pure
state at the equilibrium, disentangled with respect to the bath. In
both cases, the relaxation times are comparable ¢t ~ 400 like in the
case of Figs. 2-3. The concurrence C(t) shows a similar pattern.
In both cases we have revival of the concurrence after it hits zero
and similar equilibration values. Again, the graphs show that the
relaxation time is about t ~ 400.

This study shows that the dramatic increase in the relaxation
time shown in Fig. 4 is due to the quantum superposition of state
in Hs; and HL. It is a purely quantum effect. This means that
if we consider for instance the subspace H5¢™ = span{|3), |¥)},
although it is not a DFS, the relaxation time for states in this
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Fig. 7. (Color online.) S(t) and C(t), for low temperature g = 20. The values for
the other parameters are v =0.7, A =1, k = 0.01. The initial states are (a) the
classical mixture plgi)x of two states belonging to H; and H=. In (b) we see the
entanglement dynamics for the state pr(ji)x which is a classical mixture of two states
belonging both to . The relaxation times are similar. Both states show revival in
the concurrence. The final entanglement with the bath is different in the two cases
because ppix cannot be the ground state since in the mixture the component on
Hs is constant while pﬁqix goes to the ground state.

subspace is much larger than that of states belonging to its or-
thogonal complement, and this is because %™ contains a DFS.
We call 1™ a semi-decoherence free subspace. The existence of
such subspaces is important in quantum computation because one
can protect quantum memory and quantum information process-
ing even in absence of a real DFS, which is often the case in pres-
ence of perturbations. Moreover, it enlarges the dimension of the
subspace in which the information is protected. In the case stud-
ied for instance, the DFS is trivial because is one-dimensional, and
no information (classical or quantum) can be encoded. Neverthe-
less, the subspace H*¢™i is two-dimensional and one can encode a
qubit in it. So an array of pairs of spins 1/2 could constitute a good
quantum register, of course for the model of noise presented here.

7. Conclusions and outlook

In this article, we have thoroughly studied the system of two
interacting qubits in a bosonic environment, in both the cases
where each spin is interacting with its own bath, and where they
share a common bath. We solved the master equation for the re-
duced system of the two qubits and studied the entanglement
dynamics by means of concurrence and von Neumann entropy. In
the case of the single bath, the entanglement dynamics is very
rich. The concurrence oscillates violently in a time window when
the system is very entangled with the environment but the dissi-
pative effects are not yet important. If the state is initialized in a
coherent superposition with a component in a decoherence-free
subspace, there is an interference effect that changes the deco-



422 G. Campagnano et al. / Physics Letters A 374 (2010) 416-423

herence rate and the entanglement dynamics. This opens the in-
teresting possibility of doing quantum computation “straddling” a
DEFS, thus having a bigger code for computation, that still has much
better protection than decoherence, than the ones that are orthog-
onal to the DFS. Moreover, conditions for the existence of DFS are
considered unstable. Our results show that an approximate notion
of decoherence-free subspace is possible and useful for protecting
quantum information.

We also proved that this system thermalizes, but not always in
the Gibbs state. Upon the completion of this work, we noticed the
study of [21], showing, for a different model of two qubits in two
baths, similar results for the concurrence dynamics.
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Appendix A
A.1. Eigenvectors and eigenvalues of Hg

We take as basis the eigenvectors of o,7,: |+4+), |+ —), | —+),
| — —). In this basis Hs simply reads

v A A 0
1|A —v 0 A
Hs==31A 0 —v A

0 A A v

We have the following eigenenergies
E1= —%\/m )
E3= % Eq= %\/m .

The corresponding eigenvectors are

E,— 1%
2= 2’

1) =[ry,s4,54,74],

1
2)=—[-1,0,0,1],
12) ﬁ[ 1

1
3)=—=I10,-1,1,0],
13) ﬁ[ ]

|[4) =[r_,s_,s_,r_].

For notation simplicity we have introduced

1 v
re=- 14—,
2 V2 +4A2

and

_1
s:=FA[4A% +v(v £V V2 +4A2)] 72,
A.2. Matrix elements of the reduced density matrix

We present here the explicit calculation of the rates appearing
in the master equation (5) that we use to solve for the dynamics
of the reduced density matrix ps. As explained in the main text in
the case of one single bath for both spins a (one-dimensional) DFS
exists. Because of the absence of bias terms in the Hamiltonian Hs
this DFS happens to coincide with the eigenvector |3).

Uncorrelated baths. Assuming no correlation between the two
baths, according to [9] we have

1 . .
FnJlrkln =2 Z (m|st|k) (l|sy|n)
i=1,2
o
X /dtexp(—iwlnt)(xi(t)xi)ﬂ, (12)
0

and

1 . .
Ton =7 2 (mIS;Ik) (s m)
i=1,2
x /dtexp(—iwmkt)<X,-X,-(t))ﬂ. (13)
0

Where sl =o0; and s2 =1, and Xi =), co,_,,-(bz;yi + by ), we
use the interaction representation X;(t) = exp(—iHpt)X; exp(iHpt).
Here (-)g is the thermal equilibrium average over the bath’s de-
grees of freedom.

A direct calculation shows that

(Xi(OXi)= 7 do Ji() [coth(’%‘”) cos(wt) — isin(wt)].
0

The only quantity we need to compute is an integral of the
form:

I[F(w) = / dte it / do' Ji(@')
0 0

a)/
X [coth(ﬁT) cos(w't) Fi sin(a)’t)].
For w > 0 we obtain (the case w < 0 is obtained by complex
conjugation):
T
HOEEIND [coth ’%‘0 ¥ 1]

o0
) w B’ 104
+ lP[da)’ ]i(w’)[iw,z — Ot == F s w2:|’
0

P indicates the Cauchy principal value. The imaginary part can be
absorbed as shift of the free oscillation frequencies of the system.
For simplicity we disregard it. Because of the symmetries of Hs we
only need to calculate W51 and W31, we obtain

A2l
W31 = rax |:C0th<'3a)3l> — 1],
vZ + A2 2

and

o= 2 n(£22) 1]

21 = —1].
V2 4+ A2 2

We report here the explicit solution of the diagonal elements
of the density matrix in the diagonal basis. We introduce Iy =
W31 + W12 and I = W31 + Wy3, using this notation we have

P () = [(] + eﬂwn)(] + eﬂw”)]_]e*f(ﬂ +I3)
X [(etr2+ﬁw31 (l + eﬂCUZl) + etﬂ +Bwr eﬂ(w21+w3])

4 etl+p(wn+ws1) + 1)/011(0)
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+eP021 (=1 4 €71 (1 + e#“31) py2(0)
+ P31 (—1 4 et2) (ePr1 (-1 + €11)
+(1+e7) p33(0))].
p22(0) = [(1+eP1) (14 ePor)] e+
x [(—etT2Pest (1 4 ePen) 4 eth
4 ePloatas) | pth+pos _ 1),011 0)
+ ("1 4 eP921) (1 4 €P“31) pya (0) + P31 (=1 + €'12)
x (= (1+€P2) p33(0) + €11 + efe21)],
p33(©) =[(1+ePo)(1 4 ePon)] et
x [(—eP@rtom (L1 yeth) 4 otf
—etli+Bon 4 gtletbon _ 1) py1(0)
— PO (1 4t 1) (14 eP21) pp2(0)
+ (€2 4 Pt (eP 021 (=1 + ')
+ (14 €P921) p33(0)) .

The calculation of the off-diagonal elements does not present
any difficulties and it obeys the relation given in the main text.
The explicit expressions of the y’s are directly related to W51 and
W31 via Eq. (8).

Single bath. In the case of one single bath we have

1
Fnj;dn = Z<m|az + Tzlk){l|oz + T£|n)
o0
X /dtexp(—iwlnt)<X(t)X>ﬁ,
0
and
_ 1
kaln = Z<m|UZ + T k) {l|loz + TIn)
o0
X / dtexp(—ia)mkt)<XX(t)>ﬂ.
0

As anticipated the state |3) is totally uncoupled to the other
states, i.e. W31 = W3y = W34 =0 as the direct calculation shows.
In this case p33(t) = p33(0). We have

2 A%k Bwar
Wy = |:C0th< ) - 1i|,
V2 4+ A2 2
and

27 A%k Bwo1
Wy = |:C0th< ) — 1i|.
V2 4 A2 2

The two coupled equations for p11 and pp; given by Eq. (6) are
solved by Laplace transform, we obtain

P11(A) = (A(h + W1z + Wag + Wa2) p11(0)

+ Wi2(1022(0) — W24(p33(0) — 1)))

x (M(Wi2 (4 Wag) + Ot Wap) Ot Wag + Wap)))
p22(1) = (Wa1(Wag + A(011(0) 4 p22(0)) — W22 033(0))

+ A(A022(0) — W24(011(0) + 1033(0) — 1)))

X ()»(W]z(}» + Wag) + (A 4+ W31)

x (A + Waq + W42)))_1-

The fourth component ps4 is obtained from the normalization
condition. To transform back to time domain the previous expres-
sions does not comport any difficulties. Unfortunately the results
cannot be cast in a compact form so we do not report them here.
Again the off-diagonal elements of the reduced density matrix
obey the expression given in the main text but in this case all the
rates y’s are expressed via W31 and Wy4,. We report the relevant
ones here for convenience:

v13 = (W21)/2, (14)
y23 = (W12 + Wa)/2, (15)
va3 = (Waa)/2. (16)
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