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A B STRACT    
The complex microbial community of the gut microbiome plays a fundamental role in driving development and function 
of the human immune system. This phenomenon is named the gut microbiome-immune system axis. When operating 
optimally, this axis influences both innate and adaptive immunity, which orchestrates the maintenance of crucial ele-
ments of host-microorganisms symbiosis, in a dialogue that modulates responses in the most beneficial way. Growing 
evidence reveals some environmental factors which can positively and negatively modulate the gut microbiome-immune 
system axis with consequences on the body health status. Several conditions which increasingly affect the pediatric age, 
such as allergies, autoimmune and inflammatory disorders, arise from a failure of the gut microbiome-immune system 
axis. Prenatal or postnatal modulation of this axis through some interventional strategies (including diet, probiotics and 
postbiotics), may lead to a positive gene-environment interaction with improvement of immune-modulatory effects and 
final positive effect on human health. In particular probiotics and postbiotics exerting pleiotropic regulatory actions on 
the gut-microbiome-immune system axis provide an innovative preventive and therapeutic strategy for many pediatric 
conditions.
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The gastrointestinal tract harbors trillions of 
microbial inhabitants that are collectively 

known as the gut microbiota. All microorgan-
isms and their total genome capacity, when con-
sidered together, constitute the gut microbiome 
(GM).1 These complex communities of microbes 
that include bacteria, fungi, viruses and other 
microbial and eukaryotic species, play a pivotal 
role in modulating most aspects of host physiol-

ogy.2 Over the past few years, the field of immu-
nology has been revolutionized by the growing 
understanding of the fundamental role of GM 
in the development and function of the human 
immune system.3 This phenomenon is called the 
gut microbiome-immune system axis. When op-
erating optimally, the gut microbiome-immune 
system axis influences both innate and adaptive 
immunity in a dialogue that modulates responses 
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immune system axis. Alteration of the structure 
and function of the GM as a result of negative 
influence of many environmental factors could 
transform our microbial allies into potential ad-
versaries.

On the other hand, exposure to factors that 
positively influence GM composition and func-
tion (such as probiotics and postbiotics) leads to 
a positive modulation of the immune system with 
consequent powerful protective action against 
several diseases, not only in the pediatric age but 
also in future life (Figure 1).7-10

Here we review the current knowledge about 
the mechanisms involved in the GM modulation 
and how these changes can drive the immune sys-

in the most beneficial way. These beneficial ef-
fects can be observed not only locally but also 
in distant organs, due to systemic distribution of 
GM-derived metabolites and cells activated in 
the gut.4, 5 The gut microbiome-immune system 
axis is a lifelong, complex and dynamic interac-
tion that starts during intrauterine life. In particu-
lar, the period between conception and child’s 2nd 
birthday is a critical window of opportunity in 
which are set the basis for a healthy status for the 
child and for his future life.6

It is now clear that several conditions that 
increasingly affect the pediatric age (such as 
allergies, autoimmune and inflammatory disor-
ders) arise from a failure of the gut microbiome-

Figure 1.—Environmental factors able to influence the gut microbiome-immune system axis. The establishment of the gut 
microbiome (GM) drive the immune system development and function. Several factors can positively and negatively affect 
the GM function and composition. The optimal road begins with a mother with a normal BMI during and after pregnancy, 
which follows a Mediterranean diet (full of fibers, fermented foods, antioxidants, and omega-3 fats) and continue with a term 
gestational period, a spontaneous delivery, and breast-feeding. The alteration of a healthy balance of the GM (also called 
dysbiosis) caused by various factors (i.e. C-section, formula feeding, antibiotic therapy, smaller families, less contact with 
nature, etc.) has been associated with loss of immune tolerance and an increased risk of infections and non-communicable 
diseases (NCDs) occurrence. Pro- and postbiotics exert an important modulatory effect in this axis. Indeed, they promote and 
maintain the gut homeostasis (eubiosis) and thanks to their pleiotropic functions, these compounds are able to restore a gut 
eubiosis also in a dysbiosis condition.
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cosa, and environmental conditions, such as pH, 
provide most of the protection against pathogens 
in the neonatal period.13 Spatial and temporal 
interactions between the microbiome, microbial 
metabolites and gut epithelial cells in the lumen, 
on the surface of epithelial cells, and in the inte-
rior components of the gut associated lymphoid 
tissues (GALT), such as dendritic cells (DCs), 
modulate balanced immune development, im-
mune response, homeostasis and diseases occur-
rence. Healthy immune development in infants 
is characterized by a transition from innate im-
munity, dominated by non-specific macrophages 
and neutrophils, to adaptive immunity, character-
ized by specific T cells and B cells, which are 
fundamental to the establishment of tolerance 
status: the ability to distinguish between ben-
eficial commensal bacteria and harmful patho-
gens.13 Alteration of the normal balance of the 
GM (also called “dysbiosis”) has been associated 
with loss of immune tolerance and an increased 
risk of non-communicable diseases (NCDs) de-
velopment, such as asthma, obesity, type 2 dia-
betes, cancer and autoimmune conditions (e.g. 
Crohn’s disease).14, 15 The infant GM is a highly 
dynamic organ, whose diversity and architecture 
is sensitive to various maternal and environmen-
tal factors. The impact of these determinants dur-
ing “the first 1000 days” can affect the pattern 
of bacterial colonization and possibly result in 
“dysbiosis”.16 Considering that the mother is the 
primary source of the fetal and neonatal GM, it 
is plausible that several maternal factors, before 
and during pregnancy, are able to influence the 
composition of the infant’s GM during the first 
years of life and, in turn, host immune system.17 
An important and well-established factor influ-
encing fetal/neonatal GM composition is the 
gestational maternal diet, particularly fat intake 
and caloric density.18, 19 Moreover, various ma-
ternal diseases, such as gestational diabetes20 or 
allergy,21 may affect the microbiota composition 
of the mother and the newborn.

Exposure to antibiotics is another important 
factor that shapes the GM. It has been demon-
strated that the antibiotic administration dur-
ing pregnancy alters the commensal microbiota 
of the birth canal in pregnant women and con-
sequently the bacterial ecosystem of the off-

tem development and function with a particular 
focus on the role of probiotics and postbiotics in 
influencing this active and critical relationship.

We conducted extensive search of electronic 
databases of MEDLINE [PubMed] using key-
words and MeSH terms based on the gut micro-
biome, immune system, probiotics and postbi-
otics. We included review, meta-analysis, RCT, 
cohort, case-control, cross-sectional and in-vitro 
studies, published in English language in a peer-
reviewed journal.

The gut microbiome 
and the immune system axis

For more than a century, the intrauterine envi-
ronment was thought to be sterile and the GM 
of the neonate had been thought to be colonized 
during birth and early postnatal life. The use of 
modern sequencing technologies has enabled the 
detection of microbial DNA in the placenta, am-
niotic fluid, umbilical cord, and infant meconium 
during normal pregnancy, indicating that the mi-
crobiota influence on the immune system could 
start in the fetal life. The neonatal GM is charac-
terized by a low microbial diversity and a rela-
tive dominance of the phyla Proteobacteria and 
Actinobacteria. Subsequently, the GM evolves, 
resembling the adult composition by the age of 
approximately 2-3 years.11 The bacterial estab-
lishment is related to the immune homeostasis 
development. The interactions between the GM 
and host immunity are complex, dynamic and 
context-dependent.3 In line with the “in-utero 
colonization hypothesis”, the “first 1000 days” 
of the child’s life, starting from conception to the 
first 2 years of life, are crucial for both coloniza-
tion of GM and for the development and function 
of the immune system. This time frame in early 
life, according to the World Health Organization, 
is considered a “window of opportunity” and is 
crucial for the development and the health sta-
tus both in childhood and adulthood.12 Micro-
bial community composition during this critical 
period is dynamic, unstable, and susceptible to 
alterations. During intra-uterine life, the fetal im-
mune system is downregulated, making neonates 
particularly susceptible to infection and aberrant 
immune responses. The gut epithelial barrier, mu-
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amounts of biologically active components that 
have a significant impact on the development 
of the infant’s GM and on the promotion of the 
maturation of the immune system.34 The third 
most abundant component of human milk, after 
lactose and lipids, are human milk oligosaccha-
rides (HMOs).35 HMOs are complex glycans that 
resist to digestive enzymes and when reach the 
colon they serve as a substrate for fermentation 
of beneficial commensal bacteria, such as Bifido-
bacterium and Lactobacillus. This fermentation 
results in sub-products, such as lactate and short 
chain fatty acids (SCFAs) and other metabolites 
able to modulate immune system function.36 The 
HMOs can be considered as prebiotic agents, as 
their influence is obvious when GM of breastfed 
and infant formula infants are compared.37 In ad-
dition to being a rich source of nutrients, breast 
milk contains high concentrations of various pro-
tective factors, such as enzymes (lysozyme, lac-
toferrin etc.), immunoglobulins (secretory IgA, 
IgM), cytokines, complement system compo-
nents, leukocytes, nucleotides, lipids, microRNA 
(miRNAs) and hormones that interact with each 
other and with the mucous membranes of the di-
gestive and respiratory tracts of infants, provid-
ing passive immunity as well as stimulation for 
the development and maturation of the infant’s 
immune system and GM.38

Recent studies have shown that human milk 
is not sterile, but contains commensal bacteria, 
and potentially probiotic bacteria.39, 40 Therefore, 
we could consider breast milk as a natural syn-
biotic, containing both probiotics and prebiotics. 
It is estimated that around 25-30% of the infant 
bacterial microbiota come from breast milk.30 
The origin of the microorganisms present in the 
breast milk is unclear, but it appears that they are 
transferred from the maternal gut to the mamma-
ry gland through an entero-mammary pathway.41

From 6 months of life onwards, the nutri-
tional requirements of the infant are no longer 
satisfied by exclusive breastfeeding; therefore, 
the introduction of solid foods is strongly rec-
ommended.42, 43 The GM development during 
complementary feeding period seems to be in-
fluenced by the food quality and composition. 
Specifically, intake of high-fiber and animal pro-
tein foods, may provide selective advantages for 

spring.22 Exposure to antibiotics is common in 
early life mainly due to the use of intrapartum 
prophylaxis or to the administration of antibiot-
ics in C-section deliveries. The use of intrapar-
tum antimicrobial prophylaxis alters the natural 
establishment of the GM in the newborn with an 
effect that seems to persist at least for the first 
months of life, a very critical time frame for the 
correct development of the host’s homeostasis 
induced by the GM.23 Similarly, antibiotic expo-
sure in early postnatal periods even for a short 
period leads to less microbial stability and bio-
diversity.24

At birth, the microbic colonization of the 
newborn is different according to the type of 
delivery. The vaginally delivered babies, ac-
quire a microbiota composition resembling their 
mother’s vaginal microbiota.25 On the contrary, 
the infants born by cesarean section are deprived 
of exposure to the mother’s vaginal microbiota 
and acquire bacteria derived from hospital en-
vironment (air and medical staff) and mother’s 
skin. These differences in bacterial profiles can 
persist until the age of 2 years, i.e. when GM 
development has been completed.26, 27 Birth 
gestational age is one of the major factors of 
the GM colonization. The GM composition of 
preterm infants (<37 weeks of gestation) is char-
acterized by a great imbalance in the bacterial 
profile, with a low diversity and an increase of 
potentially pathogenic bacteria compared with 
full term newborn.28 The profile of the GM is 
altered by organ immaturity and by the fact that 
these infants are more frequently born by ce-
sarean section, are separated very quickly from 
their mother, receive first care in a highly sani-
tized neonatal intensive care unit, and are often 
treated with antibiotics.29

Breastfeeding is a major postnatal factor in in-
fluencing the establishment of the GM and the 
development of the immune system during in-
fancy.30 Most studies show that both heterogene-
ity and abundance of the microbiome are lower 
in formula-fed infants than breastfed.31, 32 Human 
breast milk is the gold standard nourishment for 
newborn infants. Breastfeeding appears to mod-
erate the detrimental effects of cesarean delivery, 
intrapartum antibiotics and prematurity, on GM 
development.33 Breast milk is composed of vast 
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prevent or repair any early dysbiosis and to pro-
vide benefic effects on infant health status and 
on future life.

The mechanisms of action 
of probiotics in modulating the gut 
microbiome-immune system axis

Probiotics are live microorganisms that confer 
a benefit to the host health when administered 
in adequate numbers.50 Moreover, probiotic ac-
tions are dependent upon the specific strain and 
doses. The beneficial effects of selected probiotic 
strains on host health have been documented in 
the prevention and treatment of numerous con-
ditions, such as infections, antibiotic-associated 
diarrhea,51, 52 functional bowel disorders,53 and 
immune-mediated diseases.54-58 These health 
benefits derive from several modulatory actions 
elicited by selected probiotic strains able to in-
fluence the gut microbiome-immune system axis 
(Figure 2). The probiotic section is mainly fo-
cused on the regulatory action elicited by these 
micro-organisms on the two most relevant de-
fense mechanisms against allergy and infectious 
diseases: the gut barrier and the immune system.

Direct mechanisms on the gut barrier

The gut barrier is a physical and functional pro-
tection against environmental harmful stimuli. 
The integrity is provided by a dynamic inter-
action between epithelial cells, immune cells, 
mucus layer, secretory IgA, epithelial junction 
adhesion complex, and antimicrobial peptides.59 
Studies in vitro have demonstrated that selected 
Lactobacillus strains could reinforce the intes-

specific microbes, which increases microbial di-
versity.44 After birth, the structure of the infants’ 
GM is also influenced by environmental factors. 
In particular, infants who grow up near rural ar-
eas, with furry animals and pets, have an abun-
dance of beneficial bacteria when compared to 
children who grow up without them.45, 46 It has 
been observed that children living in rural areas 
of Africa (fed a diet high in fiber and low in fat 
and protein) have a different composition of the 
GM when compared with European children (fed 
a diet rich in lipids and animal proteins).47 The 
geographical location, diet and lifestyle could be 
responsible for this effect considering that the 
influence provided by each of these factors may 
be different depending on the country where the 
study was carried out.48 Taken together, these 
data support the importance of a “health axis” 
connecting maternal and newborn environmen-
tal factors with infant GM and immune system 
development and function (Table I). The op-
timal road begins with a mother with a normal 
BMI during and after pregnancy, which follows 
a Mediterranean diet (full of fibers, fermented 
foods, antioxidants, and omega-3 fats) and con-
tinue with a term gestational period, a sponta-
neous delivery and breast-feeding.49 Therefore, 
intestinal “dysbiosis” caused by various factors 
(i.e. C-section, artificial feeding, antibiotic ther-
apy, smaller families, less contact with nature) in 
the first 1000 days, can negatively affect the de-
velopment of immune system with an increased 
risk of allergy and other communicable and 
NCDs during later life.16

Starting from this evidence, the modulation of 
GM using pro- and/or postbiotics, particularly in 
early life, represents a new possible strategy to 

Table I.—��The environmental factors influencing the infant gut microbiome.
Negative factors Positive factors

Pregestational overweight and obesity Normal Pregestational BMI
Excessive weight gain Weight gain in line with recommendations
↑Fat diet during gestation ↓Fat diet during pregnancy
Maternal gestational diabetes or allergy Maternal exercise
Cesarean section Spontaneous delivery
Preterm gestational period Term gestational period
Formula feeding Breastfeeding
Antibiotics and antiseptic exposure ↑Fiber diet, fermented foods, antioxidants, omega-3
Smaller families, urbane environment Rural areas, contact furry siblings and pets
↑Lipids and animal proteins in the first years Pro- and/or postbiotics
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Production of antimicrobial substances

Antimicrobial substances are several com-
pounds that through different mechanisms are 
able to inhibit proliferation of pathogens. These 
compounds can be divided in two big catego-
ries based on their molecular weight, including 
low molecular weight (LMW) (<1000 Kda) and 
high molecular weight (HMW) (>1000 Kda) 
substances. Among LMW molecules, we find 
organic acids such as lactic and acetic acid, 
that cause alter lumen pH, creating a hostile 
environment and by reducing microbial intra-
cellular pH, resulting in death of pathogens.65 
Bacteriocins are a large group of antimicrobial 
peptides with HMW that kill pathogens through 
creation of pores on the bacterial cytoplasmic 
membranes or inhibition of cell wall creation, 
binding cell wall precursors.66 Moreover, probi-
otics, thanks to their bile salt hydrolase activity, 
interact with bile acids in the lumen and are able 

tinal barrier integrity through different mecha-
nisms, including induction of genes involved in 
tight and adherence junction expression, such 
as occludins, E-cadherin and B-catenin.60, 61 
The thickness and composition of mucus layer 
is very important for maintenance the gut bar-
rier. Mucin, one of the main components of the 
mucus, is secreted by epithelial cells and play a 
pivotal role in the inhibition of pathogenic bac-
teria adhesion. Selected Lactobacillus strains 
(such as L.rhamnosus GG), thanks to the surface 
expression of adhesins bind the mucus layer and 
increase expression of mucin genes, with conse-
quent reduction of pathogens adhesion.62-64

Moreover, probiotics can inhibit the growth 
and the adhesion of pathogens with consequent 
competitive exclusion, using other mechanisms, 
including establishment of a hostile environment, 
alteration of luminal pH, reduction of bacterial 
receptor exposure, competition for nutrients, and 
production of antimicrobial substances.63

Figure 2.—How probiotics modulate the gut microbiome-immune system axis. From intestinal lumen to lamina propria, 
probiotics modulate all around the gut barrier. In the lumen these compounds directly produce antimicrobial peptides (bacte-
riocins), organic acids (lactic and acetic acids), and induce the release of defensins and cathelicidins from epithelial cells. All 
these mechanisms alter the intestinal lumen pH and creating a hostile environment, inhibit pathogens adhesions. Moreover, 
probiotics interacting with epithelial cells, can modulate the gut barrier increasing the tight junction adherence, the mucins 
genes expression and regulating the transepithelial ion fluxes. One of the main abilities to modulate the immune system, is re-
lated to the capacity of probiotics to directly interact and polarize the immune cells in the lamina propria, including dendritic 
(DCs), T and B cells. These differentiated immune cells influence each other and thanks to the production and release into the 
mucus layer of secretory IgA (sIgA) and regulatory cytokines, they induce a state of immune tolerance and prevent infectious 
diseases. Finally, probiotics metabolites such as short chain fatty acids (SCFAs) can act in all compartments of the gut barrier, 
and modulating its permeability and immune system function, resulting in an anti-inflammatory response.

Intestinal 
lumen 
effects

Defensins 
epithelial 
release

Bacteriocins 
production

Competition 
for nutrients

Organic acid 
production

Pathogens 
adhesion 
inhibition

Gut barrier 
modulation

Probiotics Intestinal 
epithelium 

effects

Tight junctions 
expression

Mucus layer 
thickness

slgASCFAs 
production

Lamina 
propria 
effects

Immune 
system 

modulation
DCs

Tregs

Th1

IL-4

IL-13

IL-10

B cells



PRO- AND POSTBIOTIC MODULATION OF GUT MICROBIOME-IMMUNE SYSTEM AXIS	CAR UCCI

Vol. 73 - No. 2	 Minerva Pediatrics	 121

Treg cells induction is a critical step to induce 
and maintain immune tolerance status and is re-
sponsible for inhibitory cytokines release such as 
IL-10 and for the increase of mucosal IgA lev-
els.66, 72 The role of probiotics in immune toler-
ance acquisition has been demonstrated by pre-
clinical and clinical studies. In a murine models 
of cow’s milk allergy (CMA), the administration 
of Bifidobacterium infantis CGMCC313-2, was 
related to the reduction of IgE, IL-4 and IL-13 
concentration.73 Our group recently demonstrat-
ed that supplementation of an extensively hydro-
lyzed casein formula (EHCF) with Lactobacillus 
rhamnosus GG (LGG) induced higher tolerance 
rates acquisition after 6 and 12 months compared 
with EHCF alone and other formulas.74, 75 More-
over, at the 3-year follow-up of 220 infants with 
CMA, those treated with EHCF+LGG showed a 
greater rate of immune tolerance acquisition and 
a lower occurrence of other allergic manifesta-
tions incidence, compared with CMA children 
treated with EHCF alone.76 To demonstrate the 
role of GM and their metabolites in these clinical 
outcomes, we showed that CMA infants treated 
with EHCF+LGG, resulted in an increase in the 
number of strains producing butyrate.58 With re-
gards of allergic diseases, the probiotics effects 
on Th1/Th2 balance and on increase of inhibitory 
cytokines, play a role in preventing and treat-
ment atopic dermatitis and allergic rhinitis.56, 77 A 
recent meta-analysis evaluating 17 trials, showed 
that when infants were treated with probiotics 
along with their mothers, children had a signifi-
cant reduction in RR for developing atopic der-
matitis compared to controls (RR, 0.78 [95%CI, 
0.69-0.89]; P<0.001).78 Taken together, these 
data about allergic diseases, suggest a possible 
role of probiotics in the prevention of allergy and 
atopic march through the modulation of GM79 
(Figure 2).

The role of probiotics in immune system 
modulation it is well known also in the preven-
tion on the infectious diseases. As previously 
mentioned, probiotics increase the production of 
secretory IgA (sIgA) levels in the gut, but also 
in the airways and in the mammary glands. sIgA 
antibodies are a mainstay of protective humoral 
mucosal immunity against infections. In the gut, 
sIgA bind to commensally, pathogens, and tox-

to produce de-conjugated bile acids that have a 
powerful antimicrobial activity and hypocholes-
terolemic effect.67 The antibacterial effects are 
not only due to direct release of antimicrobial 
substances; in fact, probiotics interacting with 
epithelial cells can induce the release of defen-
sins. These small molecules are key effectors 
of innate immunity, implicated in host defense 
against infection (bacteria, viruses, fungi). They 
stabilize the gut barrier and promote repair of 
epithelial damage.68, 69

Probiotics and immune system modulation

With 70-80% of resident immune cells, the gut 
is considered the largest lymphoid organ of the 
human body.70 The GM modulates immune 
system development and function through the 
production of immuno-modulatory molecules 
and direct interaction with epithelial and resi-
dent immune cells. This section is focused on 
the direct mechanisms of probiotics action on 
the GM and on the immune cells; the role of the 
immuno-modulatory molecules such as short 
chain fatty acids (SCFAs), will be discussed in 
the next section.

Probiotics directly interact with innate im-
mune cells including DCs, monocytes/macro-
phages and adaptive immune cells such as B and 
T lymphocytes. The innate immune system rep-
resents the first defense line against pathogens, 
and thanks to the surface expression of pattern 
recognition receptors (PRRs), immune and epi-
thelial cells recognize micro-organisms bind-
ing the pathogen associated molecular patterns 
(PAMPs). The PRRs include extracellular and 
intracellular receptors such as Toll like recep-
tors (TLRs), nucleotide-binding oligomerization 
domains (NOD), adhesion molecules, lectins, 
and NOD-like intracellular receptors.71 Among 
various pathways, TLR signaling represent the 
most important pathway used by probiotics to 
exert their anti-inflammatory and tolerogenic ef-
fects. Selected probiotic strains can reduce gut 
inflammation through down regulation of TLR 
expression, TNF-α secretion and inhibition of 
NF-kb signaling in enterocytes. Moreover, pro-
biotics influence Th1/Th2 balance toward a Th1 
response, and modulate the DCs maturation, 
driving the differentiation of Th0 into Treg. The 
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proteins, bacteriocins, enzymes, polysaccha-
rides, organic acids, and SCFAs. In addition, the 
products of microbial enzymatic activity refer to 
peptides released by milk casein hydrolysis.83

Most known postbiotics are derived from the 
probiotics Lactobacillus and Bifidobacterium 
strains, but also Akkermansia muciniphila, Eu-
bacterium hallii, Streptococcus and Faecalibac-
terium species and some fructophilic lactic acid 
bacteria and specific yeasts.84

The processing production methods used to 
obtain postbiotics involves cell disruption tech-
niques. The cell-rupture may be achieved by 
chemical and mechanical techniques, including 
heat, high pressure, UV rays, ionizing radiation, 
ultrasound treatments, pH modification as sum-
marized in Table II; acquisition methods include 
extraction and cleaning steps, used to isolate and 
identify postbiotics molecules, which can be per-
formed by centrifugation, dialysis, chromatogra-
phy, dehydratation and column purification.85, 86

Postbiotics display pleiotropic properties: a 
series of beneficial effects that can be observed 
not only locally in the GM, but also in distant 
organs through the connection called gut-organ 
axis.82 The number of biochemical reactions that 
take place within the microbiota significantly im-
pacts many aspects of host health. The immune 
system–gut cross talk is necessary for the proper 
development and functioning of immunity, so in 
this section about postbiotics we also discuss the 
immunomodulatory role of SCFAs.

The SCFAs regulate functionality and dif-
ferentiation of T cells (Th17, Th1, and Tregs) 
through different specific pathways. Most regu-
latory activity in modulating immune response 
are mediated by the binding of SCFAs with G-
protein- receptor (GPR) (e.g., GPR41, GPR43, 

ins, inhibiting them through a non-inflammatory 
process also known as “immune exclusion.”80 A 
recent randomized trial show that when stimu-
lated with some lactic acid bacteria (LAB), pe-
ripheral blood mononuclear cells (PBMCs), pro-
duce sIgA, induced by IL-6 and IL-10, which are 
secreted by DCs in response to LAB.81

The postbiotics mechanisms of action in influ-
encing the gut microbiome-immune system axis

The concept of postbiotics is based on the ob-
servation that numerous positive actions elicited 
by GM are mediated by the production of me-
tabolites. Despite a precise definition is still lack-
ing, we can define postbiotics as any substance 
released by or produced through the metabolic 
activity of GM-derived microorganisms which 
exerts beneficial effects on the host and do not 
meet the preprobiotic definition.82

Postbiotics exerts beneficial health effect 
through similar mechanisms that are characteris-
tic of probiotics. When administered separately, 
the absence of live microorganisms minimizes 
the risks associated with their intake. Postbiotics 
are also known as metabiotics, biogenics, probi-
otics cell fragments or metabolites and cells-free 
supernatants, and can be classified by their bio-
activity (immunomodulatory, anti-inflammatory, 
antimicrobial, antioxidant, antiproliferative, hy-
pocholesterolemic, antiobesogenic, antihyper-
tensive, etc.) or by their composition, which can 
be derived both from microbial compounds and 
from microbial action (synthesis of metabolites 
and products from microbial enzymatic activity 
upon the food matrix).83 Microbial components 
include peptidoglycan, polysaccharides, lipotei-
choic acids, cell surface proteins, while micro-
bial metabolites consist of lactic acid, peptides/

Table II.—��Cells disruption techniques for postbiotics production.
Technology applied Involved mechanisms

Heat Damage to cell membrane, loss of nutrients and ions, ribosome aggregation, rupture of DNA filaments, 
essential enzyme inactivation and protein coagulation

High pressure Damage to cell membrane, protein denaturation and reduction of the intracellular pH value
UV rays Protein denaturation and DNA photoproducts production
Ionizing radiation Nucleic acids damage
Ultrasound Cell wall rupture, damage to cell membrane, DNA damage, production of free radicals
pH modification Damage to cell membrane, chemical denaturation of DNA and ATP and enzyme inactivation
Lyophilization Ruptures in cytoplasmic membranes, changes in protein, nucleic acids, and ribosome structures
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for SCFAs production, thereby closing a virtuous 
circle that maintain the healthy gut homeostasis 
(eubiosis) in defense of pathogens.95 Finally, 
SCFAs, as previously mentioned, exert their pro-
tective effects against infections increasing IgA 
levels secretion and decreasing susceptibility to 
pathogens.92

Data derived from preclinical studies showed 
that one of the potential postbiotic mechanisms 
against infections, is based on the fermentation 
of food matrix, in general milk or dairy sub-
strates, with microorganisms. In two double 
blind, randomized, placebo-controlled trials, the 
dietary supplementation of fermented foods with 
Lactobacillus paracasei CBA L74, was associ-
ated with a reduction of common infectious dis-
eases in healthy Italian children aged 12 to 48 
months. This protective effect was associated 
with a significant stimulation of both innate (α- 
and β-defensins and cathelicidin) and acquired 
(secretory IgA) immunity.96, 97 Corsello et al.96 
have shown that children who consumed daily 7 
grams of cow’s skim milk fermented with L. pa-
racasei CBA L74 for 3-month had a significantly 
lower number of acute gastroenteritis and upper 
respiratory tract infection compared to the coun-
terpart that took placebo (maltodextrins). These 
data confirmed those previously published by 
our group in which we demonstrated that the fer-
mentation with L. paracasei CBA L74 of cow’s 
milk or rice was useful in preventing the onset 
of the aforementioned infections compared to the 
consumption of placebo.97

An in-vitro study showed that the prevention 
against infectious diseases elicited by ferment-
ed milk with L. paracasei CBA L74 on human 
enterocytes (Caco-2 cells) was due to the posi-
tive modulation of the gut mucosa integrity. In 
particular L. paracasei CBA L74 induced the up 
regulation of tight junction proteins expression, 
the increase of MUC2 expression and mucus lay-
er thickness, and the release of innate immunity 
peptides with antimicrobial properties.98

Our group has recently shown that ferment-
ing milk with L. paracasei CBA L74 resulted in 
a fecal increase of certain bacterial genera and 
oligotypes involved in butyrate synthesis, pro-
viding several non-immune and immune defense 
mechanisms against infections, and underlining 

GPR109A, and Olfr78), inducing the activation 
of intracellular signal cascade. The SCFA butyr-
ate is the ligand for GPR109A in the gut: its sig-
naling through the macrophages and DCs activa-
tion induces differentiation of Foxp3 Treg cells 
as well as the secretion of its key suppressive 
effector cytokine IL-10.87, 88 Moreover, SCFAs 
can induce effector T cells and Tregs differentia-
tion, through epigenetic mechanisms including 
histone deacetylase (HDAC) inhibitory activ-
ity.89 The HDAC inhibition in Tregs cells leads 
to the transcription of Foxp3 factor, improving 
their suppressive and regulatory properties90 and 
suggests one of the mechanisms by which SC-
FAs regulate Tregs differentiation.91 The SCFAs 
epigenetic regulation of gene expression (inhi-
bition of HDAC) also leads to the acetylation 
of specific genes involved in plasma B-cell dif-
ferentiation, facilitating the production of class-
switched antibodies (IgG and IgA).92 Taken to-
gether, all these mechanisms can modulate im-
mune-system function with beneficial effects on 
human health not only in the immune-mediated 
disease such allergies, but also in the protection 
against infections.

Role of postbiotics in preventing infectious dis-
eases

Evidence shows that postbiotics have a role in 
preventing infectious diseases. The potential 
postbiotic mechanisms of action in the preven-
tion/treatment of infections are due to the stimu-
lation of the immune and non-immune defense 
mechanisms. The inhibition of pathogen adhe-
sion is a defensive characteristic of some post-
biotics; these compounds interacting with epi-
thelial cells are able to induce the release of de-
fensins, well known as antimicrobial peptides.93 
Among postbiotics, SCFAs and bacteriocins are 
the main ones responsible for the antimicro-
bial effects, including bacteriostatic/bactericidal 
properties against pathogenic germs and reduc-
tion of relevant toxins production.94 In addition, 
SCFAs maintain a hypoxic intestinal environ-
ment by triggering epithelial PPAR-γ signaling 
which, stimulating the energy metabolism of 
human enterocytes to β-oxidation, drive the mi-
crobial community towards a dominance of ob-
ligate anaerobes. These bacteria are responsible 



CARUCCI 	 PRO- AND POSTBIOTIC MODULATION OF GUT MICROBIOME-IMMUNE SYSTEM AXIS

124	 Minerva Pediatrics	A pril 2021 

Conclusions

Growing evidence suggest that maintaining a 
healthy balance in the gut microbial ecosystem 
in early life is a crucial step for optimal immune 
system development and function. In this way, 
probiotics and postbiotics, thanks to their pleio-
tropic effects, are able to induce, to maintain and 
to restore the gut eubiosis, positively modulat-
ing the gut microbiome-immune system axis. 
These immune-modulatory effects are reflected 
in the infant health status, setting the basis for 
a long-lasting protection against infections and 
non-communicable diseases.
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