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Isabeau Prémont-Schwarz,">" Alioscia Hamma,' Israel Klich,? and Fotini Markopoulou-Kalamara'-?
! Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, Ontario N2L 2Y5, Canada
2Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
3Department of Physics, University of Virginia, 382 McCormick Road, Charlottesville, Virginia 22904, USA
(Received 22 December 2009; published 27 April 2010)

We generalize the Lieb-Robinson theorem to systems whose Hamiltonian is the sum of local operators whose

commutators are bounded.
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The principle of locality is at the heart of the foundations
of all modern physics. In quantum field theory, the principle
of locality is enforced by an exact light cone. Whenever two
(bosonic) observables are spacelike separated, they have to
commute, so that neither can have any causal influence on the
other. In ordinary quantum mechanics, no explicit request for
locality is imposed, and it is, in principle, possible to signal
between arbitrarily far apart points in an arbitrarily short time.
Nevertheless, a simple perturbation analysis shows that such an
influence must decay exponentially with the distance between
the observables. The seminal work by Lieb and Robinson [1]
has made this statement rigorous for nonrelativistic spin
systems. In essence, it states that any quantum system whose
Hilbert space is composed of a tensor product of local,
finite-dimensional Hilbert spaces and whose Hamiltonian
is the sum of local operators will have an approximately
maximum speed of signals. Here, local just means that every
operator has as a support the tensor product of a few degrees of
freedom. The approximation consists of the fact that outside
the effective light cone there is an exponentially decaying tail.

Recently, Lieb-Robinson bounds (LRBs) have received
renewed interest in both the fields of theoretical condensed
matter and quantum information theory [2—15]. In particular,
the LRB has been used to prove that a nonvanishing spectral
gap implies an exponential clustering in the ground state
[6,8,11]. Further developments can be found in Ref. [9],
where the LRB is used also to argue about the existence
of dynamics. The LRB has also been instrumental in the
recent extension of the Lieb-Schultz-Mattis theorem to higher
dimensions [12,16]. In Ref. [7,24], it has been shown how
the LRBs can be exploited to find general scaling laws for
entanglement. In Ref. [2], these techniques have been exploited
to characterize the creation of topological order. The locality
of dynamics has important consequences on the simulability
of quantum spin systems. In Refs. [17,18], it has been shown
that one-dimensional gapped spin systems can be efficiently
simulated. A review of some of the most relevant aspects of the
locality of dynamics for quantum spins systems can be found
in Ref. [13]. Other developments of significant interest include
Refs. [14,15] which show that it is possible to entangle macro-
scopically separated nanoelectromechanical oscillators of the
oscillator chain and that the resulting entanglement is robust to
decoherence. Such a system is of great interest for its possible
application as a quantum channel and as a tool to investigate
the boundary between the classical and quantum worlds.
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The LRBs have found a more exotic use in the field of
emergent gravity, where one wants to study locality, geometry,
and Lorentz symmetry as emergent phenomena [19,20]. An
example of the usefulness of the LRBs can be found in
Ref. [22], where it was shown that, in spin systems with
emergent electromagnetism [23], the speed of light is also
the maximum speed of signals, without imposing, from the
beginning, any Lorentz invariance. This raises the issue
whether even Lorentz invariance could be emergent.

One problem with the LRBs is that it is difficult to
obtain bounds for unbounded Hamiltonians. In the usual Lieb-
Robinson settings, the Hamiltonian must be a sum of local
bounded operators. If the unbounded terms in the Hamiltonian
are completely local, that is, if they are on-site terms, it is
possible to prove a Lieb-Robinson theorem using the usual
technique [10]. In the specific case of coupled harmonic
oscillators on a graph with local interactions, it was proven in
Ref. [3] that the LRB is valid for canonical and Weyl operators,
and a proof for a generalization to general operators is outlined.
Algebraic suppression (instead of the usual exponential sup-
pression of the LRB) is shown to result from nonlocal algebraic
interactions. As an interesting corollary, Ref. [3] shows how
the approximate locality implied by the LRB becomes exact
in the continuous limit for the Klein-Gordon field.

In this paper, we will show how one can find a bound
to the maximum speed of interactions in the case of a class
of unbounded spin Hamiltonians. It is not true that for any
unbounded Hamiltonian, a Lieb-Robinson bound exists [21].
Here, we want to show that one can derive an LRB if the Hamil-
tonian is the sum of local operators, whose commutators are
bounded. Therefore, there is no necessity for even the nonlocal
terms to be bounded, as long as their commutators are. More
specifically, we show that for quantum systems whose Hilbert
space is the tensor product of local Hilbert spaces associated
with vertices and edges of a graph, if the Hamiltonian is the
sum of local operators ®;, each with a support on a region of
the graph with a diameter less than a fixed number R, if each
of these local operators ®; is noncommuting with less than v
other local operator terms of the Hamiltonian &, and if for
any two of these operators we have ||[®;]® ;|| < K and for any
three operators [|[®;[®;Pi]|| < Q for two positive numbers
K and Q, then we have that for any two local operators ®; and
®; which are terms in the Hamiltonian and whose support is
separated by a graph distance d, that

I[®:(2), @, (O] < M exp [A(vert — )], 1
where M is a constant and v, g, the limit on the speed of
propagation of information, depends only on local operators of
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the Hamiltonian as it is they who affect the propagation. This
bound can be generalized to any local observables Op and Oy
with supports P and Q, respectively, that satisfy the following
local observable operator conditions: (i) The graph distance
d separating P and Q is greater than R, (ii) the number of
terms @; of the Hamiltonian whose support has a nonempty
intersection with P is np < o0, and (iii) there exists Fp and
Fg such that, for all terms ®; and ®; of the Hamiltonian,
the inequalities |[[Op, ®;]|| < FpK, [[Og,®:]ll < FpK,
and [[[Og,[®;, @11l < FpQ are satisfied. The generalized
bound is then

0P (1), Og(O)ll < M FpFonp(np + 1) exp [M(vert — d)].

2

To motivate our discussion, let us start by the most trivial
example: Consider the case of a Hamiltonian H = ) h; which
is composed of a sum of local terms /; which are commuting,
such as the quantum Ising model without the transverse field. In
such a case, there is simply no propagation of signals: Indeed,
for any local operator O4 we have O4(t) = €' O e~ =
el Qe ! where Hy = > i th. 04120 i since there is a
finite number of &; in Hy4, and they are of finite range; O4(¢)
is also strictly local for arbitrary long times ¢, irrespective of
the norm of the h; operators. This suggests that it is desirable
to find LRBs in terms of the norm of the commutators rather
than the norm of the local terms #;.

Let us outline a simple example. Consider a system of
parallel quantum wires. We place fermions on the wires,
and these are usually described by one-dimensional Luttinger
liquids and have approximately a linear dispersion relation. We
place a density-density interaction between the wires. Labeling
the wires by the index j, the system can be described by the
following Hamiltonian:

Huyires = Y [=i0/0x; + V(x; — x;11)], 3)
J
which is commutator bounded in the sense of this paper as long
as both [d,, V| and |d,,d,, V| are bounded. Another example
involves a generalized Dicke model, describing an array of
spins interacting with a boson field via

H=> hy hy=0ibf+b,+ibl  —iby1). @)

where b, are boson creation operators and o, is the nth spin. It
is easy to check that, in this case, the commutator [£,,, h,4+1] =
—2iojo; 1 is bounded. [In fact, this particular Hamiltonian
can also be written as a sum of commuting terms h, = b, (o7 —
ic;_)+Hcl
‘We consider Hamiltonians that are the sum of two different
types of operators @, and P;:

HEZh0¢g+Zhlq>{. 5)
iES() jGS]

Here, Sy, S are two sets of labels, ho and h, are two coupling

constants, and [d>6, 0] = [®! ,CI> 1 =0 for every i,]. As an
example, consider the Ising model Then, &), = o}'0;}" 4 and

<I>"1 = 0. We call the subgraph which is the support of the
operator ', I'(g,m) and for (a,b) € {0, 1}2, we define

K. 0 =[@L0), o)) (6)
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We consider what we will refer to as commutator-bounded
R-local quantum systems. For such systems, the commutators
and the commutators of commutators of operators of the
Hamiltonian are uniformly bounded while the operators
themselves may be unbounded and the operators of the
Hamiltonian have support on subgraphs of size less than R,
for R an arbitrary natural number. Explicitly, the diameter of
all I'(g,m) is less than R, and for any three operators @',
@/, and ® appearing in the Hamiltonian with the qoupling
constants hg, hp, and h., we have that h,h,||[®), D} < K
and hohph|[[[®), 1], ®X]I| < Q, where K and Q are positive
real numbers. Note that a bounded system which is uniformly
bounded by K, must satisfy K < 2K? as well as Q < 4K3,
and thus, boundedness implies commutator boundedness.

By taking the derivative of Eq. (6) with respect to 7, we
obtain [K ” ’(t)] =[[—iH@), P (1)], D} ] after keeping only
the terms 1n H (t) which do not commute with <I>’ (1), and after
some algebra, we get [here and in the following, by a+ 1 we
mean a + 1 mod(2)]

(K. 0] = | K@), | =ihanr D 2,0
12€Z
+(=iha) Y [@h@).[02,,0).9]]]. @

izEZ,‘]

where, if i € Sy, then Z; is the finite subset of S; such that
jeZ < T'0,i)n I'(1,j) # ¥ and vice versa fori € Sj.

Taking the second derivative, and using the fact that
[(D’ (), ®}(t)] = 0, we obtain, after some algebraic manipu-
lation,

K0
=—i| K@), D ha @2 (1) + Y he @)
h€Ziy i3€Zi,
—hi Yo Y [[@. @2, 0] [07,0). 9]]]
]2€Z:| 17EZ
—haharr Y Y [0, ()], [@2), @]]].
hEZ l;EZ

®)
Defining the unitary operator Uyis(t) =

exp(—it[} ez, hati O (1) + Yirez, ha®R(®]) and its
associated unitary evolution T»,3(1)O = U, 3(1)T OUy 5(2),
integrating Eq. (8), and taking the norm, we obtain, after some

manipulations,
[K2 O < bt 32 [0, ] 2]
12€Z
s [as (ke XY ool
h€Ziy heZ;

+2hahaniK Y2 3 |[006). 9]

h€Z; i3€Z;,

€))
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where we used the fact that ||[<D’ (1), <I>J+1(t)]||
integrating Eq. (9), we get

K. By

| Ko @ < 1[4 @]+ harr Y ([0 @5, ]@7] e
lzGZ
12
 [as a2,k X kL0
0 heZi, heZi
+2hahaniK Y Y |KG O A0
leZ l;GZ

Since the commutators are bounded, we have [|[®, CD{;] | <
K and |[[®], a+1] o} ]|| Q for some K, QO > 0. Noting
that ||[D% CD’]|| = 0if I['(a,i;) and ['(D, j) do not overlap and
I[[D, a+1] P/ ]|| = 0if ['(D, j) does not overlap with either
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['(a,iy) or I'(a + 1,i3), we see that Eq. (10) implies

[Kai O < K8+ D har108] 1
leZ
t s
+/ ds/ ar|2nz, > Y | KE,0|
0 0 J2€Zi, €Z;,
+ 2hahas Z Z IkE | | an
lzGZ,l l3€Z,2

where we have used the following symbol:

{ 1 if D(a;,i) N T(ag,k) # 9,

0 otherwise,

1

(12)

Solving for || K”j(t)|| we find

”K”j(t)” K(S] + Z Qhu+15}i]Ui2t+ Z Z 2/’12 1K5172' + Z Z 2h ha+1K8] —|— Z Z Z 2h2+1h

i €Z; 2€Ziy hE€Z;

h€Z; i3€Z;, 2€Ziy h€Z; i3€Z),

xKQ&hUW +Y Y ) 2hu+1h2KQ8”UI43' / dv/ du/ ds/ dl | Qhay1ha)* K>

leZ l;EZ l4€Z

x 33N KB O+ @121 )@hanihdK? Y S Y S KO + Chaiha)*K?

IzEZ,l szZ hEZ/Z quZ

izEZil szZ,'l l’3€Zk/'2 i4€Z,4

<20 30 2 2 KO+ i) @heahdk> Y0 30 3 Y K 0] ] (13)

h€Z; 2€Z;| 13€Zi, i4€Z;y

Iterating this procedure, we obtain by induction

w Y ek e,

n=0

& ol <

where M = \/_max{z[’ h‘}xmax{ l}xmax{§,l}
and where ¢, is a comblnatonal factor counting the number
of linking operator chains of n operators between I'(a,i|)and
I'(b,j). What we call an operator chain is heuristically a
sequence of intersecting operators linking the initial and final
operators.

The process of constructing the sequence of operators
forming the chain is as follows: The 2jth operator in the
chain has to be noncommuting with the (2j — 1)th one. This
imposes that the two consecutive operators of a chain have to
(1) be of a different interaction type and (2) have overlapping
support. For the odd-numbered operators, there is an extra
choice: The (2k + 1)th operator can be an operator that does
not commute with the 2kth operator (as for the even case) or an
operator that does not commute with the (2k — 1)th operator.
That is, even operators in the sequence must be noncommuting
with the previous operator in the sequence, and odd operators
in the sequence must be noncommuting with either of the
two previous operators in the sequence. From the recursive
Eq. (11), we see that if we start with an operator i; of type a,
the next operator in the chain must be an operator i, € Z;, of
the other type (a + 1). The fact that it is in Z;, means that its

h€Z;y I3€Z;, I3€Z1, 3E€Zi,

support overlaps with i;’s which is similar to what was found
in the bounded case. However, if we look at the operator that
comes after i, we see that we have two distinct possibilities.
The first [second double sum under the integrals of Eq. (11)]
is that it can be i3 € Z;,, an operator of type a (different from
a + 1) whose support overlaps with i;’s; if this were the only
possibility, we would have exactly the same situation as we
had for bounded systems, but the first double sum under the
integrals of Eq. (11) adds another possibility. That second
possibility (first double sum) is choosing an operator j, € Z;,
after the operator i, j, is, like i, an operator of type a + 1
which (by virtue of being in Z;,) has a support overlapping
i1’s. To find the next operator after that we reiterate Eq. (11),
and, thus, like the first operator after i;, we need to choose an
operator which is of a different type than the last one (be it j,
or i3) and has overlapping support with the last one; thus, at
this point, we cannot change our mind. We can thus see the
process of building the chain as, for every two choices, we
must choose an operator that links with the previous one, but
every other choice, we can also choose an operator that links
to the penultimate one instead.

Because, for every two choices in building up the chain,
we must choose an operator of a different type than the
previous one, in the end, the chain contains the same number
of operators of type 0 as of type 1 (plus or minus one). This
means that there will be the same number of factors of i, as
of hg in every term; hence, we can pull them out of the sums
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over chains and simply write an overall factor of \/hgh; in
front while passing from Eq. (13) to Eq. (14).

Furthermore, we can always find a bound of the following
type for c,:

ey < Mynek[(n/&)—d]’ (15)

where X is an arbitrary positive real number. This is because the
I'(a,i)’s have a diameter of R or less. Hence, if the distance d
between the initial and final points is greater than R", then there
are no possible linking operator chains of n local operators
between the initial and final points. Furthermore, since at every
odd step along the chain there is a choice of at most v local
operators to choose from for the next operator in the chain and
at every even step there is, at most, 2v operators to choose
from, there is a maximum of (+/2v)" possible local operator
chains of n operators starting from any given position. Thus,
we certainly have that

cn < 2" et Rn=d) (16)

where A is arbitrary. Using Eq. (15) with Eq. (14), we obtain
the LRB of Eq. (1),

[0, 50| < #expa (2 hoth%e’\/Et —d), (7

where M = M M. To obtain the generalization to local opera-
tors O p and O satisfying the local observable operator condi-
tions enounced earlier, we introduce K/'(t) = [®! (1), Oo(0)].
Using exactly the same procedure used to obtain Eq. (9), we
get

ILOP ), 00 0) (]Il

t .
< / ds | 2hhoKFp Y Y |REG)|
0

J2€Zp ir€Zp
+ 2haha K Fp Z Z |K5(s)|
ir€Zp i3€Zi2

t
< 2max {hg,hinp(np + 1)/0 ds |Kis)|,  (18)
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where Z p is the set of of labels of the terms of the Hamiltonian
which do not commute with Op (||Zp| = np), where k is
such that for ds | K¥(s)| = max;cz, for ds || Kl (s)|l and where,
unlike in Eq. (9), the terms containing no integrals do not
appear here because of the condition thatd > R. ||K j(s) || can
then be treated in exactly the same way as || K;lbj (s)|| was, with
the only exception that while bounding the final commutators
[i.e., when we place the § of Eq. (12)], we will need an extra
factor of Fp. Thus, we obtain Eq. (2):

I[0p(), 00Ol < FpFgnp(np + HM
Y e,
X expk<2 hoth)\e t d).
(19)

Optimizing for A, we have that the Lieb-Robinson speed is
thus

ViR = 2§ew/h0hll(. (20)

We can compare Eq. (19) with the bound obtained for
Hamiltonians composed of bounded local operators and for
bounded local observables Op and O which is [22]

ILOP(1), 0o (O]l

< 10p10glinp it exp (2y/hohi -1 — ). @1)

To summarize, in this paper, we have shown that an LRB
exists for those Hamiltonians that are the sum of local operators
whose commutator is bounded. This allows for treating a class
of systems with unbounded operators.
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