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Abstract: This article examines ethical implications of the growing AI carbon footprint, focusing on
the fair distribution of prospective responsibilities among groups of involved actors. First, major
groups of involved actors are identified, including AI scientists, AI industry, and AI infrastructure
providers, from datacenters to electrical energy suppliers. Second, responsibilities of AI scientists con-
cerning climate warming mitigation actions are disentangled from responsibilities of other involved
actors. Third, to implement these responsibilities nudging interventions are suggested, leveraging on
AI competitive games which would prize research combining better system accuracy with greater
computational and energy efficiency. Finally, in addition to the AI carbon footprint, it is argued that
another ethical issue with a genuinely global dimension is now emerging in the AI ethics agenda.
This issue concerns the threats that AI-powered cyberweapons pose to the digital command, control,
and communication infrastructure of nuclear weapons systems.

Keywords: AI ethics; AI carbon footprint; environmental responsibilities of AI scientists; global
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1. Introduction

There is hardly any aspect of human life that artificial intelligence (AI) has not changed
or may not change in the near future. The pervasive impact of AI over the last decade has
been powered by machine learning (ML) technologies in general, and deep neural networks
(DNN) in particular. Learning AI systems are having an increasing role to play in commerce,
industry, finance, the management of public and private services, communication and
entertainment, security, and defense.

The increasing pervasiveness of AI technologies and systems drives a growing appre-
hension about the carbon footprint of AI models obtained by means of ML techniques, and
their potential impact on climate warming. This article focuses on the little explored ethical
issue of distributing fairly among involved actors prospective responsibilities concerning
the growing AI carbon footprint. And it builds on various contributions to understanding
sources of the AI carbon footprint and related mitigating actions [1–6], which are here used
as epistemic starting points for the ethical analysis of involved responsibilities and the
outline of corresponding ethical policies.

In Section 2, the significance of the ethical issue addressed here is emphasized by
reference to whistleblowing estimates of the carbon footprint of selected AI systems and
corresponding calls for more systematic evaluations. In Section 3, major involved actors
are identified—including AI scientists, AI industry, AI infrastructure providers—and the
problem of pinpointing their environmental responsibilities is introduced. In Section 4,
distinctive responsibilities of AI scientists in the way of climate warming mitigation actions
are disentangled from responsibilities of other involved actors. In Section 5, nudging inter-
ventions are suggested to implement these prospective responsibilities. These interventions
presuppose modifying the very idea of what counts as a “good” result in AI, moving on
from the goal of improving accuracy to the goal of pursuing the accuracy of AI systems in
combination with greater computational and energy efficiency. The corresponding good
practices that are suggested leverage on the time-honored AI tradition of research pursued
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in the framework of competitive games. In Section 6, it is pointed out that greenhouse
gases emissions have climate effects anywhere and everywhere on the planet, impacting
most or even all members of present generations, nations, future generations, and the rest
of nature. It is argued on this ground that climate warming ethical issues, in view of their
genuinely global reach, take up a rather unique position in the AI ethics agenda, which has
been mostly concerned with issues of a more local character. In Section 7, on the basis of the
local–global distinction concerning the AI ethics agenda, it is argued that another ethical
issue with a genuinely global dimension is emerging there, which brings about moral
responsibilities of AI scientists that are akin to those carried by physicists in connection
with the development of nuclear weapons. This novel ethical issue concerns maturing
cyberweapons powered by AI technologies and the threats that these cyberweapons are
likely to pose to the digital command, control, and communication infrastructure of nuclear
weapons systems. Section 8 concludes.

2. AI Ethics and Estimates of the AI Carbon Footprint

Widespread attention to the growing environmental impact of AI and its carbon
footprint has been significantly stimulated by estimates of computational and electricity
resources that are required to train selected AI models by ML methods. Strubell and
co-workers selectively focused in their carbon footprint analysis on AI models for natural
language processing (NLP). In addition to the training of a variety of off-the-shelf AI
models, they considered downstream training processes that one needs to adapt and
fine-tuning these AI models to perform new NLP tasks [1]. Electricity consumption and
greenhouse gases (GHG) emissions of these systems were extrapolated from an estimate of
computational training costs. Notably, the training of an NLP Transformer model, based
on a DNN architecture, was estimated to produce GHG emissions equivalent to those of
five average automobiles throughout their lifecycle. The GHG emissions of the BERTLARGE

model—which was trained using GPU (Graphic Processing Units) as a specialized hardware
accelerator—were estimated to be equivalent to those of a commercial flight between
San Francisco and New York [1]. The publication of these estimates had a significant
whistle-blowing effect. Behind the ethereal and intangible appearances of AI information
processing, its material character and consequences were exposed, raising specific concerns
about the environmental impact of the distinctive processes involved in the development
of AI systems.

Shortly after the publication of these data, the 2020 White Paper on AI released
by the European Commission (EC) called for actions moving beyond the collection of
impressive but admittedly anecdotal data about the training of selected AI systems. Indeed,
the more general problem was raised there of assessing the carbon footprint of each
individual AI system and of the AI sector as a whole: “Given the increasing importance
of AI, the environmental impact of AI systems needs to be duly considered throughout
their lifecycle and across the entire supply chain, e.g., as regards resource usage for the
training of algorithms and the storage of data.” [7] (p. 2). Motivated by the increasing
pervasiveness of AI technologies and systems, this recommendation calls for a mapping
of the environmental impact of AI systems (a) throughout their lifecycle, that is, from
development and introduction to withdrawal, and (b) across the entire supply chain, which
involves multiple research and industrial actors, including AI researchers, AI industry,
providers of information and communication (IC) infrastructures, electricity suppliers.

The overarching inquiry solicited by the EC is crucial to understand how big the
AI carbon footprint is and how significant is the individual contribution of various AI
segments, from research to industry, to produce this carbon footprint. It is needed, moreover,
to identify effective policies and countervailing actions, aimed at curbing the carbon
footprint of the AI sector and to mitigate its impact on climate warming. Last but not
least, assessing the AI carbon footprint and identifying its major sources is essential from
the special perspective of environmental ethics. This knowledge is needed to identify
and fairly distribute environmental responsibilities among the heterogeneous groups of
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actors that are involved, from AI researchers and AI industry to providers of information
and communication (IC) infrastructures and electricity suppliers. These environmental
responsibilities are both prospective and retrospective. Prospective responsibilities concern
those who are in the position to act and reduce the current carbon footprint of AI research
and business. Retrospective responsibilities concern corresponding omissions and other
environmentally irresponsible behaviors arising—all things considered—from the use of AI
technologies and systems. Altogether, one can hardly question the importance of estimating
the AI carbon footprint and identifying its sources. However, providing realistic estimates
presupposes an inventory of the wide variety of relevant factors and the development of
suitable carbon footprint metrics and models.

3. AI Carbon Emissions Sources and Related Responsibilities

A relevant factor motivating concerns about present and prospective AI carbon foot-
prints is the steadily growing size of AI learning models that are based on DNN. The size
of a DNN is usually measured by reference to the total number of weights associated to
the connections between its neural nodes. In the NLP domain, the large version of the
BERT model mentioned above contains about 350 million of these parameters, the DNN
system GPT-2 (where GPT stands for Generative Pre-trained Transformer) contains about
1.5 billion parameters, and 175 billion is the figure reached by the more recently released
GPT-3. This accelerating trend in the development of larger AI models is jointly explained
by the increased availability of computing resources, the improved accuracy achieved
by larger models and the special emphasis placed by research and industry on enhanced
system accuracy. However, improved AI model performances attained using larger models
come with increased energy consumption. This approach to achieving increased model
accuracy does not go well with the goal of curbing the overall AI carbon footprint.

Another source of environmental concern is the growing size of training sets and the
growing number of hyperparameter experiments. The latter enable one to explore how the
performances of learning systems change by tuning DNN hyperparameters such as the
number of learning cycles and the network learning rate. Again, expansions in both training
sets and hyperparameter experiments are usually motivated by the achievement of better
DNN model performances. However, expansions of both kinds come with increased energy
consumption [2] (p. 58). Thus, major trends that are being observed in AI research and
development (R&D)—recourse to hyperparameter experiments, increasing DNN model
and training set size—are aimed at achieving increased model accuracy, but do not go
well with the goal of curbing the overall AI carbon footprint. From the viewpoint of
environmental ethics, an evident tension emerges between entrenched behaviors in the AI
research community and climate warming mitigation objectives. Thus, one is led to ask
whether it is ethically justified to pursue academic and industrial R&D solely focusing on
AI system accuracy, if better model accuracy comes with increased energy costs due to the
use of ever larger models, training sets and epochs, massive hyperparameters experiments.

The R&D activity of setting up from scratch or adapting AI models reveals only
some facets of the AI carbon footprint problem. Another significant aspect concerns the
use of AI systems after training is completed. In connection with the above estimates
of computational and electricity resources required to train some selected AI models for
NLP [1], Patterson and co-workers emphasized that major digital companies—unlike AI
academic researchers that are mostly engaged in model development, training, and testing—
apply and use AI models that are fully operational for prediction, decision-making, and
inference. In fact, up to 90% of computational and energy consumption costs faced by these
companies and attributed to AI models have been estimated to flow from their post-training
use. Accordingly, to evaluate sensibly the AI carbon footprint, one must carefully attend
to fully operational uses of AI models for prediction, decision-making, and inference [3].
From an environmental ethics viewpoint, this finding leads one to distinguish between
prospective responsibilities of different groups of involved actors. AI researchers must
specifically alleviate tensions that may arise between climate warming mitigation goals
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on the one hand, and training and other experimental practices aimed at achieving better
AI model accuracy on the other hand. In addition to this, AI companies must attend to
and curb the carbon footprint of fully operational AI systems. Actors of both kinds must
additionally attend to the computational costs of algorithms and programs used for AI
model training and inference.

Additional factors to consider for the purpose of providing credible estimates of the AI
carbon footprint comprise the energetic efficiency of the infrastructure formed by the variety
of ICT systems supporting AI systems training and use. These factors notably include the
energetic efficiency of the processors on which AI algorithms and programs run and the
energy supply mix of datacenters and other providers of computing resources [3] (p. 2).
Clearly, as one takes into account the broader landscape of AI infrastructures, prospective
responsibilities extend beyond AI scientists and industry, reaching larger groups of actors
within the ICT sector.

One should be careful to note that the list of relevant factors to consider and their
attending responsibilities does not come to an end here. Comprehensive assessments of the
AI carbon footprint require an examination of wider interaction layers between AI technolo-
gies and society. These interaction layers arise from AI-induced societal changes occurring
in work, leisure, and people’s consumption patterns. Current estimates point to a pervasive
and rapid impact of AI across the spectrum of human activities. However, wider interaction
layers between technological developments and societal patterns have proven difficult to
encompass in connection with other technologies and systems, and their environmental
consequences have been correspondingly difficult to identify and measure [8].

In the light of current expectations about wider interaction layers between AI tech-
nologies and society, a “concerted effort by industry and academia”—invoked to attain
substantive reductions of the AI environmental cost [1] (p. 5)—appears to be a necessary,
but still insufficient step to effectively curb the AI carbon footprint. Moreover, a wide
variety of actors must play a role in this concerted effort: AI researchers and engineers, uni-
versities and research centers, AI firms and providers of ICT infrastructures. Hence, it may
become quite difficult—both in practice and in principle—to set apart which responsibilities
pertain to which community of involved actors. For example, AI scientists may point to AI
industry pressing need for ever more accurate models as an excusing reason for the use
of ever larger models and training sets. In its turn, AI industry may shift the prevalent
responsibility burden on electrical energy supply chain actors who are still prevalently
relying on fossil fuel sources. Thus, an instance of the many-hands responsibility problem
in environmental ethics [9] looms large on AI carbon footprint reduction efforts. It is a bitter
and well-known fact that major political negotiations about climate warming mitigation
actions have often floundered in similar buck-passing games.

4. Disentangling the Environmental Responsibilities of AI Scientists

Acknowledging that significant stumbling blocks hinder a thorough allocation of
responsibilities to reduce the AI carbon footprint does not entail that any such allocation
effort is invariably bound to fail. Interestingly, this allocation problem is being debated
within the AI research community, and distinctive roles and responsibilities for AI re-
searchers to reduce the AI carbon footprint are being proposed, which disentangle these
from roles and responsibilities of other involved actors, including commercial firms re-
lying on already trained and fully operational AI models for inference, prediction, and
decision-making, private and public datacenters, providers of cloud computing resources,
and electricity producers.

To begin with, one must tackle the problem that the total amount of GHG emissions
that one may sensibly attribute to the development or adaptation of some learning AI model
(more briefly, for now on, an AI research result) depends on both spatial and temporal
factors. The computing activities that one carries out to achieve an AI research result is
invariant neither with respect to where the underlying computing activities take place nor
with respect to when they take place. Indeed, one may obtain the electrical energy needed
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to carry out the required computing activities from various providers, which differ from
each other in the way of their electricity supply mix, formed by variable relative proportions
of fossil fuel, alternative, and renewable sources. Moreover, the electricity supply mix
of each provider may change over time (e.g., at night or during daylight). Accordingly,
direct estimates of GHG emissions are unsuitable to draw fair comparisons between the
carbon footprint reduction efforts of AI researchers working asynchronously or in distinct
locations, and to disentangle corresponding responsibilities from the responsibilities of
electric energy producers and suppliers [2].

As an alternative to direct estimates of GHG emissions attributed to each AI result,
one may try and use electricity consumption estimates which are blind to the energy supply
mix. However, these estimates are in their turn sensitive to the kinds of processors and,
more generally, hardware resources that scientists use to train AI models. Accordingly,
gross electricity consumption is unsuitable to identify and compare fairly the carbon
footprints reduction efforts of AI researchers relying on different hardware resources,
and to disentangle corresponding responsibilities from the responsibilities of private or
public datacenters.

To overcome the drawbacks of direct measures of either GHG emissions or gross
electricity consumption—concerning the disentanglement of AI research responsibilities
from those of energy producers and datacenter administrators—it has been suggested
that a more suitable metrics should identify the computational efficiency of AI research
and its results. In this vein, Schwartz and co-workers proposed AI researchers to report
“the total number of floating-point operations (FPO) required to generate a result”, on the
grounds that FPO estimates of the amount of work performed by a computational process
are agnostic with respect to both the energy supply mix and the energetic efficiency of
hardware infrastructures [2] (p. 60). More generally, any sensible measure of computational
efficiency to correlate, albeit indirectly so, to the AI carbon footprint would enable the AI
research community to identify distinctive responsibilities for climate warming mitigation
actions based on the development of computationally more efficient methods and systems.

Unlike the pursuit of increased computational efficiency, additional actions that AI
researchers may undertake to curb the AI carbon footprint depend on knowledge of
what datacenters administrators, cloud computing providers, electricity producers and
other involved actors do. These additional actions include the choice of the more energy-
efficient computing hardware and datacenters, the choice of shifting the training of and
experimenting with their AI models towards low carbon intensity regions, and the choice
of suitable times of the day to train their AI models, insofar as the carbon intensity of any
given region may change throughout the day [4]. Software tools are being made available
to predict and estimate the carbon footprint of AI results, taking into account computational
efficiency, and both energy-efficient uses of datacenters and electrical energy supplies [4–6].

5. Promoting Environmentally Responsible AI Research

Measures of computational efficiency enable one to identify specific responsibilities of
AI researchers, and knowledge of what other involved actors do enables them to identify
a variety of additional good practices in the way of AI carbon footprint mitigation. How-
ever, how is the taking on of these responsibilities and implementation of good practices
effectively encouraged?

One approach involves modifying the idea of what counts as a “good” result in AI. The
development or the tuning of an AI model which enables one to go significantly beyond
present accuracy benchmarks is normally considered a good result in AI, independently of
how computationally expensive is to train this model and make the required experiments
with it. A significant example of this kind of result appraisal is the above-mentioned
transition, in the NLP domain, from the BERT model containing about 350 million pa-
rameters, to GPT-2 containing about 1.5 billion parameters, and then to the GPT-3 model
containing 175 billion parameters. Environmentally thriftier research across the AI research
community may be encouraged by prizing results which combine better system accuracy
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with greater computational and energy efficiency. It was suggested in this connection to set
up leaderboards listing best results and practices [5].

The identification of benchmarks suitably combining accuracy with energy efficiency
provides a basis for “environmentally sustainable AI” competitions, which may leverage
on a long tradition of AI research pursued in the frame of competitive games. These
tournaments may eventually achieve the reputation of other AI undertakings which took
the form of competitions and played prominent roles in the development of AI and its
research programs. Major competitions of this sort have revolved around computational
chess, Go, and poker. Many Grand Challenges promoted by DARPA have taken the form of
competitive games among AI or robotic systems. The RoboCup initiative uses the game of
soccer for developing skills and intelligence of robotic systems. Results achieved by teams of
robots competing in robotic soccer tournaments are used to identify benchmarks inspiring
further research and the development of new generations of robotic soccer teams [10].
By the same token, AI competitions prizing the energetic efficiency of AI systems may
foster good practices in AI research and even attract the interest of AI industry, in view
of economic advantages flowing from reductions of electricity supply costs. The allure
of competitive games may bring about an increased capability to attract students and
junior researchers, raising their awareness on AI carbon footprint, and to introduce the
study of technological approaches to the reduction of this footprint in computer science
graduate programs.

How distant from the current reality of AI research is the scenario of an environmen-
tally virtuous AI research? It is a fact that the search for computationally efficient solutions
to research problems is not a prevailing goal in today’s ML research. This much can be
gleaned from a random sample of 60 papers presented at recent top-level AI conferences: a
large majority of these papers were found to target model accuracy only, without taking
computational efficiency into account [2] (p. 56). In another random sample of 100 papers
from the 2019 NeurIPS proceedings, one paper only “measured energy in some way, 45 mea-
sured runtime in some way, 46 provided the hardware used, 17 provided some measure of
computational complexity (e.g., compute-time, FPOs, parameters), and 0 provided carbon
metrics.” [5] (p. 6). These findings suggest that improvements in task performance accuracy
are pursued without taking notice of environmental costs. This neglect for environmental
costs in AI research is often transmitted downstream in university study programs, where
AI projects and master theses produce large amounts of minor and practically inconsequen-
tial accuracy results which fail to make it into AI conferences and publications. Accordingly,
a significant departure from prevalent research and educational goals is required to raise
environmental awareness and introduce corresponding good practices in AI research and
academic communities.

One may introduce competitive games, research awards and recognitions as nudging
interventions to enhance environmental awareness and foster related good practices in AI
academic and more broadly research communities. However, one may raise the reasonable
doubt that these nudging interventions, if any, will be able to gain sufficient traction,
eventually leading to the accomplishment of significant objectives in the way of reducing
the AI carbon footprint on a temporal scale which is meaningfully related to the overall
goal of limiting global warming in the XXI century to 1.5 ◦C [11]. If each community is
required to do its share to implement this overall goal, one may well consider mandatory
environmental policies for AI research as an alternative to nudging interventions and
voluntary participation into environmentally virtuous AI competitions. Thus, one may
introduce AI-research carbon quotas, in the absence of a swift and widespread endorsement
of climate warming mitigation actions by the AI research community. However, clearly,
this restrictive policy would impact negatively on research freedom, raising the additional
ethical challenge of an equitable distribution of bounded computing resources among
AI stakeholders [12]. Moreover, this policy may negatively affect AI’s vast potential to
support climate warming mitigation actions in other spheres of human activity, insofar
as AI research may substantively contribute to identify approximate solutions to a wide
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variety of energy use optimization problems, ranging from the energetic efficiency of
buildings to the reduction of transportation needs, the planning of travel routes, and the
efficiency of supply chains in industry production and food consumption [13].

To sum up. Applications of AI research promise to drive climate warming mitigation
actions across a variety of economic and social activities. At the same time, however,
AI research is an integral part of the climate crisis problem. This much is conveyed by
recent—admittedly perfectible—estimates of the AI carbon footprint. Suitable measures of
computational costs arising from AI research are needed to foster a better understanding
of AI’s environmental impact and to identify distinctive environmental responsibilities
of the AI research community. AI competitions prizing computational efficiency and the
establishment of leaderboards may encourage environmentally virtuous research attitudes
within the AI research community. However, the need for mandatory policies may emerge
too, if the prevailing goal of prizing accuracy in current AI research will not be willingly
and timely replaced by more comprehensive goals combining accuracy with energy and
computational efficiency.

6. The AI Carbon Footprint and Global Ethical Issues

AI’s role is steadily growing in both climate warming and related mitigation efforts.
The ethical issues arising from this growing role for AI research and industry concern a
truly global phenomenon. Regardless of their source, GHG emissions have climate effects
anywhere and everywhere on the planet. The corresponding ethical issues of responsibility
and fairness impact individuals, nations, future generations, and the rest of nature [14].
For this reason, climate warming ethical issues are a major novelty to appear in the AI
ethics agenda in view of their genuinely global reach. This much can be gleaned by
contrast, if one looks at the list of items included in comprehensive documents [15,16] and
overarching review articles [17,18] spanning over the wide variety of issues that are now
being addressed in AI ethics. To exemplify, consider from this perspective the EU proposal
for regulating AI [16]. This influential document classifies as “high risk” from ethical and
legal standpoints a wide range of AI application domains, such as access to education,
vocational training and employment, the management of migration, asylum and border
control, access to essential services, and public benefits. Most of these issues are local, in
the sense that an AI system operating in one of these domains raises ethical concerns, at
each given point in time, about the good and the fundamental rights of a limited fraction of
persons within the human population. Thus, for example, information processing biases
possibly embedded into an AI system supporting college admissions procedures may lead
to discriminations affecting the good and the rights of rejected college applicants [19], and
raises ethically justified concerns about the life plans of other prospective college applicants.
Similarly, AI decision-making concerning bank loans, job hirings, career advancement,
migration and asylum management, access to unemployment benefits, and other public or
private services affect or raise concerns about the good and fundamental rights of limited
portions of the humankind at each given point in time.

In contrast with this local character of most ethical issues in the AI ethics agenda,
there are ethical issues that are genuinely global, so that the good and the fundamental
rights of most—and possibly even of all members of the human species—are involved at
least at some given point in time. Notably, pandemic infections like SARS-CoV-2 raise—in
addition to formidable medical, economic, and political problems—some genuinely global
ethical issues, which concern the physical integrity, life, well-being, right to work, and
education of most members of the human species. Indeed, as of December 2021, only a
handful of countries—Nauru, Turkmenistan, and Tuvalu, in addition to North Korea—had
no reported COVID cases.

The history of humankind is scattered with the waxing and waning of other global
ethical issues, in the sense here specified of ethical issues affecting at some given point in
time the good and the fundamental rights of most, and possibly all members of the human
species. The Spanish flu pandemic posed a global ethical issue back in 1918–1919. The
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1976 Rowland–Molina hypothesis identified the major cause of atmospheric ozone layer
depletion in the use of chlorofluorocarbons (CFCs). This anthropically induced effect might
have deprived the humankind and other living entities of protection from exposure to
solar UV radiation, thereby triggering another potentially global ethical issue. Effective
international efforts to decrease the use of chlorofluorocarbons (CFCs) from the 1980s
onward appear to have successfully curbed this specific global threat.

Additional global ethical issues are presently at stake in connection with both the
anthropically induced climate crisis [20] and the threat of a nuclear world war represented
by the very existence of nuclear arsenals [21]. The climate crisis has now entered the AI
ethics agenda in connection with both GHG emissions attributed to AI systems and AI’s
potential contribution to the identification of sensible solutions to energy use optimization
problems. Some ethically relevant implications of the AI current and potential impact on
climate warming have been analyzed in this article. However, what about the threat of
a nuclear world war? Are this threat and its ethical implications significantly related to
current AI developments? The answer to this question, as we shall presently see, is likely
to be a resounding “yes”.

7. AI Cyberweapons and Nuclear Weapons: A Global Ethical Issue on the Rise

Ethical debates on the militarization of AI have been so far mostly concerned with the
ethical implications of developing and deploying autonomous weapons systems (AWS).
These weapons systems are capable to select and engage targets without further interven-
tion by a human operator after their activation [22,23]. AI technologies play a crucial role
in the development of ever more sophisticated AWS, by enabling perceptual, deliberative,
and action planning capabilities that an AWS needs to perform the tasks of target selection
and attack.

Normative debates about AWS have been basically concerned with local ethical issues.
These issues notably concern (i) AWS causing breaches of jus in bello norms of just war
theory and international humanitarian law (IHL), thereby affecting the rights and the
welfare of their victims [24–26]; (ii) the difficulty of selectively attributing responsibilities
for IHL breaches to the persons taking on responsibilities and decision-making roles in AWS
operation [27,28] (iii) affronts that AWS targeting decisions make to the human dignity of
its victims [29]. All of these are local ethical issues according to the distinction introduced in
the previous section: only the good and the rights of AWS potential victims are selectively
at stake (by (i) and (iii)), in addition to the duties of persons and institutions who are
responsible for AWS operation (by (ii)). However, the growing number of tasks that AI
systems autonomously perform is giving rise to a new global issue, concerning the impact
of AI systems on threats of worldwide nuclear conflicts and its ethical implications.

The connection between the AI ethics agenda and threats of worldwide nuclear con-
flicts is emerging from the growing role of AI in cyberspace [30] in general, and in cyber-
conflicts [31] in particular. It was pointed out that “parties to armed conflicts frequently
deploy cyber weapons and, recognizing the competitive advantages afforded by autonomy,
States are developing—or perhaps have already developed—autonomous cyber weapons
for use in armed conflict” [32] (p. 646). AI-powered cyber weapons can in principle use
their adaptive intelligence and learning capabilities to identify and exploit without hu-
man intervention the software vulnerabilities of other digitalized military systems. Are
autonomous cyber weapons (ACW from now on) genuine AWS? What happens to the
normative debate about AWS if one counts ACW as some special sort of AWS? Even more
important for our present concerns: are the involved ethical issues bound to stay local?

The above mentioned 2012 Directive of the US Department of Defense [22]—which
first introduced the functional condition on a weapons system to count as autonomous—
leaves aside any consideration of machine autonomy in the cyberspace. At the same time,
however, no explicit restriction in terms of warfare domains is introduced there. ACW and
their targets inhabit the cyberspace, thereby differing in the way of operational domain
from other AWS, including autonomous robotic sentries, loitering munitions, or swarms
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of autonomous armed drones. However, they are no different from other AWS in their
capability to independently select and attack targets. It is therefore reasonable to conclude
that an ACW is a special sort of AWS.

Like cyber weapons operated by humans, ACW can potentially target surveillance
and reconnaissance military systems, weapons system requiring software resources to
be operated, software systems serving intelligence and command-and-control purposes
at military headquarters. By replacing teams of skilled engineers in orchestrating cyber
attacks, ACW are likely to accelerate the pace of cyberwarfare beyond human response
capabilities, enabling the delivery of cyber attacks on larger scales, and making cyber
threats more persistently available in the cyberspace [33]. This possibility aggravates
concerns expressed about interactions between AWS which would accelerate the pace of
conflict beyond human cognitive capabilities [34]. Indeed, ACW may target AWS releasing
their force in traditional warfare domains. Accelerating the pace of cyberwarfare may
lead to runaway interactions between ACW and AWS. Moreover, the rise of ACW may
aggravate existing cyberthreats to nuclear weapons and related nuclear command, control,
and communication (NC3) systems. Cyberattacks directed to nuclear defense systems
could lead to false warnings of nuclear attacks by the enemy, disrupt access to information
and communication, damage nuclear delivery systems, and even enable the hacking of
a nuclear weapon [35]. Therefore, cyberattacks on nuclear defense systems raise new
daunting threats for peace and a global ethical issue concerning the very persistence of
human civilizations.

The maturing of these technological possibilities has far-reaching ethical implications,
involving the responsibilities of AI scientists on account of their privileged epistemic
position. Right after World War II, many physicists felt it was their moral obligation to
make public opinion and political decision-makers aware of the existential threat posed by
nuclear weapons and the nuclear arms race starting during the cold war. Later, chemists
and biologists played a pivotal role in international debates and diplomatic efforts leading
to international treaties banning the development, production, stockpiling and use of
chemical and biological weapons of mass destruction. Today, AI scientists must make
public opinion and political decision-makers aware of the threats to peace and stability
posed by the maturing of ACW, up to and including their impact on NC3 systems, and the
existential threats for human civilization that may emerge from ACW targeting nuclear
defense systems. They must face hard moral choices concerning their active participation
in or support of ACW research.

8. Conclusions and Future Work

It has been widely emphasized that applications of AI research promise to drive climate
warming mitigation actions across a variety of economic and social activities, insofar as AI
research may substantively contribute to identify solutions to optimization problems, which
range from the energetic efficiency of buildings and transportation needs to the efficiency
of supply chains in industry production and food consumption. At the same time, however,
it is widely recognized that AI research is an integral part of the climate crisis problem.
This is witnessed by recent estimates of the AI carbon footprint, which are here used as
epistemic starting points for the ethical analysis of involved responsibilities and the outline
of corresponding ethical policies. Clearly, more comprehensive and accurate measures of
computational costs arising from AI research are needed to develop a better understanding
of AI’s environmental impact and to pinpoint the ways in which each one of the involved
actors contributes to the AI carbon footprint and to reduce its impact. It was argued
here, however, that the admittedly incomplete and imprecise state of knowledge about
the AI carbon footprint suffices to disentangle distinctive responsibilities of AI scientists
concerning their research activities. At the same time, what is presently known suffices
to promote nudging interventions by the AI research community, leveraging on the AI
long tradition of pursuing research in the framework of competitive games, and prizing
computational efficiency along with accuracy of novel AI systems.
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The emergence of the AI carbon footprint problem has motivated the opportunity
of introducing, in the final part of this article, the distinction between local and global
issues in connection with the AI ethics agenda. The AI carbon footprint raises ethical
issues of an unprecedented global reach in the AI ethics agenda. However, the list of
global issues in the AI ethics agenda is likely to expand soon in view of AI growing
pervasiveness across and within each domain of human activity. Indeed, it was pointed
out that another ethical issue with a genuinely global dimension is emerging in view of
maturing AI-powered cyberweapons. These jeopardize the integrity and availability of the
digital command, control, and communication infrastructure of nuclear weapons systems,
thereby posing new threats to nuclear stability. Future work, which goes clearly beyond
the scope of this article, will be devoted to identifying and analyzing the responsibilities of
AI scientists, emerging in connection with this novel global issue in the AI ethics agenda,
and ranging from awareness-raising communication—addressed to the public opinion and
political decision-makers alike—to moral choices concerning their active participation in
AI cyberweapons R&D activities.

Funding: This research was partially funded by Italian National Research Project PRIN2020, grant
2020SSKZ7R.

Institutional Review Board Statement: Not applicable.

Acknowledgments: The author is grateful to Daniele Amoroso, Fabio Fossa, Giuseppe Trautteur and
three anonymous reviewers for their helpful comments and suggestions.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Strubell, E.; Ganesh, A.; McCallum, A. Energy and Policy Considerations for Deep Learning in NLP. arXiv 2019, arXiv:1906.02243.
2. Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI. CACM 2020, 63, 54–63. [CrossRef]
3. Patterson, D.; Gonzales, J.; Le, Q.; Liang, C.; Mungia, L.M.; Rotchchild, D.; So, D.; Texier, M.; Dean, J. Carbon Emissions and Large

Neural Network Training. arXiv 2020, arXiv:2104.10350.
4. Anthony, L.F.W.; Kanding, B.; Selvan, R. Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning

Models. arXiv 2020, arXiv:2007.03051.
5. Henderson, P.; Hu, J.; Romoff, J.; Brunskill, E.; Jurafsky, D.; Pineau, J. Towards the Systematic Reporting of the Energy and Carbon

Footprints of Machine Learning. J. Mach. Learn. Res. 2020, 21, 1–43.
6. Lacoste, A.; Luccioni, A.; Schmidt, V.; Dandres, T. Quantifying the Carbon Emissions of Machine Learning. 2019. Available online:

https://deepai.org/publication/quantifying-the-carbon-emissions-of-machine-learning (accessed on 2 January 2022).
7. European Commission. White Paper on AI. A European Approach to Excellence and Trust. 2020. Available online: https:

//ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en (accessed on 2 January 2022).
8. Williams, E. Environmental effects of information and communication technologies. Nature 2011, 479, 354–358. [CrossRef] [PubMed]
9. Van de Poel, I.; Fahlquist, J.N.; Doorn, N.; Zwart, S.; Royakkers, L. The problem of many hands: Climate change as an example.

Sci. Eng. Ethics 2012, 18, 49–67. [CrossRef] [PubMed]
10. Tamburrini, G.; Altiero, F. Research Programs Based on Machine Intelligence Games. In Italian Philosophy of Technology; Chiodo, S.,

Schiaffonati, V., Eds.; Springer: Cham, Switzerland, 2021; pp. 163–179.
11. IPPC Intergovernmental Panel on Climate Change. Global Warming of 1.5◦. 2018. Available online: https://www.ipcc.ch/sr15/

(accessed on 2 January 2022).
12. Lucivero, F. Big data, big waste? A reflection on the environmental sustainability of big data initiatives. Sci. Eng. Ethics 2019, 26,

1009–1030. [CrossRef] [PubMed]
13. Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.;

Waldman-Brown, A.; et al. Tackling Climate Change with Machine Learning. arXiv 2019, arXiv:1906.05433.
14. Gardiner, S.M. A Perfect Moral Storm: The Ethical Challenge of Climate Change; Oxford University Press: Oxford, UK, 2011.
15. IEEE. Ethically Aligned Design. A Vision for Prioritizing Human Well-Being with Autonomous and Intelligent Systems. 2018.

Available online: https://ethicsinaction.ieee.org/#series (accessed on 2 January 2022).
16. European Commission. Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonized

Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts. 2021. Available online:
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206 (accessed on 2 January 2022).

17. Gordon, J.-S.; Nyholm, S. Ethics of Artificial Intelligence. 2021. Available online: https://iep.utm.edu/ethic-ai/ (accessed on
2 January 2022).

http://doi.org/10.1145/3381831
https://deepai.org/publication/quantifying-the-carbon-emissions-of-machine-learning
https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en
https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en
http://doi.org/10.1038/nature10682
http://www.ncbi.nlm.nih.gov/pubmed/22094696
http://doi.org/10.1007/s11948-011-9276-0
http://www.ncbi.nlm.nih.gov/pubmed/21533835
https://www.ipcc.ch/sr15/
http://doi.org/10.1007/s11948-019-00171-7
http://www.ncbi.nlm.nih.gov/pubmed/31893331
https://ethicsinaction.ieee.org/#series
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
https://iep.utm.edu/ethic-ai/


Philosophies 2022, 7, 4 11 of 11

18. Müller, V.C. Ethics of Artificial Intelligence and Robotics. 2021. Available online: https://plato.stanford.edu/archives/sum2021/
entries/ethics-ai/ (accessed on 2 January 2022).

19. O’Neil, C. Weapons of Math Destruction; Penguin Books: London, UK, 2017.
20. IPPC Intergovernmental Panel on Climate Change. Climate Change 2021. Available online: https://www.ipcc.ch/report/ar6

/wg1/ (accessed on 2 January 2022).
21. Cerutti, F. Global Challenges for the Leviathan. A Political Philosophy of Nuclear Weapons And Global Warming; Rowman and Littlefield:

Lanham, MD, USA, 2007.
22. U.S. Department of Defense. Autonomy in Weapons Systems. 2012. Available online: https://www.hrw.org/news/2013/04/15

/review-2012-us-policy-autonomy-weapons-systems (accessed on 2 January 2022).
23. International Committee of the Red Cross. Views of the International Committee of the Red Cross on Autonomous Weapon

System. Convention on Certain Conventional Weapons. In Proceedings of the Meeting of Experts on Lethal Autonomous
Weapons Systems (LAWS), Geneva, Switzerland, 11–15 April 2016.

24. Amoroso, D. Autonomous Weapons Systems and International Law; Edizioni Scientifiche Italiane and Nomos Verlag: Napoli, Italy, 2020.
25. Scharre, P. Army of None. Autonomous Weapons and the Future of War; W.W. Norton & Co.: New York, NY, USA, 2018.
26. Umbrello, S.; Wood, N.G. Autonomous weapons systems and the contextual nature of hors de combat status. Information 2021, 12,

216. [CrossRef]
27. Amoroso, D.; Tamburrini, G. Autonomous Weapons Systems and Meaningful Human Control: Ethical and Legal Issues.

Curr. Robot. Rep. 2020, 1, 187–194. [CrossRef]
28. Umbrello, S. Coupling levels of abstraction in understanding meaningful human control of autonomous weapons: A two-tiered

approach. Ethics Inf. Technol. 2021, 23, 455–464. [CrossRef]
29. Amoroso, D.; Tamburrini, G. Toward a Normative Model of Meaningful Human Control over Weapons Systems. Ethics Int. Aff.

2021, 35, 245–272. [CrossRef]
30. The Ethics of Cybesecurity; Christen, M.; Gordijn, B.; Loi, M. (Eds.) Springer: Cham, Switzerland, 2020.
31. Taddeo, M.; Floridi, L. Regulate artificial intelligence to avert cyber arms race. Nature 2018, 556, 296–298. [CrossRef] [PubMed]
32. Buchan, R.; Tsagourias, N. Autonomous Cyber Weapons and Command Responsibility. Int. Law Stud. 2020, 96, 645–673.
33. Heinl, C. Maturing autonomous cyber weapons systems: Implications for international security cyber and autonomous weapons

systems regimes. In Oxford Handbook of Cyber Security; Cornish, P., Ed.; Oxford University Press: Oxford, UK, 2021; Available
online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3255104 (accessed on 2 January 2022).

34. Altmann, J.; Sauer, F. Autonomous Weapon Systems and Strategic Stability. Survival 2017, 59, 117–142. [CrossRef]
35. Lin, H. Cyber risk across the U.S: Nuclear enterprise. Tex. Natl. Secur. Rev. 2021, 4, 108–120.

https://plato.stanford.edu/archives/sum2021/entries/ethics-ai/
https://plato.stanford.edu/archives/sum2021/entries/ethics-ai/
https://www.ipcc.ch/report/ar6/wg1/
https://www.ipcc.ch/report/ar6/wg1/
https://www.hrw.org/news/2013/04/15/review-2012-us-policy-autonomy-weapons-systems
https://www.hrw.org/news/2013/04/15/review-2012-us-policy-autonomy-weapons-systems
http://doi.org/10.3390/info12050216
http://doi.org/10.1007/s43154-020-00024-3
http://doi.org/10.1007/s10676-021-09588-w
http://doi.org/10.1017/S0892679421000241
http://doi.org/10.1038/d41586-018-04602-6
http://www.ncbi.nlm.nih.gov/pubmed/29662138
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3255104
http://doi.org/10.1080/00396338.2017.1375263

	Introduction 
	AI Ethics and Estimates of the AI Carbon Footprint 
	AI Carbon Emissions Sources and Related Responsibilities 
	Disentangling the Environmental Responsibilities of AI Scientists 
	Promoting Environmentally Responsible AI Research 
	The AI Carbon Footprint and Global Ethical Issues 
	AI Cyberweapons and Nuclear Weapons: A Global Ethical Issue on the Rise 
	Conclusions and Future Work 
	References

