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3Departament de Física Quàntica i Astrofísica and Institut de Cíencies del Cosmos (ICCUB),

Universitat de Barcelona, 08028 Barcelona, Spain

(Received 2 February 2021; accepted 3 May 2021; published 8 June 2021)

We discuss the obstruction to the construction of a multiparticle field theory on a κ-Minkowski
noncommutative spacetime: the existence of multilocal functions which respect the deformed symmetries
of the problem. This construction is only possible for a lightlike version of the commutation relations, if one
requires invariance of the tensor product algebra under the coaction of the κ-Poincaré group. This
necessitates a braided tensor product. We study the representations of this product, and prove that
κ-Poincaré-invariant N-point functions belong to an Abelian subalgebra, and are therefore commutative.
We use this construction to define the 2-point Whightman and Pauli–Jordan functions, which turn out to be
identical to the undeformed ones. We finally outline how to construct a free scalar κ-Poincaré-invariant
quantum field theory, and identify some open problems.
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I. INTRODUCTION

The κ-Minkowski spacetime [1–3] is a deformation of
the algebra of complex-valued functions on Minkowski
spacetime, C½R3;1� into the noncommutative *-algebra A,
generated by the coordinate functions1

½xμ;xν�¼ i
κ
ðvμxν−vνxμÞ; μ¼0;…;3; ðxμÞ†¼xμ; ð1:1Þ

where vμ are four arbitrary real numbers, and the xμ

operators generalize the Cartesian coordinate functions.
The constant κ has the dimensions of an inverse length,
supposedly identified with (or at least related to) the Planck
energy. From now on, we will work in units in which κ ¼ 1.

The above relations close a Lie algebra, known as anð3Þ, of
which A is the universal enveloping algebra. Notice that
all these algebras, for any choice of vμ, are isomorphic to
each other. This can be seen by observing that the following

linear redefinition of generators: xi → v0xi − vix0, x0 →

vixi þ 1−kv⃗k2
v0 x0 puts the algebra in the form:

½x0; xi� ¼ i
κ
xi; ½xi; xj� ¼ 0; i; j ¼ 1; 2; 3; ð1:2Þ

which is the original [3] and best-known form of the κ-
Minkowski algebra. The algebra (1.1) is invariant under the
following Hopf algebra:

Δ½Λμ
ν� ¼ Λμ

α ⊗ Λα
ν; ½Λμ

νΛα
β� ¼ 0;

Δ½aμ� ¼ Λμ
ν ⊗ aν þ aμ ⊗ 1; ½aγ;Λμ

ν� ¼ i½ðΛμ
αvα − vμÞΛγ

ν þ ðΛα
νgαβ − gνβÞvβgμγ�;

S½Λ� ¼ Λ−1; S½aμ� ¼ −aμ; ½aμ; aν� ¼ iðvμaν − vνaμÞ;
ε½Λμν� ¼ δμν; ε½aμ� ¼ 0; Λμ

αΛν
βgαβ ¼ gμν; Λρ

μΛσ
νgρσ ¼ gμν: ð1:3Þ
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1See [4–6] for another example.
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where gμν is any symmetric invertible matrix, and gμν is
its inverse. While the metric is usually taken to be the
standard Minkowski one, ημν ¼ diagð−1;þ1;þ1;þ1Þ,
other choices are possible, including some degenerate
cases [7]. When gμν ¼ ημν, this Hopf algebra (or quantum
group [8]) is called κ-Poincaré [1–3,9–14]. In this case the
relations (1.3) are to be understood as the deformation
of the algebra of functions on the Poincaré group,
C½ISOð3; 1Þ� into a noncommutative Hopf algebra Pκ, in
which the coproduct Δ, antipode S and counit ε are
undeformed, and simply codify the Lie group structure
of ISOð3; 1Þ, while the commutation relations acquire a
dependence on κ, and make the algebra of function non-
Abelian. The operators aμ (translations) and Λμ

ν (Lorentz
matrices) are coordinate functions on the group, and the
matrices Λμ

ν leave gμν and its inverse invariant in the
ordinary, algebraic sense expressed by the last line of
the equation above. Moreover, Eqs. (1.3) leave the com-
mutation relations (1.2) invariant, in the sense that the
following left coaction:

x0μ ¼ Λμ
ν ⊗ xν þ aμ ⊗ 1; ð1:4Þ

is an algebra homomorphism for the relations (1.2); in other
words, κ-Minkowski is a κ-Poincaré-comodule algebra [8].
This coaction can be seen as the rule to transform a
κ-Minkowski coordinate into a κ-Poincaré transformed
one, which is an object that lives in the tensor product
Pκ ⊗ A, the noncommutative version of the algebra of
functions on ISOð3; 1Þ ×R3;1.
Depending on the choice of eigenvalues of the matrix

gμν, the Hopf algebra (1.3) might be a quantum-group
deformation of the Poincaré, Euclidean or ISOð2; 2Þ
groups. Moreover, there are also degenerate cases in which
gμν is not invertible, but the algebra is still well defined, and
it might, for example, correspond to a deformation of the
Carroll group [7]. According to the particular form of gμν,
i.e., in which directions its eigenvectors are pointing, the
coordinates x0, x1, x2, and x3 might have different nature. In
the Poincaré case gμν ¼ ημν, for example, x0 is the timelike
direction and xi are the spacelike ones. But any other choice
is possible (and linear combinations thereof). Similarly, the
vector vμ in Eq. (1.1) could take any form, and if it is
pointing in the 0 direction, vμ ¼ δμ0, then the commutation
relations reduce to (1.2), in which x0 is the only non-
commuting coordinate. In all other cases, the direction of
vμ indicates which linear combination of xμ coordinates is
the noncommuting one. Of course, one can act on the
generators xμ with any (commutative) linear transforma-
tion, and obtain an algebra with a different vμ vector,
invariant under a quantum group (1.3) with a different
matrix gμν. In the end, in the case that gμν is invertible, what
counts is the relative orientation of vμ with respect to
the eigenvectors of gμν. In the degenerate cases things are
more complicated. For a complete treatment of all the

physically-inequivalent models, and the corresponding
momentum spaces, see [7].
Once we have a generalization of the algebra of functions

on a manifold, the natural context to look for physical
applications of the model is field theory, whose basic
ontology is that of fields, which are multiplets of functions
on the spacetime manifold. Classical (in the sense of
unquantized, ℏ → 0 limit) noncommutative models based
on action functionals and equations of motion are fairly
well understood [12,15–32]. There is, however, no current
agreement in the literature on the correct formulation of
noncommutative quantum field theory (QFT), although
there is a sizeable literature on the subject [33–41].
Recently, there has been a resurgence in interest for
QFT κ-Minkowski [41–48], and perhaps the most impor-
tant difference between approaches regards the basic
ontology. Most approaches are based on a commutative
algebra of functions, over which a nonlocal “star” product,
involving an infinite number of derivatives of the fields, is
defined. This star product provides a representation of the
basic commutation relations (1.2) or (1.1), and the theory is
treated as a commutative-but-nonlocal QFT, defined, for
example, through a regular path integral. Assuming such an
ontology might be problematic from the operational point
of view [49], and it is not clear whether κ-Poincaré
symmetries can be implemented as symmetries of the
theory. But most importantly, such an ontology naturally
leads one to define the QFT in terms of “commutative”
N-point functions (defined, e.g., through the functional
derivatives of a partition function with respect to the
commutative fields) that do not address the issue of
multilocal functions, which we describe in the following.
In this paper we want to attack the main obstruction that

prevented the full development of a QFT based on a truly
noncommutative ontology: the fact that, in order to work
with QFTs, it is necessary to have a good notion of
multilocal functions, because the theory is entirely deter-
mined by its N-point functions. From an algebraic point of
view, we would like to have, to begin, a notion of “function
of two points.” This is a function on the Cartesian product of
two copies of Minkowski space, R3;1 ×R3;1. The commu-
tative algebra of such functions is C½R3;1 ×R3;1�, which,
under the canonical isomorphism, can be identified with the
tensor product algebra C½R3;1� ⊗ C½R3;1�, which is canoni-
cally defined as generated by the coordinate functions:

xμ1 ¼ xμ ⊗ 1; xμ2 ¼ 1 ⊗ xμ; ð1:5Þ
with the identity 1⊗2 ¼ 1 ⊗ 1, and the product is simply
xμ1x

ν
2 ¼ xν2x

μ
1. So, in the noncommutative setting, it appears

natural to refer to the tensor product algebra A⊗2 generated
by (1.5), where

½xμ1; xν1� ¼ iðvμxν1 − vνxμ1Þ; ½xμ2; xν2� ¼ iðvμxν2 − vνxμ2Þ;
½xμ1; xν2� ¼ 0: ð1:6Þ
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This algebra is a good Lie algebra (it satisfies the Jacobi
rules), and gives rise to a perfectly legitimate universal
enveloping algebra. It also makes sense that the coordinates
xμ1 and xμ2 are the operators that generalize to the non-
commutative settings the coordinates of point 1 and point 2,
which are distinct points which we should be able to choose
independently.2 Since, by construction, the states on the
tensor product algebra allow us to localize xμ1 and xμ2
independently around arbitrary classical coordinates without
interference of the state of one point on the other, we could
be quite satisfied with this formulation. However, there is a
big problem: extending the κ-Poincaré coaction (1.4) toA⊗2

in the canonical way:

x0μ1 ¼ Λμ
ν ⊗ xν1 þ aμ ⊗ 1⊗2 ¼ Λμ

ν ⊗ xν ⊗ 1þ aμ ⊗ 1⊗ 1;

x0μ2 ¼ Λμ
ν ⊗ xν2 þ aμ ⊗ 1⊗2 ¼ Λμ

ν ⊗ 1⊗ xν þ aμ ⊗ 1⊗ 1;

ð1:7Þ

the algebra (1.6) is not left invariant by it. In technical terms,
(1.6) is not a κ-Poincaré-comodule. Specifically, it is the
commutation relations between xμ1 and xμ2 that are not
covariant. In fact,

½x0μ1; x0ν2� ¼ ½Λμ
ρ; aν� ⊗ ðxρ1 − xρ2Þ þ ½aμ; aν� ⊗ 1⊗2 ≠ 0:

ð1:8Þ

There is a way out of this problem: relax the commu-
tativity of the two sides of the tensor product algebra,
½xμ1; xν2� ¼ 0, in order to make Eq. (1.8) covariant. The
structure we end up dealing with is a “braided tensor
product,” first introduced by Majid in the 1990s [8,50]. A
similar concept has been used in [4,51–56] to properly
define QFT on the Moyal/canonical spacetime. In [37] the
necessity to extend the κ-Minkowski algebra to multiple
points in a nontrivial way was recognized. The novelty in
our work is that we require that the proposed solution of the
problem provides a coherent κ-Poincaré comodule. In the

following, we will address the issue and find the conditions
under which it can be solved.
A related alternative, which we will not pursue here,

would be to enforce the symmetry via a Drinfeld twist, and
coherently generate a deformed tensor product, deformed
star product and other structures, along the lines of [57].
Twists for κ-Minkowski symmetries have been studied,
they are not exempt from problems [58], a recent review,
with references, is [59].

II. THE BRAIDED TENSOR PRODUCT ALGEBRA

Let us first consider the algebra of two points. We have to
request that it closes two κ-Minkowski (1.1) subalgebras:

½xμ1; xν1� ¼ i½vμxν1 − vνxμ1�; ½xμ2; xν2� ¼ i½vμxν2 − vνxμ2�;
ð2:1Þ

with yet-to-be-determined cross-commutators:

½xμ1; xν2� ¼ ifμνðx1; x2; vÞ; ð2:2Þ

and it should form a left-comodule under the following left
coaction:

x0aμ ¼ Λμ
νxνa þ aμ; a ¼ 1; 2; ð2:3Þ

of the κ-Poincaré group (1.3). Finally, we have to request
that the commutators (2.2) satisfy the Jacobi rules. In
addition to these definitive requests, we can make a few
reasonable assumptions: the function fμνðx1; x2; vÞ should
go to zero when vμ → 0, and we can assume it is
polynomial in xμa. Under this ansatz, we can expand it in
powers of vμ:

½xμ1; xν2� ¼ iaμνρσvρvσ þ ivρðbμνρσxσ1 þ cμνρσxσ2Þ; ð2:4Þ

where aμνρσ, b
μν
ρσ and cμνρσ are numbers. Imposing the comod-

ule condition on this commutator:

½x0μ1 ;x0ν2 �¼ iaμνρσvρvσþ ivρðbμνρσx0σ1 þcμνρσx0σ2 Þ;
Λμ

ρΛν
σ½xρ1;xσ2�þ½Λμ

ρ;aν�xρ1þ½aμ;Λν
σ�xσ2þ½aμ;aν�¼ iaμνρσvρvσþ ivρðbμνρσΛσ

λxλ1þcμνρσΛσ
λxλ2Þ

þ ivρðbμνρσaσþcμνρσaσÞ;
iΛμ

ρΛν
σa

ρσ
λτ v

λvτþ iΛμ
ρΛν

σvλðbρσλτ xτ1þcρσλτ x
τ
2Þ¼ iaμνρσvρvσþ ivρðbμνρσΛσ

λxλ1þcμνρσΛσ
λxλ2Þ

þ½Λμ
ρ;aν�xρ1þ½aμ;Λν

σ�xσ2þ½aμ;aν�þ ivρðbμνρσaσþcμνρσaσÞ: ð2:5Þ

2With “choosing a point,” in the noncommutative setting, we mean choosing a state on the algebra, which can provide a degree of
localization. In fact, classical points can be described through the commutative algebra of functions on a manifold as limits of functions
peaked around a choice of coordinates (e.g., Gaussians), which tend to a Dirac delta. In the noncommutative setting this limit is
unattainable except for special points (e.g., the time axis, [14]), because of uncertainty relations. However, one can introduce a notion of
“fuzzy points,” corresponding to maximally localized states [14,47,48].
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The different powers of vμ in the above equation have to
vanish separately. The quadratic term gives

Λμ
ρΛν

σa
ρσ
λτ v

λvτ ¼ aμνρσvρvσ; ð2:6Þ

which cannot be solved if aμνρσ ≠ 0, so we have to put it to
zero. We then split the terms that are linear in xμa from the
one that does not depend on it, which reads:

½aμ; aν�≡ iðvμaν − vνaμÞ ¼ ivρðbμνρσ þ cμνρσÞaσ: ð2:7Þ

This is solved by

bμνρσ þ cμνρσ ¼ δμρδ
ν
σ − δνρδ

μ
σ: ð2:8Þ

The two terms that are linear in xμ1 and, respectively, in xμ2
vanish iff

iΛμ
ρΛν

σvλb
ρσ
λτ þ ½Λμ

ρ; aν�δρτ ¼ ivρbμνρσΛσ
τ;

iΛμ
ρΛν

σvλc
ρσ
λτ þ ½aμ;Λν

σ�δστ ¼ ivρcμνρσΛσ
τ: ð2:9Þ

Using the κ-Poincaré relations ½Λμ
ν; aγ� ¼

i½ðΛμ
αvα − vμÞΛγ

ν þ ðΛα
νηαβ − ηνβÞvβημγ� we can write

these two equations as

Λμ
ρΛν

σvλb
ρσ
λτ − vρbμνρσΛσ

τ þ ½ðΛμ
αvα − vμÞΛν

ρ þ ðΛα
ρηαβ − ηρβÞvβημν�δρτ ¼ 0;

Λμ
ρΛν

σvλc
ρσ
λτ − vρcμνρσΛσ

τ − ½ðΛν
αvα − vνÞΛμ

σ þ ðΛα
σηαβ − ησβÞvβηνμ�δστ ¼ 0: ð2:10Þ

To solve these equations, we should recall that Λμ
ν is an SOð3; 1Þ matrix, which can therefore be expanded in powers of an

antisymmetric matrix ϵαβ as

Λμ
ν ¼ δμν þ ϵρνηρμ þOðϵ2Þ: ð2:11Þ

Equation (2.10) reads, at first order in ϵαβ:

ϵαβvλðημαbβνλτ þ ηναbμβλτ − δβτη
ραbμνλρ þ δβλδ

ν
τη

μα þ δβτδ
α
λη

μνÞ ¼ 0;

ϵαβvλðημαcβνλτ þ ηναcμβλτ − δβτη
ραcμνλρ − δβλδ

ν
τη

μα − δβτδ
α
λη

μνÞ ¼ 0; ð2:12Þ

which are equivalent to

ημ½αbβ�νλτ þ bμ½βλτ η
α�ν − δ½βτηα�ρb

μν
λρ þ ημ½αδβ�λδντ þ δ½βτδα�λημν ¼ 0;

ημ½αcβ�νλτ þ cμ½βλτ η
α�ν − δ½βτηα�ρc

μν
λρ − ημ½αδβ�λδντ − δ½βτδα�λημν ¼ 0: ð2:13Þ

The two equations above are satisfied by

bμνρσ ¼ δμρδ
ν
σ − ημνηρσ; cμνρσ ¼ −δνρδμσ þ ημνηρσ;

ð2:14Þ

which satisfies also Eq. (2.8). A quick calculation reveals
that this perturbative solution is exact at all orders in ϵμν. In
fact, replacing (2.14) into Eq. (2.10) the two equations
reduce to vλðημν − Λμ

ρΛν
ση

ρσÞ ¼ 0, which is of course
satisfied as long as Λμ

ν ∈ SOð3; 1Þ.
We then found a general solution of the comodule

problem:

½xμ1; xν2� ¼ i½vμxν1 − vνxμ2 − ημνηρσvρðxσ1 − xσ2Þ�: ð2:15Þ

Notice now that the above commutators can be written in
the following form:

½xμa; xνb� ¼ i½vμxνa − vνxμb − ημνηρσvρðxσa − xσbÞ�; ð2:16Þ

which reduce to the usual (generalized) κ-Minkowski
commutators when a ¼ b:

½xμa; xνa� ¼ iðvμxνa − vνxμaÞ; ð2:17Þ

and, moreover, remain consistent even if we let the indices
a, b run on an arbitrarily large set of labels. We have a
comodule regardless of the number of points we are
considering.
In order to have a proper (associative) comodule algebra,

our commutators need to satisfy also the Jacobi rules:
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½xμa; ½xνb; xρc�� þ ½xνb½xρc; xμa�� þ ½xρc; ½xμa; xνb�� ¼ 0: ð2:18Þ

A straightforward, but tedious, calculation reveals that

½xμa; ½xνb; xρc�� þ ½xνb½xρc; xμa�� þ ½xρc; ½xμa; xνb��
¼ −vαvα½ηνρðxμc − xμbÞ þ ηρμðxνa − xνcÞ þ ημνðxρb − xρaÞ�;

ð2:19Þ

and the only way that the right-hand side can vanish is
that vαvα ¼ 0.
We obtained a significant result: the only κ-Minkowski-

like algebra that admits a braided tensor product construc-
tion as a κ-Poincaré comodule is the lightlike one, in which
the deformation parameters vμ form a lightlike vector. Our
result is coherent with the one found by Jurić, Meljanac and
Pikutić [59] using a Drinfeld twist. They too obtained that a
covariant deformation of the tensor product can only be
obtained for the lightlike case. This particular choice for the
vector v is remarkable for several other reasons, and the
result we just derived makes it the only viable algebra, in
the κ-Minkowski family, to construct a well-defined quan-
tum field theory.

III. REPRESENTATION OF THE BRAIDED
κ-MINKOWSKI ALGEBRA

Let us review the results obtained so far. The following
algebra, which we will call A⊗κN , generated by the identity
together with 4N generators xμa, a ¼ 1;…; N:

½xμa;xνb�¼ i½vμxνa−vνxμb−ημνηρσvρðxσa−xσbÞ�; xμa∈A⊗κN;

ð3:1Þ

is a left comodule for the κ-Poincaré group:

½aμ; aν� ¼ iðvμaν − vνaμÞ; ½Λμ
ν;Λρ

σ� ¼ 0;

½aα;Λμ
ν� ¼ i½ðvβΛμ

β − vμÞΛα
ν þ ðΛβ

νηβρ − ηνρÞvρηαμ�;
ð3:2Þ

with respect to the coaction x0μa ¼ Λμ
νxνa þ aμ, if the vector

vμ is lightlike (vμvνημν ¼ 0).
We now proceed to study the representations of the

algebra (3.1). To start, notice that the relative positions:

Δxμab ¼ xμa − xμb; ð3:3Þ

close an Abelian subalgebra:

½Δxμab;Δxνcd� ¼ 0 ∀ a; b; c; d: ð3:4Þ

These however are wildly redundant. If we are interested in
identifying the maximal Abelian subalgebra we should
introduce the “center of mass” coordinates:

xμcm ¼ 1

N

XN
a¼1

xμa; yμa ¼ xμa − xμcm; ð3:5Þ

then it is easy to show that

½yμa; yνb� ¼ 0 ∀ a; b: ð3:6Þ

The yμa are 4N variables, but 4 of these are redundant,
because they satisfy the linear relation

P
N
a¼1 y

μ
a ¼ 0. So we

have identified a 4ðN − 1Þ-dimensional Abelian subalge-
bra. What about the remaining four variables, xμcm? Their
commutators with yνa give a linear combination of yνa, and
they close a κ-Minkowski subalgebra with each other:

½xμcm; yνa� ¼ iðημνηρσvρyσa − vνyμaÞ;
½xμcm; xνcm� ¼ iðvμxνcm − vνxμcmÞ; ð3:7Þ

however the component of xμcm along vμ commutes with all
the yνa:

w ¼ ημνvμxνcm ⇒ ½w; yμa� ¼ 0; ½xμcm; w� ¼ ivμw; ð3:8Þ

we identified a (4N − 3)-dimensional Abelian subalgebra,
generated by yμa and w, while the three components of xμcm
perpendicular to vμ are irreducibly noncommutative.
Without loss of generality, we may assume vμ ¼

ð1; 1; 0; 0Þ (taking vμ lightlike necessarily selects a special
spatial direction). Then the only noncommutative coordi-
nates are z ¼ x0cm þ x1cm, u ¼ x2cm and v ¼ x3cm, and the
braided tensor product algebra is described by the follow-
ing relations:

½yμa; yνb� ¼ ½yμa; w� ¼ 0;
XN
a¼1

yμa ¼ 0;

½z; u� ¼ 2iu; ½z; v� ¼ 2iv; ½z; w� ¼ 2iw; ½u; w� ¼ ½v; w� ¼ ½u; v� ¼ 0;

½u; yνa� ¼ iðη2νðy1a − y0aÞ − ðδν0 þ δν1Þy2aÞ; ½v; yνa� ¼ iðη3νðy1a − y0aÞ − ðδν0 þ δν1Þy3aÞ;
½z; yνa� ¼ iððδν1 − δν0Þðy1a − y0aÞ − ðδν0 þ δν1Þðy0a þ y1aÞÞ: ð3:9Þ
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We can write a representation of the above algebra. The operators yμa, a ¼ 1;…; N − 1 and w are multiplicative with real
spectrum, while the Nth coordinate is the a linear combination of the others: yμN ¼ −

P
N−1
a¼1 y

μ
a. Finally, u, v, and z can be

represented as the following Hermitian operators:

ûψðyμ1;…; yμN−1; wÞ ¼ i
XN−1

a¼1

�
y1a

∂
∂y2a − y2a

∂
∂y1a − y0a

∂
∂y2a − y2a

∂
∂y0a

�
ψðyμ1;…; yμN−1; wÞ;

v̂ψðyμ1;…; yμN−1; wÞ ¼ i
XN−1

a¼1

�
y1a

∂
∂y3a − y3a

∂
∂y0a − y0a

∂
∂y3a − y3a

∂
∂y1a

�
ψðyμ1;…; yμN−1; wÞ;

ẑψðyμ1;…; yμN−1; wÞ ¼ −2i
�
y0a

∂
∂y1a þ y1a

∂
∂y0a − w

∂
∂w −

1

2

�
ψðyμ1;…; yμN−1; wÞ: ð3:10Þ

Introducing the operators that generate the simultaneous
Lorentz transformations of the N − 1 coordinates yμa:

Mμν ¼ i
XN−1

a¼1

�
yμaηνρ

∂
∂yρa − yνaημρ

∂
∂yρa

�
; ð3:11Þ

we notice that we are representing u, v, and z as:

u ¼ M12 −M02; v ¼ M13 −M03;

z ¼ 2M10 þ 2iw
∂
∂wþ i; ð3:12Þ

which reproduce the algebra ½z; u� ¼ iu, ½z; v� ¼ iv,
½u; v� ¼ 0, as can be immediately verified by using the
Lorentz algebra commutators ½Mμν;Mρσ� ¼ iðηνρMμσ −
ημρMνσ − ηνσMμρ þ ημσMνρÞ.
It is not the first time that the κ-Minkowski algebra is

represented as linear combinations of Lorentz generators,
see for example [7,60]. Our braided algebra admits a
representation in terms of Lorentz generators acting on
the space of 4ðN − 1Þ spacetime points, and a dilatation
operator on the real line of w.
Accordingly, the natural Hilbert space for the represen-

tation (3.10) is L2ðR4N−3Þ, with inner product:

hφjψi¼
Z

d4y1…d4y4Ndwφ̄ðyμ1;…;yμN−1;wÞ

×ψðyμ1;…;yμN−1;wÞ; ð3:13Þ

and all our operators are self-adjoint with respect to this
Hilbert space.

IV. κ-POINCARÉ-INVARIANT QUANTUM
FIELD THEORY

We will now lay the ground for a consistent construction
of a QFT on the κ-Minkowski noncommutative spacetime.
The first step is to define what we mean with QFT in this
context. As is well known, a QFT on a commutative
spacetime (in particular Minkowski) is entirely defined

in terms of all N-point functions [61]. We can import this
definition into our noncommutative setting, however now the
N-point functions have to be replaced with elements of our
braided N-point algebra, which are noncommutative oper-
ators. However, the κ-Poincaré invariance that characterizes
our theory comes to our aid. It turns out that all
κ-Poincaré invariant elements of our braided algebra (as
N-point functions should be) are elements of the Abelian
subalgebra of coordinate separations xμa − xμb (or the center-
of-mass coordinates yμa). As operators, therefore, they can all
be simultaneously localized arbitrarily well, and they can be
effectively treated as bona fide commutative functions.
It is clear that all the commutative Poincaré-invariant

polynomials remain invariant under the coaction (2.3).
These are the functions of the (squared) proper distances:

ημνðx0μa −x0μb Þðx0νa −x0νb Þ
¼ημνðxμa−xμbÞðxνa−xνbÞ ∀ a;b¼1;…;N: ð4:1Þ

It would be interesting to check whether these are the only
Poincaré-invariant polynomials in the noncommutative
case, however we do not have a proof of this at the
moment. If we focus on functions that can be Fourier
transformed (which is what we are interested in, if we want
to define the N-point functions), in the commutative case
one can see that

fðx0μa Þ ¼
Z

d4k1…d4kNf̃ðkaμÞei
P

N
a¼1

kaμΛμ
νxνaei

P
N
a¼1

kaμaμ ;

ð4:2Þ

is equal to fðxμaÞ only if f̃ðkaμÞ ∝ δ4ðPN
a¼1 k

a
μÞ (translation

invariance), and f̃ðΛν
μkaμÞ ¼ f̃ðkνÞ (Lorentz invariance).

In the noncommutative case, the coordinate algebra is
replaced by a Lie algebra (3.1). Therefore plane waves, i.e.,
exponentials of the generators, are replaced by Lie group
elements, and Fourier transforms admit a definition in
terms of a group average [14,47]. We can represent a
generic group element once we choose a factorization, i.e.,
an ordering choice. For example:
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eik
1
μx

μ
1…eik

N
μ x

μ
N ð4:3Þ

covers all group elements, upon varying k1a over all of R4N .
Once we introduced this ordering prescription, all Fourier-
transformable functions can be represented as a linear
combination of group elements:

fðxμaÞ ¼
Z

d4k1…d4kNf̃ðkaμÞeik1μx
μ
1…eik

N
μ x

μ
N : ð4:4Þ

It is now convenient to split the coordinates into center-of-
mass coordinates yμa, which are translation-invariant and
commutative, and coordinates of the center of mass xμcm. We
already found the algebra that these coordinates close,
Eq. (3.7), and the main feature we would like to highlight is
that the algebra realizes an action of the xμcm generators on
the yμa ones, because the x

μ
cm generators close a subalgebra,

and their commutators with yνb gives a linear combination
of yνb. Consider now this fact:

eik
a
μðyμaþxμcmÞ ¼ eiq

a
μy

μ
1eik

a
μx

μ
cm ð4:5Þ

where qaμ ¼ qaμðka0; ka1; ka2; ka3Þ is a certain function of kaμ.
The above equation is always true, and is a consequence
of the Baker–Campbell–Hausdorff formula when kaμx

μ
cm

belongs to the subalgebra acting on kaμy
μ
a. Now consider this

other identity, which is always true for Lie groups:

eik
a
μx

μ
cmeiq

b
μy

μ
b ¼ eiðk

a⊳qbÞμyμbeikaμx
μ
cm ð4:6Þ

where⊳ is the adjoint action of the group on itself. Finally,
the subgroup properties imply the existence of an associa-
tive deformed sum of momenta ⊞∶ R4 × R4 → R4 which
realizes the product of the subgroup generated by xμcm:

eipμx
μ
cmeiqμx

μ
cm ¼ eiðp⊞qÞμxμcm : ð4:7Þ

Armed with the three identities listed above, we can rewrite
Eq. (4.4) in the following form:

fðxμaÞ ¼
Z

d4k1…d4kNf̃ðkaμÞeiq1μy
μ
1eik

1
μx

μ
cmeiq

2
μy

μ
2eik

2
μx

μ
cm…eiq

N
μ y

μ
Neik

N
μ x

μ
cm

¼
Z

d4k1…d4kNf̃ðkaμÞeiq1μy
μ
1eiðk

1⊳q2Þμyμ2…eiðk1⊞k2⊞…⊞kN−1Þ⊳qNμ y
μ
Neiðk

1⊞k2⊞…⊞kNÞμxμcm : ð4:8Þ

This proves that, if f̃ðkaμÞ ∝ δð4Þðk1⊞k2⊞…⊞kNÞ, the dependence on xμcm completely disappears. A necessary condition for
fðxμaÞ to be κ-Poincaré-invariant is that k1⊞k2⊞…⊞kN ¼ 0 so that the dependence on xμcm drops. In fact, transforming all
coordinates according to the coaction (2.3) we get

fðx0μaÞ ¼
Z

d4k1…d4kNf̃ðkaμÞeiq1μΛμ
νyν1eiðk

1⊳q2ÞμΛμ
νyν2…eiðk1⊞k2⊞…⊞kN−1Þ⊳qNμ Λμ

νyνN

· eiðk
1⊞k2⊞…⊞kNÞμΛμ

νxνcmeiðk
1⊞k2⊞…⊞kNÞμaμcm ; ð4:9Þ

and the aμ-dependent exponential disappears only if
k1⊞k2⊞…⊞kN ¼ 0. Therefore translation invariance
alone ensures that N-point functions are commutative,
because they are elements of the Abelian subalgebra
generated by yμa.
Let us now take a deep dive into the structures that are

necessary to build a consistent QFT on κ-Minkowski. We
will begin with the properties of plane waves, which, as we
already remarked, are Lie group elements, and can be
mapped into points on a pseudo-Riemannian manifold,
momentum space. We will study all the structures that
spacetime noncommutativity induces on said momentum
space, and their relation. We will focus in particular on the
issue of ordering and coordinate systems on momentum
space: each ordering prescription of polynomials of non-
commutative coordinates correspond to a choice of coor-
dinates on momentum space, and changes of ordering
coincide with diffemorphisms on momentum space. One of
the guiding principles of our analysis will be that all
physical quantities (and, in particular, N-point functions),

will have to be independent of the ordering choice, and
therefore they will have to be Riemannian invariants on
momentum space.
From now on, we will focus on 1þ 1 spacetime

dimensions, which simplify significantly the calculations,
although everything we say can be generalized to arbitrary
dimensions.

A. Plane waves paraphernalia

In the 1þ 1-dimensional case, it is convenient to rewrite
the algebra (3.1) in lightcone coordinates:

x�a ¼x0a�x1a; x0a¼
xþa þx−a

2
; x1a¼

xþa −x−a
2

; ð4:10Þ

the commutation relations take now the form

½xþa ; xþb � ¼ 2iðxþa − xþb Þ; ½xþa ; x−b � ¼ 2ix−b ;

½x−a ; xþb � ¼ −2ix−a ; ½x−a ; x−b � ¼ 0: ð4:11Þ
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When a ¼ b, the coordinates of a single point close the
algebra

½xþa ; x−a � ¼ 2ix−a ; ð4:12Þ
which is identical (up to a normalization factor) to the
timelike 1þ 1-dimensional κ-Minkowski algebra anð1Þ.
The natural ordering prescriptions for polynomials then
involve putting the xþa coordinate to the right (resp. left)
of x−a :

∶ðxþa Þnðx−a Þm∶R ¼ ðx−a Þmðxþa Þn; ð4:13Þ

∶ðxþa Þnðx−a Þm∶L ¼ ðxþa Þnðx−a Þm; ð4:14Þ

or symmetrizing them:

∶ðxþa Þnðx−a Þm∶S ¼
1

2
ðxþa Þnðx−a Þm þ 1

2
ðx−a Þmðxþa Þn; ð4:15Þ

or, also, Weyl-ordering them:

∶ðxþa Þnðx−a Þm∶W ¼ 1

2m

Xm
r¼0

ðxþa Þm−rðx−a Þr: ð4:16Þ

The linear maps ∶∶R, ∶∶L, ∶∶S and ∶∶W areWeyl maps, that
go from the algebra of commutative polynomials to the
algebra (4.11), see, e.g., [18]. These maps are isomorphism
from our noncommutative algebra of functions to the
commutative one, and the commutation relations (4.12)
allow to translate from one map to the other, e.g.:

∶xþa x−a∶R ≕ ðxþa x−a þ 2ix−a Þ∶L ≕ ðxþa x−a þ ix−a Þ∶W; ð4:17Þ

The linear nature of Fourier theory allows us to use these
Weyl maps to map commutative Fourier-transformable
functions (understood as functions on momentum space)
to noncommutative functions with a certain ordering. As we
will show, the same noncommutative function will admit
different Fourier transforms, one for each choice of ordering,
and these momentum space functions are related to each
other by general coordinate transformations, i.e., diffeo-
morphisms of momentum space [47].

1. Plane waves of a single coordinate

For illustrative purposes, from now on we will work with
right-ordered and Weyl-ordered functions, showing at each
step how to translate one description into the other. Again,
keep in mind that our guiding principle is that no physical
quantity should depend on the ordering choice. Introduce
the right-ordered plane waves, which provide a basis for
Fourier theory:

ea½k� ¼ eik−x
−
a eikþx

þ
a ; ð4:18Þ

they are labeled by ðk−; kþÞ ∈ R2, and are closed under
Hermitian conjugation:

e†a½k� ¼ ea½SðkÞ�; SðkÞ ¼ ð−e2kþk−;−kþÞ: ð4:19Þ

The map S∶R2 → R2 is an involution (S ∘ S ¼ id), called
antipode. Since, as we remarked earlier, ea½k� span the
whole group ANð1Þ associated to the Lie algebra
½xþa ; x−a � ¼ 2ix−a , the map S realizes the group inverse,
and its properties follow from it. Another group axiom
that can be represented as a map on the coordinates k� is
the product:

ea½k�ea½q�¼ ea½k⊕q�; k⊕q¼ðk−þe−2kþq−;kþþqþÞ;
ð4:20Þ

now the map ⊕ ∶R2 ×R2 → R2 will be referred to as
coproduct, or momentum composition law. Its properties
follow from the axioms of Lie groups:

ðk ⊕ qÞ ⊕ p ¼ k ⊕ ðq ⊕ pÞ ¼ k ⊕ q ⊕ p;

k ⊕ SðkÞ ¼ SðkÞ ⊕ k ¼ o;

Sðk ⊕ qÞ ¼ SðqÞ ⊕ SðkÞ: ð4:21Þ
The first rule expresses the associativity of⊕, the second is
the fact that S is a bilateral inverse for ⊕, where o ¼ ð0; 0Þ
are the coordinates of the origin of momentum space, and
the third expresses the antihomomorphism property of the
group inverse. The momentum-space origin o is the neutral
element for the composition law/coproduct:

o ⊕ q ¼ q ⊕ o ¼ q; ð4:22Þ
and the plane waves with momentum o are the identity
element of the algebra:

ea½o� ¼ 1: ð4:23Þ

2. Translation-invariant products
of two-point plane waves

The product of two plane waves of different coordinates
e1½k�, e2½q� lies within the Abelian subalgebra of the
functions of coordinate differences, xμ1 − xμ2 (i.e., it is
translation-invariant), if the momenta of the two waves
are the antipode of each other. There are four ways to
combine two such waves:

e1½k�e†2½k�; e†1½k�e2½k�; e2½k�e†1½k�; e†2½k�e1½k�; ð4:24Þ

the first and the third expressions are Hermitian conjugates,
as are the second and fourth. We can now calculate
explicitly the functional form of the product of two waves:

e1½k�e2½q� ¼ eik−x
−
1 eikþx

þ
1 eiq−x

−
2 eiqþx

þ
2 ; ð4:25Þ

where we would like to order all “þ” coordinates to the
right of the “−” ones. A lengthy but elementary calculation,
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explicitly shown in Appendix, reveals that:

e1½k�e2½q� ¼ eiðk−x−1þe−2kþq−x−2 Þ

× e
i

kþþqþ
1−e2ðkþþqþÞ½ð1−e2kþÞxþ1 þe2kþð1−e2qþÞxþ

2
�
; ð4:26Þ

For q ¼ SðkÞ ¼ ð−e2kþk−;−kþÞ, the whole expression
turns into:

e1½k�e†2½k� ¼ eiξ−ðx−1−x−2 Þeiξþðx
þ
1
−xþ

2
Þ; ð4:27Þ

where we introduce the notation (which will be useful
later):

ξ− ¼ k−; ξþ ¼
�
e2kþ − 1

2

�
: ð4:28Þ

The expression above depends only on ðxμ1 − xμ2Þ, as
anticipated. Had we chosen to put the dagger on e1½k�,
we would have obtained:

e†1½k�e2½k� ¼ eiχ−ðx−1−x−2 Þeiχþðx
þ
1
−xþ

2
Þ; ð4:29Þ

where

χ−¼−e2kþk−¼Sðξ−Þ; χþ¼
�
e−2kþ −1

2

�
¼SðξþÞ:

ð4:30Þ

Notice how the functions ξ�ðk�Þ map R2 into a half-plane
of R2, because ξþ > − 1

2
. This has significant conse-

quences, which we will comment upon below. Here we
just observe that, if one multiplies the two plane waves e1½k�
and e†2½k�, which have arbitrary frequencies kμ ∈ R2, the
resulting translation-invariant wave (4.29) cannot have any
frequency. The coordinate differences xμ1 − xμ2 in (4.29) are
multiplied by frequencies that belong to a subregion of R2.
The other two possible translation-invariant products of

plane waves can be obtained from scratch with an analo-
gous calculation, or, equivalently, by taking the Hermitian
conjugate of the expressions (4.27) and (4.29), which
simply amount to changing the sign of the exponents (or
swapping coordinates 1 and 2), because the coordinate
differences ðxμ1 − xμ2Þ commute with each other:

e2½k�e†1½k�¼ ðe1½k�e†2½k�Þ†¼e−iξ−ðx−1−x−2 Þe−iξþðx
þ
1
−xþ

2
Þ; ð4:31Þ

e†2½k�e1½k�¼ ðe†1½k�e2½k�Þ†¼e−iχ−ðx−1−x−2 Þe−iχþðx
þ
1
−xþ

2
Þ: ð4:32Þ

We can now describe everything with a different order-
ing convention. For example, defining a Weyl-ordered
plane waves can be written as

f a½q−; qþ� ¼ eiq−x
−
aþiqþxþa ¼ ea

��
1 − e−2qþ

2qþ

�
q−; qþ

�
;

ð4:33Þ

where the last expression comes from Eq. (A12) with
κ → 1=2. If k� are the frequencies of a right-ordered plane
wave eðk�Þ, and q� are those of a Weyl-ordered wave
f ðq�Þ, their relation is

k− ¼
�
1 − e−2qþ

2qþ

�
q− kþ ¼ qþ;

q− ¼
�

2kþ
1 − e−2kþ

�
k− qþ ¼ kþ; ð4:34Þ

which implies that eðk�Þ ¼ f ðq�Þ.
Let us now look at the composition law of Weyl-ordered

waves:

f 1½k� f 1½q� ¼ f 1½k ⊕0 q�; ð4:35Þ

the map⊕0 is explicitly calculated in Appendix: replacing κ
with 1=2 in Eq. (A15) we get

ðk ⊕0 qÞ− ¼
�

2ðkþ þ qþÞ
1 − e−2ðkþþqþÞ

�

×

��
1 − e−2kþ

2kþ

�
k− þ e−2kþ

�
1 − e−2qþ

2qþ

�
q−

�
;

ðk ⊕0 qÞþ ¼ kþ þ qþ: ð4:36Þ

The antipode map:

f †½q� ¼ f ½S0ðqÞ� ⇒ S0½k� ¼ −k; ð4:37Þ

can also be calculated by combining the right-ordered
antipode, SðkÞ ¼ ð−e2kþk−;−kþÞ, with the coordinate
change (4.34), which we will call ϕ:

S0ðqÞ ¼ ðϕ−1S ∘ ϕÞðqÞ ¼ ϕ−1
��

2SðkÞþ
1 − e−2SðkÞþ

�
SðkÞ−; SðkÞþ

�

¼
�
−
�

2kþ
1 − e−2kþ

�
k−;−kþ

�����k−→ð1−e−2qþ Þ=2qþ
kþ→qþ

¼ ð−q−;−qþÞ; ð4:38Þ
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which confirms the above result that the S0 map just puts a
minus in front of both components of q. Finally, we can
check where the origin of momentum space is mapped by
the coordinate change: o0ðqÞ ¼ ðϕ−1 ∘ o ∘ ϕÞðqÞ ¼ ð0; 0Þ,
which is consistent with the fact that f a½q� → 1 when
q− ¼ qþ ¼ 0.
We are now ready to study the products of plane waves

of different points. The calculation is similar to that for
right-ordered waves:

f 1½k�f 2½q� ¼ eið
1−e−2kþ

2kþ Þk−x−1þie−2kþð1−e−2qþ
2qþ Þq−x−2

× e
i kþþqþ
1−e2ðkþþqþÞ½ð1−e2kþÞxþ1 þe2kþð1−e2qþÞxþ

2
�
; ð4:39Þ

and setting q ¼ S0ðkÞ gives a translation-invariant product
of waves:

f 1½k� f †2½k� ¼ eið
1−e−2kþ

2kþ Þk−ðx−1−x−2 Þþi
2
ðe2kþ−1Þðxþ

1
−xþ

2
Þ: ð4:40Þ

3. Lorentz transformations of momenta and plane waves

Under the Poincaré coaction (2.3), our plane waves
transform in the following way:

e0a½k� ¼ ea½λðk;ΛÞ�a½k�; ð4:41Þ
where λ is a nonlinear representation of the Lorentz group:

λ∶R2×SOð1;1Þ→R2;

λðλðk;ΛÞ;Λ0Þ¼λðk;Λμ
ρΛ0ρ

νÞ; Λðk;δμνÞ¼k; λðo;ΛÞ¼0;

ð4:42Þ

and

a½k� ¼ eik−a
−
eikþa

þ
; ð4:43Þ

is an ordered plane wave of the translation parameters (the
notation a� ¼ a0 � a1 should be clear at this point).
In order to calculate λðk;ΛÞ, we could exploit the

homomorphism property of the coaction and Poincaré-
transform the two sides of Eq. (4.27), which depends only
on the difference between coordinates and therefore is
translation-invariant:

e01½k�e0†1 ½k� ¼ eiξ−ðx0−1 −x0−
2
Þeiξþðx

0þ
1
−x0þ

2
Þ

¼ eiλðk;ΛÞ−ðx−1−x−2 Þeið
e2λðk;ΛÞþ−1

2
Þðxþ

1
−xþ

2
Þ; ð4:44Þ

since

ðx0−1 −x0−2 Þ¼e−ωðx−1 −x−2 Þ; ðx0þ1 −x0þ2 Þ¼eþωðxþ1 −xþ2 Þ;
ð4:45Þ

where ω is the rapidity,Λ0
0 ¼ Λ1

1 ¼ coshω,Λ0
1 ¼ Λ1

0 ¼
sinhω. Consistency demands that

λðk; ξÞ− ¼ e−ωξ−;
e2λðk;ξÞþ − 1

2
¼ eþωξþ; ð4:46Þ

which admits the solution

λðk; ξÞ− ¼ e−ωξ− ¼ e−ωk−;

λðk; ξÞþ ¼ 1

2
log ð1þ 2eωξþÞ ¼

1

2
log ½1þ eωðe2kþ − 1Þ�:

ð4:47Þ

The “−” component transforms in an undeformed way,
while the transformation of the “þ” component is non-
linear. In a power series in the momentum:

λðk; ξÞþ ¼ kþeξ − k2þeξðeξ − 1Þ þOðk3þÞ: ð4:48Þ

One can easily verify that λðk; ξÞ is a representation of the
Lorentz group:

λðk; ξþ ξ0Þ ¼ λðλðk; ξÞ; ξ0Þ; λðk; 0Þ ¼ k; ð4:49Þ

and that it leaves the origin unchanged: λðo; ξÞ ¼ 0.
We could be content with having found the map λ from

Eq. (4.27), but we used Eq. (4.41) dictating the form of the
Poincaré transformation of a plane wave, and therefore we
do not yet have a proof. One needs to go through the pain of
proving it with a direct calculation, which however allow to
derive the form of λðk;ΛÞ directly, providing a check that
the Poincaré coaction is indeed a homomorphism of the
coordinate algebra, showing that the two sides of Eq. (4.27)
transform in the same way. This proof is in Appendix.
Consider now the transformation rule of the translation-

invariant products of two waves (4.27), e1½k�e†2½k�. As we
have seen above, the coordinate differences xμ1 − xμ2 trans-
form following an underformed, linear Lorentz transfor-
mation, x0μ1 − x0μ2 ¼ Λμ

νðxμ1 − xμ2Þ, and the functions ξμðkÞ
appearing in front of xμ1 − xμ2 transform according to the
(inverse) undeformed Lorentz transformation ξ0μðkÞ ¼
Λν

μξνðkÞ, which can also be written as a transformation
of the momentum parameter kμ, but in this case the
transformation is nonlinear. In other words, ξμ provides
a linear representation of the Lorentz group:

ξμ½λðk; ξÞ� ¼ ξν½k�Λν
μ: ð4:50Þ

If we now consider the transformation law of the other
translation-invariant product of waves, that is not just the
Hermitian conjugate of the first one, Eq. (4.29), we obtain

e0†1 ½k�e02½k� ¼ a†½k�e†1½λðk;ωÞ�e2½λðk;ωÞ�a½k�
¼ a†½k�e1½S½λðk;ωÞ��e2½λðk;ωÞ�a½k�: ð4:51Þ

Notice the following important identity:
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λðk;ωÞ ¼ S½λðS½k�;ω ⊲ kÞÞ� ð4:52Þ

which implies also S½λðk;ωÞ� ¼ λðS½k�;ω ⊲ kÞÞ, which
can be used in the expression above:

a†½k�e1½S½λðk;ωÞ��e2½λðk;ωÞ�a½k�
¼ a†½k�e1½λðS½k�;ω ⊲ kÞÞ�e2½λðk;ωÞ�a½k�
¼ e1½λðS½k�;ω ⊲ k ⊲ S½k�Þ�a†½k�e2½λðk;ωÞ�a½k�
¼ e1½λðS½k�;ωÞ�e2½λðk;ω ⊲ S½k�Þ�a†½k�a½k�
¼ e†1½λðk;ω ⊲ S½k�Þ�e2½λðk;ω ⊲ S½k�Þ�: ð4:53Þ

Notice that the transformation rule of kμ is not
kμ → λμðk;ω ⊲ kÞ, as it in the case of e1½k�e†2½k�. The
transformation rule is instead

kμ → λμðk;ω ⊲ S½k�Þ; ð4:54Þ

the novelty being in the transformed rapidity which is now
ω ⊲ S½k�. A direct calculation confirms that this particular
rule makes the function χμ½k� transform linearly:

χμ½λðk;ω ⊲ S½k�Þ� ¼ χν½k�Λν
μ; ð4:55Þ

so that

e0†1 ½k�e02½k� ¼ eiχμ½k�Λμ
νðxν1−xν2Þ ¼ eiχμ½λðk;ω⊲kÞ�ðxμ

1
−xμ

2
Þ

¼ e†1½λðk;ω ⊲ kÞ�e2½λðk;ω ⊲ kÞ�: ð4:56Þ

B. Geometry of momentum space

In [7] we studied the general theory of κ momentum
spaces. Following the techniques illustrated in that paper,
one can study the geometries of momentum space that are
compatible with the lightlike κ-Minkowski space we are
interested in. For our purposes, however, it is sufficient to
observe that the coordinates ξ� transform linearly (like
light-cone coordinates) under momentum-space Lorentz
transformations, and therefore said transformations will
leave invariant the following light-cone-coordinates
Minkowski metric:

ds2 ¼ dξ−dξþ: ð4:57Þ

In right-ordered coordinates k�, which are related to ξ� by
Eq. (4.28), this metric reads

ds2 ¼ e2kþdk−dkþ: ð4:58Þ

It is easy to verify that the transformation k� → λðk; ξÞ� is
an isometry of ds2. As we observed after showing
Eq. (4.28), the functions ξ� do not represent a map from
R2 to R2. They rather map R2 to the semiplane ξþ > − 1

2
.

The border ξþ ¼ −1=2 of our coordinate system coincides
with a lightlike line (see Fig. 1).
The presence of a finite border implies that our momen-

tum space, despite being locally Lorentz-invariant, is not so
globally. This is reflected also in the form of the Lorentz
trasnsformations of k�, Eq. (4.47), which become singular
at a finite value of ξwhen e2kþ < 1, and the argument of the
logarithm in λþðk; ξÞ ¼ 1

2
log ½1þ eξðe2kþ − 1Þ� is negative

for all values of ξ above − log ð1 − e2kþÞ. The situation is
perfectly analogue to that of timelike κ-Minkowski, with its
half-de Sitter momentum space whose border can be
reached with a finite Lorentz transformation. In that model,
a way out of this Lorentz-breaking feature was to assume a
different global topology for momentum space, by quo-
tienting it by a reflection in the ambient space, thereby
obtaining an elliptic de Sitter momentum space, which is
closed under Lorentz transformations. It is not obvious
whether we can do something like that here.
The geodesics of momentum space are obviously

straight lines in the coordinates ξ�, which in coordinates
k� are

k−ðsÞ ¼ αsþ k0−; kþðsÞ ¼
1

2
log ðβsþ e2k

0
þÞ: ð4:59Þ

The geodesic distance between the origin o ¼ ð0; 0Þ and
the point ðk1−; k1þÞ, along the geodesic connecting o to k1μ,

k−ðsÞ ¼ k1−s, kþðsÞ ¼ 1
2
log ½ðe2k1þ − 1Þsþ 1�, is then:

Z
1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k1−ðe2k1þ − 1Þ

q
ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k1−ðe2k1þ − 1Þ

q
: ð4:60Þ

We can define a mass-shell operator as any function of the
Geodesic distance (the difference between different choices
of the function will amount to a nonlinear redefinition of
the mass, which is easily shown to be Lorentz-invariant:

C ¼ k−ðe2kþ − 1Þ ¼ ξ−ξþ ð4:61Þ

FIG. 1. The momentum space of 1þ 1-dimensional lightlike
κ-Minkowski.
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1. Mass shells

The k� coordinates are deformations of light-cone
coordinates. In special relativity, if we want to describe
the mass shells through dispersion relations, light-cone
coordinates are a bit different from the familiar energy-
momentum ones. In terms of energy E and momentum p,
the mass-shell condition reads E2 − p2 ¼ m2, and solving
this with respect to E gives the two dispersion relations of
positive- and negative-frequency waves: E¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

p
.

In light-cone coordinates the mass shell is

pþp− ¼ m2; ð4:62Þ
and solving with respect to one of the coordinates, e.g., p−,
gives one single solution: p− ¼ m2

2pþ
. This is sufficient to

describe both positive- and negative-frequency solutions
with one single function: the former correspond to positive
values of pþ, and the latter to pþ < 0. In the case of
imaginary mass, m2 changes sign in Eq. (4.62), and the
mass-shell we are describing are the tachyonic ones.
Our κ-deformation does not change the basic qualitative

picture: the mass-shell relation is (the normalization is
chosen in order to match Eq. (4.62) in the κ → 0 limit):

CðkÞ ¼ 1

2
k−ðe2kþ − 1Þ ¼ m2; ð4:63Þ

which can be solved for k− as:

k− ¼ ωrðkþÞ ¼
2m2

e2kþ − 1
; ð4:64Þ

and the positive-frequency mass-shells correspond values
of kþ > 0, while the negative-frequency ones correspond to
kþ < 0. Notice that ωr ∈ ð−∞;−m2Þ ∪ ð0;∞Þ. The mass
shells in this coordinate system are represented in
Fig. 2 (left).
If we decided to use Weyl-ordered waves instead of

right-ordered ones, the mass shell function would take a

different form. Using the relation (4.34) between these two
coordinate systems, we get the following form for the mass-
shell function:

C0ðqÞ ¼ 1

4
ðe2qþ − 1Þ2 q−

qþ
¼ m2; ð4:65Þ

and the dispersion relation now takes the form

q− ¼ ωwðqþÞ ¼
4m2qþ

ðe2qþ − 1Þ2 ; ð4:66Þ

again, qþ < 0 describes positive-frequency waves, and
qþ < 0 negative-frequency ones. The mass shells in this
second coordinate system are represented in Fig. 2 (right).

C. The κ-Klein–Gordon equation

Consider the following equation:

C ⊳ ϕðxaÞ ¼ m2ϕðxaÞ; ð4:67Þ
where the Casimir operator’s action on noncommutative
functions is defined in Fourier-transform as

C ⊳ fðxaÞ ¼
Z

d2k
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðkÞ

p
f̃ðkÞCðkÞea½k�;

fðxaÞ ¼
Z

d2k
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðkÞ

p
f̃ðkÞea½k�: ð4:68Þ

The generic solution to Eq. (4.67) is

ϕðxaÞ ¼
Z

d2k
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðkÞ

p
δðCðkÞ −m2Þϕ̃ðkÞea½k�

¼
Z

d2k
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðkÞ

p δðk− − ωrðkþÞÞ
1
2
je2kþ − 1j ϕ̃ðkÞea½k�; ð4:69Þ

we can now split the function ϕ̃ðkÞ according to its values
on the two mass-shells, the Lorentz-invariant one with
kþ > 0 and the other one with kþ < 0:

FIG. 2. The dispersion relations (4.63) (left) and (4.65) (right).
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ϕ̃ðkÞ ¼ aðkþÞΘðkþÞ þ b̄ðkþÞΘð−kþÞ; ð4:70Þ

and we get:

ϕðxaÞ ¼
Z þ∞

0

dkþ
e2kþ

1
2
je2kþ − 1j aðkþÞeaðkþÞ

þ
Z

0

−∞
dkþ

e2kþ
1
2
je2kþ − 1j b̄ðkþÞeaðkþÞ; ð4:71Þ

where we called the on-shell waves

eaðkþÞ ¼ ea½ωrðkþÞ; kþ�: ð4:72Þ

Notice now that e†aðkþÞ ¼ eað−kþÞ, so that

ϕ̂ðxaÞ ¼
Z þ∞

0

dkþ
e2kþ

1
2
je2kþ − 1j

× ½aðkþÞeaðkþÞ þ e−2kþ b̄ð−kþÞe†aðkþÞ�: ð4:73Þ

In the following, we will need to commute on-shell plane
waves of different points. The key identity we need to

calculate these commutator is Eq. (4.26), which we
reproduce here for convenience:

ea½k�eb½q�¼eiðk−x
−
aþe−2kþq−x−b Þ

×e
i kþþqþ
1−e2ðkþþqþÞ½ð1−e2kþÞxþa þe2kþð1−e2qþÞxþb �:

We can then ask whether commuting two on-shell waves
gives again a product of on-shell waves, i.e.:

e1ðkþÞe2ðqþÞ ¼ e2ðq0þÞe1ðk0þÞ; ð4:74Þ

this equation is solved by

k0þ ¼ 1

2
log

�
e2ðkþþqþÞ

e2kþðe2qþ − 1Þ þ 1

�
;

q0þ ¼ 1

2
log ðe2kþðe2qþ − 1Þ þ 1Þ: ð4:75Þ

We can find similar relations for Hermitian conjugate on-
shell waves. The whole algebra is summarized here:

e1ðkþÞe2ðqþÞ ¼ e2

�
1

2
log ½e2kþðe2qþ − 1Þ þ 1�

�
e1

�
kþ þ qþ −

1

2
log ½e2kþðe2qþ − 1Þ þ 1�

�
;

e1ðkþÞe†2ðqþÞ ¼ e†2

�
qþ −

1

2
log ½e2kþð1 − e2qþÞ þ e2qþ�

�
e1

�
kþ −

1

2
log ½e2kþð1 − e2qþÞ þ e2qþ�

�
;

e†1ðkþÞe2ðqþÞ ¼ e2

�
1

2
log ½e2kþ þ e2qþ − 1� − kþ

�
e†1

�
1

2
log ½e2kþ þ e2qþ − 1� − qþ

�
;

e†1ðkþÞe†2ðqþÞ ¼ e†2

�
1

2
log ½1 − e2qþð1 − e2kþÞ�

�
e†1

�
kþ þ qþ −

1

2
log ½1 − e2qþð1 − e2kþÞ�

�
: ð4:76Þ

D. Two-point functions

We are ready to study in full generality two-point functions, built from the elements of the noncommutative two-point
algebra A⊗κ2 that can be written as Fourier transforms, that are κ-Poincaré invariant and that solve the κ-Klein–Gordon
equation. A reasonable proposal for such a function, based on what we know from commutative QFT, is something like this:

Z
d2ke1½k�e†2½k�fðkÞδðCðkÞ −m2Þ; ð4:77Þ

where of course fðkÞ is supposed to be a Lorentz-invariant function of the momentum. However the above function is not
Lorentz-invariant. In fact:Z

d2ke01½k�e0†2 ½k�fðkÞδðCðkÞ −m2Þ ¼
Z

d2ke1½λðk;ωÞ�e†2½λðk;ωÞ�fðkÞδðCðkÞ −m2Þ

¼
Z

d2q

���� det
�∂λðk;−ωÞμ

∂kν
�����e1½q�e†2½q�fðkÞδðCðqÞ −m2Þ

≠
Z

d2ke1½k�e†2½k�fðkÞδðCðkÞ −m2Þ: ð4:78Þ
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Instead, inserting the square root of minus the determinant
of the momentum-space metric:

Fðxμ1−xμ2Þ¼
Z

d2k
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðkÞ

p
e1½k�e†2½k�fðkÞδðCðkÞ−m2Þ

¼
Z

d2k
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðkÞ

p
e1½k�e†2½k�fðkÞ

δðk−−ωrðkþÞÞ
1
2
je2kþ −1j ;

ð4:79Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðkÞp ¼e2kþ , makes the integral Lorentz invariant.

Now we worry about another issue: ordering depend-
ence. We could have used the Weyl-ordered basis of plane
waves to construct the function:Z

d2q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0ðqÞ

p
f 1½q� f †2½q�f0ðqÞδðC0ðqÞ −m2Þ

¼
Z

d2q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0ðqÞ

p
f 1½q� f †2½q�f0ðqÞ

δðq− − ωwðqþÞÞ��� ðe2qþ−1Þ24qþ

��� ;

ð4:80Þ
where g0 ¼ je2qþ−1

2qþ
j, C0ðqÞ¼C½qþ;q−ðe2qþ−12qþ

Þ�, f0ðqÞ¼
f½qþ;q−ðe2qþ−12qþ

Þ�. However, we can prove that the two

functions are identical. In fact, under the coordinate change
qþ ¼ kþ, q− ¼ 2kþk−

e2kþ−1, one has:

d2q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0ðqÞ

p
¼ d2k

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðkÞ

p
; f 1½q� ¼ e1½k�;

f †2½q� ¼ e†2½k�; h0ðqÞ ¼ hðkÞ; C0ðqÞ ¼ CðkÞ; ð4:81Þ

and therefore

Z
d2q

ffiffiffiffiffiffiffi
−g0

p
f 1½q� f †2½q�f0ðqÞδðC0ðqÞ −m2Þ

¼
Z

d2k
ffiffiffiffiffiffi
−g

p
e1½k�e†2½k�fðkÞ

δðk− − ωrðkþÞÞ
1
2
je2kþ − 1j : ð4:82Þ

The function fðkÞ appearing in our two-point function
should be Lorentz-invariant, and the functions that are used
for commutative QFT two-point functions, e.g., Feynmann
propagators, Wightman functions, and Pauli-Jordan func-
tions, are all constants on the forward and backward light
cones in momentum space. In our case we can write:

fðkÞ ¼ f−Θð−kþÞ þ fþΘðkþÞ; ð4:83Þ

where f− and fþ are constants. This function gives fþ on
the forward light cone and f− on the backwards one, and it
is easy to see that it is Lorentz invariant, because the sign of
kþ is not changed by on-shell Lorentz transformations.
This expression, however is not globally Lorentz-covariant:
the backwards light cone is not closed under Lorentz
transformations, and this will make the f− term non-
invariant. In Appendix we calculate explicitly the form
of Fðxμ1 − xμ2Þ that is implied by the choice (4.83), and the
result is (reintroducing κ):

Fðxμ1 − xμ2Þ ¼ f−

Z
m sinh ðlog κ

2mÞ

−∞

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p e−2i½
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
ðx0

1
−x0

2
Þþpðx1

1
−x1

2
Þ�

þ fþ

Z
∞

−∞

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p e2i½
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
ðx0

1
−x0

2
Þþpðx1

1
−x1

2
Þ�: ð4:84Þ

This expression above is identical to the integrals appearing
in the undeformed 2-point functions (written in light-cone
coordinates), except for the Lorentz-breaking integration
boundary m sinh ðlog κ

2mÞ in the first integral.
Our conclusion is that, in order to have a κ-Poincaré-

invariant function of type Fðxμ1 − xμ2Þ, we have to set
f− ¼ 0. We have found a first κ-Poincaré-invariant two-
point function, based on the translation-invariant wave
combination (4.27), e1½k�e†2½k�:

F ¼
Z

d2k
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðkÞ

p
e1½k�e†2½k�ΘðkþÞδðCðkÞ −m2Þ

¼
Z

∞

−∞

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p e2i½
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
ðx0

1
−x0

2
Þþpðx1

1
−x1

2
Þ�: ð4:85Þ

We could have instead used the translation invariant
combination of plane waves introduced in Eq. (4.31),
e2½k�e†1½k�, but this is just the Hermitian conjugate of the
wave combination used before. Moreover, the two-point
function built with it coincides with F with xμ1 and xμ2
exchanged, because:

F†ðxμ1 − xμ2Þ ¼ Fðxμ2 − xμ1Þ: ð4:86Þ

The wave combination (4.29), e†1½k�e2½k� is not obviously
related to (4.27), so we need to check what we get if we use
it to define our two-point function:

Hðxμ1 − xμ2Þ ¼
Z

d2ke†1½k�e2½k�hðkÞδðCðkÞ −m2Þ; ð4:87Þ
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which is Lorentz-invariant because, from Eq. (4.56), e†1½k�e2½k� ¼ e†1½λðk;ω ⊲ S½k�Þ�e2½λðk;ω ⊲ S½k�Þ�, and the Jacobian of
the transformation qμ ¼ λμðk;ω ⊲ S½k�Þ is one.
Again, the plane wave combination (4.32), e†2½k�e1½k� is just the Hermitian conjugate of (4.29), and again, the two-point

function built with it coincides with H with xμ1 and xμ2 exchanged, because H†ðxμ1 − xμ2Þ ¼ Hðxμ2 − xμ1Þ. In Appendix we
calculate Hðxμ1 − xμ2Þ, and the result is

Hðxμ1 − xμ2Þ ¼ hþ

Z
m sinh ðlog κ

2mÞ

−∞

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p e−2i½
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
ðx0

1
−x0

2
Þþpðx1

1
−x1

2
Þ�

þ h−

Z
∞

−∞

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p e2i½
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
ðx0

1
−x0

2
Þþpðx1

1
−x1

2
Þ�; ð4:88Þ

so, if we set hþ ¼ 0 we have a genuinely Lorentz-invariant
function. This function, however, turns out to be identical to
F (modulo a constant factor).
We conclude that we can use Fðxμ1 − xμ2Þ and its

Hermitian conjugate to define all two-point functions that
we need, which will have the appropriate commutative
limit and invariance properties. Moreover, these two-point
functions will be indistinguishable from their commutative
counterparts. For example, the Wightman function can be
defined as:

ΔWðxμ1−xμ2Þ¼
Z

d2k
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðkÞ

p
e1½k�e†2½k�ΘðkþÞδðCðkÞ−m2Þ;

ð4:89Þ

and the associated Pauli-Jordan function will be the anti-
Hermitian part of ΔW:

ΔPJðxμ1 − xμ2Þ ¼
Z

d2k
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðkÞ

p
ðe1½k�e†2½k� − e2½k�e†1½k�Þ

× ΘðkþÞδðCðkÞ −m2Þ: ð4:90Þ

The 2-point functions we find are identical to the
commutative ones (in fact, all the dependence on the
constant κ drops out). We do not have a similar proof, at
this stage, for the N-point functions, but we would not be
surprised if they all turned out to be undeformed. One could
then ask whether, by introducing interactions, one recovers
a dependence on κ and a departure from the N-point
functions of commutative field theory onMinkowski space.
Assuming that the free theory turns out, indeed, to be
entirely undeformed, a natural question then arises whether
such a theory can be distinguished in any way from a free
scalar field on commutative Minkowski space. One issue
we can identify immediately is the fact that, despite the
“two-particle sector” is undeformed, the “one-particle
sector” is deformed. A manifestation of this is, for example,
the fact that we are not allowed to act on our N-point
functions with standard, commutative Poincaré transfor-
mations: we have to use the noncommutative operator

algebra (1.3). This algebra does not allow a sharp locali-
zation of states, because the generators are subject to certain
uncertainty relations [14]. Then one cannot, for example,
make a perfectly sharp translation and Lorentz transforma-
tion at the same time (unless hΛμ

νi ¼ δμν with zero
uncertainty, i.e., the two observers have sharply zero
relative velocity).
Another difference between this noncommutative free

scalar theory and its commutative counterpart arises in the
creation and annihilation operator algebra, which we shall
discuss in the following subsection.

E. Field quantization

We can use the Pauli-Jordan function to define a
quantization, i.e.,

½ϕ̂ðx1Þ; ϕ̂†ðx2Þ� ¼ iΔPJðxμ1 − xμ2Þ;
½ϕ̂ðx1Þ; ϕ̂ðx2Þ� ¼ 0; ½ϕ̂†ðx1Þ; ϕ̂†ðx2Þ� ¼ 0; ð4:91Þ

where now the Fourier coefficients of our on-shell field
are assumed to be non-necessarily commutative operators,
which however commute with xμa:

ϕ̂ðxaÞ ¼
Z þ∞

0

dkþ
e2kþ

1
2
je2kþ − 1j

× ðâðkþÞeaðkþÞ þ e−2kþ b̂†ðkþÞe†aðkþÞÞ; ð4:92Þ

and the Hermitian conjugate field will be

ϕ̂†ðxaÞ ¼
Z þ∞

0

dkþ
e2kþ

1
2
je2kþ − 1j

× ðâ†ðkþÞe†aðkþÞ þ e−2kþ b̂ðkþÞeðakþÞÞ: ð4:93Þ

Consider first the equation ½ϕ̂ðx1Þ;ϕ̂†ðx2Þ�¼
iΔPJðxμ1−xμ2Þ, which implies:
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Z
∞

0

Z
∞

0

dkþdqþ
e2ðkþþqþÞ

1
4
je2kþ − 1jje2qþ − 1j fâðkþÞâ

†ðqþÞe1ðkþÞe†2ðqþÞ − â†ðqþÞâðkþÞe†2ðqþÞe1ðkþÞg

¼
Z

∞

0

dkþ
e2kþ

1
2
je2kþ − 1j e1ðkþÞe

†
2ðkþÞ;

Z
∞

0

Z
∞

0

dkþdqþ
e2kþ

1
4
je2kþ − 1jje2qþ − 1j fâðkþÞb̂ðqþÞe1ðkþÞe2ðqþÞ − b̂ðqþÞâðkþÞe2ðqþÞe1ðkþÞg ¼ 0;

Z
∞

0

Z
∞

0

dkþdqþ
e2qþ

1
4
je2kþ − 1jje2qþ − 1j fb̂

†ðkþÞâ†ðqþÞe†1ðkþÞe†2ðqþÞ − â†ðqþÞb̂†ðkþÞe†2ðqþÞe†1ðkþÞg ¼ 0;

Z
∞

0

Z
∞

0

dkþdqþ
1

1
4
je2kþ − 1jje2qþ − 1j fb̂

†ðkþÞb̂ðqþÞe†1ðkþÞe2ðqþÞ − b̂ðqþÞb̂†ðkþÞe2ðqþÞe†1ðkþÞg

¼ −
Z

∞

0

dkþ
e2kþ

1
2
je2kþ − 1j e2ðkþÞe

†
1ðkþÞ; ð4:94Þ

recall Eq. (4.76), and rewrite it according to our present needs:

e†2ðqþÞe1ðkþÞ ¼ e1

�
1

2
log ½e2qþ þ e2kþ − 1� − qþ

�
e†2

�
1

2
log ½e2qþ þ e2kþ − 1� − kþ

�
;

e2ðqþÞe1ðkþÞ ¼ e1

�
1

2
log ½e2qþðe2kþ − 1Þ þ 1�

�
e2

�
qþ þ kþ −

1

2
log ½e2qþðe2kþ − 1Þ þ 1�

�
;

e†1ðkþÞe†2ðqþÞ ¼ e†2

�
1

2
log ½1 − e2qþð1 − e2kþÞ�

�
e†1

�
kþ þ qþ −

1

2
log ½1 − e2qþð1 − e2kþÞ�

�
;

e†1ðkþÞe2ðqþÞ ¼ e2

�
1

2
log ½e2kþ þ e2qþ − 1� − kþ

�
e†1

�
1

2
log ½e2kþ þ e2qþ − 1� − qþ

�
: ð4:95Þ

Consider the first line of Eq. (4.94). Using (4.95), we can rewrite it as

Z
R2

þ
dkþdqþ

e2ðkþþqþÞ
1
4
je2kþ − 1jje2qþ − 1j

�
âðkþÞâ†ðqþÞe1ðkþÞe†2ðqþÞ

− â†ðqþÞâðkþÞe1
�
1

2
log ½e2qþ þ e2kþ − 1� − qþ

�
e†2

�
1

2
log ½e2qþ þ e2kþ − 1� − kþ

�	
; ð4:96Þ

and then, inverting the relations

k0þ ¼ 1

2
log ½e2qþ þ e2kþ − 1� − qþ; q0þ ¼ 1

2
log ½e2qþ þ e2kþ − 1� − kþ; ð4:97Þ

we get:

qþ ¼ q0þ −
1

2
log ½e2k0þ þ e2q

0
þ − e2ðk0þþq0þÞ�; kþ ¼ k0þ −

1

2
log ½e2k0þ þ e2q

0
þ − e2ðk0þþq0þÞ�; ð4:98Þ

and, taking into account the Jacobian of the transformation je−2k0þ þ e−21
0
þ − 1j−1,

Z
R2

þ

dkþdqþe2ðkþþqþÞ
1
4
je2kþ − 1jje2qþ − 1j e1ðkþÞe

†
2ðqþÞ

�
âðkþÞâ†ðqþÞ −

1
2
je2kþ − 1j
e2kþ

δðkþ − qþÞ

−
â†ðqþ − 1

2
log ½e2kþ þ e2qþ − e2ðkþþqþÞ�Þâðkþ − 1

2
log ½e2kþ þ e2qþ − e2ðkþþqþÞ�Þ

j1 − e−2kþ − e−2qþj
	

¼ 0; ð4:99Þ

which imposes the following deformed commutators for the creation and annihilation operators:
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âðkþÞâ†ðqþÞ −
â†ðqþ − 1

2
log ½e2kþ þ e2qþ − e2ðkþþqþÞ�Þâðkþ − 1

2
log ½e2kþ þ e2qþ − e2ðkþþqþÞ�Þ

j1 − e−2kþ − e−2qþj
¼ 1

2
j1 − e−2kþ − 1jδðkþ − qþÞ: ð4:100Þ

All the other commutators forming the bosonic oscillator
algebra can be similarly derived.
Notice now that, upon commuting âðkþÞ and â†ðqþÞ, we

get creation and annihilation operators labeled by momen-
tum coordinates that diverge, or become complex, for
certain values of kþ and qþ:

q00þ ¼ qþ −
1

2
log ½e2kþ þ e2qþ − e2ðkþþqþÞ�;

k00þ ¼ kþ −
1

2
log ½e2kþ þ e2qþ − e2ðkþþqþÞ�; ð4:101Þ

when e2kþ ¼ 1
1−e−2qþ both q00þ and k00þ diverge. This has to do

with the fact that the maps that send the momenta of the on-
shell waves in Eq. (4.76) to the momenta of the commuted
waves are not maps ofR2þ onto itself. Specifically, when we
reached Eq. (4.96), we had to make the coordinate trans-
formation (4.98), which, as a real map, sends the region

e2k
0
þ >

1

1 − e−2q
0
þ
; ð4:102Þ

into the region

e2kþ > 1 − e2qþ : ð4:103Þ

We need to consider what happens beyond those regions,
which can be accessed by Lorentz-transforming the
momenta, and cannot therefore be ignored if we want to
preserve Lorentz invariance. This issue deserves further
investigation.

V. NONSCALAR FIELDS

In a noncommutative context, a natural notion of non-
scalar fields is provided by differential calculus [62]: gauge
fields are one-form fields, and the role of the Faraday tensor
(or curvature tensor for Yang–Mills theories) is played by
the exterior differential of the one-form field (plus possible
commutators between gauge fields).
In κ-Minkowski, the existence of differential calculi is a

well-studied problem [28,63,64]: it turns out that for a
generic choice of the noncommutativity parameters vμ,
there is no 4-dimensional noncommutative differential
calculus that is also κ-Poincaré covariant, and the smallest
differential calculus is 5-dimensional, with one of the
basis one-forms not being the differential of a coordinate.
This, however, is true unless vμ is lightlike. In this case,

which is the one we are interested in, the following
differential calculus:

½xμ; dxν� ¼ −ivνdxμ þ igμνgρσvρdxσ; ð5:1Þ

satisfies all properties we may be interested in: it is
covariant under κ-Poincaré coaction:

dx0μ ¼ Λμ
ν ⊗ dxν; ð5:2Þ

and it satisfies the Jacobi rules with two noncommutative
coordinates (only if vμ is lightlike):

½xμ; ½xν; dxρ�� þ ½xν½dxρ; xμ�� þ ½dxρ; ½xμ; xν��
¼ vαvαðgρμdxν − gνρdxμÞ ¼ 0: ð5:3Þ

Perhaps unsurprisingly, the algebraic properties of dxμ are
identical to those of the difference between two coordi-
nates, Δxμbc ¼ xμb − xμc:

½xμa;Δxνbc� ¼ −ivνΔxμbc þ igμνgρσvρΔxσbc; ð5:4Þ

as well as the properties under κ-Poincaré coaction:

Δx0μbc ¼ Λμ
ν ⊗ Δxνbc: ð5:5Þ

One can then define all of the familiar structures of
noncommutative differential geometry [62]: an exterior
derivative satisfying the Leibniz rule dðfgÞ ¼ dðfÞgþ
fdðgÞ, which can be written in terms of the Lorentz-
covariant momentum space coordinates (4.28):

dðfÞ ¼ ðξμ ⊳ fÞdxμ; ð5:6Þ

and an undeformed exterior algebra:

dxμ ∧ dxν ¼ −dxν ∧ dxμ ð5:7Þ

which makes the algebra generated by xμ and dxμ into an
associative superalgebra. The basis 4-form turns out to be
central:

xμdx0 ∧ … ∧ dx3 ¼ dx0 ∧ … ∧ dx3xν; ð5:8Þ

which implies that the algebra of 4-forms is isomorphic to
the algebra of zero-forms (scalar fields). One can then
introduce a Hodge-� operator as a left- and right-A-linear
involutive map from n-forms to (4 − n)-forms, and a metric
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(understood as a sesquilinear map of one-forms), and they
act on the basis one-forms exactly like their commutative
counterparts. Finally, one needs an integral, understood as a
linear map from 4-forms to the complex numbers (which,
because 0- and 4-forms are isomorphic, induces an integral
on scalar fields too). This integral, in order to be compatible
with the noncommutativity and Poincaré covariant, needs
to break the cyclicity property (i.e.,

R
fg ¼ R

gf), relaxing
it into a twisted cyclicity [64]:

Z
fg ¼

Z
gðT ⊳ fÞ; ð5:9Þ

where T is a grouplike function of the momenta,
ΔT ¼ T ⊗ T, SðTÞ ¼ T−1. In 1þ 1 dimensions, for exam-
ple, one can show that T ¼ expð2kþÞ. The twisted cyclicity
property represents an obstacle in the definition of a
gauge theory. In fact, in the noncommutative case, the
standard electromagnetic Lagrangian, 1

4
F ∧ �F, is not

invariant under gauge transformation, but rather covariant:
1
4
F ∧ �F → 1

4
U†F ∧ �FU, and this expression, once inte-

grated, will not be invariant unless the integral is cyclic.
Ways out of this problem have been identified (in the

case of “timelike” κ-Minkowski models). One approach
[65] involves nonquadratic, nonlinear electromagnetic
actions, and nonlinear gauge transformations. Another
approach [66] seeks to “twist” the differential calculus
and the notion of connection in a way that makes the action
invariant under gauge transformations. We are optimistic
that these approaches can be applied also to the “lightlike”
κ-Minkowski model of interest here, but we leave this to
future studies.

VI. CONCLUSIONS

We solved the main problem that obstructed the
definition of a genuine κ-Poincaré-invariant QFT on
κ-Minkowski, defined in terms of “noncommutative”
N-point functions. This was the problem of defining in a
κ-Poincaré-covariant way the algebra of functions of more
than one point, which we called A⊗κN . We did this at the
expense of generality: a covariant algebra can be defined
only for the “lightlike” κ-Minkowski algebra vμvνgμν ¼ 0.
We introduced a natural representation of the algebra

A⊗κN , and found that translation-invariant coordinate
differences belong to the maximal Abelian subalgebra of
A⊗κN , and therefore they are, for all practical purposes,
equivalent to commutative functions.
This result has a consequence that hugely simplifies the

interpretational framework of the QFT: all N-point func-
tions are translation-invariant, and they are therefore
commutative. A QFT on κ-Minkowski can then be defined
in terms of a set of standard N-point functions, just like any
QFT on the ordinary, commutative Minkowski space.

We studied explicitly the possible 2-point functions,
defined by requiring that they solve the κ-Klein–Gordon
equation and that they are κ-Poincaré invariant. This gives a
Wightman function that is equivalent to the commutative
one, with all the dependence on the deformation parameter
κ disappearing from the theory. All 2-point functions that
can be built from it, like the Pauli–Jordan function, will be
therefore undeformed and independent of κ.
With the Pauli–Jordan function, we can impose quan-

tization rules for free complex κ-Klein–Gordon fields, and
look for a representation of the quantum fields in terms of a
bosonic oscillator algebra. One finds that the algebra of
bosonic oscillators is deformed, similarly to other results in
the κ-QFT literature (e.g., [36,37]). However, the commu-
tation relations of our creation and annihilation operators
seem to involve divergent/complex momenta, an issue
whose investigation we leave to future works.
The fact that our 2-point functions are undeformed

motivates the conjecture that all N-point functions of the
free theory might turn out to be undeformed and independent
of κ, which would make the theory completely indistin-
guishable from the ordinary, commutative free scalar QFT
on Minkowski space. Indeed, this is what happened in
[4,51–56] (see in particular [56]) for arbitrary scalar QFTs on
theMoyal–Weyl noncommutative spacetime. In theseworks,
extending the noncommutative algebra of coordinates to a
deformed tensor product algebra which is covariant under
noncommutative Poincaré transformations, resulted in a
mostly-commutative algebra, in which all translation-
invariant coordinate differences are commutative, just like
our result. Both the free and the interacting scalar QFT turn
out to be equivalent to the commutative/undeformed one
[55,56]. We proved a similar result only for the free theory,
and only for 2-point functions. One of the first priorities for
further works in this direction will be to investigate whether
the same holds for all N-point functions in the free theory,
which seems likely. Then, the following step will be to
investigate an interacting theory, and check whether a
dependence on κ finally appears in interaction vertices.
Another interesting issue is the relation of our con-

struction with the approaches based on star products
[33–36,38–40,42,44–46]. In particular, [41] focuses on
the lightlike κ-Minkowski spacetime, and, despite being
based on a star-product approach whose fundamental
ontology is that of commutative functions, it derives some
results that are in line with ours so far: the free scalar QFT is
undeformed, and a dependence on κ seems to be confined
to the interacting theory. An approach based on star
products is not obviously related to ours, based on a
covariant braided N-point algebra of coordinates, but it
would be very interesting if one could prove a relation
between the two. In the case of QFT on the Moyal
noncommutative spacetime, the two approaches are fun-
damentally different and lead to different predictions for the
N-point functions [55].
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We have shown how to have, for a free two-point
function a κ-Poincaré invariant on shell theory, by entirely
avoiding the Lorentz-breaking parts of the mass shell. This
workaround might not work in the interacting theory, which
requires loop integrations of off-shell momenta. If these
parts of momentum space cannot be avoided, perhaps a
breaking of Lorentz symmetry can be avoided by incor-
porating into our theory the plane waves that are obtained
by boosting the waves belonging to the “Lorentz-breaking”
mass-shell beyond the patch of momentum space that
is covered by our coordinates. Then, as can be seen in
relation (4.47) and the like, one gets logarithms of negative
numbers, i.e., complex frequencies. This might indicate
some sort of damping, and deserves further scrutiny.
We can certainly say that there is still much to understand

about the physical implementation of symmetries in QFT
on κ-Minkowski (and other) noncommutative spacetimes.
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APPENDIX: DETAILS OF SOME
CALCULATIONS

1. Plane wave identities

In this Appendix we explicitly derive some useful
identities. We explicitly reintroduce κ, as it will be
expedient in some cases to have it be a different constant.
We start with the commutation rules

½T; X� ¼ i
κ
X; ðA1Þ

can be used repeatedly to prove inductively that

TX ¼ XðT þ i=κÞ;
T2X ¼ XðT þ i=κÞ2;

..

.

TnX ¼ XðT þ i=κÞn; ðA2Þ

therefore

eip0TX ¼
X∞
n¼0

ðip0Þn
n!

TnX

¼ X
X∞
n¼0

ðip0Þn
n!

ðT þ i=κÞn ¼ Xeip0T−p0=κ; ðA3Þ

and

eip0TX ¼ e−p0=κXeip0T;

eip0TX2 ¼ e−2p0=κX2eip0T;

..

.

eip0TXn ¼ e−np0=κXneip0T; ðA4Þ

so we conclude that

eip0Teip1X¼eip0T
X∞
n¼0

ðip1Þn
n!

Xn¼
X∞
n¼0

ðip1Þn
n!

e−np0=κXneip0T

¼eie
−p0=κp1Xeip0T: ðA5Þ

The product of two right-ordered plane waves is then

eip1Xeip0Teiq1Xeiq0T ¼ eip1Xeie
−p0=κq1Xeip0Teiq0T

¼ eiðp1þe−p0=κq1ÞXeiðp0þq0ÞT: ðA6Þ

similarly, left-ordered plane waves combine in the follow-
ing way:

eip0Teip1Xeiq0Teiq1X ¼ eiðp0þq0ÞTeiðeþq0=κp1þq1ÞX: ðA7Þ

Weyl-ordered waves are a little bit more tricky. First we
need to find their relation with right-ordered waves. To do
so, expand Eq. (A5) to first order in p0:

eip1XT ¼
�
T þ p1

κ
X

�
eip1X; ðA8Þ

by induction,

eip1XTn ¼
�
T þ p1

κ
X

�
n
eip1X; ðA9Þ

and so

eip1Xeip0T ¼ eip0ðTþp1
κ XÞeip1X: ðA10Þ

Multiply now both sides by e−ip1X from the right, and
reorder the left hand side with T to the right:

eip1Xeip0Te−ip1X ¼ eip0ðTþp1
κ XÞ;

eið1−e−p0=κÞp1Xeip0T ¼ eip0ðTþp1
κ XÞ; ðA11Þ

if we now rename p0 ¼ q0 and
p1p0

κ ¼ q1 we get the desired
expression:
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eiðq0Tþq1XÞ ¼ eið
1−e−q0=κ

q0=κ
Þq1Xeiq0T: ðA12Þ

Now that we know how to translate Weyl-ordered waves
into right-ordered ones, we can use the combination law of
the latter to derive the one of the former. Consider, in fact,
the following rewriting of Eq. (A6):

eið
1−e−

p0
κ

p0=κ
Þp1Xeip0Teið

1−e−
q0
κ

q0=κ
Þq1Xeiq0T

¼ ei½ð
1−e−

p0
κ

p0=κ
Þp1þe−

p0
κ ð1−e−

q0
κ

q0=κ
Þq1�Xeiðp0þq0ÞT; ðA13Þ

converting the right-hand side into a Weyl-ordered wave
through the inverse relation to (A12),

eik1Xeik0T ¼ e
ik0Tþð k0=κ

1−e−k0=κ
Þk1X: ðA14Þ

we get:

eiðp0Tþp1XÞeiðq0Tþq1XÞ

¼ e
iðp0þq0ÞTþið ðp0þq0Þ=κ

1−e−ðp0þq0Þ=κÞ½ð
1−e−

p0
κ

p0=κ
Þp1þe−

p0
κ ð1−e−

q0
κ

q0=κ
Þq1�X: ðA15Þ

We can now use the identities we just proved to
demonstrate Eq. (4.26). We start with the expression of
a product of ordered plane waves:

e1½k�e2½q� ¼ eik−x
−
1 eikþx

þ
1 eiq−x

−
2 eiqþx

þ
2 ; ðA16Þ

we want to order the expression by having all x−a coor-
dinates to the left, and all xþa to the right. We need to
commute eikþx

þ
1 and eiq−x

−
2 , where the coordinates xþ1 , x

−
2

close the subalgebra ½xþ1 ; x−2 � ¼ 2ix−2 of the algebra (4.11),
so, using Eq. (A6) above with κ → 1=2:

eikþx
þ
1 eiq−x

−
2 ¼ eie

−2kþq−x−2 eikþx
þ
1 : ðA17Þ

The coordinates x−a commute with each other (4.11),
therefore our expression takes the form

e1½k�e2½q� ¼ eiðk−x−1þe−2kþq−x−2 Þeikþx
þ
1 eiqþx

þ
2 : ðA18Þ

Since the coordinates xþa close the subalgebra ½xþ1 ; xþ2 � ¼
2iðxþ1 − xþ2 Þ (4.11), it is convenient to make the linear
redefinition

X ¼ xþ1 − xþ2
4

; T ¼ −
xþ1 þ xþ2

4
;

xþ1 ¼ 2ðX − TÞ; xþ2 ¼ −2ðX þ TÞ; ðA19Þ
so that we have another copy of the timelike κ-Minkowski
algebra ½T; X� ¼ iX, and use the rule to combine twoWeyl-
ordered κ-Minkowski waves (A15) (recall that we are using
the convention κ ¼ 1):

eiðαTþβXÞeiðγTþδXÞ ¼ eiðαþγÞTþið ðαþγÞ
1−e−ðαþγÞÞ½ð1−e

−α
α Þβþe−αð1−e−γγ Þδ�X;

ðA20Þ

since eikþx
þ
1 eiqþx

þ
2 ¼ ei2kþðX−TÞe−i2qþðXþTÞ we can obtain

our desired expression by making the replacements
α ¼ −2kþ, β ¼ 2kþ, γ ¼ −2qþ, δ ¼ −2qþ. The result is

eikþx
þ
1 eiqþx

þ
2 ¼e

−2iðkþþqþÞTþ2ið kþþqþ
1−e2ðkþþqþÞÞ½ð1−e2kþÞ−e2kþð1−e2qþÞ�X

¼e
2iðkþþqþÞ½ð1−2e

2kþþe2ðkþþqþÞ
1−e2ðkþþqþÞ ÞX−T�

: ðA21Þ

Replacing the expressions for X and T we obtain the final
expression, Eq. (4.26):

e1½k�e2½q� ¼ eiðk−x−1þe−2kþq−x−2 Þ

× e
i kþþqþ
1−e2ðkþþqþÞ½ð1−e2kþÞxþ1 þe2kþð1−e2qþÞxþ

2
�
: ðA22Þ

2. Proof of the Lorentz transformation formula
for plane waves

First of all, we need to write the lightlike κ-Poincaré
commutation relations (3.2) in a more convenient way,
adapted to the 1þ 1-dimensional lightlike case:

½aþ;ω� ¼ 2iðeω − 1Þ; ½a−;ω� ¼ 0; ðA23Þ

where a� ¼ a0 � a1, and ω, again, is the rapidity
Λ0

0 ¼ coshω. We are first interested in the adjoint action
of exponentials of the translation parameters a½k� ¼
eik−a

−
eikþa

þ
on arbitrary functions of the rapidity. Since

a− commutes with ω it will go though, instead aþ is
canonically conjugate to the coordinate ρ ¼ 1

2
log ðe−ω − 1Þ:

�
aþ;

1

2
log ðe−ω − 1Þ

�
¼ ½aþ; ρ� ¼ i; ðA24Þ

therefore it acts like a translation for ρ:

eikþa
þ
fðρÞe−ikþaþ ¼ fðρ − kþÞ; ðA25Þ

which corresponds to a nonlinear action on the co-
ordinate ω:

eikþa
þ
fðωÞe−ikþaþ ¼f½−logð1þðe−ω−1Þe−2kþÞ�: ðA26Þ

This has been sometimes described [3,27] as a “back-
reaction” of the momenta on the Lorentz sector, part of
the “bicrossproduct” structure of the κ-Poincaré group,
represented as a right action:

⊲ ∶SOð1; 1Þ ×R2 → SOð1; 1Þ;
ω ⊲ k ¼ − log ð1þ ðe−ω − 1Þe−2kþÞ: ðA27Þ
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From the definition of ⊲ (A25), it follows that it is a
coalgebra homomorphism for the coproduct, i.e.,

ðfðΛÞ⊲ pÞ⊲ q¼ fðΛÞ⊲ ðp⊕ qÞ; fðΛÞ⊲ o¼ fðΛÞ;
ðA28Þ

and the adjoint action of translations on rapidities can be
written:

a½k�fðωÞa†½k� ¼ fðω⊲ kÞ;
a†½k�fðωÞa½k� ¼ fðω⊲ S½k�Þ: ðA29Þ

The next step is to calculate the opposite action, the
adjoint action of any function fðωÞ on the translation
parameters aμ. The a− parameter commutes withω and will
therefore be invariant. Regarding aþ, from the commuta-
tion relations with ω, and its immediate consequence
½aþ; gðωÞ� ¼ 2iðeω − 1Þg0ðωÞ, we deduce

efðωÞaþ ¼ ðaþ − 2iðeω − 1Þf0ðωÞÞefðωÞ; ðA30Þ

iterating the procedure:

efðωÞðaþÞ2 ¼ ðaþ − 2iðeω − 1Þf0ðωÞÞefðωÞaþ ¼ ðaþ − 2iðeω − 1Þf0ðωÞÞ2efðωÞ;
efðωÞðaþÞ3 ¼ ðaþ − 2iðeω − 1Þf0ðωÞÞ3efðωÞ;

..

.

efðωÞðaþÞn ¼ ðaþ − 2iðeω − 1Þf0ðωÞÞnefðωÞ; ðA31Þ

by induction, we get

efðωÞeikþaþ ¼ eikþðaþ−2iðeω−1Þf0ðωÞÞefðωÞ: ðA32Þ

Now consider the plane wave e1½k� and apply a
κ-Poincaré transformation to it:

e01½k� ¼ eik−ðe−ωx−þa−ÞeikþðeωxþþaþÞ; ðA33Þ

using the commutativity of a− and ω,

eik−ðe−ωx−þa−ÞeikþðeωxþþaþÞ ¼ eik−e
−ωx−eik−a

−
eikþðeωxþþaþÞ:

ðA34Þ

Consider now Eq. (A32), for the following choice of
function: fðωÞ ¼ i

2
log ðeω − 1Þxþ. It takes the form:

eikþðaþþeωxþÞ ¼ e
i
2
log ðeω−1Þxþeikþaþe−i

2
log ðeω−1Þxþ ; ðA35Þ

which can be immediately substituted in (A34):

e01½k� ¼ eik−e
−ωx−eik−a

−
e

i
2
log ðeω−1Þxþeikþaþe−i

2
log ðeω−1Þxþ :

ðA36Þ

Now we want to bring the exponential eikþa
þ
to the right,

with the help of Eq. (A26):

eik−e
−ωx−eik−a

−
e

i
2
log ðeω−1Þxþeikþaþe−i

2
log ðeω−1Þxþ ¼ eik−e

−ωx−eik−a
−
e

i
2
log ðeω−1Þxþe

−i
2
logð ð1−e−ωÞe−2kþ

1þðe−ω−1Þe−2kþÞx
þ
eikþa

þ

¼ eik−e
−ωx−e

i
2
log ðeω−1Þxþe

−i
2
logð ð1−e−ωÞe−2kþ

1þðe−ω−1Þe−2kþÞx
þ
eik−a

−
eikþa

þ

eik−e
−ωx−e

−i
2
logð e−ωe−2kþ

1þðe−ω−1Þe−2kþÞx
þ
eik−a

−
eikþa

þ ¼ eik−e
−ωx−e

i
2
log ½1þeωðe2kþ−1Þ�xþeik−a−eikþaþ ¼ e1½λðk;ωÞ�a½k�; ðA37Þ

which reproduces the formula (4.47) for λðk;ωÞ.

3. Calculation of the Lorentz-invariant two-point functions

We will calculate here the expression (4.83)

Fðxμ1 − xμ2Þ ¼
Z

d2k
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðkÞ

p
e1½k�e†2½k�fðkÞ

δðk− − ωrðkþÞÞ
1
2
je2kþ − 1j ;
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that is implied by the choice (4.83) for the fðkÞ function:

fðkÞ ¼ f−Θð−kþÞ þ fþΘðkþÞ;

Fðxμ1 − xμ2Þ ¼
Z
R
dkþ

e2kþ
1
2
je2kþ − 1j e

ið 2m2

e2kþ−1
Þðx−

1
−x−

2
Þeið

e2kþ−1
2

Þðxþ
1
−xþ

2
Þf
�
kþ;

2m2

e2kþ − 1

�

¼
Z

∞

0

dy
jy − 1j e

ið2m2

y−1Þðx−1−x−2 Þeið
y−1
2
Þðxþ

1
−xþ

2
Þf
�
1

2
log y;

2m2

y − 1

�

¼
Z

∞

−1

dz
jzj e

ið2m2

z Þðx−
1
−x−

2
Þeið

z
2
Þðxþ

1
−xþ

2
Þf
�
1

2
logðzþ 1Þ; 2m

2

z

�

¼ f−

Z
1

0

du
u
e−ið

2m2

u Þðx−
1
−x−

2
Þe−ið

u
2
Þðxþ

1
−xþ

2
Þ þ fþ

Z
∞

0

dz
z
eið

2m2

z Þðx−
1
−x−

2
Þeið

z
2
Þðxþ

1
−xþ

2
Þ; ðA38Þ

Reintroducing κ, the expression above becomes:

Fðxμ1 − xμ2Þ ¼ f−

Z
1

0

du
u
e−ið

2m2

κu Þðx−1−x−2 Þe−ið
κu
2
Þðxþ

1
−xþ

2
Þ þ fþ

Z
∞

0

dz
z
eið

2m2

κz Þðx−1−x−2 Þeið
κz
2
Þðxþ

1
−xþ

2
Þ

¼ f−

Z κ
2m

0

du
u
e−imð1uÞðx−1−x−2 Þe−imuðxþ

1
−xþ

2
Þ þ fþ

Z
∞

0

dz
z
eimð1uÞðx−1−x−2 Þeimuðxþ

1
−xþ

2
Þ

¼ f−

Z
log κ

2m

−∞
dχe−imðcosh χ−sinh χÞðx−

1
−x−

2
Þe−imðcosh χþsinh χÞðxþ

1
−xþ

2
Þ

þ fþ

Z
∞

−∞
dχeimðcosh χ−sinh χÞðx−

1
−x−

2
Þeimðcosh χþsinh χÞðxþ

1
−xþ

2
Þ

¼ f−

Z
m sinh ðlog κ

2mÞ

−∞

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p e−ið
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
−pÞðx−

1
−x−

2
Þ−ið

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
þpÞðxþ

1
−xþ

2
Þ

þ fþ

Z
∞

−∞

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p eið
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
−pÞðx−

1
−x−

2
Þþið

ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
þpÞðxþ

1
−xþ

2
Þ

¼ f−

Z
m sinh ðlog κ

2mÞ

−∞

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p e−2i½
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
ðx0

1
−x0

2
Þþpðx1

1
−x1

2
Þ�

þ fþ

Z
∞

−∞

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p e2i½
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
ðx0

1
−x0

2
Þþpðx1

1
−x1

2
Þ�: ðA39Þ

For what regards the function Hðxμ1 − xμ2Þ defined in Eq. (4.87), a similar calculation gives:

Hðxμ1 − xμ2Þ ¼
Z
R
dkþ

1
1
2
je2kþ − 1j e

−ie2kþð 2m2

e2kþ−1
Þðx−

1
−x−

2
Þe−ið

1−e−2kþ
2

Þðxþ
1
−xþ

2
Þh
�
kþ;

2m2

e2kþ − 1

�

¼
Z
R
dkþ

e−2kþ
1
2
je−2kþ − 1j e

ið 2m2

e−2kþ−1
Þðx−

1
−x−

2
Þeið

e−2kþ−1
2

Þðxþ
1
−xþ

2
Þh
�
kþ;

2m2

e2kþ − 1

�

¼
Z

∞

0

dy
jy − 1j e

ið2m2

y−1Þðx−1−x−2 Þeið
y−1
2
Þðxþ

1
−xþ

2
Þh
�
−
1

2
log y;

2m2

y − 1

�

¼
Z

∞

−1

dz
jzj e

ið2m2

z Þðx−
1
−x−

2
Þeið

z
2
Þðxþ

1
−xþ

2
Þh
�
−
1

2
logðzþ 1Þ; 2m

2

z

�
; ðA40Þ

and, if hðkÞ ¼ h−Θð−kþÞ þ hþΘðkþÞ:
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Hðxμ1 − xμ2Þ ¼ hþ

Z
1

0

du
u
e−ið

2m2

u Þðx−
1
−x−

2
Þe−ið

u
2
Þðxþ

1
−xþ

2
Þ þ h−

Z
∞

0

dz
z
eið

2m2

z Þðx−
1
−x−

2
Þeið

z
2
Þðxþ

1
−xþ

2
Þ

¼ hþ

Z
m sinh ðlog κ

2mÞ

−∞

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p e−2i½
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
ðx0

1
−x0

2
Þþpðx1

1
−x1

2
Þ�

þ h−

Z
∞

−∞

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p e2i½
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
ðx0

1
−x0

2
Þþpðx1

1
−x1

2
Þ�: ðA41Þ
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