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We discuss the obstruction to the construction of a multiparticle field theory on a x-Minkowski
noncommutative spacetime: the existence of multilocal functions which respect the deformed symmetries
of the problem. This construction is only possible for a lightlike version of the commutation relations, if one
requires invariance of the tensor product algebra under the coaction of the x-Poincaré group. This
necessitates a braided tensor product. We study the representations of this product, and prove that
k-Poincaré-invariant N-point functions belong to an Abelian subalgebra, and are therefore commutative.
We use this construction to define the 2-point Whightman and Pauli—Jordan functions, which turn out to be
identical to the undeformed ones. We finally outline how to construct a free scalar x-Poincaré-invariant
quantum field theory, and identify some open problems.
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I. INTRODUCTION

The x-Minkowski spacetime [1-3] is a deformation of
the algebra of complex-valued functions on Minkowski
spacetime, C[R*!] into the noncommutative *-algebra .4,
generated by the coordinate functions'

[x”,x”]zi(v"x”—v”x”), u=0,....3, (*)"=x (1.1)
K

where v are four arbitrary real numbers, and the x*
operators generalize the Cartesian coordinate functions.
The constant x has the dimensions of an inverse length,
supposedly identified with (or at least related to) the Planck

energy. From now on, we will work in units in which « = 1.
|

AN ] =N, @AY, (A", A%
Al = A @ a* +a' @ 1 lar, AV,
S[A] = A7, S[a"] = —a*, [a*

e[AY] = &, ela*] =0, A* N g"/’
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ISee [4-6] for another example.

The above relations close a Lie algebra, known as an(3), of
which A is the universal enveloping algebra. Notice that
all these algebras, for any choice of v#, are isomorphic to
each other. This can be seen by observing that the following
0yi _ i 0 0

linear redefinition of generators: x' — 1%x' — v'x, x¥ —

vixl + = H I xo puts the algebra in the form:

O] =1, ] =0,  ij=123 (1.2)
K

which is the original [3] and best-known form of the x-
Minkowski algebra. The algebra (1.1) is invariant under the
following Hopf algebra:

[(Aﬂ v¥ — UM)A}/ + (Aau.ga/} - gyﬁ)vﬂgﬂyL
i(vfa* —vva*),

(1.3)

g, Al)/,tAo—yg/m = -
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where g, is any symmetric invertible matrix, and ¢" is
its inverse. While the metric is usually taken to be the
standard Minkowski one, 7,, = diag(—1,+1,+1,+1),
other choices are possible, including some degenerate
cases [7]. When g, = n,,, this Hopf algebra (or quantum
group [8]) is called x-Poincaré [1-3,9-14]. In this case the
relations (1.3) are to be understood as the deformation
of the algebra of functions on the Poincaré group,
C[ISO(3, 1)] into a noncommutative Hopf algebra P,, in
which the coproduct A, antipode S and counit & are
undeformed, and simply codify the Lie group structure
of ISO(3,1), while the commutation relations acquire a
dependence on x, and make the algebra of function non-
Abelian. The operators a* (translations) and A¥, (Lorentz
matrices) are coordinate functions on the group, and the
matrices A¥, leave ¢*¥ and its inverse invariant in the
ordinary, algebraic sense expressed by the last line of
the equation above. Moreover, Eqs. (1.3) leave the com-
mutation relations (1.2) invariant, in the sense that the
following left coaction:

=N, Qx*+a" Q1, (1.4)

is an algebra homomorphism for the relations (1.2); in other
words, k-Minkowski is a k-Poincaré-comodule algebra [8].
This coaction can be seen as the rule to transform a
k-Minkowski coordinate into a x-Poincaré transformed
one, which is an object that lives in the tensor product
P, ® A, the noncommutative version of the algebra of
functions on ISO(3, 1) x R>!

Depending on the choice of eigenvalues of the matrix
9u» the Hopf algebra (1.3) might be a quantum-group
deformation of the Poincaré, Euclidean or ISO(2,2)
groups. Moreover, there are also degenerate cases in which
gy 18 not invertible, but the algebra is still well defined, and
it might, for example, correspond to a deformation of the
Carroll group [7]. According to the particular form of g,,,
i.e., in which directions its eigenvectors are pointing, the
coordinates x°, x!, x?, and x* might have different nature. In
the Poincaré case g, = 1,,, for example, x¥ is the timelike
direction and x' are the spacelike ones. But any other choice
is possible (and linear combinations thereof). Similarly, the
vector v in Eq. (1.1) could take any form, and if it is
pointing in the 0 direction, v# = &), then the commutation
relations reduce to (1.2), in which x° is the only non-
commuting coordinate. In all other cases, the direction of
v* indicates which linear combination of x* coordinates is
the noncommuting one. Of course, one can act on the
generators x* with any (commutative) linear transforma-
tion, and obtain an algebra with a different v vector,
invariant under a quantum group (1.3) with a different
matrix ¢*. In the end, in the case that ¢"* is invertible, what
counts is the relative orientation of ¢# with respect to
the eigenvectors of ¢#*. In the degenerate cases things are
more complicated. For a complete treatment of all the

physically-inequivalent models, and the corresponding
momentum spaces, see [7].

Once we have a generalization of the algebra of functions
on a manifold, the natural context to look for physical
applications of the model is field theory, whose basic
ontology is that of fields, which are multiplets of functions
on the spacetime manifold. Classical (in the sense of
unquantized, 7 — 0 limit) noncommutative models based
on action functionals and equations of motion are fairly
well understood [12,15-32]. There is, however, no current
agreement in the literature on the correct formulation of
noncommutative quantum field theory (QFT), although
there is a sizeable literature on the subject [33-41].
Recently, there has been a resurgence in interest for
QFT x-Minkowski [41-48], and perhaps the most impor-
tant difference between approaches regards the basic
ontology. Most approaches are based on a commutative
algebra of functions, over which a nonlocal “star” product,
involving an infinite number of derivatives of the fields, is
defined. This star product provides a representation of the
basic commutation relations (1.2) or (1.1), and the theory is
treated as a commutative-but-nonlocal QFT, defined, for
example, through a regular path integral. Assuming such an
ontology might be problematic from the operational point
of view [49], and it is not clear whether x-Poincaré
symmetries can be implemented as symmetries of the
theory. But most importantly, such an ontology naturally
leads one to define the QFT in terms of “commutative”
N-point functions (defined, e.g., through the functional
derivatives of a partition function with respect to the
commutative fields) that do not address the issue of
multilocal functions, which we describe in the following.

In this paper we want to attack the main obstruction that
prevented the full development of a QFT based on a truly
noncommutative ontology: the fact that, in order to work
with QFTs, it is necessary to have a good notion of
multilocal functions, because the theory is entirely deter-
mined by its N-point functions. From an algebraic point of
view, we would like to have, to begin, a notion of “function
of two points.” This is a function on the Cartesian product of
two copies of Minkowski space, R*»! x R*!. The commu-
tative algebra of such functions is C[R*! x R*!], which,
under the canonical isomorphism, can be identified with the
tensor product algebra C[R*!] ® C[R*!], which is canoni-
cally defined as generated by the coordinate functions:

=@l d=1®ah (1.5)

with the identity 1%2 = 1 ® 1, and the product is simply
xix4 = x5x4. So, in the noncommutative setting, it appears
natural to refer to the tensor product algebra .A®? generated
by (1.5), where

b, ] = it — ),
i, 5] = 0.

[y, 5] = i(vxs — 0¥ x3),

(1.6)
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This algebra is a good Lie algebra (it satisfies the Jacobi
rules), and gives rise to a perfectly legitimate universal
enveloping algebra. It also makes sense that the coordinates
x| and x; are the operators that generalize to the non-
commutative settings the coordinates of point 1 and point 2,
which are distinct points which we should be able to choose
independently.2 Since, by construction, the states on the
tensor product algebra allow us to localize x| and x5
independently around arbitrary classical coordinates without
interference of the state of one point on the other, we could
be quite satisfied with this formulation. However, there is a
big problem: extending the x-Poincaré coaction (1.4) to A®?
in the canonical way:

=N, QXY+ at @ 192
xz—A/‘ ®x2+a"®1®2

=AM, X Q1+a"®1Q1,
AM,RNRX+d"QR1IR1,
(1.7)

the algebra (1.6) is not left invariant by it. In technical terms,
(1.6) is not a x-Poincaré-comodule. Specifically, it is the

commutation relations between x| and x; that are not
covariant. In fact,

[Af,. @] @ (x] = x5) + [a*.a*] ® 192 # 0.

(1.8)

1.4 =

There is a way out of this problem: relax the commu-
tativity of the two sides of the tensor product algebra,
[¥{,x4] =0, in order to make Eq. (1.8) covariant. The
structure we end up dealing with is a “braided tensor
product,” first introduced by Majid in the 1990s [8,50]. A
similar concept has been used in [4,51-56] to properly
define QFT on the Moyal/canonical spacetime. In [37] the
necessity to extend the x-Minkowski algebra to multiple
points in a nontrivial way was recognized. The novelty in
our work is that we require that the proposed solution of the
problem provides a coherent k-Poincaré comodule. In the
|

My BV poG o ap
(X1 XY = iahevP v +iv” (bhex'T +

AN X XS]+ (A, av )X+ [a A ]xS

following, we will address the issue and find the conditions
under which it can be solved.

A related alternative, which we will not pursue here,
would be to enforce the symmetry via a Drinfeld twist, and
coherently generate a deformed tensor product, deformed
star product and other structures, along the lines of [57].
Twists for x-Minkowski symmetries have been studied,
they are not exempt from problems [58], a recent review,
with references, is [59].

II. THE BRAIDED TENSOR PRODUCT ALGEBRA
Let us first consider the algebra of two points. We have to
request that it closes two xk-Minkowski (1.1) subalgebras:

b ] = i — ot [, ] = i — o),

(2.1)
with yet-to-be-determined cross-commutators:

X438 = i (), %00 0), (2.2)
and it should form a left-comodule under the following left
coaction:

XH =N x5 +a", a=1,2, (2.3)
of the x-Poincaré group (1.3). Finally, we have to request
that the commutators (2.2) satisfy the Jacobi rules. In
addition to these definitive requests, we can make a few
reasonable assumptions: the function f*(x;, x,, v) should
go to zero when »* — 0, and we can assume it is
polynomial in x%. Under this ansatz, we can expand it in
powers of v#:

(X, x5] = idhev" 17 + ivP (Dhox§ + chox3).  (2.4)
where apa, bﬁ,, and cpg are numbers. Imposing the comod-
ule condition on this commutator:

HY /a /o
ChoXs

+[a*,a*] = idhevP1° + ivP (BheA° )% + cﬁ';/\",lxé)

+1/Up(b55'a +Cpo'a )

IN',NY e vt ot + A N 0t (B

T

*With “choosing a point,”

loa v v
X5 C05) = a0 10 + 00 (B AT+ A )

+ [N a1+ @ N xS+ [a ]+ ivf (Dpea” + cpoa”).

(2.5)

in the noncommutative setting, we mean choosing a state on the algebra, which can provide a degree of

localization. In fact, classical points can be described through the commutative algebra of functions on a manifold as limits of functions
peaked around a choice of coordinates (e.g., Gaussians), which tend to a Dirac delta. In the noncommutative setting this limit is
unattainable except for special points (e.g., the time axis, [14]), because of uncertainty relations. However, one can introduce a notion of
“fuzzy points,” corresponding to maximally localized states [14,47,48].
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The different powers of v* in the above equation have to
vanish separately. The quadratic term gives
AN a0 = aherP?, (2.6)

which cannot be solved if a’p”; # 0, so we have to put it to

zero. We then split the terms that are linear in x4 from the

one that does not depend on it, which reads:
[a*, @] = i(v'a® — v¥a") = ivP(bhy + Che)a®.  (2.7)

This is solved by

B = & — (2.8)

The two terms that are linear in x| and, respectively, in x5
vanish iff

INAY D 4 [N, @), = inP DA,
IN N 0T+ [t N )87, = 0P cha A7, (2.9)
Using  the  k-Poincaré  relations [A*,,a"] =
i[(A# 0™ = V)T, + (A% g5 — 1,5)0P0*7] we can write
these two equations as

A"pA”av’lbf{’f — VDA%, + (A v — V)N, 4 (A% 1 — npﬁ)vﬁn”’“}ép, =0,

AﬂpADavlCﬁy - Upcﬁtyr/\ar - [(Aya”a - UU)A”O‘ + (Aaanaﬂ - ’/[zrﬂ)Uﬁ’/Iw}(sgr =0.

(2.10)

To solve these equations, we should recall that A, is an SO(3, 1) matrix, which can therefore be expanded in powers of an

antisymmetric matrix €, as

Equation (2.10) reads, at first order in *:

eapt (1S5 + el = &

which are equivalent to

AN, =)+ €, + O(e?). (2.11)
€a/}71/1(77”ab§: + ﬂyabﬁlf _ 5/37 /)abﬁl; + 6/)’/151/1 po 5/315(1/1,1@) =0,
0, = 3 ) =0 2.12)
nu[abﬂ” + bfffwﬂa]” — 80 b 4 e, 5+ 8P 5% = 0,
n”[“cf]: + cﬂﬂna]” - 5[/3,11"]%’;; —pplashlgr — 6P 8%, = 0. (2.13)

The two equations above are satisfied by

b%; = 5”/)5D6 - ’7’”’7,)07 CZI;' = _5Up5ﬂo' + W”D’Ypm
(2.14)

which satisfies also Eq. (2.8). A quick calculation reveals
that this perturbative solution is exact at all orders in €,,.. In
fact, replacing (2.14) into Eq. (2.10) the two equations
reduce to v* (" — A¥,A¥,*°) = 0, which is of course
satisfied as long as A*, € SO(3,1).

We then found a general solution of the comodule
problem:

(64, 8] = [0t — 08— g (5 — )] (2.15)

|
Notice now that the above commutators can be written in
the following form:

[ 2] = it — v — 0 (x5 - x0), (2.16)
which reduce to the usual (generalized) x-Minkowski
commutators when a = b:

[z, x4] = i(vixy — v¥xh), (2.17)
and, moreover, remain consistent even if we let the indices
a, b run on an arbitrarily large set of labels. We have a
comodule regardless of the number of points we are
considering.

In order to have a proper (associative) comodule algebra,
our commutators need to satisfy also the Jacobi rules:
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[xa, [x, xe]] + [ e, xa]] + [x¢, [xa, x3]] = 0. (2.18)

A straightforward, but tedious, calculation reveals that

e, [ ]+ [, ) +
=~ (o = ) +

+ [xe, [xa, xp]

”p” (xa - xc)

+ 1 (x = xa)].
(2.19)

and the only way that the right-hand side can vanish is
that v*v, = 0.

We obtained a significant result: the only x-Minkowski-
like algebra that admits a braided tensor product construc-
tion as a x-Poincaré comodule is the lightlike one, in which
the deformation parameters v form a lightlike vector. Our
result is coherent with the one found by Juri¢, Meljanac and
Pikuti¢ [59] using a Drinfeld twist. They too obtained that a
covariant deformation of the tensor product can only be
obtained for the lightlike case. This particular choice for the
vector v is remarkable for several other reasons, and the
result we just derived makes it the only viable algebra, in
the k-Minkowski family, to construct a well-defined quan-
tum field theory.

III. REPRESENTATION OF THE BRAIDED
x-MINKOWSKI ALGEBRA

Let us review the results obtained so far. The following
algebra, which we will call A®V, generated by the identity
together with 4N generators xh,a=1,...,N:

xh € A®N,
(3.1)

[xa, ] = i0"xG — v xy, =" e (x5 — 7).

is a left comodule for the x-Poincaré group:

[@*, a*] = i(v'a” — v a), [A#,,A,] =0,
la®, A*,] = i[(UﬂAﬂﬂ — VA7, + n p)vpr] “,

(3.2)

(Aﬂunﬂp

with respect to the coaction x = A¥,x% + a*, if the vector
v is lightlike (007, = 0).

We now proceed to study the representations of the
algebra (3.1). To start, notice that the relative positions:
|

N
Moyl = Dawl =0, > Ya=0,
a=1
[z, u] = 2iu, [z, v] = 2iv,
[, yal = i (ya = ya) = (86 + 8)ya),

[z, 4] = (8] = &) (va — ¥2) —

[z, w] = 2iw,
(v, y4] = i(* (v = »9) —
(85 + &) (v +ya))-

Axyy, = Xa — X}, (3.3)
close an Abelian subalgebra:
[Axly, AxZy] =0 V¥ ab.c.d (3.4)

These however are wildly redundant. If we are interested in
identifying the maximal Abelian subalgebra we should
introduce the “center of mass” coordinates:

1
X = N;x’;, Ve= =, (3.5)
then it is easy to show that
Vi, Yy =0 V a,b. (3.6)

The y, are 4N variables, but 4 of these are redundant,
because they satisfy the linear relation y_V_, y4 = 0. So we
have identified a 4(N — 1)-dimensional Abelian subalge-
bra. What about the remaining four variables, xt,? Their
commutators with y* give a linear combination of y%, and
they close a k-Minkowski subalgebra with each other:

[xXem. ¥4] = i(0#"*¥1pov”yG = V¥ Ya).

[xEms X4m] = i(VF X4, — V' Xem), (3.7)
however the component of x/,, along v* commutes with all
the y%:
W = 1, V' xty = [w, ya] =0, [Xem, W] = ivtw, (3.8)
we identified a (4N — 3)-dimensional Abelian subalgebra,
generated by y; and w, while the three components of x4y,
perpendicular to v* are irreducibly noncommutative.
Without loss of generality, we may assume v =
(1,1,0,0) (taking v lightlike necessarily selects a special
spatial direction). Then the only noncommutative coordi-
nates are z = x0, + xl,, u=x2, and v = x3,,, and the
braided tensor product algebra is described by the follow-
ing relations:

[u, v] =0,
(8 + 8)va),

[, w] = [v,w] =

(3.9)
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We can write a representation of the above algebra. The operators vy, a = 1, ...,
spectrum, while the Nth coordinate is the a linear combination of the others: yy, = — > "= yi.

represented as the following Hermitian operators:

N-1

A , 9

By (s o Ve w) = 1) (yé 52~V
a

. 0

Ul//(ylfy- » YN=1> )—l <y61{8 3—)73
a=1 a

N M M 4,0 9 1

Zl//(yl,---,yN_l’W):_ZI yaay1+ya

Introducing the operators that generate the simultaneous
Lorentz transformations of the N — 1 coordinates y’j:

M = 12 (M aap) (3.11)

we notice that we are representing u, v, and z as:

aﬂ

u:M12—M02 U:M13—M03
d
=2M"0 + 2iw—— + i, 3.12
Z + 2iw B +i (3.12)
which reproduce the algebra [z,u|=iu, [z,v]=iv,

[u,v] =0, as can be immediately verified by using the
Lorentz algebra commutators [M*, M?°| = i(n*? M* —
nprva _ l,lvaMﬂp + l,I;wMup)_

It is not the first time that the x-Minkowski algebra is
represented as linear combinations of Lorentz generators,
see for example [7,60]. Our braided algebra admits a
representation in terms of Lorentz generators acting on
the space of 4(N — 1) spacetime points, and a dilatation
operator on the real line of w.

Accordingly, the natural Hilbert space for the represen-
tation (3.10) is L?(R*¥=3), with inner product:

(oly) = / 1oy ay WOy w)

xy (¥, ... (3.13)

ayl]lv_lﬂw)’
and all our operators are self-adjoint with respect to this
Hilbert space.

IV. k-POINCARE-INVARIANT QUANTUM
FIELD THEORY

We will now lay the ground for a consistent construction
of a QFT on the k-Minkowski noncommutative spacetime.
The first step is to define what we mean with QFT in this
context. As is well known, a QFT on a commutative
spacetime (in particular Minkowski) is entirely defined

v,

N — 1 and w are multiplicative with real
N-1 & Finally, u, v, and z can be

0 0
0 2 n I
9 — ’W b
Ya 9)% Ya 9}}2)‘//()’1 YN-1 )
0 8>
0 3 n I
— Ya —Ya W(y s ooy YNZ 7W)7
oy3 oyl ! N-l

o 1

W= WO i) 3.10)

in terms of all N-point functions [61]. We can import this
definition into our noncommutative setting, however now the
N-point functions have to be replaced with elements of our
braided N-point algebra, which are noncommutative oper-
ators. However, the k-Poincaré invariance that characterizes
our theory comes to our aid. It turns out that all
k-Poincaré invariant elements of our braided algebra (as
N-point functions should be) are elements of the Abelian
subalgebra of coordinate separations x; — x}, (or the center-
of-mass coordinates y}). As operators, therefore, they can all
be simultaneously localized arbitrarily well, and they can be
effectively treated as bona fide commutative functions.

It is clear that all the commutative Poincaré-invariant
polynomials remain invariant under the coaction (2.3).
These are the functions of the (squared) proper distances:

/ /

My (Xa —2xp ) (xi = x})

=1, (Xa—x}) (x4 —xp) Yab=1,.. N. (4.1)
It would be interesting to check whether these are the only
Poincaré-invariant polynomials in the noncommutative
case, however we do not have a proof of this at the
moment. If we focus on functions that can be Fourier
transformed (which is what we are interested in, if we want
to define the N-point functions), in the commutative case
one can see that

fxa) = / U RV T (k) e Do KN g D i
(4.2)

is equal to f(x%) only if f(k/‘j) o« 5* (3N k%) (translation
invariance), and f(A,*k4) = f(k,) (Lorentz invariance).

In the noncommutative case, the coordinate algebra is
replaced by a Lie algebra (3.1). Therefore plane waves, i.e.,
exponentials of the generators, are replaced by Lie group
elements, and Fourier transforms admit a definition in
terms of a group average [14,47]. We can represent a
generic group element once we choose a factorization, i.e.,
an ordering choice. For example:

126009-6
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ikl

oikh ik

ety (4.3)
covers all group elements, upon varying k. over all of R*V.
Once we introduced this ordering prescription, all Fourier-
transformable functions can be represented as a linear
combination of group elements:

flxl) = / Ak F (RGN (4.4)
It is now convenient to split the coordinates into center-of-
mass coordinates y;, which are translation-invariant and
commutative, and coordinates of the center of mass xfm,. We
already found the algebra that these coordinates close,
Eq. (3.7), and the main feature we would like to highlight is
that the algebra realizes an action of the x4, generators on
the y% ones, because the xin generators close a subalgebra,
and their commutators with y} gives a linear combination
of yj,. Consider now this fact:

fxt) = / Akt AN F(RE) et it

_ / d*K ‘d4kN}‘(kz)eiq}ly‘; ei(k‘qu)ﬂyg B .ei(k'EE\kZEEL..EEkN")Dq,’}'y‘;,ei(k‘EﬂkZEE...EEkN)Mx’C‘m_

ek Vataen) = oidi pikixem (4.5)
where g5 = q;, (k. k{. k5. k§) is a certain function of kj.
The above equation is always true, and is a consequence
of the Baker—Campbell-Hausdorff formula when kjjx’c‘m
belongs to the subalgebra acting on kj v Now consider this
other identity, which is always true for Lie groups:
eikixem iy, — i(K'>q"),Y; pikixt, (4.6)
where > is the adjoint action of the group on itself. Finally,
the subgroup properties imply the existence of an associa-
tive deformed sum of momenta H: R* x R* — R* which
realizes the product of the subgroup generated by xbp:

(4.7)

Armed with the three identities listed above, we can rewrite
Eq. (4.4) in the following form:

eiPitem pi¥em — i (PBQ),Xem

eikﬁxgm . eiqf;’y’;, eik,’,"x'c‘m

(4.8)

This proves that, if f(k;j) o 8@ (k' BL*E...BkY), the dependence on xf, completely disappears. A necessary condition for
f(x%) to be k-Poincaré-invariant is that k' Bk*HE...BLY = 0 so that the dependence on x&y, drops. In fact, transforming all

coordinates according to the coaction (2.3) we get

~, -1 5 aa| 2 oy Al 2 N-1 N
) = / K ATk N K DN KB B g

i (K BRI ), A, i (K BB BRY),

and the a*-dependent exponential disappears only if
k'Bk*M...BkY =0. Therefore translation invariance
alone ensures that N-point functions are commutative,
because they are elements of the Abelian subalgebra
generated by y/.

Let us now take a deep dive into the structures that are
necessary to build a consistent QFT on x-Minkowski. We
will begin with the properties of plane waves, which, as we
already remarked, are Lie group elements, and can be
mapped into points on a pseudo-Riemannian manifold,
momentum space. We will study all the structures that
spacetime noncommutativity induces on said momentum
space, and their relation. We will focus in particular on the
issue of ordering and coordinate systems on momentum
space: each ordering prescription of polynomials of non-
commutative coordinates correspond to a choice of coor-
dinates on momentum space, and changes of ordering
coincide with diffemorphisms on momentum space. One of
the guiding principles of our analysis will be that all
physical quantities (and, in particular, N-point functions),

(4.9)

|
will have to be independent of the ordering choice, and
therefore they will have to be Riemannian invariants on
momentum space.

From now on, we will focus on 141 spacetime
dimensions, which simplify significantly the calculations,
although everything we say can be generalized to arbitrary
dimensions.

A. Plane waves paraphernalia

In the 1 + 1-dimensional case, it is convenient to rewrite
the algebra (3.1) in lightcone coordinates:

N -
X, +x X —x
+ 0 1 0__*a TXq 1 _*a ~Xa

xi=xVExl, x0= o a= (4.10)

the commutation relations take now the form

[xi.xf] = 2i(xf —x)), (xi.x;] = 2ix;,,

(X7, x)] = =2ixg, [x7,x;] =0. (4.11)
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When a = b, the coordinates of a single point close the
algebra

+

[xF, x5] = 2ixg, (4.12)

which is identical (up to a normalization factor) to the
timelike 1 + 1-dimensional x-Minkowski algebra an(1).
The natural ordering prescriptions for polynomials then
involve putting the x coordinate to the right (resp. left)
of x;:

P )" ()™ iR = (x3)" (x)" (4.13)
)" ()™ = ()" (k@)™ (4.14)
or symmetrizing them:
() s = 5 () () + 5 ) ) (A1)
or, also, Weyl-ordering them:
) ()" w = %io (xg)m="( (4.16)

The linear maps : g, : i1, : :g and : :y are Weyl maps, that
go from the algebra of commutative polynomials to the
algebra (4.11), see, e.g., [18]. These maps are isomorphism
from our noncommutative algebra of functions to the
commutative one, and the commutation relations (4.12)
allow to translate from one map to the other, e.g.:
axfxg ir=(abag 20y = (b xg +ixg) tw, (4417)
The linear nature of Fourier theory allows us to use these
Weyl maps to map commutative Fourier-transformable
functions (understood as functions on momentum space)
to noncommutative functions with a certain ordering. As we
will show, the same noncommutative function will admit
different Fourier transforms, one for each choice of ordering,
and these momentum space functions are related to each
other by general coordinate transformations, i.e., diffeo-
morphisms of momentum space [47].

1. Plane waves of a single coordinate

For illustrative purposes, from now on we will work with
right-ordered and Weyl-ordered functions, showing at each
step how to translate one description into the other. Again,
keep in mind that our guiding principle is that no physical
quantity should depend on the ordering choice. Introduce
the right-ordered plane waves, which provide a basis for
Fourier theory:

e k] = el gikxa (4.18)
they are labeled by (k_,k,) € R% and are closed under
Hermitian conjugation:

S(k) = (—e**k_,—k,). (4.19)
The map S:R? — R? is an involution (S o § = id), called
antipode. Since, as we remarked earlier, e,[k| span the
whole group AN(1) associated to the Lie algebra
[x5,x;] = 2ix,, the map S realizes the group inverse,
and its properties follow from it. Another group axiom
that can be represented as a map on the coordinates k. is
the product:

k@®q=(k_+e %

e [kle,[q] =e,[kDq], tq_ky+qy),

(4.20)

now the map @ :R? x R? —» R? will be referred to as
coproduct, or momentum composition law. Its properties
follow from the axioms of Lie groups:

kD ®p=k®(qDp)=kDqgp,
k@ S(k)=Sk)® k= o,
Sk & q) = S(q) ® S(k). (4.21)

The first rule expresses the associativity of @, the second is
the fact that S is a bilateral inverse for @, where o = (0, 0)
are the coordinates of the origin of momentum space, and
the third expresses the antihomomorphism property of the
group inverse. The momentum-space origin o is the neutral
element for the composition law/coproduct:

(4.22)

and the plane waves with momentum o are the identity
element of the algebra:

0Dg=qdo=gq,

e o] = 1. (4.23)

2. Translation-invariant products
of two-point plane waves

The product of two plane waves of different coordinates
e k|, ey[g] lies within the Abelian subalgebra of the
functions of coordinate differences, x| —x; (i.e., it is
translation-invariant), if the momenta of the two waves
are the antipode of each other. There are four ways to
combine two such waves:
e[KeS[kl.  e[kleskl. ealklel[k]. elKle[kl.  (4.24)
the first and the third expressions are Hermitian conjugates,
as are the second and fourth. We can now calculate
explicitly the functional form of the product of two waves:
e, [k]es[q] = et et el gla-y - (4.25)
where we would like to order all “+” coordinates to the
right of the “—"" ones. A lengthy but elementary calculation,
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explicitly shown in Appendix, reveals that:

e1[kfesfg] = /07 )

i Ktar
X e 1-2k+tat)

[(1=e?+)xT e+ (1—e24+ )xy ]

. (4.26)

For g = S(k) = (—e*+k_,—k,), the whole expression
turns into:
e, [k]ej[k] = ei-0i—) @il =) (4.27)

where we introduce the notation (which will be useful

later):
2k, _ 1
&=k, §+=<e 5 )

The expression above depends only on (x{ —x5), as
anticipated. Had we chosen to put the dagger on e;[k],
we would have obtained:

(4.28)

el [Kley k] = eir-(=3) gir+(x/ =) (4.29)
where
e 2k —1
po=— k=8, xi= (T) =58(¢,).
(4.30)

Notice how the functions &, (k. ) map R? into a half-plane
of R?, because &, > —%. This has significant conse-
quences, which we will comment upon below. Here we
just observe that, if one multiplies the two plane waves e [k]
and e} [k], which have arbitrary frequencies k, € R?, the
resulting translation-invariant wave (4.29) cannot have any
frequency. The coordinate differences x| — x} in (4.29) are
multiplied by frequencies that belong to a subregion of R?.
The other two possible translation-invariant products of
plane waves can be obtained from scratch with an analo-
gous calculation, or, equivalently, by taking the Hermitian
conjugate of the expressions (4.27) and (4.29), which
simply amount to changing the sign of the exponents (or
swapping coordinates 1 and 2), because the coordinate
differences (x| — x;) commute with each other:

es[kle} [k] = (er[klej [k])T = emie-(T)eibi=0) - (4.31)
|

S(q) = (1S > $)(q) = ¢~ [(

2k,
- <‘ (W) k-, —"+)

e3[klei [k] = (e} ke, [k])" = e~#-(i—) e =0) - (4.32)

We can now describe everything with a different order-
ing convention. For example, defining a Weyl-ordered
plane waves can be written as

iq_xX;+ig. X, —1 — e
— plq-X, T4 Xq —
fala-.ai]=e e, 2 q-.q4 |

(4.33)

where the last expression comes from Eq. (A12) with
k — 1/2.If k. are the frequencies of a right-ordered plane
wave e(ky), and g, are those of a Weyl-ordered wave
f(g+), their relation is

1 —_ €_2q+
ke =—]q_ ki =gq.,
< 24, >‘] + =49+

q- = (m) ko g =k,

which implies that e(ks.) = f(q.).
Let us now look at the composition law of Weyl-ordered
waves:

(4.34)

Filklfilq]l =f1lk & q], (4.35)

the map @' is explicitly calculated in Appendix: replacing x
with 1/2 in Eq. (A15) we get

2k +q.)
(k& q)-= <1_ez<k+q>
1- e‘2k+> 1 — e 24+
X || —— Jk_ 4 72k (7) q_}
[( 2k 294

(k@ q)y = ki +q.. (4.36)
The antipode map:

flal =f18'(q)] = S'lk] = k. (4.37)

can also be calculated by combining the right-ordered
antipode, S(k) = (—e*+k_,—k,), with the coordinate
change (4.34), which we will call ¢:

28(k),

S ECICCN

1—e"

=(=q-.—4+). (4.38)

ko—(1—e™24+) )24,
ky—qyq

126009-9



FEDELE LIZZI and FLAVIO MERCATI

PHYS. REV. D 103, 126009 (2021)

which confirms the above result that the S’ map just puts a
minus in front of both components of g. Finally, we can
check where the origin of momentum space is mapped by
the coordinate change: o'(q) = (¢~ 0 0 o ¢)(q) = (0,0),
which is consistent with the fact that f,[¢g] » 1 when
g-=¢q;=0.

We are now ready to study the products of plane waves
of different points. The calculation is similar to that for
right-ordered waves:

1—e2k+ 1—e~24+

fi [klfz[CI] :ei( Sk e () g x;

i kytay 2k )+ 4 o2k 2 +
« ell_pz(k++‘l+>[(1_e )l e (1-e24+ )xy ]

. (4.39)

and setting g = S’(k) gives a translation-invariant product
of waves:

. 1-e~2k ) (e — 1) (x—x
iR = o SR I (g.40)

3. Lorentz transformations of momenta and plane waves

Under the Poincaré coaction (2.3), our plane waves
transform in the following way:

e, [k] = e,[A(k,A)]alk], (4.41)

where A is a nonlinear representation of the Lorentz group:

A:R2xS0(1,1)>R2,
Ak, A), N =A(k, N ,A,), A(k,8,) =k, A(0,A) =0,
(4.42)

and

alk] = eik-a"eikia”, (4.43)
is an ordered plane wave of the translation parameters (the
notation a® = a® & a' should be clear at this point).

In order to calculate A(k,A), we could exploit the
homomorphism property of the coaction and Poincaré-
transform the two sides of Eq. (4.27), which depends only
on the difference between coordinates and therefore is
translation-invariant:

¢ [Ke!T[k] = eié- (=) it (=)
= PN () T =) (4,44)
since
(T =xy)=e? (7 —xg), (T —xT) =t (x —xy),
(4.45)

where  is the rapidity, A’ = A'; = coshw, A%, = Al =
sinh w. Consistency demands that

e2MkE). _ 1

l(k’ 5)— = e—a)g_’ )

= etog, | (4.46)

which admits the solution
Mk, &) =e™E_ = e k_,

A(k.£), = 3log (1+2¢7€,) = Llog 1 + e(e% ~ 1]
(4.47)

The “—” component transforms in an undeformed way,
while the transformation of the “+4” component is non-
linear. In a power series in the momentum:
Mk &), =kpef —Kref(ef = 1)+ O(KY).  (4.48)

One can easily verify that A(k, £) is a representation of the
Lorentz group:

WeE+8) =2k 8. E),  AkO) =k  (449)
and that it leaves the origin unchanged: (o, &) = 0.

We could be content with having found the map A from
Eq. (4.27), but we used Eq. (4.41) dictating the form of the
Poincaré transformation of a plane wave, and therefore we
do not yet have a proof. One needs to go through the pain of
proving it with a direct calculation, which however allow to
derive the form of A(k, A) directly, providing a check that
the Poincaré coaction is indeed a homomorphism of the
coordinate algebra, showing that the two sides of Eq. (4.27)
transform in the same way. This proof is in Appendix.

Consider now the transformation rule of the translation-
invariant products of two waves (4.27), e, [k]e}[k]. As we
have seen above, the coordinate differences x’f — x’z‘ trans-
form following an underformed, linear Lorentz transfor-
mation, x}' — x%' = A¥ (x| — x}), and the functions &, (k)
appearing in front of x{ — x5 transform according to the
(inverse) undeformed Lorentz transformation &, (k) =
A?,&,(k), which can also be written as a transformation
of the momentum parameter k¥, but in this case the
transformation is nonlinear. In other words, :fﬂ provides
a linear representation of the Lorentz group:

éﬂ M(IC’ é)] = fy[k}/\”#. (450)
If we now consider the transformation law of the other
translation-invariant product of waves, that is not just the
Hermitian conjugate of the first one, Eq. (4.29), we obtain

¢\ [kles k] = a’ [Kle{[2(k. w)]es[A(k. w)a[k]

=a'[kle,[S[A(k, w)]]es[A(k, w)]alk]. (4.51)

Notice the following important identity:
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Ak, w) = SASTK). @ < k)] (4.52)

which implies also S[A(k,®)] = A(S[k],® < k)), which
can be used in the expression above:

a'[kle,[S[A(k, w)]]le;[A(k. @)]a[K]
a’[kle [A(S[K].w <1 k))]e;

]

= €| [A(S[K]. 0 <t k <t S[k])]a [k]e:[2(k. w)]a[k]

= e1[A(S[k]. w)]es[A(k. @ <1 S[k])]a" [k|a[k]

= ej[A(k, @ < S[K])]e[A(k. @ <1 S[K])]. (4.53)
Notice that the transformation rule of k, is not
k, = 4,(k,@ < k), as it in the case of e,[k]e[k]. The
transformation rule is instead

k, = 4,(k, 0 <1 S[k]), (4.54)

the novelty being in the transformed rapidity which is now
w <1 S[k]. A direct calculation confirms that this particular
rule makes the function y,[] transform linearly:

XulAk, 0 <1 S[K])] =y [KA”,. (4.55)
so that
€ [k|ey[k] = etV (xi=x0) — i [i(ko<b)](x—x3)
= el Ak, w < k)]es[A(k, 0 <1 k)]. (4.56)

B. Geometry of momentum space

In [7] we studied the general theory of x momentum
spaces. Following the techniques illustrated in that paper,
one can study the geometries of momentum space that are
compatible with the lightlike x-Minkowski space we are
interested in. For our purposes, however, it is sufficient to
observe that the coordinates &, transform linearly (like
light-cone coordinates) under momentum-space Lorentz
transformations, and therefore said transformations will
leave invariant the following light-cone-coordinates
Minkowski metric:

ds* = dé_dé.. . (4.57)

In right-ordered coordinates k.., which are related to £, by
Eq. (4.28), this metric reads

ds* = e**+dk_dk.,. (4.58)

It is easy to verify that the transformation k. — A(k, &), is

an isometry of ds’>. As we observed after showing

Eq. (4.28), the functions £, do not represent a map from

R? to R?. They rather map R? to the semiplane &, > —1.

o

N

FIG. 1. The momentum space of 1+ 1-dimensional lightlike
xk-Minkowski.

The border £, = —1/2 of our coordinate system coincides
with a lightlike line (see Fig. 1).

The presence of a finite border implies that our momen-
tum space, despite being locally Lorentz-invariant, is not so
globally. This is reflected also in the form of the Lorentz
trasnsformations of k., Eq. (4.47), which become singular
at a finite value of & when e?*+ < 1, and the argument of the
logarithm in 4, (k, &) = Jlog [1 + eé( 2k — 1)] is negative
for all values of £ above —log (1 — e?+). The situation is
perfectly analogue to that of timelike k-Minkowski, with its
half-de Sitter momentum space whose border can be
reached with a finite Lorentz transformation. In that model,
a way out of this Lorentz-breaking feature was to assume a
different global topology for momentum space, by quo-
tienting it by a reflection in the ambient space, thereby
obtaining an elliptic de Sitter momentum space, which is
closed under Lorentz transformations. It is not obvious
whether we can do something like that here.

The geodesics of momentum space are obviously
straight lines in the coordinates £, which in coordinates
k. are
ko(s)=as+ k2, ki(s)= %log (Bs + 1), (4.59)
The geodesic distance between the origin o = (0,0) and
the point (kL, k%), along the geodesic connecting o to k!,

k_(s) = kLs, k (s) = Llog[(e** —1)s + 1], is then:

1
2k (e — 1)ds = \/2kL (2 —
IR %

We can define a mass-shell operator as any function of the
Geodesic distance (the difference between different choices
of the function will amount to a nonlinear redefinition of
the mass, which is easily shown to be Lorentz-invariant:

(4.60)

C=k_(e**=1)

=8¢, (4-61)
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FIG. 2. The dispersion relations (4.63) (left) and (4.65) (right).

1. Mass shells

The k. coordinates are deformations of light-cone
coordinates. In special relativity, if we want to describe
the mass shells through dispersion relations, light-cone
coordinates are a bit different from the familiar energy-
momentum ones. In terms of energy £ and momentum p,
the mass-shell condition reads E?> — p?> = m?, and solving
this with respect to E gives the two dispersion relations of
positive- and negative-frequency waves: E = j:\/m.
In light-cone coordinates the mass shell is

p+p-=m?, (4.62)

and solving with respect to one of the coordinates, e.g., p_,
gives one single solution: p_ = % This is sufficient to
+

describe both positive- and negative-frequency solutions
with one single function: the former correspond to positive
values of p,, and the latter to p, < 0. In the case of
imaginary mass, m? changes sign in Eq. (4.62), and the
mass-shell we are describing are the tachyonic ones.

Our k-deformation does not change the basic qualitative
picture: the mass-shell relation is (the normalization is
chosen in order to match Eq. (4.62) in the k — 0 limit):

1
C(k) = Ek_(e”‘+ -1)= m2, (4.63)
which can be solved for k_ as:
2m?
ko =w,.(ky) = ey (4.64)

and the positive-frequency mass-shells correspond values
of k, > 0, while the negative-frequency ones correspond to
k. < 0. Notice that w, € (—co0, —=m?) U (0, 00). The mass
shells in this coordinate system are represented in
Fig. 2 (left).

If we decided to use Weyl-ordered waves instead of
right-ordered ones, the mass shell function would take a

different form. Using the relation (4.34) between these two
coordinate systems, we get the following form for the mass-
shell function:

1
Clg)==(e2 122 (4.65)
4 q+
and the dispersion relation now takes the form
4 2
. s (4.66)

q-=o,(q,) = (&2 —1)2°

again, g, <0 describes positive-frequency waves, and
q., < 0 negative-frequency ones. The mass shells in this
second coordinate system are represented in Fig. 2 (right).

C. The k-Klein—Gordon equation

Consider the following equation:

Cr ¢(xa) = m2¢(xa)’

where the Casimir operator’s action on noncommutative
functions is defined in Fourier-transform as

(4.67)

o flx,) = / dkn/—g (R F(R)C(K)e K.
flxg) = / /=g (De, K]

The generic solution to Eq. (4.67) is

(4.68)

blxa) = / her/=g(R3(C(k) — m2)(K)e K]
- [ = 52 bwe, . (469)

3le*t =1

we can now split the function ¢ (k) according to its values
on the two mass-shells, the Lorentz-invariant one with
k. > 0 and the other one with k, < O:
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P(k) = a(k)O(k,) + bk, )O(=k.),  (4.70)
and we get:
+o00 e2k+
= dk, ———a(k k
#x0) = |77 ke rate e
0 62k+ _
+/ dk. T bk )eg(ky).  (4.71)
—00 3 |€ - 1‘
where we called the on-shell waves
e, (ki) = e.w, (k). k] (4.72)
Notice now that e} (k) = e,(—k, ), so that
N +o dk 62k+
P(x,) = /0 e -
x[a(k, e (k.) + e B(=k, el (k,)].  (4.73)

In the following, we will need to commute on-shell plane
waves of different points. The key identity we need to
|

calculate these commutator is Eq. (4.26), which we
reproduce here for convenience:

e [kle,[q] = eilk-xg+e ™ qx;)

i ki tas ki) ot 4 o2k 2 +
xell—e2<"'++‘l+)[(l_€ +)ag e (1=e20+ x|

We can then ask whether commuting two on-shell waves
gives again a product of on-shell waves, i.e.:

e(ky)ex(qs) = ea(qy)e (K), (4.74)
this equation is solved by
1 e2kitay)
kK.o==1
T2 Og(62k+(62"+ -1)+ 1)’
1
q, = Elog (e*k+ (e —1) +1). (4.75)

We can find similar relations for Hermitian conjugate on-
shell waves. The whole algebra is summarized here:

1 1
er(kJea(a.) = e (F10g (e (0 = 1)+ 1) e (K g = log e (0 = 1)+ 1),

1 1
er(kJel(a,) = ef (. = gtole (1 = ) + 2] e (K, = Jlog e (1 = e + ],

, 1 1
el(kJea(a,) = e (Glog (e + e = 1] = k. o] Glog e + e ~1] -, ).

el(kJel(a,) = e} (1og (1 = (1 = )] Yol (k. + 4, =3[l = 20 (1 =)

(4.76)

D. Two-point functions

We are ready to study in full generality two-point functions, built from the elements of the noncommutative two-point
algebra A®+? that can be written as Fourier transforms, that are x-Poincaré invariant and that solve the x-Klein—-Gordon
equation. A reasonable proposal for such a function, based on what we know from commutative QFT, is something like this:

/ ke, [Kled [KIf (K)3(C(k) — m?).

(4.77)

where of course f(k) is supposed to be a Lorentz-invariant function of the momentum. However the above function is not

Lorentz-invariant. In fact:

/ d*ke; [K]ey [k]f (k)(C(k) — m*) = / dke, 2k, w)|e3 [A(k, )] f (k)3(C(Kk) — m?)

4 / ke, [eS K £ ()(CK) - m?).

det <L(k’ _w)">

ei[qlel[q]f (k)5(C(q) — m?)

ok,
(4.78)
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Instead, inserting the square root of minus the determinant
of the momentum-space metric:

Pt =)= [ /=90 [KeS K7 (05(C(0) =)

2
(4.79)

where /—g(k) = e**+, makes the integral Lorentz invariant.

Now we worry about another issue: ordering depend-
ence. We could have used the Weyl-ordered basis of plane
waves to construct the function:

/ a7/~ @ lg 2)5(C'(q) - )
/ Po/ Tl )2 22920

4q,
(4.80)
where ¢ =[5=, C(g)=Cla..q- (), f'(a)=

flg..q_(¢ 2;;1)]. However, we can prove that the two

functions are identical. In fact, under the coordinate change

q, =k, q_= % one has:
d*q\/—4 (q) = d®k/=g(k).  filq] =e[k].
fila)=ellkl,  W(g)=h(k), Cl(q)=C(k),  (481)

and therefore

[91f'(9)5(C'(q) — m?)

sk — o, (k,)
e -1

/dZCI\/_fl

_ / Phy/=ger Kl K17 (k) (4.82)

The function f(k) appearing in our two-point function
should be Lorentz-invariant, and the functions that are used
for commutative QFT two-point functions, e.g., Feynmann
propagators, Wightman functions, and Pauli-Jordan func-
tions, are all constants on the forward and backward light
cones in momentum space. In our case we can write:

fk) = f-0(=k.) + f10(k.), (4.83)

where f_ and f are constants. This function gives f, on
the forward light cone and f_ on the backwards one, and it
is easy to see that it is Lorentz invariant, because the sign of
k. is not changed by on-shell Lorentz transformations.
This expression, however is not globally Lorentz-covariant:
the backwards light cone is not closed under Lorentz
transformations, and this will make the f_ term non-
invariant. In Appendix we calculate explicitly the form
of F(x| —x4) that is implied by the choice (4.83), and the
result is (reintroducing «):

F(xll‘ ~ xf‘z) 5 /‘msinh(loféﬁ) dp o2l [ m? (6029 +p(xl —x})]
2 2
—00 p —I— m

ny /wdip
e /0% + m?

This expression above is identical to the integrals appearing
in the undeformed 2-point functions (written in light-cone
coordinates), except for the Lorentz-breaking integration
boundary m sinh (log5%) in the first integral.

Our conclusion is that, in order to have a x-Poincaré-
invariant function of type F(x| —x3), we have to set
f_ =0. We have found a first x-Poincaré-invariant two-
point function, based on the translation-invariant wave

combination (4.27), e, [k]e] [k]:

F = [ /=gl el KO )3 - )

VP =) pi=d) (4.85)

:/_wm

21/ P (=) + (e} =a))] (4.84)

|
We could have instead used the translation invariant
combination of plane waves introduced in Eq. (4.31),
e,[k]e] [k], but this is just the Hermitian conjugate of the
wave combination used before. Moreover, the two-point
function built with it coincides with F with x{ and x5
exchanged, because:

F (2 = ) = (= ). (4.86)
The wave combination (4.29), e| [k]e, [k] is not obviously

related to (4.27), so we need to check what we get if we use
it to define our two-point function:

H(xX| —x5) = /dzkel[k] L[kh(k)S(C(k) — m?),  (4.87)
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which is Lorentz-invariant because, from Eq. (4.56), e} [k]e,[k] = e[[1(k,w <1 S[k])]e,[A(k, @ <1 S[k])], and the Jacobian of

the transformation g, = 4,(k,w <1 S[k]) is one.

Again, the plane wave combination (4.32), e; [k]e;[k] is just the Hermitian conjugate of (4.29), and again, the two-point
function built with it coincides with H with x{ and x, exchanged, because H' (x| — x5) = H(x5 — x}). In Appendix we

calculate H (x| —x%), and the result is

m sinh (logs%) d .
H(x’l‘ _xg) _ h+/ g %6—21[\/p2+m2(x?—xg)+p(x{—xé)]
—00 \/ p —|— m
+h /°°dipezi[\/p2+m2(x?—x2)+p(x}—x;)], (4.88)
oo /P2 + m2

so, if we set 1, = 0 we have a genuinely Lorentz-invariant
function. This function, however, turns out to be identical to
F (modulo a constant factor).

We conclude that we can use F(x{—x}) and its
Hermitian conjugate to define all two-point functions that
we need, which will have the appropriate commutative
limit and invariance properties. Moreover, these two-point
functions will be indistinguishable from their commutative
counterparts. For example, the Wightman function can be
defined as:

Ay —2t) = / Phr/=g (e, keSO, )5(C(k) — ),
(4.89)

and the associated Pauli-Jordan function will be the anti-
Hermitian part of Ay:

Apy(t = %) = / Pky/=g(8) (e [MeL[K] — ex ke[ [K])

x Ok )5(C(k) —m?). (4.90)

The 2-point functions we find are identical to the
commutative ones (in fact, all the dependence on the
constant x drops out). We do not have a similar proof, at
this stage, for the N-point functions, but we would not be
surprised if they all turned out to be undeformed. One could
then ask whether, by introducing interactions, one recovers
a dependence on « and a departure from the N-point
functions of commutative field theory on Minkowski space.
Assuming that the free theory turns out, indeed, to be
entirely undeformed, a natural question then arises whether
such a theory can be distinguished in any way from a free
scalar field on commutative Minkowski space. One issue
we can identify immediately is the fact that, despite the
“two-particle sector” is undeformed, the “one-particle
sector” is deformed. A manifestation of this is, for example,
the fact that we are not allowed to act on our N-point
functions with standard, commutative Poincaré transfor-
mations: we have to use the noncommutative operator

|

algebra (1.3). This algebra does not allow a sharp locali-
zation of states, because the generators are subject to certain
uncertainty relations [14]. Then one cannot, for example,
make a perfectly sharp translation and Lorentz transforma-
tion at the same time (unless (A*)) =&, with zero
uncertainty, i.e., the two observers have sharply zero
relative velocity).

Another difference between this noncommutative free
scalar theory and its commutative counterpart arises in the
creation and annihilation operator algebra, which we shall
discuss in the following subsection.

E. Field quantization

We can use the Pauli-Jordan function to define a
quantization, i.e.,

[(x1). d7 (x2)] = iApy(x — X5).
[(x1). (x2)] =0,

A

(@7 (x1). 8" (x2)] = 0. (4.91)

where now the Fourier coefficients of our on-shell field
are assumed to be non-necessarily commutative operators,
which however commute with x/:

N +00 e2k+
d(x, :/ dk, ————
( ) 0 +%|€2k+—1|

x (alky)e,(ky) +eb" (ky)el(ky)),  (4.92)
and the Hermitian conjugate field will be
~ +oo 62k+
¥ = dk, ——
¢’ (xa) /0 LR
x (@' (kyJen(k,) + e bk, Jenk, ). (4.93)

A

[QAS(XI ),¢T(x2)] =

Consider  first  the
iApy (x| —x4), which implies:

equation
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2k +ay)
7 [ e, dqﬂ‘%_ {a(k,)a (g, e (k. eb(a,) - at(g,)alk. el (g e (k)

e — 1]

=/ dk+W e (k,)es(k,),

00 0 e2k+ ~

|7 7 aida, o Db e Jeata,) = bla.Jatk Jesla e (k. )} =0,
o Jo ple*t —1f[e*t —1

oo 0 €ZQ+ N

7 ey 61008 (el ek, ()8 (el e k.)) =
77 ks g bl (el — bla)B ke el )

o 02K+ .
= — dk, ———ey(ky)e (k.),
A +%|€2k+—1|62( +ey(ky)

recall Eq. (4.76), and rewrite it according to our present needs:
1
el(a-Jei (k) = e (Flog (e + e =1] =g, Jeb (Slogle +e 1=k, ).
1 1
ex(q)er(k,) = e (1o (e (e = 1)+ 1] Jes (. + K, = Jlog e (%~ 1)+ 1)
T + 1 t 1
el )el(a,) = ef (3log (1 = (1 = )] Jei (k. + 0, = gogl1 = 2 (1 = 2]
i ! 2% 2 i1 2%k 2
ei(ki)ex(q,) = e | Slog[e™ + e — 1]~k Je | Slog[e™ + e —1]—¢q, ).

Consider the first line of Eq. (4.94). Using (4.95), we can rewrite it as

e2(ki+q.) . At i
[ ke {awa(a ek el(a)

+

1 1
(g )alk.Jen (3log e + e ~1] g, Jel (Flogfe + e 1=k ) .
and then, inverting the relations
;] 2 2% ;] 2 2%
k+:§10g[e et =1 —qy, Q+:§10g[€ et =1 =k,
we get:
g, =q. - llog [e2K) 4 24 — 2K 4], k., =k, - llog [e2Ks 4 24 — 2K +dV)],

and, taking into account the Jacobian of the transformation |e= 4 ¢=21% — 1|71,

dk,dq. e**:+as) + ) . %|ezk+ -1
[ o e ke {atk )i (0. -2 otk ~a.)

&I(q+ — %log [€2k+ -+ eZqu — ez(k++q+)})&( L= %log [e2k+ -+ 82‘]+ — ez(k++q+>])
11— e2ke — 724+ }

:O7

which imposes the following deformed commutators for the creation and annihilation operators:
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&T(qu — %log [62k+ + e2q+ — 62<k++‘I+)])&(k+ — %log [€2k+ + €2q+ — ez(k++q+)])

a(k;)a'(q.) —

1
= §|1 — e —1[6(ky — q4).

All the other commutators forming the bosonic oscillator
algebra can be similarly derived.

Notice now that, upon commuting a(k_.) and a'(q. ), we
get creation and annihilation operators labeled by momen-
tum coordinates that diverge, or become complex, for
certain values of k, and g,:

1
q’i =q, - 51()g [32k+ + 24+ — ez(k++‘1+)]’

1
k/J/r =k, — §IOg [e2k+ + e24+ — e2<k++‘I+)]’ (4101)

when e**+ = ——L—both ¢. and k// diverge. This has to do
with the fact that the maps that send the momenta of the on-
shell waves in Eq. (4.76) to the momenta of the commuted
waves are not maps of R? onto itself. Specifically, when we
reached Eq. (4.96), we had to make the coordinate trans-

formation (4.98), which, as a real map, sends the region

1
> (4.102)

1—e 2"’

/
eZk_

into the region

ek > 1 — e%+, (4.103)
We need to consider what happens beyond those regions,
which can be accessed by Lorentz-transforming the
momenta, and cannot therefore be ignored if we want to
preserve Lorentz invariance. This issue deserves further
investigation.

V. NONSCALAR FIELDS

In a noncommutative context, a natural notion of non-
scalar fields is provided by differential calculus [62]: gauge
fields are one-form fields, and the role of the Faraday tensor
(or curvature tensor for Yang—Mills theories) is played by
the exterior differential of the one-form field (plus possible
commutators between gauge fields).

In x-Minkowski, the existence of differential calculi is a
well-studied problem [28,63,64]: it turns out that for a
generic choice of the noncommutativity parameters v*,
there is no 4-dimensional noncommutative differential
calculus that is also x-Poincaré covariant, and the smallest
differential calculus is 5-dimensional, with one of the
basis one-forms not being the differential of a coordinate.
This, however, is true unless v is lightlike. In this case,

|1 — ek — 724+ ]

(4.100)

|
which is the one we are interested in, the following
differential calculus:

(X, dx"] = —iv’dx* 4 ig" g, 0" dx°, (5.1)
satisfies all properties we may be interested in: it is
covariant under x-Poincaré coaction:

dx'" = A, @ dx*, (5.2)

and it satisfies the Jacobi rules with two noncommutative
coordinates (only if »* is lightlike):

o [x¥. d)] 4 ¢, o)) + [, [, ]

= %0, (¢ dx* — g?Pdxt) = 0. (5.3)
Perhaps unsurprisingly, the algebraic properties of dx* are
identical to those of the difference between two coordi-
nates, Ax} = xj —xf:

(b Al ] = =i Axl, + iV g, AN, (54)

as well as the properties under x-Poincaré coaction:

Axl = A, @ Axy,. (5.5)
One can then define all of the familiar structures of
noncommutative differential geometry [62]: an exterior
derivative satisfying the Leibniz rule d(fg) = d(f)g+
fd(g), which can be written in terms of the Lorentz-
covariant momentum space coordinates (4.28):

d(f) = (&, > f)dx*, (5.6)
and an undeformed exterior algebra:
dxt A dx¥ = —dx¥ A dx* (5.7)

which makes the algebra generated by x* and dx* into an
associative superalgebra. The basis 4-form turns out to be
central:

HdxO A ond =dx AL A dPxY, (5.8)
which implies that the algebra of 4-forms is isomorphic to
the algebra of zero-forms (scalar fields). One can then

introduce a Hodge-* operator as a left- and right-A-linear
involutive map from n-forms to (4 — n)-forms, and a metric
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(understood as a sesquilinear map of one-forms), and they
act on the basis one-forms exactly like their commutative
counterparts. Finally, one needs an integral, understood as a
linear map from 4-forms to the complex numbers (which,
because 0- and 4-forms are isomorphic, induces an integral
on scalar fields too). This integral, in order to be compatible
with the noncommutativity and Poincaré covariant, needs
to break the cyclicity property (i.e., [ fg= [ gf), relaxing
it into a twisted cyclicity [64]:

/fgz/g(TDf),

where T is a grouplike function of the momenta,
AT =T QT,S(T)=T"".In1+ 1 dimensions, for exam-
ple, one can show that 7 = exp(2k,. ). The twisted cyclicity
property represents an obstacle in the definition of a
gauge theory. In fact, in the noncommutative case, the
standard electromagnetic Lagrangian, }F A %F, is not
invariant under gauge transformation, but rather covariant:
%F A xF — %UTF A xFU, and this expression, once inte-
grated, will not be invariant unless the integral is cyclic.

Ways out of this problem have been identified (in the
case of “timelike” x-Minkowski models). One approach
[65] involves nonquadratic, nonlinear electromagnetic
actions, and nonlinear gauge transformations. Another
approach [66] seeks to “twist” the differential calculus
and the notion of connection in a way that makes the action
invariant under gauge transformations. We are optimistic
that these approaches can be applied also to the “lightlike”
k-Minkowski model of interest here, but we leave this to
future studies.

(5.9)

VI. CONCLUSIONS

We solved the main problem that obstructed the
definition of a genuine k-Poincaré-invariant QFT on
k-Minkowski, defined in terms of “noncommutative”
N-point functions. This was the problem of defining in a
k-Poincaré-covariant way the algebra of functions of more
than one point, which we called A®". We did this at the
expense of generality: a covariant algebra can be defined
only for the “lightlike” xk-Minkowski algebra v#1v”g,, = 0.

We introduced a natural representation of the algebra
A®N_and found that translation-invariant coordinate
differences belong to the maximal Abelian subalgebra of
A®Nand therefore they are, for all practical purposes,
equivalent to commutative functions.

This result has a consequence that hugely simplifies the
interpretational framework of the QFT: all N-point func-
tions are translation-invariant, and they are therefore
commutative. A QFT on x-Minkowski can then be defined
in terms of a set of standard N-point functions, just like any
QFT on the ordinary, commutative Minkowski space.

We studied explicitly the possible 2-point functions,
defined by requiring that they solve the x-Klein—Gordon
equation and that they are x-Poincaré invariant. This gives a
Wightman function that is equivalent to the commutative
one, with all the dependence on the deformation parameter
k disappearing from the theory. All 2-point functions that
can be built from it, like the Pauli-Jordan function, will be
therefore undeformed and independent of «.

With the Pauli-Jordan function, we can impose quan-
tization rules for free complex x-Klein—Gordon fields, and
look for a representation of the quantum fields in terms of a
bosonic oscillator algebra. One finds that the algebra of
bosonic oscillators is deformed, similarly to other results in
the x-QFT literature (e.g., [36,37]). However, the commu-
tation relations of our creation and annihilation operators
seem to involve divergent/complex momenta, an issue
whose investigation we leave to future works.

The fact that our 2-point functions are undeformed
motivates the conjecture that all N-point functions of the
free theory might turn out to be undeformed and independent
of x, which would make the theory completely indistin-
guishable from the ordinary, commutative free scalar QFT
on Minkowski space. Indeed, this is what happened in
[4,51-56] (see in particular [56]) for arbitrary scalar QFTs on
the Moyal-Weyl noncommutative spacetime. In these works,
extending the noncommutative algebra of coordinates to a
deformed tensor product algebra which is covariant under
noncommutative Poincaré transformations, resulted in a
mostly-commutative algebra, in which all translation-
invariant coordinate differences are commutative, just like
our result. Both the free and the interacting scalar QFT turn
out to be equivalent to the commutative/undeformed one
[55,56]. We proved a similar result only for the free theory,
and only for 2-point functions. One of the first priorities for
further works in this direction will be to investigate whether
the same holds for all N-point functions in the free theory,
which seems likely. Then, the following step will be to
investigate an interacting theory, and check whether a
dependence on « finally appears in interaction vertices.

Another interesting issue is the relation of our con-
struction with the approaches based on star products
[33-36,38-40,42,44-46]. In particular, [41] focuses on
the lightlike x-Minkowski spacetime, and, despite being
based on a star-product approach whose fundamental
ontology is that of commutative functions, it derives some
results that are in line with ours so far: the free scalar QFT is
undeformed, and a dependence on k seems to be confined
to the interacting theory. An approach based on star
products is not obviously related to ours, based on a
covariant braided N-point algebra of coordinates, but it
would be very interesting if one could prove a relation
between the two. In the case of QFT on the Moyal
noncommutative spacetime, the two approaches are fun-
damentally different and lead to different predictions for the
N-point functions [55].
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We have shown how to have, for a free two-point
function a x-Poincaré invariant on shell theory, by entirely
avoiding the Lorentz-breaking parts of the mass shell. This
workaround might not work in the interacting theory, which
requires loop integrations of off-shell momenta. If these
parts of momentum space cannot be avoided, perhaps a
breaking of Lorentz symmetry can be avoided by incor-
porating into our theory the plane waves that are obtained
by boosting the waves belonging to the “Lorentz-breaking”
mass-shell beyond the patch of momentum space that
is covered by our coordinates. Then, as can be seen in
relation (4.47) and the like, one gets logarithms of negative
numbers, i.e., complex frequencies. This might indicate
some sort of damping, and deserves further scrutiny.

We can certainly say that there is still much to understand
about the physical implementation of symmetries in QFT
on k-Minkowski (and other) noncommutative spacetimes.
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APPENDIX: DETAILS OF SOME
CALCULATIONS

1. Plane wave identities

In this Appendix we explicitly derive some useful
identities. We explicitly reintroduce x, as it will be
expedient in some cases to have it be a different constant.
We start with the commutation rules

T,x] = x, (A1)
K
can be used repeatedly to prove inductively that
TX = X(T + i/x),
T°X = X(T + i/x)?,
T"X = X(T +i/x)", (A2)
therefore
etPoTX _ i (ip())n "X
“—~ n!
=X Offf) (T +i/x)" = XelmT=ro/x (A3)

and

ipgTyYy — ,— ipoT
elp(] X = e pO/KXelp() s

eipoTx2 — €_2p0/KX2€ip0T,

eipOTxn —_ e—npo/KxneipoT7

so we conclude that

© /- n © [ n
eiPoT oir X — pipoT E (l[)1> X" — § :(lpl) e—npo/KXVleip[)T
n! n!
n=0 : n=0 :

— ¢l P X gimaT, (A5)

The product of two right-ordered plane waves is then

P X pipoT piti X piadeT — pip1X pie™0/%q X 4ipoT pigeT
— ei(P1+e70/q)X 4i(po+4o)T | (A6)

similarly, left-ordered plane waves combine in the follow-
ing way:

eiPoT piniX piaoT i X — ei(po+40)Tei(e+qo/Kp1+fI|)X' (A7)

Weyl-ordered waves are a little bit more tricky. First we
need to find their relation with right-ordered waves. To do
so, expand Eq. (AS) to first order in py:

eiPXT = <T+l:<1X> einX, (A8)
by induction,
P X = <T + %X) Ceini¥, (A9)
and so
eiP1X pinoT — ipo(T+EX) pip1 X (A10)

Multiply now both sides by e~"”'X from the right, and
reorder the left hand side with T to the right:

eiP1X pinoT p=imX — eipo(T+p7'X)7

ei(l—e‘Po/K)pIXeipoT — eipo(T+”7'X)7 (Al 1)

if we now rename py = ¢, and 22 = g, we get the desired
expression:
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. S(1=e~40/% .
ez(q0T+q]X) — el( ZO/K )‘IIXetqu‘

(A12)

Now that we know how to translate Weyl-ordered waves
into right-ordered ones, we can use the combination law of
the latter to derive the one of the former. Consider, in fact,
the following rewriting of Eq. (A6):

0] 90
j(l=e K . i(lme K .
el( ,:;/KK )I’lXelpOTel( qf)/: )QIXelqOT
o

l[(]peo/: )pite” 7 ( :io/K )’II]X p0+q0)T

=e (A13)

converting the right-hand side into a Weyl-ordered wave
through the inverse relation to (A12),

. X . ko/x
eikiX gikoT — R TH(2RmkiX. (A14)
we get:
ei(PoT+p1X) pi(goT+q1X)
(po+a9)/ R 0
. . 0+40)/k _e K 1=
_ el(PO+‘IO)T+l<17g_(,,0+qu)/,c)[( G )p1+e” ( ‘10/’( )qn]X‘ (AIS)

We can now use the identities we just proved to
demonstrate Eq. (4.26). We start with the expression of
a product of ordered plane waves:

e1[kles[q] = e*-1 ekt gld-vy glas | (A16)

we want to order the expression by having all x; coor-

dinates to the left, and all x/ to the right. We need to

commute e¢’*+* and /4%, where the coordinates x,, x;

close the subalgebra [x]", x5] = 2ix; of the algebra (4.11),
so, using Eq. (A6) above with k — 1/2:

eikJr)cfr ela-% — eie’“‘r q,x;eiqu?r ) (A17)

The coordinates x, commute with each other (4.11),
therefore our expression takes the form

i(k_xy 42+ q_ch)eikJr)cfr ei%xz* )

e [kleslq] = e (A18)

Since the coordinates x; close the subalgebra [x],x]]| =
2i(x{ —x;) (4.11), it is convenient to make the linear
redefinition

Xt —xF x4+ xd
X = 1 2 T = — 1 2
4 ’ 4 ’
xf=2(X=T), — 2X+T).  (Al9)

so that we have another copy of the timelike x-Minkowski
algebra [T, X] = iX, and use the rule to combine two Weyl-
ordered xk-Minkowski waves (A15) (recall that we are using
the convention x = 1):

e (=E0)5]X

El

ST

oi(@T+PX) Hi(yT+5X) _ )

(A20)

since ek gi4+% = @2k (X=T) p=124.(X+T) we can obtain
our desired expression by making the replacements

a=-2k,, =2k, ,y=-2q,., 6= —2q,. The result is

. L ket
—2i(ky +q+)T+2l(1,eZYk+qrq+))[( 1—e?+)—e

eikJr)c?r eiqAx; — e (1=e21))X

. 120k 1 2k o)
e2z(k++q+)[( () )X= T].

(A21)

Replacing the expressions for X and 7" we obtain the final
expression, Eq. (4.26):

e [Key|q] = e'k-xi+e )

i kitay
X e 1-2k++at)

[(1—e+ )xf +e+ (1—e?0+)x )

1 (a22)

2. Proof of the Lorentz transformation formula
for plane waves

First of all, we need to write the lightlike x-Poincaré
commutation relations (3.2) in a more convenient way,
adapted to the 1 + 1-dimensional lightlike case:

[a™, w] =2i(e” — 1), [a=,w] =0, (A23)
where a® =a’+a', and , again, is the rapidity
A%, = cosh . We are first interested in the adjoint action
of exponentials of the translation parameters alk] =
ek ¢ik+a" on arbitrary functions of the rapidity. Since
a~ commutes with @ it will go though, instead a™ is
canonically conjugate to the coordinate p = 1log (e™ — 1):

1
a*,ilog(e‘“’ -1 =lat,pl =1, (A24)
therefore it acts like a translation for p:
e fp)e~ ™ = flp — k), (A25)

which corresponds to a nonlinear action on the co-
ordinate w:

Je )]

This has been sometimes described [3,27] as a “back-
reaction” of the momenta on the Lorentz sector, part of
the “bicrossproduct” structure of the x-Poincaré group,
represented as a right action:

eik+a+f(w)e—ik+a+ = fl-log(1+4 (e —1 (A26)

<:50(1,1) x R? > SO(1,1),

o <\k=-log(1+ (e —1)e k). (A27)
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From the definition of <1 (A25), it follows that it is a
coalgebra homomorphism for the coproduct, i.e.,

fN) Qo=Ff(A),
(A28)

(f(N)<p)<g=f(N)<(p®q).

and the adjoint action of translations on rapidities can be
written:

/N at) = (a* = 2i(e” = 1)f'(w))"e),

by induction, we get

ef @) pikiat — ik (a*=2i(e”=1)f"(w)) pf (@) (A32)

Now consider the plane wave e;[k] and apply a
k-Poincaré transformation to it:

‘3/1 [k] _ eik,(e“”x‘+a‘)eik+(e"’x++a+)’ (A33)
using the commutativity of a~ and o,
eik,(e’“’x’Jra’) eik+(e“’x++a+)

— elk-e™"x” eik,a’eik+(e“’x++a+)‘

(A34)
|

pik-e™"x pik_a” e% log (e‘”—l)x*eik+a+ e—% log (e®—1)x™

=e

; w2k .
eik,e*"‘x*e_é lOg(H(i-wil)f”w)x eik-a” eik+a+

which reproduces the formula (4.47) for A(k, ®).

— pik_e™x” e%log [1+e”‘(62k+—1)]x+eik,a’ eikJraJr =e [/1(](, a))]a[k} ,

The next step is to calculate the opposite action, the
adjoint action of any function f(w) on the translation
parameters a*. The a~ parameter commutes with @ and will
therefore be invariant. Regarding a™, from the commuta-
tion relations with @, and its immediate consequence
[a™, g(w)] = 2i(e” = 1)¢ (w), we deduce

el @ gt = (at =2i(e” = 1)f'(w))e/ @), (A30)
iterating the procedure:
T =2i(e” = 1)f (),
(A31)

|
Consider now Eq. (A32), for the following choice of
function: f(w) = 4log (e” — 1)x*. It takes the form:

eiks(a™+e?x™) — eélog (e”=1)x™ yik,a® e—%log (e”=1)x" ,

(A35)

which can be immediately substituted in (A34):

/ [k} = elk-e7"x" pik_a” eélog (e”—1)x* eik+a+e—%log (e”—1)x" .

(A36)

Now we want to bring the exponential e*+¢" to the right,
with the help of Eq. (A26):

(1-e=®)e~ %+

. _i e Je Yyt
— pikoex yika” yilog (e"=1)xt , slog( a2 )x pikiat

(]—e_w)ﬂ_Z/“r

. i ¢ )¢ \xt . _ .
ik,e”“x’e%log(e‘”—l)x*e ZIOg(H(e—w,])kaJr)x elk,a elk+u+

(A37)

3. Calculation of the Lorentz-invariant two-point functions

We will calculate here the expression (4.83)

S(k- — w,(k,))

F(xd —x) = /aak\/—g(k)el[k}e;[k]f(k)W’
2
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that is implied by the choice (4.83) for the f(k) function:

f(k) = f—®(_k+) +f+®(k+)7
2k,

€ (22 ) (xm—x7) Rty 2m2
F(xjf —xé') — / dk+Te (82k+7l>< ) 2>el( =) (xf —x] )f(k+’2/¢7>
R §|€ = e+ —1

oo . - 2
:/ dy ez(ff%?)(x;—x;)ei(%)(xr—x;)f llogy, 2m
0 2 y—1

0 2
_ / 42 i) (9 —) felog(z N 1),2&)
_ Z

1zl

= | i) i) 4 / AL i) (4 -x7) 15 55 (A38)
0 Z

Reintroducing «, the expression above becomes:

1 d P(2m - — P (ku + + o d 7 (2m ~ — P(kz + +
Pt - =1 | 7”6—1(%><x1—x2>e—1<7><x1 ) 4 f, A few%xx, ) i) —x)

u

_ f_ /z_lfn @ e—im(l—'t)(xl‘—xz‘)e—imu(xr—x;) + f+ /oo % e,’m(%)(x]'—x;)eimu(xr—x;)
0 0 Z

log
=f_ / O8m dxe—im(cosh;(—sinh)()(xl‘—x;)e—im(cosh;(Jrsinh;()(xT—x;)

o0

+ f+ /oo d)(eim(cosh)(—sinh)() (x7=x3) pim(coshy+sinhy) (x7—x37)

[Se]

_f / 0ot AP i/ =) g i P ) (=)
—co vV pr+m?

wp [T AP i o P )
+ /2 2
—00 P + m

iy / meimh(ogss) AP oil\ /e () +plx}—d)]
- o /p2+m2

+f / °°%ezi[\/p2+m2<x?—x2>+p<x:—xi)]‘ (A39)
—o0 \/ D —|— m

For what regards the function H (x| — x4) defined in Eq. (4.87), a similar calculation gives:

ly =1 2 1
O d7 Py ) (e 1 2
:/ L i) (5 -57) i~y ( — L1og(z 4 1), 2™ (A40)
-1 2] 2 <

and, if h(k) = h_O(=k, ) + h, O(k,):
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ldu
u

H =) = b, [ 22 omiC) 030 g e =) 4 / A2 i) o —5) ) ) =)
0

m sinh (log%.) d
—h, / : P

. /p2 + m2
2ily/ PP (=) p (x|

© d
+h_/ e c—
—eo /P 2

0 Z

e~ 2V PPHm? ()=x9)+p(x]—x})]

(A41)
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