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Abstract: The tremendous progress in the computing power of modern computers has in the last
20 years favored the use of numerical methods for solving complex problems in the field of chemical
kinetics and of reactor simulations considering also the effect of mass and heat transfer. Many classical
textbooks dealing with the topic have, therefore, become quite obsolete. The present work is a
review of the role that heat and mass transfer have in the kinetic studies of gas–solid catalytic
reactions. The scope was to collect in a relatively short document the necessary knowledge for a
correct simulation of gas–solid catalytic reactors. The first part of the review deals with the most
reliable approach to the description of the heat and mass transfer outside and inside a single catalytic
particle. Some different examples of calculations allow for an easier understanding of the described
methods. The second part of the review is related to the heat and mass transfer in packed bed reactors,
considering the macroscopic gradients that derive from the solution of mass and energy balances on
the whole reactor. Moreover, in this second part, some examples of calculations, applied to chemical
reactions of industrial interest, are reported for a better understanding of the systems studied.

Keywords: gas–solid catalytic reactions; chemical kinetics; heat and mass transfer

1. Introduction

When a reaction occurs inside a catalytic particle, the reagents are consumed, giving rise to
products and, in the meantime, heat is released or absorbed according to whether the enthalpy of the
reaction is positive or negative. Inside and around the particles, gradients of respective concentration
and temperature are generated as a consequence. Then, if the particles are put inside a tubular reactor
(see Figure 1), macroscopic gradients (both in axial and radial directions) also arise as a consequence
of the average rate of reaction in any single catalytic particle and the regime of mass and heat flow
developed in the specific reactor. In Figure 1, all the possible gradients related to both temperature and
concentration occurring in a tubular gas–solid catalytic reactor are illustrated.

These macroscopic (or “long-range”) gradients can be vanished by employing “gradientless”
reactors that are isothermal CSTRs (continuous stirred tank reactors) normally used in laboratory
kinetic studies (see Figure 2A,B).

Moreover, each particle inside a reactor has its own history, and microscopic gradients are
developed in conditions at the particle surface that are generally different from the internal
particle conditions.

At the industrial scale, gas–solid catalytic processes are usually carried out in very large capacity
equipment represented by packed bed reactors with productivity of thousands of tons per year.

Processes 2020, 8, 1599; doi:10.3390/pr8121599 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
https://orcid.org/0000-0002-3310-8734
http://dx.doi.org/10.3390/pr8121599
http://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/8/12/1599?type=check_update&version=2


Processes 2020, 8, 1599 2 of 35

Processes 2020, 8, x FOR PEER REVIEW  2 of 35 

 
Figure 1. Overview of temperature and concentration macroscopic and microscopic gradients in 
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Copyright 2018. 
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Figure 1. Overview of temperature and concentration macroscopic and microscopic gradients in packed
bed reactor (taken and adapted from [1]). Reprinted with the permission of Springer, Copyright 2018.
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Figure 2. Examples of “gradientless” laboratory reactors. (A) Continuous stirred tank reactor (CSTR);
(B) fixed-bed reactor.

Such reactors are arranged in a complex scheme also containing all the auxiliary equipment
necessary for feeding, cooling, heating, or pressurizing operations. The necessity of supplying or
removing heat according to the enthalpy of the reaction is the main reason for which reactors with
multiple tubes (in many cases thousands of tubes) are preferred. The heat removal is obtained by
circulating an opportune fluid externally to the tubes in order to limit the temperature rise (or drop) of
the reactive mixture.
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Normally, the goal is to obtain isothermal conditions, however, very frequently, these ideal
conditions cannot be reached. On the contrary, when an equilibrium reaction is involved in the reaction
scheme, such as for example:

SO2 +
1
2

O2 � SO3

a single reactor with large diameter, in which structurally different catalytic packed beds are contained
and operating in adiabatic conditions, is preferred, because this type of reactor allows for the control of
the overall conversion through the temperature of the outlet flow stream. The heat removal, in this
case, is obtained by cooling the flow stream between two different catalytic stages of the reactor.

Two ideal limit conditions can be recognized, the isothermal and adiabatic, realized thanks to a
more or less efficient system of heat exchange. However, a condition not isothermal and not adiabatic
is more frequently encountered in practice. This implies the development of more complex models to
describe the system in which the mentioned limit conditions are considered as particular cases.

Some other aspects are important in the design of fixed-bed reactors, such as pressure drop,
safe operating protocol (to avoid runaway problems), temperature range, and catalyst packing modality.

From a general point of view, the design approach of catalytic fixed-bed reactors consists in
correctly defining and then solving the mass and energy balance equations. Normally, the solution of
such equations must be achieved only numerically, especially when the kinetic systems are characterized
by a complex reaction scheme. The problem must to be solved simultaneously both at a microscopic
local level, with the obtainment of the reagents and product concentration particle profiles, as well as
of the effectiveness factor for all the occurring reactions, and at a macroscopic level, reproducing all
the long-range concentration and temperature profiles. This specific situation requires an evaluation
of the catalyst effectiveness factor in each position in the catalytic bed, considering the conditions
we have at any instance in that point. This subject has been previously described in many books,
papers, and reviews [1–17]. A modern and comprehensive approach to the problem, with many solved
exercises, can be found in [1]. On the basis of all the examined literature, the scope of this review is to
give, in a concise way, all the information necessary to the researchers to correctly face the study of the
gas–solid reactions. In the following paragraphs, we consider, first of all, the mass and heat transfer
occurring in a single catalytic particle, and then we will treat the macroscopic gradients related to the
whole fixed-bed reactor.

2. Mass and Heat Transfer in a Single Catalytic Particle

When a reaction occurs inside a catalytic particle, the reagents are consumed for giving products
and a certain amount of heat is consumed or released according to the thermal characteristic of the
reaction (exothermic or endothermic). The concentration of the reagents decreases from the external
geometric surface of the particles toward the center. The concentration of the products, on the contrary,
increases. The temperature changes as a consequence of the heat consumed or released by the reaction,
increasing or decreasing from the external surface to the center of the catalytic particle. In other words,
the reaction is responsible of the concentration and temperature gradients originating inside the particle
that act as driving forces for both the mass and heat transfer inside the catalyst particle. The faster the
reaction, the steeper the gradients. In the case of high reaction rate, this effect is propagated toward
the external part of the catalyst particle, generating other gradients of concentration and temperature
between the catalyst surface and the bulk fluid. When the fluid flow regime is turbulent, as normally
occurs in industrial reactors, the external gradients are confined to very thin layer, named the boundary
layer, that surrounds the solid surface. The boundary layer is quiescent, and consequently mass and
heat transfer occur through it, with a relatively slow process characterized by the molecular diffusion
mechanism. The effects of reaction and diffusion rates are concentration and temperature profiles,
respectively, such as the ones reported in Figure 3. External diffusion and chemical reaction are
consecutive steps, and their contributions to the overall reaction rates can be considered separately.
A similar approach cannot be adopted for the internal diffusion as it occurs simultaneously with the
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chemical reaction. To describe the influence of internal diffusion on reaction rate requires solving the
mass and heat balance equations related to any single particle for evaluating the concentration and
temperature profiles inside the pellet.
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Figure 3. Profiles of concentration and temperature in a spherical catalytic particle.

2.1. Diffusion with Reaction in a Single Catalytic Particle: Mass and Heat Balance Equations

For a spherical particle, the mass balance can be written by considering the inlet, outlet, reaction,
and accumulation terms related to a spherical shell of thickness dr and radius r (see Figure 4):[

diffusionrate
inwardatx = x + dx

]
−

[
diffusionrate

outwardatx = x

]
−

[
reactionrate
intotheshell

]
= [accumulation] (1)

Assuming steady state conditions, it results null the accumulation term and then

4π(x + dx)2Nx+dx − 4πx2Nx − 4πx2dx·vr = 0 (2)

By introducing the Fick’s law N = De f f
dc
dx for the internal diffusive flux and a generic power law

for the reaction rate v = SvkScn, related to a single reaction, and through rearranging we obtain

De f f

x2
d

dx

(
x2 dc

dx

)
− SvkScn = 0 (3)

with the boundary conditions

for x = rP → c = cS
for x = 0 → dc

dx = 0



Processes 2020, 8, 1599 5 of 35

Processes 2020, 8, x FOR PEER REVIEW  5 of 35 

Sfor x = r    c = c
dcfor x = 0    0
dx

P ⎯⎯→

⎯⎯→ =
  

 
Figure 4. Reference scheme for mass and heat balance related to a catalyst particle. 

For the heat balance, it is possible to follow a similar approach by introducing Fourier’s law 

eff
dTq k
dx

= −  instead of Fick’s law, obtaining the following equation: 

2
2 ( ) 0eff n

V S

k d dTx H S k c
x dx dx

  − −Δ = 
 

   (4) 

with boundary conditions 

for   

for 

P Sx = r T = T
dTx = 0    = 0
dx

⎯⎯→

⎯⎯→
  

Considering the common terms of Equations (3) and (4), it is possible to write 

( ) ( )( )eff
S S

eff

D
T T c c H

k
− = − −Δ  (5) 

From this equation, we can conclude that for any concentration profile, inside the particle, a 
corresponding profile of temperature can easily be determined by using Equation (5). Alternatively, 
a full energy balance on the particle must be solved. A maximum temperature gradient ΔTmax can be 
obtained when the concentration at the center of the particle can be assumed near to zero; in this case, 
Δc ≈ cS, and hence 

max ( )eff
S

eff

D
T c H

k
Δ = −Δ  (6) 

rp
x x+dx

Nx Nx+dx

Figure 4. Reference scheme for mass and heat balance related to a catalyst particle.

For the heat balance, it is possible to follow a similar approach by introducing Fourier’s law
q = −ke f f

dT
dx instead of Fick’s law, obtaining the following equation:

ke f f

x2
d

dx

(
x2 dT

dx

)
− (−∆H)SVkScn = 0 (4)

with boundary conditions
for x = rP → T = TS

for x = 0→ dT
dx = 0

Considering the common terms of Equations (3) and (4), it is possible to write

(T − TS) =
De f f

ke f f
(c− cS)(−∆H) (5)

From this equation, we can conclude that for any concentration profile, inside the particle,
a corresponding profile of temperature can easily be determined by using Equation (5). Alternatively,
a full energy balance on the particle must be solved. A maximum temperature gradient ∆Tmax can be
obtained when the concentration at the center of the particle can be assumed near to zero; in this case,
∆c ≈ cS, and hence

∆Tmax =
De f f

ke f f
cS(−∆H) (6)

Referring ∆Tmax to TS, the temperature at the catalyst surface, the Prater’s number is obtained,
defined as β = ∆Tmax/TS.

As the thermal conductivity of solid catalyst particles is normally much higher than those of
the gaseous reaction mixture, in steady state conditions, internal temperature gradients are rarely
important in practice.

The evaluation of the internal profiles of both concentration and temperature requires the solution
of Equations (3) and (4). For this purpose, it is opportune to introduce some dimensionless terms
such as

εdr = x/rP γdr = c/cS ψdr = vr(c)/vr(cS) φ = rP

√
SVkScn−1

S
De f f

(7)
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and Equation (3) for mass conservation becomes

1
ε2

dr

d
dεdr

(
ε2

dr
dγdr

dεdr

)
= φ2ψdr (8)

where φ is called Thiele modulus [18]. It is interesting to observe that for n = 1, the Thiele modulus
is independent of the concentration, and consequently Equation (3) or (8) can be solved analitically,
while for different reaction orders or complex kinetics, an iterative numerical solution strategy must
be adopted.

2.2. Definition and Evolution of the Effectiveness Factor

If the internal concentration profile of γ (dimensionless concentration) is known, it is possible to
evaluate another dimensionless term η, named “effectiveness factor”, defined as the ratio between
the observed reaction rate, more or less affected by the internal diffusion, and the rate occurring in
chemical regime, that is, not limited by internal diffusion. We can write

η =
effective reaction rate

reaction rate from kinetic law
(9)

and can write accordingly

η =

rp∫
0

4πx2vr(c)dx

4
3πr3

Pvr(cS)
= 3

1∫
0

ε2
drψdr(γdr)dεdr (10)

Therefore, η is a dimensionless factor directly giving the effect of the internal diffusion on the
reaction rate. For a reaction rate of a single reaction of n-th order, affected by internal diffusion, we can
simply write

vr = ηkSSVcn
S = ηkVcn

S (11)

The effectiveness factor η can also be determined by considering that, in steady state conditions,
the overall reaction rate in a particle is equal to the rate of external mass transfer from bulk to the
surface. Equation (10) can be rewritten as

η =
−4πr2

PDe f f
(

dc
dx

)
rP

4
3πr3

Pvr(cS)
=
−3De f f

(
dc
dx

)
rP

rPkScS
(12)

As mentioned, for reaction order n = 1, the concentration profile can be analytically determined,
and this can be done with Equation (13).

−
dc
dx

=
cS
x

[
φ

tanhφ
−

1
φ

]
(13)

from which the following expression for the effectiveness factor can be derived by assuming a particle
with spherical geometry:

η =
3
φ

[
1

tanhφ
−

1
φ

]
(14)

This equation changes with the shape of the catalyst particles, and the Thiele modulus φ changes
too, as the quantity rP in Equation (7) becomes a characteristic length given by the ratio between
volume and external surface area of the catalytic pellet.

In some cases, the kinetic law is unknown, even if the data of the reaction rate are available.
The evaluation of the Thiele modulus and of the effectiveness factor in these cases is not possible.
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For this purpose, it is useful to define another dimensionless modulus, named the “Weisz modulus” [19],
through the following relation:

MW =
rP

2vr

cSDe f f
= φ2η (15)

The Weisz modulus allows for the evaluation of the effectiveness factor when experimental data
of reaction rate are available.

Different plots of η, the “effectiveness factor”, as a function of φ or MW can be drawn. Examples of
these plots for spherical particles and first-order reactions are reported in Figure 5A,B. In these
plots, we can recognize three different zones, the first, at low φ and MW values, delimiting the
chemical regime; the latter for high φ and MW values, identifying the diffusional regime; and an
intermediate zone corresponding to the gradual transition from chemical to diffusional regime.
When the diffusional regime is operative, the effectiveness factor η can be calculated in an approximated
way as η = 1/φ = 1/MW. This method of calculation can also be extended to the intermediate zone.
This asymptotic approximation gives place to errors in η of less than 5%.
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Figure 5. (A) Relationship between effectiveness factor and Thiele modulus; (B) relationship between
effectiveness factor and Weisz modulus. Re-elaborated from Santacesaria [20] with the permission of
Elsevier-Catalysis Today 1997.

The effect of the catalyst particle shape on η = η(φ) is quite small, while a larger influence has the
reaction order, as can be appreciated in Figure 6.
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The effectiveness factor can also be evaluated experimentally by determining the reaction rate in
the presence of catalyst pellets of different diameters and on finely powdered catalyst operating in
chemical regime:

η =
rate observed for a ginen particle size

rate observed in chemical regime on powdered catalyst
(16)

We have already seen that inside the catalyst particle, in correspondence to any concentration
gradient, a temperature gradient is associated, determinable with Equations (5) or (6). The evolution of
the effectiveness factor with the Thiele and Weisz moduli, reported in Figures 3 and 4, corresponds to
isothermal conditions. When the reaction is exothermic or endothermic, the temperature inside the
particle is, respectively, greater or lower than the external fluid. In these cases, the effectiveness factor
can be affected by two other dimensionless factors:

(a) a heat generation parameter:

β =
cS(−∆H)De f f

ke f f TS
=

∆Tmax

TS
= Prater′s number (17)

(b) the reaction rate exponential parameter:

αE =
E

RTS
(18)

For exothermic reactions β > 0 while for endothermic reactions β < 0; obviously, the isothermal
condition can be identified when β = 0. For exothermic reactions, the effectiveness factor can be much
greater than 1, while for endothermic reactions, this value is never reached. Examples of curves η-φ for
different β values, at any given value of αE, are reported in Figure 7.Processes 2020, 8, x FOR PEER REVIEW  9 of 35 
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2.3. Determination of the Effective Diffusional Coefficient Deff and the Effective Thermal Conductivity keff

Effective diffusional coefficient depends on bulk diffusion coefficient Dbe, the diffusion coefficient
of the fluid in the macropores, and on the Knudsen diffusion coefficient Dke, the diffusion coefficient in
the micropores. We can write

1
De f f

=
1

Dbe
+

1
Dke

(19)
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where

Dbe =
D12θ
τ

and Dke = 1.94 · 104 θ2

τSVρP

√
T
M

(20)

with θ being the porosity of the solid; τ being the tortuosity factor, an empirical parameter dependent
on the characteristics of the pellets porosity texture with values falling in the range 0.3–10; SV being the
specific surface area; and ρp the catalyst particle density. D12, which is normally considered equal to
D21, is the molecular diffusion coefficient for two components:

D12 =
1.858·10−3

√
T3(M1+M2)

M1M2

Pσ2
12ΩD

(21)

σ12 is the kinetic diameter for the molecules, while ΩD, named “collision integral”, is a function of
kBT/ε12; kB is the Boltzmann constant, while ε is a molecular interaction parameter. Both σ12 and ε12

can be determined from the Lennard–Jones intermolecular potential equation (Equation (22)):

φLJ(r) = 4εi j

(σi j

ρd

)12

−

(
σi j

ρd

)6 (22)

σi j = (σi + σ j)/2 (23)

εi j =
√
εiε j (24)

where ρd is the intermolecular distance, and σi and εi can be evaluated from critical temperature and
volume of the molecules, that is, εi/kB = 0.75 Tc and σi = 0.833 Vci

1/3.
When we have a mixture of more than two components, the calculation can be made by averaging

the properties. Molecular diffusion coefficient Dim is, for example,

Dim =
(1− yi)∑
j

y j/Di j
(25)

Because of the uncertainty of the tortuosity factor τ, many experimental data have been determined
for Deff, generally in steady-state conditions by using an apparatus such as the one schematized in
Figure 8. A single pellet is put in a device in which different gases are fed above and below the catalyst
particle at the same pressure. Each gas slowly flows through the pellet and is determined at the outlet.
The rate of gas diffusion through the pellet is related to Deff because

NA = −De f f
dcA
dr

= −
P

RT
De f f

dyA

dr
= −De f f

P
RT

(yA − y0
A)

∆r
(26)

A dynamic method can also be used by employing a pulse of a diffusing component. The response
pulse is related to the value of Deff.
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Figure 8. Scheme of the experimental device for the determination of effective diffusivity of a
catalyst pellet.

The effective thermal conductivities of catalyst pellet could be surprisingly low for the numerous
void spaces hindering the transport of energy. A simple but approximate approach for calculating keff
has been given by Woodside and Messner [22]:

ke f f = kSol

( k f

kSol

)1−εBs

(27)

where kf and kSol are the thermal conductivities of the bulk fluid and of the solid phase, respectively,
while εBs is the void fraction of the solid.

Notwithstanding the difficulties in predicting keff, a reliable value can be estimated because it falls
in a rather restricted range 0.1–0.4 Btu/(h ft ◦F) [1].

2.4. External Gradients

As before mentioned, external diffusion and reaction inside the catalytic particles can be considered
as consecutive steps. Therefore, the corresponding rates can be expressed with different relationships.
The external mass transfer rate expression derives from the first Fick’s law and results in

vmt = kmam(cb − cS) (28)

In steady state conditions, this expression must be equated to the one describing the rate of
internal diffusion with reaction, that is,

vr = ηkcn
S = kmam(cb − cS) (29)

For n = 1, after the elimination of cS, it is possible to write

vr =
cb

1
kmam

+ 1
ηk

(30)

where the contribution of the resistance to the reaction rate, by external and internal mass transfer rate,
clearly appears at the denominator of Equation (30). External diffusion strongly affects the kinetics,
as the transport phenomena weakly depend on the temperature, and for a great contribution of the
external diffusion on the reaction rate, the activation energy observed is about one-half of the true
value observable in a chemical regime.
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As mass transfer is originated by the reaction, it is always accompanied by heat transfer due to the
heat absorbed or released by the reactions inside the particle. Therefore, for the rate of heat transfer,
we can write

Q = kmam(cb − cS)(−∆H) = ham(Tb − TS) (31)

Again, we can derive the temperature gradient from the corresponding concentration gradient

∆T = ∆c(−∆H)
km

h
(32)

that is, temperature and concentration gradients are strictly related, but the behavior of exothermic and
endothermic reactions is quite different. It is useful to observe that both concentration and temperature
gradients can fall between two limits:

∆cmin � 0 when cb � cS and ∆cmax � cb when cS � 0 (33)

∆Tmin � 0 when Tb � TS and ∆Tmax � cb(−∆H)km/h

It is possible to estimate mass and heat transfer coefficients from fluid dynamic correlations.
As mentioned before, concentration and temperature gradients external to the particles are located in
a thin layer (the boundary layer) surrounding the particle. The molar flow rate for each component
will be

Ni = kc(cb − cS) = kg(pb − pS) (34)

kc and kg are related to the molecular diffusion coefficient D12, that is,

kc =
D12

δ
kg =

D12

δRT
(35)

where δ is the thickness of the boundary layer. Similarly, the heat flow through the boundary layer
will be

q = h(Tb − TS) (heat/time × surface area) (36)

Again, h is related to the thermal conductivity of the fluid, and kf is a molecular property given by

k f = 1.989× 10−4
√

T/M
σ2Ω

( cal
cm s K

)
(37)

and to the thickness of the boundary layer. This thickness depends on the fluid dynamic conditions
adopted; consequently, the average transport coefficients (mass and energy) can be determined from
the correlation between dimensionless groups such as Sherwood, Schmidt, and Reynolds numbers.
Much experimental data have been correlated, and the following empirical relationship has been
obtained for tubular reactors:

JD = Sh · S
2/3
c =

αD

εD
R−βD

e (38)

Sh =
kcρ

G
Sc =

µ

Dρ
Re =

Gdp

µ
(39)

For Re > 10, it results in αD = 0.458 and βD = 0.407. For heat transfer coefficient, a quite similar
approach is possible, giving place to

JH =
h

CpG
P2/3

r =
αH

εH
R−βH

e (40)
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where Pr = µCp/kt = number of Prandtl. A correlation exists between JH and JD, that is, JH � 1.08JD.
From these relations, it is possible to evaluate the heat and mass transfer coefficients. By putting in
Equation (32) kc and h derived from Equations (38) and (40), we obtain

∆T = ∆c(−∆H)
1
ρCp

(Le)
2/3

(
JD

JH

)
(41)

Le = Lewis number =
Cpµ/k
µ/ρD � 1, being also JD/JH � 1, resulting in

∆T � ∆c(−∆H)
1
ρCp

(42)

Therefore, ∆Tmax can also be determined as

∆Tmax � cb(−∆H)
1
ρCp

(43)

Equations (42) and (43) show that it is possible to have a significant temperature gradient even
if the concentration gradient is very low as a consequence of the high value of ∆H. In conclusion,
in steady state conditions, only two coupled equations are needed in order to quantitatively evaluate
the effect of the external mass and heat transfer. These equations are{

kmam(cb − cS) = ηkcn
S

ham(Tb − TS) = ηkcn
S(−∆H)

(44)

In unsteady state conditions, four differential equations are needed, with these being different
chemical and physical transport rates. The contribution of the external diffusion to reaction rate can
then be estimated only on the basis of the fluid dynamic conditions in the system.

2.5. Diffusion and Selectivity

The selectivity of solid catalysts can be affected by diffusion in different ways according to the
type of complex reactions involved. Consider as examples some very simple systems such as [3]
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k2 

S 

A 
k1 

B (desired) 

Independent 
reactions 

1 

A 

B 

C 

Competitive 
reactions 

2 

A 
k1 

B 

(desired) 

k2 
C 

Consecutive 
reactions 

3 

(45)

All the reactions are considered first-order reactions for simplicity.

First Case

By considering for each reaction both external and internal diffusion contribution, in the first case,
we express the overall reaction rate as reported in Equation (30). The selectivity can be expressed as
the ratio between r1 and r2, that is,

S =
r1

r2
=

[1/(km)Ram + 1/η2k2]cA

[1/(km)Aam + 1/η1k1]cR
(46)



Processes 2020, 8, 1599 13 of 35

In the case wherein the diffusion limitation is negligible, the selectivity becomes

S =
k1cA
k2cR

(47)

By comparing Equations (46) and (47), we find a decrease of the selectivity to the desired product
B for the effect of both external and internal mass transfer limitation. By considering predominantly
the effect of internal diffusion and introducing the approximation (see Figure 5A) η � 1/φ, we have

r1 =
1
φ1

k1cA =
3
r

√
k1(DA)e f f cA

ρp
(48)

r2 =
1
φ2

k2cR =
3
r

√
k2(DR)e f f cR

ρp
(49)

The selectivity becomes

S =
r1

r2
=

√
k1

k2

cA
cR

(50)

considering (DA)eff � (DR)eff. By comparing Equations (47) and (50), we find that internal diffusion
reduces the selectivity to the square root of Equation (47).

Second Case

For competitive reactions, diffusion limitations have an effect on the selectivity only when the
occurring reactions have different reaction orders. Otherwise, for reactions having the same reaction
order, no effect on the selectivity can be observed.

Third Case

Considering the occurrence of consecutive reactions in a chemical regime, that is, without diffusion
limitation, selectivity can be written as

S =
Bproduction

Aconsumption
=

k1cA − k2cB

k1cA
= 1−

k2cB

k1cA
(51)

When internal diffusion resistance is operative (η < 0.2), we have to calculate concentration profiles
for both A and B. Assuming the effective diffusivities to be equal, selectivity results [3]

S =
(k1/k2)

1/2

1 + (k1/k2)
1/2
− (k2/k1)

1/2 cB

cA
(52)

As can be seen, selectivity is also consistently lowered in this case for the influence of the
internal diffusion.

2.6. Effectiveness Factor for a Complex Reaction Network

According to the general definition of effectiveness factor introduced in Section 2.2 and expressed
by Equation (10), we can extend our treatment to a more general situation represented by Nr reactions
with rate equations that are generic functions of temperature and composition, regardless of the form
of these kinetic expressions. For such a system, an expression of the effectiveness factor related to
reaction j can be written as

η j =

rp∫
0

4πx2vr, j(ci, T)dx

4
3πr3

Pvr, j(cS
i , TS)

(53)
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Evaluating the integral in Equation (53) requires solving the mass and heat balance inside
the particle in order to evaluate the internal profiles of both temperatures and concentration.
The balance equations, for steady state conditions, can be written with the same criteria adopted for
Equations (3) and (4), but considering multiple reactions and multicomponent systems characterized
by Nc chemical species:

De f fi

∂2cP
i

∂x2 +
2
x

∂cP
i

∂x

 = ρP

Nre∑
j=1

γi, jvr, j i = 1, 2, . . . , Nc (54)

ke f f

[
∂2TP

∂x2 +
2
x
∂TP

∂x

]
= ρP

Nr∑
j=1

(−∆H j)vr, j (55)

The simultaneous solution of this system of coupled partial differential equations (PDEs) must be
accomplished using the following boundary conditions:

∂cP
i

∂x = 0∂TP
∂x = 0 at x = 0

cP
i = cS

i TP= TS at x = rP (56)

The described model is related to the simultaneous occurrence of both diffusion and chemical
reactions inside a catalytic particle and consists of a system of coupled partial differential equations
in pone dimension with boundary values. The solution can be obtained numerically with different
algorithms reported in the literature (finite differences, orthogonal collocation, method of lines, etc.).

The method of lines (MOL) [19] in particular consists in converting the system of partial differential
equations—Equations (54) and (55)—in an ordinary differential equations system. The first step of
this method consists in considering the transient version of Equations (54) and (55) represented by the
following equations:

εP
∂cP

i
∂t

= De f fi

∂2cP
i

∂x2 +
2
x

∂cP
i

∂x

− ρP

Nr∑
j=1

γi, jvr, j (57)

εPρPCP
P
∂TP

∂t
= Ke f f

[
∂2TP

∂x2 +
2
x
∂TP

∂x

]
− ρP

Nr∑
j=1

(−∆H j)vr, j (58)

The successive step consists in a discretization of the particle radial coordinate in a series of equally
spaced radial nodes from r = 0 to r = Rp. Then, the spatial derivatives in Equations (57) and (58) are
replaced by their finite difference approximation. The discretization scheme is reported in Scheme 1.
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dx

dx 2dx ( 1)j dx− Ndx

x

Scheme 1. Scheme of discretization.
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At each node along the radius, ordinary differential equation (ODE) equations can be written in
replacement of PDEs (57) and (58). The resulting set of ordinary differential equations (ODEs) can be
integrated with respect to time until stationary conditions are reached. The obtained values represent
the steady-state solution of Equations (54) and (55). The method of lines is largely preferred through
considering, first of all, the large availability of efficient and robust ODE solvers and also for the low
numerical instability related to the transformed problem. A further advantage of the MOL method
can be appreciated when the system of model ODEs is “stiff”, as in this case it can be treated with
specifically developed ODE solvers such as, for example, GEAR and LSODE [23], or commercial solver
included in MATLAB [24].

An alternative strategy to solve the particle balances for concentration and temperature internal
profiles is the finite difference scheme [1] applied to Equations (54) and (55). The first step of this
strategy consists, also in this case, of a nodal discretization along particle radius and then by replacing
radial derivatives with a finite difference approximation formula. This method transforms the PDE
system in a system of coupled nonlinear algebraic equations of the following form related to the mass
balance of a generic component:

De f f

 2
(i− 1)∆x

ci+1
A − ci−1

A
2∆x

+
ci+1

A + ci−1
A − 2ci

A

(∆x)2

− (Rni) = 0 (59)

In this equation, the term Rni represents the reaction rate evaluated at the location of nodal point i.
In this way, the original second order PDE has been transformed into a system of nonlinear algebraic
system with cA

i as unknowns. It is worth noting that this approach is of general validity, as Rni can
represent any kinetic expression and can straightforwardly be extended to multiple chemical reactions
by substituting the generation term with a sum of all reaction rates involving a specific component.

In the case of nonisothermal particles, heat balance must be taken into account, and the
resulting finite difference nodal equation system is represented, in analogy to mass balance, by the
following equation:

kt

 2
(i− 1)∆x

Ti+1
− Ti−1

2∆x
+

Ti+1 + Ti−1
− 2Ti

(∆x)2

+ (−∆H)(Rni) = 0 (60)

From a numerical point of view, the two numerical approaches (method of lines and method of
finite differences) are quite equivocal and are both able to treat virtually any type of kinetic in a solid
catalytic particle.

2.7. An Example of Calculation of Effectiveness Factor Complex Reactions

We considered the conversion of methanol to formaldehyde catalyzed by iron–molybdenum
oxide catalyst. Two consecutive reactions occur in the process [25]:

CH3OH + 1/2O2 → CH2O + H2O
CH2O + 1/2O2 → CO + H2O

(61)

The conditions for the reactions, together with catalyst characteristics and other physical
parameters [25] used in the calculations, are reported in Table 1.
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Table 1. Physico-chemical data for the calculation.

Ke = 2.72 × 10−4 KJ/(s m K) effective thermal conductivity
De = 1.07 × 10−5 exp(-672/T) m2/s effective diffusivity
ρP = 1180 Kg/m3 particle density
Cp = 2.5 KJ/(mole K) particle specific heat
P = 1.68 atm total pressure
TS = 539 K surface temperature
dP = 3.5 × 10−3 m particle diameter

Bulk gas composition mol%
CH3OH 9.0
O2 10.0
CH2O 0.5
H2O 2.0
CO 1.0
N2 77.5

These reactions follow a redox mechanism, and the most reliable kinetics is the one suggested by
Mars and Krevelen [26]:

v =
k1k2PmPn

O2

k1Pm + k2Pn
O2

(62)

Different values of n have been suggested in the literature, generally considering n = 1/2 [27] or
n = 1 [28]. The inhibition effect of water, formed in both the reactions, can also be introduced in the
form of a Langmuir–Hinshelwood term [29], such as

vr =
k1k2PmPn

O2

k1Pm + k2Pn
O2

( 1
1 + bwPw

)
(63)

Riggs [30] has proposed, on the contrary, pseudo Langmuir–Hinshelwood kinetic laws of the
following type:

vr1 = k1Pm
1+a1Pm+a2Pw

vr2 =
k2P f

1+b1Pm+b2Pw

(64)

where Pm, Pw, and Pf are, respectively, the partial pressures of methanol, water, and formaldehyde; k1,
k2, a1, a2, b1, and b2 are parameters whose values and dependence on temperature is reported Table 2.

Table 2. Kinetic parameters for the model.

k1 = 5.37 × 102 exp(-7055/T)
k2 = 6.42 × 10−5 exp(-1293/T)
a1 = 5.68 × 102 exp(-1126/T)
a2 = 8.37 × 10−5 exp(7124/T)
b1 = 6.45 × 10−9 exp(12,195/T)
b2 = 2.84 × 10−3 exp(4803/T)
∆H1 = 37,480 cal/mole
∆H2 = 56,520 cal/mole

The application of the model represented by Equations (57) and (58) to this example was performed
with the following assumptions:

- Catalytic particle is spherical with uniform reactivity, density, and thermal conductivity.
- The heat of reactions does not change with the temperature.
- The external diffusion resistance is negligible, and therefore the surface concentration is equal to

the one of the bulk.



Processes 2020, 8, 1599 17 of 35

- The effective diffusivity has been assumed equal for all the involved chemical species.

The numerical solution of this example was achieved by discretizing the particle radius with
20 internal nodes (Nn = 20). As the reactive mixture is constituted by six different components, we had
globally (Nc + 1) Nn = 140 ODEs to be integrated to the stationary state. A further check demonstrated
that by increasing the number of internal discretization points brings a negligible variation in the
effectiveness factors. As result of this calculation, we obtained the concentration profile of each
component inside the catalytic particle, as shown in Figure 9A. By examining this plot, it is clear that
the concentration profiles of the reagents methanol and oxygen decreased from the external surface to
the center of the pellet, while the opposite occurred for products.
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Figure 9. Mole fraction profiles inside a catalytic particle. (A) Kinetics of Riggs [30]; (B) kinetics of
Dente et al. [28].

By employing Equation (53), it is possible from these profiles to evaluate the effectiveness factors
for each reaction obtaining the following results: η1 = 0.778, η2 = 8.672.

The high effectiveness factor obtained for the second reaction was due to the low concentration of
formaldehyde in the bulk gas, in comparison with the formaldehyde concentration accumulated inside
the particle, which was significantly higher.

A further result of this example is related to the temperature profile reported in Figure 10. With the
reactions being very exothermic, the temperature increased, as expected, from the external surface
toward the center, and the overall ∆T was about 3.5 ◦C. In Figure 10, reported for comparison, are also
the same calculations made by adopting the Mars–Krevelen model with the parameters taken from
Dente et. al. [28] and Riggs [30].
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where u is the fluid velocity component along various dimensions, ci is the concentration of a generic
component, γi,j is the stoichiometric coefficient of chemical species i in reaction j, and vr,j is the j-th 
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Figure 10. Internal temperature profile for a catalytic particle obtained with different kinetic models.

3. Mass and Heat Transfer in Packed Bed Reactors: Long Range Gradients

3.1. Conservation Equations for Fixed-Bed Reactors: Mass and Energy Balances

The generic mass conservation equation for a system of Nc components involved in a reaction
network of Nr chemical reactions, related to the I’th component, can be written as in the following
equation [16]:

∂ci
∂t

= −∇(ciu + Ji) +

Nr∑
j=1

γi, jvr, j (65)

where u is the fluid velocity component along various dimensions, ci is the concentration of a generic
component, γi,j is the stoichiometric coefficient of chemical species i in reaction j, and vr,j is the
j-th rate of reaction based on fluid volume. The quantity Ji represents the molar flux of the i-th
component originated by the concentration gradients, temperature gradients, and pressure gradients.
The molar flux is in relation with the effective diffusion coefficient Di by Fick’s law, represented by the
following equation:

Ji = −Di∇ci (66)

Equation (65) is valid in both steady and unsteady state conditions and also contains the
accumulation term resulting from the unbalanced difference between input, output, and chemical
reactions terms. The overall balance is referred to a suitable control volume.

In the case of a fixed-bed reactor, the control volume assumes the shape of an annulus in a
cylindrical coordinate system. By applying the conservation concepts expressed by Equation (65),
assuming that only the velocity in the direction of flow (uz = v) is dominant with respect to other
directions and as represented in Figure 11, the general Equations (65) and (66) can be combined to give

εB
∂ci
∂t

= −
∂
∂z

(uci) +
∂
∂z

[
Dai

∂ci
∂z

]
+

1
r
∂
∂r

[
Dri

∂ci
∂r

]
+ (1− εB)

Nre∑
j=1

γi, jvG
r, j (67)

where Dai and Dri are the effective dispersion coefficients (diffusivities), in axial and radial directions,
for the i-th component. These quantities are referred to the total cross-sectional area perpendicular
to the diffusion direction; u is the linear velocity in the catalyst bed and εB is the void fraction of the
catalyst bed. The overall reaction rate vG

r, j is then multiplied by the factor (1−εB) as the reaction rate is
based on the catalyst particle volume.



Processes 2020, 8, 1599 19 of 35

Processes 2020, 8, x FOR PEER REVIEW  19 of 35 

In the case of a fixed-bed reactor, the control volume assumes the shape of an annulus in a 
cylindrical coordinate system. By applying the conservation concepts expressed by Equation (65), 
assuming that only the velocity in the direction of flow (uz = v) is dominant with respect to other 
directions and as represented in Figure 11, the general Equations (65) and (66) can be combined to 
give 

, ,
1

1( ) (1 )
re

i i

N
Gi i i

B i a r B i j r j
j

c c cuc D D v
t z z z r r r

ε ε γ
=

∂ ∂ ∂ ∂ ∂ ∂   = − + + + −   ∂ ∂ ∂ ∂ ∂ ∂   
  (67) 

where Dai and Dri are the effective dispersion coefficients (diffusivities), in axial and radial directions, 
for the i-th component. These quantities are referred to the total cross-sectional area perpendicular to 
the diffusion direction; u is the linear velocity in the catalyst bed and εB is the void fraction of the 
catalyst bed. The overall reaction rate ,

G
r jv  is then multiplied by the factor (1−εB) as the reaction rate 

is based on the catalyst particle volume. 

 
Figure 11. Scheme of the coordinate system and control volume for the fixed-bed conservation equations. 

A simplification can be introduced in Equation (3) by assuming a constant linear velocity in z-
direction (reactor axis) and also constant diffusivities along both z and r. Under these assumptions, 
Equation (67) can be reformulated as follows: 

2 2

, ,2 2
1

1 (1 )
re

i i

N
Gi i i i i

B a r B i j r j
j

c c c c cu D D v
t z z r r r

ε ε γ
=

 ∂ ∂ ∂ ∂ ∂+ − − + = + − ∂ ∂ ∂ ∂ ∂ 
  (68) 

A similar approach can be adopted for the energy balance by replacing in Equation (68) the 
following quantities: the term ρCpT instead of concentration of chemical species Ci, the effective 
thermal conductivities K instead of diffusivities D, and reaction enthalpy term (−ΔHj) RGj instead of 
reaction rate RGj: 

2 2

,2 2
1

1 (1 ) ( )
reN

GB
B a r j r j

jp

T T T T Tu K K H v
t z z r r r C

εε
ρ =

 ∂ ∂ ∂ ∂ ∂ −+ − − + = −Δ ∂ ∂ ∂ ∂ ∂ 
  (69) 

where ρ and CP are the density and specific heat (average values) referred to the gas mixture, 
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A simplification can be introduced in Equation (3) by assuming a constant linear velocity in
z-direction (reactor axis) and also constant diffusivities along both z and r. Under these assumptions,
Equation (67) can be reformulated as follows:

εB
∂ci
∂t

+ u
∂ci
∂z
−Dai

∂2ci

∂z2 −Dri

[
∂2ci

∂r2 +
1
r
∂ci
∂r

]
= +(1− εB)

Nre∑
j=1

γi, jvG
r, j (68)

A similar approach can be adopted for the energy balance by replacing in Equation (68) the
following quantities: the term ρCpT instead of concentration of chemical species Ci, the effective
thermal conductivities K instead of diffusivities D, and reaction enthalpy term (−∆Hj) RGj instead of
reaction rate RGj:

εB
∂T
∂t

+ u
∂T
∂z
−Ka

∂2T
∂z2 −Kr

[
∂2T
∂r2 +

1
r
∂T
∂r

]
=

(1− εB)

ρCp

Nre∑
j=1

(−∆H j)vG
r, j (69)

where ρ and CP are the density and specific heat (average values) referred to the gas mixture, respectively.
Considering a fixed-bed reactor, bulk phase concentration and temperature can be regarded,

in general, as functions of both r and z coordinates:

cB
i = f (z, r)

Tb = g(z, r)
(70)

In the assumptions above, the general mass and energy balance equations for the fixed-bed reactor
in which Nr chemical reactions and Nc components are involved are

εB
∂ci

B

∂t + u∂ci
B

∂z −Dai
∂2ci

B

∂z2 −Dri

[
∂2ci

B

∂r2 + 1
r
∂ci

B

∂r

]
= (1− εB)

NR∑
j=1

γi, jvG
r, j

i = 1, 2, . . . Nc

(71)

εB
∂TB

∂t
+ u

∂TB

∂z
−Ka

∂2TB

∂z2 −Kr

[
∂2TB

∂r2 +
1
r
∂TB

∂r

]
=

(1− εB)

ρCp

NR∑
j=1

(−∆H j)vG
r, j (72)

Equations (71) and (72) represent a system of PDEs (partial differential equations) for which a
solution can be obtained by imposing some suitable boundary conditions related to both variables
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(temperature and concentration) and their derivatives with respect to z and r. Usual boundary
conditions can be written as follows:

∂TB

∂r
=
∂cB

i
∂r

= 0atthecenterlineofthereactor(r = 0)forallz (73)

∂cB
i
∂r

= 0 ; hw(TB − TC) = −ρCpKr
∂TB

∂r
atthewallofreactor(r = R)forallz (74)

The first boundary condition (Equation (73)) can be written by considering the symmetry around
the axis of the tubular reactor, while the second condition (Equation (74)) expresses the constraint
that no mass transfer occurs across the reactor wall. The second part of Equation (74) expresses the
zero-accumulation of energy and is related to the heat transfer boundary condition according to which
the heat transferred to the cooling fluid, at a temperature Tc, is equal to the heat conducted at the wall.

The axial boundary conditions, written at the reactor inlet, consists of the following equations:

(ucB
i )in = (ucB

i −Dai

∂cB
i
∂z )z=0

atz = 0
(uTB)in = (uTB −Ka

∂TB
∂z )z=0

(75)

While at the outlet
∂cB

i
∂z

=
∂TB

∂z
= 0 at z = Z (76)

The boundary conditions (Equations (75) and (76)) are based on the flux continuity (both mass
and heat) across a boundary, represented by the catalytic bed inlet and outlet.

3.2. External Transport Resistance and Particle Gradients

The link between macroscopical (“long-range”), concentration, and temperature gradients,
described by the conservation equations for the entire reactor, and the microscopic situation locally
developed around catalytic particles and inside it, is represented by a relation between the overall rate
of reaction and the intrinsic kinetic. At a macroscopical level, the observed reaction rate, RGi, represents
the rate of mass transfer across an interface between fluid and solid phase, which is ultimately related
to the flux at the catalyst particle surface:

Nr∑
j=1

γi, jvG
r, j =

kg

L
(cB

i − cS
i ) =

Dei
L

∂cP
i

∂x

∣∣∣∣∣∣∣
x=L

=

Nre∑
j=1

γi, jη jvr, j j = 1, 2, . . . , Nr (77)

with the following mean of the symbols:

- kg—gas-solid mass transfer coefficient (film);
- L—characteristic length of particle (radius for spherical pellets);
- ci

S—surface concentration of component i;
- ci

P—particle internal concentration of component i;
- Dei—effective diffusivity of component i into the particle;
- x—particle radial coordinate;
- ηj—effectiveness factor for reaction j;
- vr,j—intrinsic rate of reaction j.

In a similar way, we can write a relation for the thermal flux:

Nr∑
j=1

(−∆H j)vG
r, j =

h
L
(TS − Tb) = −

Ke f f

L
∂TP

∂x

∣∣∣∣∣
x=L

(78)
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where

- h—film heat transfer coefficient;
- TS—temperature at the surface of the pellet;
- TP—temperature inside the pellet;
- Keff—effective thermal conductivity of the catalytic particle.

By considering Equation (77), the relationship between the rate of reaction at a macroscopic
level and the intrinsic reaction rate is expressed for each chemical reaction by the effectiveness
factor η or, in an equivalent way, by means of the concentration gradients measured at the particle
surface. This consideration evidences the necessity to solve mass and energy balance equations
related to catalytic particles to calculate local (microscopic) concentration and temperature profile.
This calculation must be replicated, in principle, in each position along the reactor.

Conservation equations for the particles can be written as in the following equations
(Equations (79) and (80)):

εP
∂cP

i
∂t

= Dei

∂2cP
i

∂x2 +
2
x

∂cP
i

∂x

− ρP

Nr∑
j=1

γi, jrc j i = 1, 2, . . . , Nc (79)

εPρPCP
P
∂TP

∂t
= Ke

[
∂2TP

∂x2 +
2
x
∂TP

∂x

]
− ρP

Nr∑
j=1

(−∆H j)rc j (80)

with the following meanings of the symbols:

- εP—catalytic particle void fraction;
- ρP—catalytic particle density;
- CP

P—catalytic particle specific heat.

The simultaneous solution of PDE system represented by Equations (79) and (80) can be obtained
by imposing some boundary conditions that are valid at the center and at the external surface of the
catalyst particle respectively. These boundary conditions can be derived from symmetry consideration
and from continuity related to both concentration and temperature:

∂cP
i

∂x = 0 ∂TP
∂x = 0 at r = 0(center)

cP
i = cS

i TP = TS at r = L(surface) (81)

As it was defined, the problem consists in a set of non-linear partial differential equations (PDEs)
that must be solved at two levels: the first is a local level, related to a single catalytic particle, and the
second is a long-range scale for the entire reactor. The solution of the problem in the full form,
expressed by the Equations (72) to (79), is a complex task, even by adopting sophisticated numerical
solution algorithms, while an analytical exact solution is impossible for the mostly practical cases.
In the following part of this review, an overview of the possible simplifications is presented and some
simplified equations are reported in association with problems much easier to solve.

3.3. Conservation Equations in Dimensionless Form and Possible Simplification

A convenient way to introduce the mentioned simplifications is in rewriting mass and energy
balances for the reactor in a dimensionless form. This strategy has both the scope to emphasize
some parameters of the reactor and the ability to implement a more robust procedure for the
numerical solution.
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We can pose

nd = Z
dP

md = R
dP

Ad = Z
R θd = Z

u ci =
cB

i

cB(in)
i

T = TB
TB(in)

r = r
Rr

z = z
Z t = t

θd

(82)

with

- dP—particle diameter;
- R—fixed-bed reactor radius;
- Z—fixed-bed reactor length;
- cB(in)

i—reactor inlet concentration;
- TB(in)—reactor inlet temperature.

Within these assumptions, the reactor conservation equations become

εB
∂ci
∂t

+
∂ci

∂z
−

1
ndPma

∂2ci

∂z2 −
1

mdPmr

[
∂2ci

∂r2 +
1
r
∂ci

∂r

]
=

(1− εB)θd

cB(in)
i

Nre∑
j=1

γi, jvG
r, j i = 1, 2, . . . , Nc (83)

εB
∂T
∂t

+
∂T
∂z
−

1
ndPha

∂2T

∂z2 −
Ad

mdPhr

[
∂2T

∂r2 +
1
r
∂T
∂r

]
=

(1− εB)θd

ρCpTB(in)

Nre∑
j=1

(−∆H j)vG
r, j (84)

In the Equations (83) and (84), we can recognize some fundamentals dimensionless groups that
are related to mass dispersion, which is related to axial and radial directions, represented by Peclet’s
numbers expressed by the following equations:

Pma =
dPu
Da

(axial) Pmr =
dPu
Dr

(radial) (85)

and analogously for heat dispersion we have

Pha =
dPu
ka

(axial) Phr =
dPu
kr

(radial) (86)

The quantitative criteria that can be adopted to determine if the dispersion phenomena affect
the overall reactor performances are Peclet’s numbers and reactor-to-particle size ratios (n, m, and A).
Moreover, these criteria can give indications to decide whether or not some simplifications are
allowed. The operative conditions adopted and chemical reaction characteristics can suggest further
simplifications according to which mass and energy conservation equations can be solved in a simplified
form. The first and more common simplification is represented by the steady state, allowing the
elimination of time variable and all its derivatives, in the left-hand sides of Equations (71), (72), (79),
and (80). From an energetic point of view, the reaction enthalpy also plays a very important role.
When the reaction heat is negligible or very low, the reactor can be run isothermally, and then, with the
temperature being a constant, the heat balance equation can be eliminated. If the reactor is thermally
insulated from the environment, it is operated in adiabatic conditions, as many reactors are in practice.
In this case, radial gradients could be negligible, and therefore only a one-dimensional model is
sufficient for the description of the reactor behavior. An intermediate situation, comprising these two
limit cases described, is represented by a reactor working in conditions that cannot be considered
isothermal nor adiabatic. This is the case of very exothermal reactions for which an external cooling
system is required in order to guarantee the safety of the reactor and to preserve the catalyst durability.
In this case, a numerical solution of conservation equations in full form appears to be the only feasible
strategy. However, the conservation equations can still be applied in a simplified form, even if the
problem remains complex to solve and is more difficult with respect to the two limit cases (isotherm and
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adiabatic) cited previously. Normally, for an extremely exothermic chemical reaction, the packed beds
with small diameter are used for promoting the heat removal, and in this case the radial temperature
profile can be neglected. The problem is again mono-dimensional in this case. In general, according to
Carberry [31], the gradients along the reactor radius, for practical purposes, can be neglected when
the radial aspect ratio m = R/dp is less than 3 or 4. Further guidelines can be gained by examining the
values of Peclet’s numbers and the reactor aspect ratios; as an example, the axial aspect ratio n=Z/dP
is usually very large, and considering that Pma is about 2 for gases flowing through a catalytic bed
for Reynold’s number (based on particle diameter) greater than 10, then the term nPma is also large,
revealing that axial mass dispersion can be almost completely neglected. Table 3 [32] summarizes
the general guidelines to introduce principal simplifications in the mass balance for a packed-bed
reactor operating under stationary conditions; the two limit cases are also reported with concern to the
isothermal and adiabatic reactor together with the intermediate situation in which the reactor cannot
be considered isothermal nor adiabatic.

Table 3. Guidelines for simplifications in the left-hand side of conservation equations, with reference to
stationary conditions.

Reactor Conditions Aspect Ratio Criteria Left-Hand Side of Equations (71) and (72)

Isothermal u
∂ci

B
∂z

Adiabatic

(
Z
dP

)(
dP
Da

)
> 300 Re > 10 u

∂ci
B

∂z
ρCPu ∂TB

∂z

(
Z
dP

)(
dP
Da

)
< 300 Re > 10

u
∂ci

B
∂z ρCPu ∂TB

∂z or, if necessary

ρCPu ∂TB
∂z −Ka

∂2TB
∂z2

Non-isothermal and
non-adiabatic

Rr
dP
> 4

u
∂ci

B
∂z −Dr

(
∂2ci

B
∂r2 + 1

r
∂ci

B
∂r

)
ρCPu ∂TB

∂z −Kr

(
∂2TB
∂r2 + 1

r
∂TB
∂r

)
Rr
dP
≤ 4 Re > 30 u

∂ci
B

∂z
ρCPu ∂TB

∂z

3.4. Examples of Applications

In the following sections, we examine some examples concerning fixed-bed reactors operating in
the various possible thermal regimes.

3.4.1. Isothermal Conditions

Isothermal conditions are seldom obtained in industrial packed bed reactors and are only for
systems with a very low heat of reaction, whereas they are most commonly encountered in slurry
reactors because liquid phase has a high thermal conductivity. Therefore, in these cases, we can have
only internal, and sometimes external, diffusion limitation to the reaction.

3.4.2. Adiabatic Conditions

If the reactor is operated so that heat transfer to the surrounding is negligible, the system could
be considered in adiabatic conditions. For simplicity, we can consider a system of a single reaction,
A→P, in steady state adiabatic conditions, and then the material energy balances for a tubular reactor
with no axial and radial dispersion could be derived from Equations (69) and (70), resulting in the
following expressions:

dFA
dz = ρBAR1

dT
dz =

ρB
GCP

(−∆H1)R1
(87)
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where

- G—mass velocity;
- cross section of the reactor tube;
- FA, F0

A component molar flow rate;

- R j—reaction rate for reaction j based on catalyst mass.

In the above equations, it is convenient to introduce the fractional conversion, XA, obtaining the
following equations:

dXA
dz = −

ρBA
F0

A
R1

dT
dz =

ρB
GCP

(−∆H1)R1
(88)

Dividing Equations (87) and (88) term by term, we obtain an expression relating the conversion
and the temperature:

dXA
dT

= −
AGCP

F0
A

(−∆H1) or in integrated form: XA = αA + βAT (89)

with αA and βA as constants. The main result expressed by the previous equation is that a linear
relationship exists between the temperature and the conversion for an adiabatic reactor.

Adiabatic reactors are frequently employed in industrial practice, especially in the case of
equilibrium reactions for which the desired conversion is achieved through assembling the reactor in
a series of adiabatic catalytic beds provided with intermediate heat removal or supplying system in
accordance with the reaction being exothermic or endothermic. Figures 12 and 13 report a schematic
reactor configuration for an exothermic and an endothermic reaction, respectively, together with
temperature-conversion diagrams that show conversion equilibrium curves and straight lines resulting
from balance Equation (89) and cooling or heating. With such an arrangement, it is possible to achieve
good control over the final conversion of reversible reactions by controlling the temperature at the
outlet of each catalytic bed. In the diagrams reported in Figures 12 and 13, dashed lines represent
cooling or heating operations.
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4. Non-Isothermic and Non-Adiabatic Conditions

4.1. Conversion of o-Xylene to Phthalic Anhydride

Let us consider, first of all, a reaction that is performed in a packed-bed tubular reactor, operated in
an modality non-isothermal and non-adiabatic that consists in the synthesis of phthalic anhydride
(PA) obtained by oxidation of o-xylene (OX) with oxygen (O). A simplified scheme for this oxidation
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The reaction is catalyzed by vanadium pentoxide supported on α-alumina and has a high
exothermal character. From Equation (90), it is evident that the reaction can lead to CO2 and CO
production, if not properly thermally controlled, giving a low yield in PA. For the reactor simulation,
therefore, thermal effect must be taken into account for both the reaction and the heat exchanged with
the cooling medium. The kinetic equations and related parameters for the reactions (Equation (90)) are
reported in Table 4, together with the characteristics of the reactor and of the catalytic particles used in
the simulations [33].

A specific characteristic of this reactor is the catalyst dilution with an inert material in the first
part of the reactor (0.75 m) that is realized at the purpose of an improved temperature control.

For the model development, some basic assumptions should be stated, as in the following points:

• No axial and radial dispersion;
• No radial temperature and concentration gradients in the reactor body;
• Plug flow behavior of the reactor;
• No limitation related to internal diffusion in catalytic particles.
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Table 4. Kinetic data for the conversion of o-xylene to phthalic anhydride.

r1 = k1 POX PO (Kmol/Kg-cat h) ln k1= −27,000/RT + 19.837
r2 = k2 PPA PO (Kmol/Kg-cat h) ln k2= −31,000/RT + 20.860
r3 = k3 POX PO (Kmol/Kg-cat h) ln k3= −28,600/RT + 18.970

∆H1 = −307 Kcal/mol
∆H2 = −783 Kcal/mol
∆H3= −1090 Kcal/mol

U = 82.7 Kcal/ m2 h ◦C overall heat transfer coefficient
D = 0.025 m reactor diameter
Z = 3 m reactor length
dP = 0.003 m particle diameter
CP = 0.25 Kcal/Kg ◦C average specific heat
ρB =1300 Kg/m3 bulk density of the bed

Feed composition: yOX = 0.0093
yO = 0.208

Feed molar flow rate F = 0.779 moles/h
Inert dilution of the catalyst mI =0.5 for the first quarter
Inlet temperature T0 = 370 ◦C

The assumptions related to radial profiles can be supported by the criteria expressed in Table 3
for radial aspect ratio m=R/dp that can be estimated as m = 4.1 and then slightly above the limit.
By considering the assumptions and simplifications applied to this system, we can write a material
balance equation directly from Equation (69) considered in the stationary state:

dFi
dz

= F
dyi

dz
= ρB

πD2
r

4

Nr∑
j=1

γi, j
R j

(1 + mI)
i = 1, 2, . . . , Nc (91)

assuming a constant molar flow rate F, and with the following substitution:

u =
Q
A

Qci = Fi A =
πD2

r
4

Fi = yiF (92)

where:

- Q—volumetric overall flow rate;
- A—cross section of the reactor tube;
- Dr—reactor diameter;
- Fi—component molar flow rate;
- yi—mole fraction of component i;
- mI—mass of inert per unit mass of catalyst (dilution ratio);

- R j—reaction rate for reaction j based on catalyst mass.

The heat is constituted by Equation (72) and can be modified in a way similar to that adopted
for mass balance and according to the absence of radial profiles and to the heat exchange of external
cooling fluid in the reactor jacket. The thermal exchange with the surrounding (thermal fluid into the
jacket) cannot be considered only as a boundary condition but as a separate term in the energy balance
equation. A behavior similar to that of a double pipe heat exchanger (see Figure 14) can be adopted
for the reactor and then, referring to a unit of reactor volume, the heat transferred across the external
surface is defined as

q =
U(TC − T)πDrdz

Adz
=

U(TC − T)πDr

A
=

4U(TC − T)
Dr

(93)
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Figure 14. Double-pipe countercurrent reactor.

Equation (93) represents an additional term in the energy balance, and must be added to the heat
associated with the reaction, resulting in the following overall differential equation for temperature
evolution along the reactor axis:

dT
dz

=
ρB

GCP

Nr∑
j=1

(−∆H j)
R j

(1 + mI)
+

4U
DGCP

(TC − T) (94)

with G = F·MF
A , with the following meanings for the symbols:

- G—mass velocity;
- MF—average molecular weight of mixture.

The system of differential Equations (91) and (94) can be integrated in axial direction, z, for the
calculation of temperature and composition profiles. The temperature profile resulting from this
mono-dimensional model (axial coordinate) is reported in Figure 15 [33], with this diagram also
reporting, as a comparison, the result of a more complex bi-dimensional model in which profiles in a
radial direction are also taken into account.

As was shown before, the bi-dimensional model involves the solution of partial differential
equations. In the considered example is the numerical strategy of finite differences method (FDM).
The two models (one and two dimensions) give comparable results for what concerns axial temperature
profiles. A conclusion is that the one-dimensional model can be considered sufficiently accurate for
many practical purposes. The bi-dimensional model, however, foresees a slightly higher conversion to
CO and CO2, due to the higher temperature along the reactor.



Processes 2020, 8, 1599 28 of 35
Processes 2020, 8, x FOR PEER REVIEW  28 of 35 

 
Figure 15. Comparison of the results of the one- and bi-dimensional models for reactor simulation 
(elaborated from data reported by Froment [33], see also [1]). 

As was shown before, the bi-dimensional model involves the solution of partial differential 
equations. In the considered example is the numerical strategy of finite differences method (FDM). 
The two models (one and two dimensions) give comparable results for what concerns axial 
temperature profiles. A conclusion is that the one-dimensional model can be considered sufficiently 
accurate for many practical purposes. The bi-dimensional model, however, foresees a slightly higher 
conversion to CO and CO2, due to the higher temperature along the reactor. 

4.2. Conversion of Methanol to Formaldehyde 

As a further example of a system that cannot be considered isothermal nor adiabatic, we chose 
the same reaction previously adopted in Section 2.7 for the evaluation of the effectiveness factor in a 
non-isothermal pellet, that is, the catalytic conversion of methanol to formaldehyde. Two reactions 
occurred as seen previously (Equation (61)). 

These reactions were performed in a tubular reactor packed with catalyst and equipped with a 
jacket in which a heat transfer fluid is circulated with the purpose to a better temperature control. 
Table 5 reports the reactor operating conditions and other characteristics. A simulation was 
performed by using these conditions and the kinetic data from Riggs [29] (details were reported in 
[25]), obtaining composition and temperature profiles along the reactor axis. In this case study, a 
further aspect was introduced into the model, consisting in the calculation of the catalyst effectiveness 
factor along the reactor, considering diffusional limitations inside the particles. 
  

Figure 15. Comparison of the results of the one- and bi-dimensional models for reactor simulation
(elaborated from data reported by Froment [33], see also [1]).

4.2. Conversion of Methanol to Formaldehyde

As a further example of a system that cannot be considered isothermal nor adiabatic, we chose
the same reaction previously adopted in Section 2.7 for the evaluation of the effectiveness factor in a
non-isothermal pellet, that is, the catalytic conversion of methanol to formaldehyde. Two reactions
occurred as seen previously (Equation (61)).

These reactions were performed in a tubular reactor packed with catalyst and equipped with
a jacket in which a heat transfer fluid is circulated with the purpose to a better temperature control.
Table 5 reports the reactor operating conditions and other characteristics. A simulation was performed
by using these conditions and the kinetic data from Riggs [29] (details were reported in [25]), obtaining
composition and temperature profiles along the reactor axis. In this case study, a further aspect was
introduced into the model, consisting in the calculation of the catalyst effectiveness factor along the
reactor, considering diffusional limitations inside the particles.

Table 5. Reactor characteristic and operating conditions.

Inlet temperature 539 K
Total pressure 1.68 atm
Bulk density of the bed 0.88 Kg/m3

Overall heat transfer coefficient U 0.171 KJ/(m2 s K)
Heating medium temperature 544 K
Reactor diameter 2.54 x 10−2 m
Particles diameter 3.5 x 10−3 m
Reactor length 0.35 m

Gas inlet composition mol %
CH3OH 9
O2 10
CH2O 0.5
H2O 2
CO 1
N2 77.5
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Some simplifying assumptions were introduced in the present case for the model development in
a way similar to that of the example reported in the previous section:

• Negligible dispersion in axial and radial directions;
• Absence of concentration and temperature profiles along the reactor radius;
• Plug flow reactor behavior.

By applying the criteria of Table 3, radial profiles can be considered negligible as the aspect
ratio in radial direction was m = R/dP = 3.6, which was well below the limit value of 4. Under these
assumptions, the resulting model is mono-dimensional because it only considers axial reactor profiles.
At each location along the reactor axis, an effectiveness factor calculation was performed to obtain the
value of the reaction rate that is related to that point, determining, in this way, an effectiveness factor
axial profile. On the basis of the described assumptions and introducing molar flow rates relative to
each chemical component, we can express material balance equations by the following model:

dFi
dz

= ρB
πD2

r
4

Nr∑
j=1

γi, jR j i = 1, 2, . . . , Nc (95)

u =
Q
A

Qci = Fi A =
πD2

r
4

(96)

that can be derived upon the following substitution in Equation (71):
The energy balance, represented by Equation (72), can also be simplified, as done for the mass

balance, according to the assumed absence of radial profiles and to the presence of reactor jacket with
cooling fluid, as reported, for example, in Session 4.1. The heat exchanged per unit of reactor volume
between the reactor and the cooling jacket can be defined as follows:

q =
U(TC − T)πDrdz

Adz
(97)

This term must be added algebraically to the reaction enthalpy term in the heat balance equation,
yielding the following expression: Nc∑

i=1

FiCPi

dT
dz

=
πD2

r
4
ρB

Nr∑
j=1

(−∆H j)R j + πDrU(TC − T) (98)

Equations (95) and (98) represent a system of Nc+1 coupled ordinary differential equations
that must be integrated along the z axial direction to calculate the desired profiles of composition
and temperature. At each integration step along z, a calculation of the effectiveness factor for each
chemical reaction must be performed according to the procedure described in Session 2.6. A suitable
integration algorithm must be adopted with a variable z step size, inversely proportional to the axial
derivative dT/dz, so that a smaller step size is used when a steep temperature increase is detected in
correspondence to a steeper profile. Figure 16 reports the axial temperature profile as a result of this
simulation. This figure shows that the reaction mixture fed to the reactor undergoes a steep increase in
gas temperature due to the strong exothermic character of this reactive system.

As methanol conversion proceeds (see composition profile reported in Figure 17), the main reaction
rate also decreases, and the same trend can be appreciated for the temperature. Finally, in Figure 18,
the profiles of the effectiveness factors for the two reactions is reported. It is interesting to observe that
the main reaction is characterized, in the first part of the reactor, by an effectiveness factor much higher
than unity, with this indicating that catalytic particles are not isothermal and a temperature profile is
developed inside them.
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5. Conclusions

The role of heat and mass transfer in affecting the kinetic studies in gas–solid tubular reactors was
discussed in detail by surveying the abundant literature published on the subject. All the occurring
phenomena were described and the equations for their interpretation were given.

Considering the enormous progress of electronic computers, many problems that were intractable
in the past for their mathematical complexity can today be easily and rigorously solved with numerical
approaches. For more clarity, some examples of mathematical solutions were reported.

Author Contributions: E.S. wrote the first part of the work related to the heat and mass transfer in the single
pellet. R.T. wrote the second part related to the long-range gradients in packed bed reactors. All authors have
read and agreed to the published version of the manuscript.

Funding: Thanks are due to Eurochem Engineering LtD for funding the work.

Conflicts of Interest: The authors declare no conflict of interest.

Glossary

List of Symbols
am Specific surface area
A Reactor cross section
bw Water adsorption equilibrium constant
c Generic concentration
ci Concentration of component i
ci
◦

Initial i concentration
cb Generic concentration of a component in the bulk
ci

B Concentration of i in the bulk
ci

P Concentration of i inside a catalytic particle
cS Generic concentration at the catalytic surface
ci

S Concentration of i at the surface
Cp Average gas specific heat
Cp

P Particle specific heat
∆c Concentration gradient
∆cmin Minimum concentration gradient
D Reactor diameter
dp Particle diameter
D Generic molecular diffusivity
Di Molecular diffusivity of component i
Di,j Mutual binary diffusion coefficient
D12 Mutual binary diffusion coefficient
Dim Diffusion coefficient of i in a mixture m
Deff Effective molecular diffusivity
(Di)eff Effective molecular diffusivity of component i
Dbe Bulk diffusion coefficient
Dke Knudsen diffusion coefficient
Dei Effective diffusivity inside particle
Dai Axial diffusivity of component i
Dri Radial diffusivity of component i
Fi Molar flow rate of component i
F Overall molar flow rate
G Mass velocity
h Film heat transfer coefficient
hw Wall heat transfer coefficient
∆H Generic reaction enthalpy
∆Hj Enthalpy of reaction j
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Ji Molar flux of component i
JD, JH Terms for mass and heat transfer analogy
k, ki Generic kinetic constant
kB Boltzmann’s constant
kT Generic thermal conductivity of the fluid
kf Thermal conductivity of the bulk
keff Effective thermal conductivity
kSol Thermal conductivity of the solid
Ka Axial thermal conductivity
Kr Radial thermal conductivity
Ke Particle thermal conductivity
kS Kinetic constant

kc
Film mass transfer coefficients (concentration
gradient)

kg Film mass transfer coefficients (pressure gradient)
km Mass transfer coefficient
L Characteristic length
Le Lewis’s number
m Radial aspect ratio
mI Inert dilution ratio
M, Mi Molecular weight
MF Average molecular weight of the mixture
Mw Weisz modulus
NC Number of components
Nre Number of reactions
Nr Molar flux
Ni, NA Molar flux
N Number of nodes
n Reaction order
P Total pressure
Pm Methanol partial pressure
Pf Formaldehyde partial pressure
Pw Water partial pressure
PO2 Oxygen partial pressure
Pma Axial Peclet’s number for mass
Pmr Radial Peclet’s number for mass
Pha Axial Peclet’s number for heat
Phr Radial Peclet’s number for heat
Pr Prandtl’s number
Q Rate of heat transfer
Qv Overall volumetric flow rate
q Heat flux
r Reactor radial coordinate
rP Particle spherical radius
R Gas constant
Rr Reactor radius
Rni Reaction rate at node i
Rj Reaction rate (fluid volume)
R j Reaction rate (catalyst mass)
rcj Intrinsic reaction rate
Re Reynold’s number
Sv Specific surface area
Sh Sherwood’s number
Sc Schmidt’s number
S Selectivity
Sg Specific surface area
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T Generic temperature
TS Temperature at particle surface
TP Temperature inside the particle
Tb Bulk temperature
Tc Cooling fluid temperature
∆Tmax Maximum temperature difference
t Time
u Velocity
uz Velocity in z direction
U Overall heat transfer coefficient
vr Reaction rate
vr,i Reaction rate, reaction i-th
vr,j

G Reaction rate (pellet volume)
Vci Critical volume of component i
x Particle radial coordinate
Xi Fractional conversion
yi Gas phase mole fraction component i
z Axial reactor coordinate
Z Reactor length
Greek Letters
αA Constant in Equation (89)
αB Constant in Equation (89)
αE Reaction rate exponential parameter
αJ Constant in Equation (38)
αH Constant in Equation (40)
β Prater’s number
βJ Constant in Equation (38)
βH Constant in Equation (40)
γdr Dimensionless concentration
γij Stoichiometric coefficient
δ Thickness of boundary layer
εdr Dimensionless radius
εB Bed void fraction
εBs Bed void fraction of the solid
εJ Constant in Equation (38)
εH Constant in Equation (40)
εij Interaction parameter
εp Particle void fraction
η, ηj Effectiveness factor
µ Viscosity
θ Porosity of the solid
ρ Average gas density
ρp Particle density
ρd Intermolecular distance
σij Kinetic diameter
τ Tortuosity factor
φ Thiele modulus
φLJ Lennard–Jones potential
ydr Dimensionless reaction rate
ΩD Collision integral
∇ Nabla operator
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