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a b s t r a c t

We compute the topological entropy of the toric code models in
arbitrary dimension at finite temperature. We find that the critical
temperatures for the existence of full quantum (classical) topologi-
cal entropy correspond to the confinement–deconfinement transi-
tions in the corresponding Z2 gauge theories. This implies that the
thermal stability of topological entropy corresponds to the stabil-
ity of quantum (classical) memory. The implications for the under-
standing of ergodicity breaking in topological phases are discussed.
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1. Introduction

Topologically ordered (TO) states are ground states of certain quantum many-body systems
that exhibit an order which does not rely on symmetry-breaking mechanism, and thus cannot be
characterized by a nonvanishing local order parameter [45]. They possess a ground state degeneracy
which depends on the topology of the underlying space and which cannot be lifted by local
perturbations of the Hamiltonian, and a pattern of long-range entanglement.

For pure states, we say that they possess topological order if they span a degenerate ground space
with a gap, and such that distinct ground states are locally indistinguishable, i.e. the reduced density
matrix over any topologically trivial region does not depend on the choice of the state within the
ground space [21,4,40]. This property implies a topological robustness under local perturbations,
which has made this kind of order interesting for quantum computation [32,39]. This robustness
property means that topological order is a property of a whole phase, and one is interested in some
quantity that can label and detect this kind of order. It turns out that TO states are characterized by
specific entanglement properties. First, they possess an area law with a finite universal correction
[22,23,34,36]. This correction, called Topological Entropy (TE), has been shown to be constant within
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thewhole TO phase of the toric code [25], and therefore can be used as an order parameter to label the
TO phases. It has been shown that this quantity is also characteristic of other TO phases like the Kitaev
honeycomb model [46,33], topological dimer phases, fractional quantum Hall liquids [26,16], and TO
phases with finite correlation length [42], or other quantum states that are defined in group theoretic
terms [24]. Also, these properties show up in the entanglement spectrum. To what extent which
TO phases can be classified using the full entanglement spectrum is still an open problem [14,6,38].
Moreover, quantum phases break in domains of quasi-adiabatic continuity, namely the set of those
states that can be connected bymeans of evolutionwith a local Hamiltonianwithout closing a gap [28].
If we ignore symmetry, all the non TO states are in the same phase as the completely factorized state.
In this sense, non TO states have trivial entanglement, while TO states belong to different classes of
nontrivial, long-range entanglement [11].

However, a real physical system is always found at some finite temperature T by coupling to a
thermal environment and so does not occupy solely the ground state. If topological order is to be a
physical phenomenon, itmust therefore exist in thermal states at nonzero temperature too.We should
then seek generalizations of the above characterizations of topological order to T > 0. The given
definition, in terms of mass gap and ground-state degeneracy, fails to generalize straightforwardly as
we cannot speak about locally indistinguishable distinct states at T > 0 simply because the thermal
state is unique. Nevertheless, we can generalize this definition through its physical implications. At
zero temperature, it implies that a TO system can support long-lived quantum memory. Indeed, if
we add a local perturbation to a Hamiltonian of such system of linear size L, we must go to O(L)-th
order in perturbation theory to connect orthogonal ground states. Hence, the tunnelling amplitude
between distinct ground states is O(exp(−L)), in which case we obtain a quantum memory register
with lifetime τ = O(exp(L)), which we call stable quantum memory. Similarly, a stable classical
memory is a system in which we can reliably encode classical information for exponentially long
times. We can generalize this viewpoint to finite temperature by defining a topologically ordered
system to be one which is topologically ordered at zero temperature and supports quantummemory
with lifetime that scales exponentially with the size of the system. As an example, the toric code in
2D [32] does not support any kind of memory, quantum or classical at any finite temperature T > 0,
while the Ising model in 2D and the toric code in 3D both have a critical temperature Tc below which
classical memory is stable [5,47,7].

The notion of TE generalizes to T > 0 immediately [7]. Scaling of the von Neumann entropy
with subsystem proportions is more complicated then the area law at zero temperature, but one may
take a suitable linear combination of von Neumann entropies of different subsystems and isolate the
universal constant piece coming from structured entanglement [34,36]. For the toric code in 2D and
3D, the calculation of TE at finite temperature was performed in [8] and [7]. In 2D there is no TE at any
finite temperature, just like there is no stable information. In 3D, there is a stable TE of completely
classical origin, just like there is a stable classical memory. This fact strongly pushes the question
whether the stability of TE and memory at finite temperature are always related, and if yes, why.

Moreover, the characterization of TO as stateswith nontrivial entanglement (NT) has recently been
generalized to finite temperature by Hastings [27], by considering equilibrium states that cannot be
connected by means of a quantum circuit of finite range to a mixed state which is made of product
states in the energy eigenbasis. Non TO states at finite temperature do possess trivial entanglement
(FAC).

In this paper, we investigate the important question whether these three characterizations of
topological order are still equivalent at T > 0. We study the simplest model with TO, the Toric
Code – in arbitrary D spatial dimensions – introduced by Kitaev [32], which in the low energy
sector realizes the Z2 lattice gauge theory. We analyse the stability of quantum memory, calculate
the TE and compare these results also with the presence of NT or FAC as indicators of topological
order. The calculation of TE at arbitrary temperature in the thermodynamic limit is made possible
by decomposition into contributions from the two kinds of defects [7] and a mapping to the Z2
lattice gauge theory. We find the critical temperatures for the stability of TE, corresponding to the
confinement–deconfinement transitions of the underlying gauge theory [15].

We find that the value of TE contains all the information about stability of quantum and
classical memories in these models (and about the triviality of entanglement) and hence that all
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characterizations mentioned above define the same notion of topological order. So, at least in the
toric code models, we see that quantum TE means stable quantum memory, while classical TE means
stable classical memory. We are also able to elucidate that the same physical mechanism is responsible
for destruction of quantum memory and quantum TE.

The toric codes examined in this paper depend on two couplings λ and µ. We find there are two
critical temperatures Tλ and Tµ, such that the stability of memory and TE are connected as follows.

• quantum memory stable and Stop(T ) = Stop(0) for T ∈ [0,min(Tλ, Tµ)), and NT
• classical memory stable and Stop(T ) = Stop(0)/2 for T ∈ (min(Tλ, Tµ),max(Tλ, Tµ)), and FAC
• no stable memory and Stop(T ) = 0 for T ∈ (max(Tλ, Tµ),∞), and FAC,

where Stop(T ) is the topological entropy at temperature T .
As usual in statistical mechanics, the existence of finite critical temperature depends on the

dimensionality of the system, where low dimensional systems are less likely to have finite-
temperature phase transitions. As particular cases, we recover the results of Castelnovo and
Chamon [8,7] in two and three dimensions. This precise correspondence leads us to conjecture that it
holds in general TO systems and hence that we may define topological order at T > 0 as follows: A
thermal state is TO at T > 0 if Stop(T ) = Stop(0) > 0.

The paper is organized as follows. In Section 2, the general toric codes are described, together with
their dualities and connections to the lattice gauge theory. Statistics of defects is then used to analyse
the stability of quantum and classical memories in the toric codes in Section 3. Decomposition of the
topological entropy, duality of the toric codes and a map to the Z2 lattice gauge theory lead to the
calculation of TE in Section 4. Our results are discussed and compared to Hastings’ circuit definition
in Section 5, together with suggestions for further work.

2. General toric codes

The models

The toric codes considered in this paper are labelled by a pair (D, k), where D is the dimension
of the lattice and k ∈ {1, . . . ,D − 1}. The toric code labelled by (D, k) will be denoted T (D,k) and
is defined as follows. Let Λ be a D-dimensional cubic lattice of linear size L with periodic boundary
conditions and let us refer to its elementary k-dimensional blocks as k-cells. Let us denote Pk(Λ) the
set of k-cells and N = LD the total number of 0-cells in our lattice, so that |Pk(Λ)| =


D
k


N . To obtain

T (D,k), put a spin-1/2 degree of freedom on each k-cell and associate the star operator Aa = ⊗i|a∈∂ i Xi
with each (k−1)-cell a, where the product runs over all k-cells neighbouring a, and plaquette operator
Bb = ⊗i∈∂b Zi with each (k + 1)-cell b, where the product runs over the k-cells contained in b. Xi, Zi
are the local Pauli spin operators. The Hamiltonian of T (D,k) is

H(D,k)(λ, µ) = −λ


a∈Pk−1(Λ)

Aa − µ


b∈Pk+1(Λ)

Bb, (1)

where λ,µ > 0.
Aa and Bb overlap only if a is contained in b, but then they share precisely 2 k-cells, so that

[Aa, Bb] = [Aa, Aa′ ] = [Bb, Bb′ ] = 0. Hence the ground state subspace is Hg = {|ψ⟩ : Aa |ψ⟩ =

Bb |ψ⟩ = |ψ⟩ ∀a, b}. Denote the dual lattice byΛ∗. The algebra Ac of operators commuting with the
Hamiltonian is generated by products of X over closed (D − k)-chains in Λ∗ and products of Z over
closed k-chains in Λ. The algebra At = {O : O |ψ⟩ = |ψ⟩ ∀ |ψ⟩ ∈ Hg} is generated by A and B
operators and hence consists of products of X over boundary (D − k)-chains inΛ∗ and products of Z
over boundary k-chains inΛ. Hence the algebra of operators acting on the ground state Ag = Ac/At
is generated by products of X over (D − k)-homologies of Λ∗ and products of Z over k-homologies

of Λ. The kth Z2 homology group of the D-dimensional torus is Hk(TD,Z2) = (Z2)


D
k


. It is not hard

to see that there is a canonical one-to-one correspondence between the (D − k)-homologies of Λ∗

and k-homologies ofΛ, so that if we define the logical operators X̄α, Z̄α for α = 1, . . . ,


D
k


to be the
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described products over homology representatives, we can choose the α labels so that

X̄α Z̄α = −Z̄α X̄α, [X̄α, Z̄β ] = 0 if α ≠ β. (2)

The algebra of Eq. (2) is just the algebra of


D
k


independent spin-1/2 particles, so we find dimHg =

2

D
k


.

The information stored in the ground space is topologically protected since only products of X and
Z over surfaceswith nontrivial homology act nonidentically onHg . Considering a local perturbation at
T = 0, we would have to go to the O(L)-th order in perturbation theory to get a nonvanishing matrix
element between orthogonal ground states, i.e. the tunnelling amplitude is exponentially small in the
size of the system. The situation is very different at T > 0where stability of TO depends on the energy
barrier for these defects to wind around the torus.

Duality

The T (D,k) model is exactly dual to the T (D,D−k) model on the dual lattice, which will prove very
useful in the following. To obtain this result, note first that each j-cell in Λ intersects precisely one
(D − j)-cell of Λ∗, so if a ∈ Pj(Λ), let a∗ be the corresponding (D − j)-cell in Λ∗. Hence the spins
naturally live on the (D − k)-cells ofΛ∗. We now observe that if e ∈ Pj(Λ) and f ∈ Pj+1(Λ), then

e ∈ ∂ f ⇔ f ∗
∈ ∂e∗, (3)

where ∂ denotes the boundary operator. Define U to be the unitary operator swapping globally the
x and z computational bases. Denoting A∗

c , B
∗

d the analogous A, B operators on the dual lattice, where
c ∈ PD−k−1(Λ

∗) and d ∈ PD−k+1(Λ
∗), we find

UAaUĎ
= B∗

a∗ , UBbUĎ
= A∗

b∗ . (4)

Consequently, if

H(D,D−k)
∗

(λ, µ) = −λ


c∈PD−k−1(Λ∗)

A∗

c − µ


d∈PD−k+1(Λ∗)

B∗

d (5)

is the Hamiltonian of the T (D,D−k) on the dual lattice, the duality is expressed through the equation

UH(D,k)(λ, µ)UĎ
= H(D,D−k)

∗
(µ, λ). (6)

It follows that any thermal expectation values calculated in the T (D,k) and T (D,D−k) at the same
temperature are connected by swapping λ and µ since the two density matrices are conjugate.

The unique toric code in two dimension is the well-known T (2,1) model with star and plaquette
operators, which is self-dual. It also follows that there is only one kind of a toric code in 3D, since
T (3,1) is dual to T (3,2), and so we need to go to at least 4D to find distinct models with equal D. It will
become clear that the more interesting 4D toric code is the self-dual T (4,2).

The Z2 lattice gauge theory

In the limit λ → ∞, the condition

Aa |ψ⟩ = |ψ⟩ ∀a ∈ Pk−1 (7)

is enforced on all physical states |ψ⟩ projecting T (D,k) onto the corresponding Z2 pure lattice gauge
theory [44,35,15] with the Hamiltonian

H(D,k)g = −µ


b∈Pk+1(Λ)

Bb, (8)
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and gauge constraints (7). Let us denote this theory byGT (D,k). Spin flips cause excitations, which take
the form of boundary (D − k − 1)-chains inΛ∗. A boundary (D − k − 1)-chain C defines the (k + 1)-
chain C∗ of (k+ 1)-cells such that Bb = −1 for b ∈ C∗. Such (k+ 1)-cells will be called ‘‘flipped cells’’
and C∗ the ‘‘flipped chain’’ in the following.

Duality of GT (D,k) and GT (D,D−k−2) for k ∈ {0, . . . ,D − 2} can be used to show that GT (D,k) for
this range of ks is a two-phase system [44], where Elitzur’s theorem forbids existence of a local order
parameter. In the low-temperature phase, defects, which are necessarily at least 1-dimensional for
k < D − 1, are confined, and become deconfined at a finite critical temperature. GT (D,D−1) contains
0-dimensional defects, which become deconfined already at T = 0, and thus the system only has the
disordered phase.

3. Quantum and classical memories in the toric codes

General discussion

As noted in Section 2, the primary interest in the toric codes stems from the capacity of the ground-
state subspace to store qubitswhich are stable under local perturbations at zero temperature [13]. The
problem of the stability of quantummemory at finite temperature is muchmore delicate and of great
importance for both theoretical implications and practical reasons. In the view that the resilience
of quantum memory at finite temperature is a property of the phase, one would expect that it is
necessary to have a critical temperature below which memory is stable [41]. A remarkable fact of
the memory encoded in the ground space of the toric codes is that their thermal stability can be
studied through the confinement–deconfinement transition of the Z2 lattice gauge theory [13,7]. In
this discussion, it is important to distinguish between classical and quantum memories, which are
defined as follows. A qubit is prepared in a superposition |ψ⟩ =


i ci |i⟩, and coupling with a thermal

bath is switched on. Let τq be the time scale at which the off-diagonal elements of the density matrix
go to zero in some basis, i.e. the time at which the quantum correlations disappear. Similarly, let τc be
the time scale when the diagonal elements change significantly, or equivalently when one loses even
the classical probabilities. We say that our system possesses quantum memory if τq = O(exp(L)),
where L is the size of the system, and only classical memory if τq = O(1) and τc = O(exp(L)). Finally,
the system has no memory if both τq, τc = O(1) in the size of the system.

The ground state subspace of T (D,k) is isomorphic to the Hilbert space of


D
k


2-level systems, and

its algebra of logical operators is generated by X̄α, Z̄α for α ∈ {1, . . . ,


D
k


}, which satisfy (2). The

different α sectors are equivalent and independent and we will restrict to α = 1 in the following and
drop the indices. Let us choose a basis {|0⟩ , |1⟩} for this tensor factor of Hg such that Z̄ |0⟩ = |0⟩,
Z̄ |1⟩ = − |1⟩, X̄ |0⟩ = |1⟩ and X̄ |1⟩ = |0⟩, prepare qubit in a superposition |ψ⟩ = c0 |0⟩ + c1 |1⟩ and
turn on coupling with a thermal bath at temperature T . The coupling is assumed local and so T > 0
will produce local defects of Aa and Bb. Quantum memory is destroyed when the thermal defects can
change the eigenvalue of either X̄ or Z̄ , while classical memory is preserved when the eigenvalue of
either X̄ or Z̄ is robust under the thermal defects [1,2]. We have seen that X̄ is a product of X over a
(D− k)-homology inΛ∗ and Z̄ a product of Z over the dual k-homology inΛ. Hence the eigenvalue X̄
is fragile when the Bb defects can wind around the torus. In turn, the deconfinement of these defects
can be seen as the deconfined phase of the corresponding gauge theory, i.e. the deconfined phase of
GT (D,k) with coupling µ. Similarly, the eigenvalue of X̄ is fragile when the Aa defects can conspire to
produce surfaces with nontrivial homology. The λ ↔ µ duality tells us this happens precisely when
GT (D,D−k) with coupling λ is deconfined. We can now summarize these results in Table 1.

Examples

The lattice gauge theory GT (2,1)(T/µ) has phase transition at T/µ = 0, and so the 2D toric
code has neither quantum nor classical memory at any finite temperature [1]. GT (3,2)(T/λ) also
deconfines at T/λ = 0, but GT (3,1)(T/µ) has a nontrivial low-temperature phase, so that the 3D
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Table 1
Quantum and classical memories in T (D,k) .

quantum memory ⇔ both GT (D,D−k)(T/λ) and GT (D,k)(T/µ) confined
only classical memory ⇔ either GT (D,D−k)(T/λ) or GT (D,k)(T/µ) deconfined
no memory ⇔ both GT (D,D−k)(T/λ) and GT (D,k)(T/µ) deconfined

toric code loses quantum memory at T = 0, but preserves classical memory up to a finite critical
temperature, which is proportional to the coupling of the plaquette operators. The simplest toric code
with quantummemory at finite temperature is the T (4,2) model [13], whose stability is controlled by
GT (4,2)(T/µ) [2].

4. The topological entropy

Definition

In this section, the topological entropy of T (D,k) will be calculated for general couplings at any
T in the thermodynamic limit and shown to correspond precisely to the behaviour of quantum and
classical memories as discussed in the previous section.

At T = 0, topological entropy Stop(0) is defined as the universal part of bipartite entanglement
entropy Se, which does not scale with the subsystem boundary

Se = α|∂| − Stop(0). (9)

As opposed to α, it is robust under local perturbations [25] and also Stop(0) ≥ 0, so that it represents
an order of entanglement.

At T > 0, the scaling of Se is more complicated and we need to extract the universal term Stop(T )
by taking a linear combination [34,36]

Stop(T ) =


i

σ(i)Se(T , Ci), (10)

where σ(i) are the signs of partitions Ci⊔Di = Pk(Λ), which are chosen so that the linear combination
of the bulk and boundary chains of Ci of any dimensionality are zero, and we are left with the
topological contributions only. Here we generalize to arbitrary D the clever construction of [7]. For
a general T (D,k), we will define the C (D)i , i ∈ {1, . . . , 4(D−1)} by induction on D as follows. For D = 2,
we choose the four partition as in Fig. 1, with σ(2) = σ(3) = −σ(1) = −σ(4) = 1, where the outer,
inner squares in C (2)4 have side lengths a, a/3 respectively. Having constructed all C (D)i , we define C (D+1)

4D
to be the (D + 1)-dimensional cube of side amissing a (D + 1)-dimensional cube of side a/3 from its
middle. Analogously to Fig. 1, we define C (D+1)

4D−1 , C (D+1)
4D−2 as the upper and lower two-thirds of C (D+1)

4D ,
upper and lower meant in the last dimension, and C (D+1)

4D−3 = C (D+1)
4D−1 ∩C (D+1)

4D−2 . For i ∈ {1, . . . , 4(D−1)},
construct C (D+1)

i = C (D)i × Ia/3, where the interval Ia/3 of length a/3 is added in the last dimension so
that C (D+1)

4D−4 = C (D+1)
4D−3 . Finally, choose σ(i)

σ (i) =


−1 if i ≡ 0, 1 mod4
+1 if i ≡ 2, 3 mod4. (11)

As an example, for D = 3 and D = 4 we have the partitions of Figs. 2 and 3. The fourth dimension
is represented by the green segments in Fig. 3, while the blue and red are 3-boundaries living in the
first three dimensions. This choice of partitions was motivated by the requirement that the signed
bulk and boundary chains add up to zero. Indeed, they clearly do for D = 2, and hence by induction
on D,

4(D−1)
i=1

σ(i)C (D+1)
i = 0, (12)



2102 D. Mazáč, A. Hamma / Annals of Physics 327 (2012) 2096–2111

Fig. 1. Partitions for the D = 2 model.

Fig. 2. Partitions for the D = 3 model.

since C (D+1)
i = C (D)i × Ia/3 for i ∈ {1, . . . , 4(D − 1)}. Moreover, it follows straight from the definition

that
4D

i=4D−3

σ(i)C (D+1)
i = 0, (13)

and hence the full set of partitions gives zero net bulk chain

4D
i=1

σ(i)C (D+1)
i = 0. (14)

The same argument also works for the nonoriented boundaries with signs σ(i). When choosing the
partitions, we also required that their collection is symmetric under the exchange Ci ↔ Di, besides
the global torus topology. For example, C (D)1 has 2 connected components and so in D dimensions, we
are forced to introduce the i = 4(D−1) partition, where D(D)4(D−1) also has two connected components.
Finally, if we also demand that for each d ∈ {0, . . . ,D − 1}, there is an i such that Ci has nontrivial
homology of dimension d, our choice is a very natural one. In the thermodynamic limit, we scale both
L, a → ∞.

Zero temperature

Let us first calculate Stop at zero temperature as this result forms the core of the calculation at T > 0.
Define the groups of spin flipsG = ⟨Aa| a ∈ Pk−1⟩,Gi = {g ∈ G| gDi = 1Di} andHi = {g ∈ G| gCi = 1Ci},
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Fig. 3. Partitions i = 1, 5, 12 for the D = 4 model. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

where gDi denotes restriction of g to Di and 1Di is the identity transformation on Di. Since any ground
state is a uniform superposition over the group G, the entanglement entropy of partition i is [21]

S(D,k)i = log


|G|

|Gi||Hi|


. (15)

Hence the TE is

S(D,k)top (0) = −

4(D−1)
i=1

σ(i) log (|Gi||Hi|) , (16)

because there is an equal number of positive and negative partitions. Now we turn to the calculation
of |Gi| and |Hi|. The contribution from the global topology of Λ to log(|Hi|) is the same for all i and
therefore cancels in (16). It will therefore be omitted in some of the following equalities, whichwewill
write as .= for that reason. Gi consists of those closed (D − k)-chains in C∗

i , which are also boundaries
of (D − k + 1)-chains in Λ∗. The elements of Gi which are not boundaries of chains in Ci must arise
from nontrivial (k − 1)-homologies of D∗

i , so that

log(|Gi|)
.
= log(|Hk−1(D∗

i )|)+ log(|BD−k(C∗

i )|), (17)

where Hd, Bd are the Z2 homology, boundary groups respectively. Let Xd and Zd be respectively the
groups of all, and closed Z2d-chains in Ci. In other words, Zd = ker(∂d), Bd = im(∂d+1), where
∂d : Xd → Xd−1 is the boundary homomorphism. Then the Z2 homology groups are defined by

Hd = Zd/Bd. (18)

By the first isomorphism theorem applied iteratively to ∂d for d ∈ {D − k + 1, . . . ,D}, we obtain

log2(|Gi|)
.
= bk−1(D∗

i )+

k
j=1

(−1)j[bD−(k−j)(C∗

i )− |PD−(k−j)(C∗

i )|], (19)

where bj is the j-th Betti number. Similar analysis holds for |Hi| and we arrive at the result

Stop(0)
log 2

= −


i

σ(i)


bk−1(Di)+ bk−1(Ci)+

k
j=1

(−1)j[bD−(k−j)(Ci)+ bD−(k−j)(Di)]


, (20)

where the terms containing the j-cell numbers |Pj| subtracted since the bulks of signed partitions add
up to zero, and the starswere dropped since Ci,Di have the same topology as C∗

i ,D
∗

i . Our task is reduced
to calculating the Betti numbers of Ci and Di. Define reduced Betti numbers b′

0 = b0 − 1 and b′

i = bi
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for i > 0. They are

b′

i(C4j) =


1 if i = j
0 otherwise (21)

b′

i(C4j+1) =


1 if i = j
0 otherwise (22)

b′

i(C4j+2) = b′

i(C4j+3) = 0 (23)

b′

i(D4j)
.
=


1 if i = D − j − 1
0 otherwise (24)

b′

i(D4j+1)
.
=


1 if i = D − j − 1
0 otherwise (25)

b′

i(D4j+2) = b′

i(D4j+3)
.
= 0. (26)

Substituting these values into (20), we find that

S(D,k)top (0) = 2 log 2, (27)

independently of D and k, which also reproduces the known results for 2D and 3D [8,7]. Had we
separated the contribution from |Gi| and |Hi|, we would have found

−

4(D−1)
i=1

σ(i) log (|Gi|) = −

4(D−1)
i=1

σ(i) log (|Hi|) = log 2. (28)

Finite temperature

Let us now proceed by calculating S(D,k)top (T , λ, µ) for general T . To perform this calculation, we
will use the key property found in [7], where it was shown that the entanglement entropy in general
toric codes decomposes into a sum of two terms, with the first coming from the star operators and
depending only on T/λ and the second from plaquette operators depending on T/µ. Thus we may
write

S(D,k)e (T , λ, µ) = Q (D,D−k)
e (T/λ)+ R(D,k)e (T/µ), (29)

where the reason for notation Q (D,j)
e , R(D,j)e will become clear shortly. TE is linear in von Neumann

entropies, so the same factorization applies

S(D,k)top (T , λ, µ) = Q (D,D−k)
top (T/λ)+ R(D,k)top (T/µ). (30)

Wehave seen in Section 2 thatT (D,k)with couplings (λ, µ) is equivalent to theT (D,D−k)with couplings
(µ, λ) on the dual lattice. Since Ci, Di have the same topology as C∗

i , D
∗

i , the same duality holds for TE

S(D,k)top (T , λ, µ) = S(D,D−k)
top (T , µ, λ). (31)

It follows that Q (D,j)
top and R(D,j)top can be chosen to coincide

Q (D,j)
top (x) = R(D,j)top (x) (32)

and we can write

S(D,k)top (T , λ, µ) = Q (D,D−k)
top (T/λ)+ Q (D,k)

top (T/µ). (33)
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We have thus reduced our problem to finding the functions Q (D,j)
top (x) for j ∈ {1, . . . ,D− 1}. The zero-

temperature result tells us that we must have Q (D,j)
top (0) = log 2. The λ → ∞ limit of equation (33)

then yields

Q (D,k)
top (T/µ) = lim

λ→∞

S(D,k)top (T , λ, µ)− log 2. (34)

But limλ→∞ S(D,k)top (T , λ, µ) is nothing but the topological entropy in the gauge theory GT (D,k)(T/µ)
since λ → ∞ imposes the gauge constraints Aa = 1.

Topological entropy in the gauge theory

In order to compute S(D,k)gtop (T/µ) ≡ limλ→∞ S(D,k)top (T , λ, µ), introduce the projection operator P
onto the states of the gauge theory

P =
1
|G|


g∈G

g. (35)

The thermal density matrix of our model is

ρ(T/µ) =
1
Z
exp


−βµ


b∈Pk+1(Λ)

Bb


P, (36)

where (in the computational z-basis)

Z = Tr


exp


−βµ


b∈Pk+1(Λ)

Bb


P



=
1
|G|


g∈G
f∈F

⟨0| fgf |0⟩ e−βµM(f )

=
1
|G|


f∈F

e−βµM(f ) (37)

is the partition function of GT (D,k)(T/µ), where F is the group of all spin flips on Pk(Λ) and M(f ) =

⟨f |


b∈Pk+1(Λ)
Bb |f ⟩ is the total plaquette magnetization of f . Let us also define the groups Fi = {f ∈

F | fDi = 1Di} and Ei = {f ∈ F | fCi = 1Ci} that act nontrivially only on Ci, Di respectively. The reduced
density matrix of subsystem Ci is then

ρi(T/µ) =


g∈Gi
f∈F

e−βµM(f ) (g |f ⟩ ⟨f |) |Ci

|G|Z
, (38)

where O|Ci denotes the projection of operator O onto the Hilbert space of Ci. Let us use the replica
trick to find the entanglement entropy of Ci in the gauge theory

S(D,k)gi (T/µ) = −
d
dn


n=1

Tr

ρn
i (T/µ)


. (39)

The trace of the n-th power of ρn
i is found from (38) to be

Tr

ρn
Ci(T/µ)


=

|Gi|
n−1

|G|nZn


f1,...,fn∈F

e
−βµ

n
m=1

M(fm)
δCi(f1, . . . , fn), (40)
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where

δCi(f1, . . . , fn) =


1 iff f1|Ci = · · · = fn|Ci
0 otherwise. (41)

We can trivialize the delta constraint through substitution fm = fem, where f ∈ Fi and em ∈ Ei

Tr

ρn
i (T/µ)


=

|Gi|
n−1

|G|nZn


f∈Fi


e1,...,en∈Ei

exp


−βµ

n
m=1

M(fem)



=
|Gi|

n−1

|G|nZn


f∈Fi

[qi(f )]n, (42)

where

qi(f ) =


e∈Ei

e−βµM(fe). (43)

Expression (42) is ready to be used in the replica trick (39), with the result

S(D,k)gi (T/µ) = − log(|Gi|)+ log(|G|Z)−
1

|G|Z


f∈Fi

qi(f ) log qi(f ). (44)

Observe that qi defines a probability distribution

pi(f ) ≡
qi(f )
|G|Z

(45)

on the group Fi. Indeed,


f∈Fi
qi(f ) = |G|Z . Taking now the linear combination over the signed

partitions Ci ⊔ Di, the i-independent terms cancel and we arrive at

S(D,k)gtop (T/µ) = −

4(D−1)
i=1

σ(i) log (|Gi|)−

4(D−1)
i=1

σ(i)


f∈Fi

pi(f ) log pi(f )



= log 2 −

4(D−1)
i=1

σ(i)


f∈Fi

pi(f ) log pi(f )


, (46)

where (28) was used in the second equality. The first term is just the contribution of |Gi| to the zero
temperature result (16). Returning back to Q (D,k)

top (T/µ), we find from Eq. (34)

Q (D,k)
top (T/µ) = −

4(D−1)
i=1

σ(i)


f∈Fi

pi(f ) log pi(f )


. (47)

Isolating gauge redundancy

Expression (47) still includes some gauge redundancy. Define the groups of spin flips G = G ×

⟨X̄α|α = 1, . . . ,


D
k


⟩, Gi = {g ∈ G| gDi = 1Di} and Hi = {g ∈ G| gCi = 1Ci} analogous to G, Gi and Hi,

but this time also containing the noncontractible flips. MagnetizationM(f ) is invariant under f → gf
for g ∈ G, so that for f ∈ Fi

pi(f ) =
|Hi|

|G|Z


e∈Ẽi

e−βµM(fe), (48)
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where Ẽi ≡ Ei/Hi. Moreover, if we define the group Ki = {f ∈ Fi| ∃e ∈ Ei : fe ∈ G}, we find that pi(f )
only depends on the coset [f ] ∈ F̃i ≡ Fi/Ki. Note that |Ki| = |G|/|Hi|, and hence

f∈Fi

pi(f ) log pi(f ) = log(|Hi|)− log(|G|)+


f∈F̃i

p̃i(f ) log p̃i(f ), (49)

where p̃i(f ) is the non-redundant probability distribution over F̃i given by

p̃i(f ) ≡
1
W


e∈Ẽi

e−2βµΦ(fe), (50)

whereΦ(f ) is the number of flipped (k + 1)-cells in configuration f and

W =


f∈F̃

e−2βµΦ(f ), (51)

F̃ ≡ F/G. Elements of F̃ are precisely the physically distinct configurations of the gauge theory, and
elements of F̃i are those configurations of (k + 1)-cells inside Ci which can be extended to consistent
global configurations of the gauge theory, i.e. to boundary (D − k − 1)-chains in Λ∗. Similarly, one
should regard Ẽi as containing distinct ways to complete the boundary (D − k − 1)-chains inside D∗

i .
We have now completely removed the gauge redundancy from our expressions.

Observe that by (28)

−

4(D−1)
i=1

σ(i) log (|Hi|) = −

4(D−1)
i=1

σ(i) log (|Hi|) = log 2, (52)

and consequently

Q (D,k)
top (T/µ) = log 2 −

4(D−1)
i=1

σ(i)


f∈F̃i

p̃i(f ) log p̃i(f )

 . (53)

In other words, the gauge redundancy contributes the factor log 2 to TE. This factor can be identified
with the |Hi| part of (16).

Phase transition

At this point, we are finally ready to show the mechanism that produces a phase transition at a
certain temperature T = Tc for the topological entropy. To this end, we investigate the second term
in Eq. (53) and show that it leads to a phase transition in Q (D,k)

top (T/µ). First notice that at T = 0, only
f = 1 ∈ F̃i produces nonzero probability p̃i, since all other configurations contain flipped (k+1)-cells.
But then p̃i(1) = 1, and so indeed

Q (D,k)
top (0) = log 2, (54)

as required by self-consistency. Let us rewrite the square bracket in (53) as


f∈F̃i

p̃i(f ) log p̃i(f ) =


f∈F̃i
e∈Ẽi

1
W

e−2βµΦ(fe) log


e′∈Ẽi

1
W

e−2βµΦ(fe′)



=


f∈F̃

1
W

e−2βµΦ(f ) log


e′′∈Ẽi

1
W

e−2βµΦ(fe′′)

 , (55)
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where we used F̃ = F̃i × Ẽi and the fact that multiplication by e−1
∈ Ẽi produces a mere permutation

within Ẽi. All the dependence on i is now inside the logarithm and thus

Q (D,k)
top (T/µ) = log 2 −


f∈F̃

r(f ) log

s+(f )
s−(f )


, (56)

where

r(f ) =
1
W

e−2βµΦ(f ) (57)

and

s±(f ) =


i|σ(i)=±1


ei∈Ẽi

exp(−2µβΦ(fei))

 . (58)

Let us suppose that GT (D,k)(T/µ) is in the confined phase. Big membranes of defects are
suppressed, i.e. r(f ) is exponentially small in the defect extent. In particular, defects cannot detect
the topology of Ci. When we expand s±(f ) for fixed f ∈ F̃ , we can see it is a sum over overlapping
configurations of the gauge theory, differing from f only in Dis. For f = 1, the allowed multiplicity of
a defect at a given b ∈ Pk+1(Λ) in a term of s±(f ) is equal to |{i|σ(i) = ±1∧b∗

∈ PD−k−1(D∗

i )}|, for the
plus and minus sign respectively. Since all contributing defects are local and the partitions satisfy the
chain equation


i|σ(i)=1 Ci =


j|σ(j)=−1 Cj, we find that there is one-to-one correspondence between

contributing terms in s+(f ) and s−(f ), and hence that

s+(f ) = s−(f ) (59)

for any f ∈ F̃ . Therefore, for T/µ < (T/µ)crit

Q (D,k)
top (T/µ) = log 2. (60)

On the other hand, when GT (D,k)(T/µ) is deconfined, T/µ > (T/µ)crit , a typical configuration will
contain many topological defects, i.e. (D − k − 1)-branes (which are boundaries). By (24)–(26), the
only D∗

i s with nontrivial (D − k − 1)-homology are those with i = 4k, 4k + 1, where the later only
exists if k < D − 1 (the global toric topology does not count as nontrivial here as it contributes to all
bipartitions in the same manner). Let l ∈ F̃ be a membrane which wraps around C∗

4k, i.e. a nontrivial
(D − k − 1)-homology in D∗

4k. Then l ∈ Ẽi precisely for i < 4k, hence

|{i|σ(i) = 1 ∧ l ∈ Ẽi}| = |{i|σ(i) = −1 ∧ l ∈ Ẽi}| + 1. (61)

When k = D−1, every term in s+(f ), after expanding the product over i|σ(i) = 1, can be obtained by
twice asmanyways as the same term in s−(f ). This is becauseD∗

4(D−1)must contain an even number of
topological defects (i.e. an even number of point-like defects inside the smaller hypercube), whereas
any parity is allowed for i < 4(D − 1). For general k, remember that above Tc there is an infinite
number of defects in the thermodynamic limit, and therefore on average again there are twice as
many ways of distributing the topological defects among the positive partitions with respect to the
negative ones. Moreover, the variance of this distribution is zero in the thermodynamic limit [29].
Hence, in the thermodynamic limit, above Tc , we have

s+(f )
s−(f )

= 2 (62)

for any f ∈ F̃ . To illustrate this point, consider the T (2,1), where the defects are 0-boundaries, i.e. pairs
of points virtually connected by a line. Terms of s−(1) containing an odd number of endpoints inside
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Table 2
Topological entropy in T (D,k) .

S(D,k)top (T , λ, µ) = 2 log 2 ⇔ both GT (D,D−k)(T/λ) and GT (D,k)(T/µ) confined
S(D,k)top (T , λ, µ) = log 2 ⇔ either GT (D,D−k)(T/λ) or GT (D,k)(T/µ) deconfined
S(D,k)top (T , λ, µ) = 0 ⇔ both GT (D,D−k)(T/λ) and GT (D,k)(T/µ) deconfined

Table 3
Memory and Stop in T (D,k) .

quantum memory ⇔ S(D,k)top (T , λ, µ) = 2 log 2
classical memory ⇔ S(D,k)top (T , λ, µ) = log 2
no memory ⇔ S(D,k)top (T , λ, µ) = 0

the small square must all come from i = 1, whereas in s+(1), they can come from both i = 2, 3.
Similar reasoning applies when f ≠ 1. Consequently, if T/µ > (T/µ)crit , we obtain

f∈F̃

r(f ) log

s+(f )
s−(f )


= log 2 (63)

and the two terms in (56) precisely cancel. Hence

Q (D,k)
top (T/µ) =


log 2 if GT (D,k)(T/µ) confined
0 if GT (D,k)(T/µ) deconfined,

(64)

i.e. Q (D,k)
top (T/µ) experiences a phase transition at the same T/µ as the lattice gauge theory. We can

finally substitute into (33) to find the behaviour of TE as in Table 2. The similarity with Table 1 is
striking.

5. Discussion

We have shown that the topological entropy is a good order parameter for topological order in
general toric codes at finite temperature. If we denote t(D,k)crit = (T/µ)crit the critical coupling in
the GT (D,k)(T/µ), we can conclude that the topological entropy of T (D,k) experiences two phase
transitions at Tλ = λ t(D,D−k)

crit and Tµ = µ t(D,k)crit , such that

S(D,k)top (T , λ, µ) =

2 log 2 for T < min(Tλ, Tµ)
log 2 for min(Tλ, Tµ) < T < max(Tλ, Tµ)
0 for max(Tλ, Tµ) < T .

(65)

t(D,k)crit = 0 if k = D− 1 and t(D,k)crit > 0 otherwise. Thus in models with k = 1,D− 1, TE has its maximal
value S0 = 2 log 2 only at zero temperature. The well known T (2,1) model is the only one for which
Stop(T , λ, µ) = 0 for all T > 0. Models with 1 < k < D− 1 have a nontrivial low-temperature phase,
in the sense that S(D,k)top (T , λ, µ) = S0 for all 0 ≤ T < Tc , Tc = min(Tλ, Tµ) > 0. Such models only
exist in D ≥ 4, the simplest example being the Kitaev’s 4-dimensional toric code [13] (T (4,2)).

The temperature dependence of Stop follows the same pattern as the properties of quantum and
classical memories in our systems. Indeed, if we combine Tables 1 and 2, we discover the promised
connection between TE and robustness of memory in the toric codes (see Table 3).

In the introduction, we mentioned the recent formulation by Hastings for topological order at
T > 0 [27]. A thermal state ρeq has TO if it cannot be transformed arbitrarily close to a ‘classical’ state
bymeans of local unitaries, even if we are allowed to tensor in additional local degrees of freedom. By
a classical state is meant a thermal state of a local Hamiltonian which is diagonal in a product basis.
In [27], it is argued that a thermal state is topologically ordered if one can efficiently perform quantum
error correction, in the sense of [13], since one can then thicken the logical operators X̄ , Z̄ while
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preserving their algebraic properties. These then prevent local unitaries from conjugating the state
ρeq arbitrarily close to a classical state. In T (D,k), efficient correction of defects of both kinds is possible
if and only if both GT (D,D−k)(T/λ) and GT (D,k)(T/µ) are in the confined phase. Hastings’ circuit
definition, the presence of stable quantum memory and the behaviour of TE all agree in predicting
topological order in the toric codes:

A system has TO at T > 0 if Stop(T ) = Stop(0) > 0.

We remark again that the mere presence of nonvanishing TE is not enough to ensure TO. Indeed,
there are situations for classical states in the sense of [27] in which one can encode stable classical
memory, for instance the toric code in 3D T (3,1), in which Stop > 0 see also [9]. In order to assess TO,
TE must have the full value that it has at zero temperature. In fact, up to half of that value can be of
classical origin and therefore not related to quantum TO [7].

We want to discuss the meaning of stable classical and quantum memories from the statistical
mechanics point of view. The stability of classical memory corresponds to ergodicity breaking. The
phase space breaks into domains in which the evolution is confined for exponentially long (in the
system size) times. These domains become disconnected in the thermodynamic limit. One can encode
classical information in the system by knowing in which domain the system is confined. A stable
quantum memory means that there is a manifold of metastable quantum states. The breaking of
ergodicity here is more dramatic, because there is an infinite number of states that are disconnected,
and that have arbitrarily large overlap between each other. We find that this property is accompanied
by a particular pattern of long-range entanglement, being it TE or the nontriviality of entanglement
(NT) criterion. We asked ourselves: Why is that? Why should the entanglement properties be related
in such a strict way to the way the system approaches equilibrium? We think that answering this
question is crucial to the understanding of the notions of quantummemory, ergodicity breaking, and
the statistical mechanics of topological phases.

In this paper, we have proven that the mechanism leading to the destruction of TE is given by the
confinement–deconfinement transition in the corresponding gauge theory (here the Z2 lattice gauge
theory) and therefore to a critical temperature Tc for the stability of Stop. Moreover, we have proven
that the same mechanism is responsible for the transition NT → FAC that describes topological
order in terms of patterns of nontrivial long-range entanglement. The confinement–deconfinement
mechanism though, is also the one responsible for the destruction of quantum (or classical)
memory [13]. We can then establish that TO is a property of the way ergodicity is broken, or, in
information-theoretic terms, is a property of how information encoded in the system is resilient.
This is important since the entanglement criteria, or other nonlocal order parameters [17] are hardly
experimentally accessible, so we need to find other properties of TO that can characterize it.

This work leaves many open questions, the most natural of all is whether these results
extend to general quantum double models and the corresponding discrete gauge theories. Another
generalization is to investigate this transition in general string-net models [45,37], though these do
not correspond to a gauge theory. Moreover, we have seen why we obtain a sharp phase transition
when we consider partitions of infinite size. For the finite system, there are exponentially suppressed
branes that are able to see the topology of the partitions and therefore to give exponentially
suppressed corrections to Stop. With this in mind, we ask ourselves what is the final size scaling in
order to find the critical behaviour of Stop near Tc (scaling behaviour for the mutual information in TO
was examined in [30]). Would the critical exponents for Stop be related to other information-theoretic
quantities, that we can perhapsmeasure?Moreover, in the 3D case, we see that a TE of classical origin
corresponds to the existence of classicalmemory. Again,wewonder,what is the connection? Is there a
kind of TE in all the classical phases which host a stable classical memory? A fourth question is related
to the very interesting class of models whose quantum memory at finite temperature is stable for
only polynomial (in the system size) lifetimes. These models are obtained by coupling with a bosonic
system [20] or with other long range interactions [12] or with Hamiltonians whose excitations have
fractal geometric properties [18,19,10].What kind of TO do thesemodels have?What happens to their
TE? And what about the Hastings’ criterion for such systems?

Along with thermal stability, the question of whether TE in itself is stable in the whole TO phase
is still an open question in its generality, thought TE is known to be stable in the Z2 lattice gauge
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theory [25]. We know that the TO phase at T = 0 is stable because the gap will not close for arbitrary
perturbations (within a range) [3]. If TE or NT are the hallmark of TO, one needs to prove they are
stable too, for the same range. We hope that the results shown in this work can also be helpful for this
important question.

To finish, wewant tomention that another important form of stability is dynamical stability after a
quantum quench, that is a sudden dramatic change in the systemHamiltonian. It has been shown [43]
that TE is stable in the quench scenario for some particular quenches in the toric code in 2D while
quantum memory is not [31]. Therefore the dynamical scenario is different, and there are no results
in higher dimensions. Our results in themapping to the lattice gauge theorymay prove useful to study
also these scenarios.

All these questions constitute an exciting challenge for the study of novel quantum phases of
matter, statistical mechanics paradigms, and quantum information theory.
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