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1 Introduction

In recent years, interest has been mounting in relating concepts from information theory
to quantum field theory and gravity. One aim of these efforts is to shed new light on
our understanding of topics such as the nature of space-time, black hole physics and,
ultimately, quantum gravity [1–3]. Holographic complexity [4, 5] is such a concept where,
in the spirit of the AdS/CFT correspondence [6–8], a geometrical quantity related to a
bulk space-time is identified as a measure of complexity of a certain boundary state. Two
competing proposals are the “complexity equals volume” (C = V ) [4, 9] and “complexity
equals action” (C = A) [10, 11] frameworks. In the C = A approach, which we will use
exclusively in this paper, complexity is identified with the action evaluated in a bulk region
called the Wheeler-de Witt (WdW) patch,1

C = SWdW
π~

. (1.1)

The WdW patch is defined as the region bounded by the null surfaces anchored at certain
times on the space-time boundary (left and right boundaries in the case of two-sided black
holes) and, possibly, the black hole singularity. The action on the WdW patch is generically
divergent, because of the contribution of the region close to the space-time boundary. Such
a divergence is typical in the AdS/CFT correspondence. Several regularization procedures

1In the rest of the paper, we will work with the reduced action I = 16πGS.
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have been studied, and it has been proposed, just as in holographic renormalization [12–16],
that the divergences can be removed by adding local, covariant counter terms on the
boundaries [17–20]. Alternatively, one can subtract the action of some reference space-
time, which is also necessary to calculate the complexity of formation [21].

Computational complexity is a concept from information theory measuring how diffi-
cult it is (or how many steps it takes) to compute (approximately) a desired target state
starting from a given reference state using a certain set of elementary operations [22]. The
precise definition of computational, or cicruit, complexity depends on the system under
consideration, the set of elementary operations, the reference state and a parameter ε that
specifies the tolerance with which the target state is reached. Typically, the complexity
diverges when ε→ 0. A geometric approach to complexity, which can be applied to quan-
tum field theory, was developed in [23]. In this approach, complexity is evaluated by a
weight function evaluated on a trajectory connecting the target and the reference state
in some space of unitary operators. Several proposals for the weight function have been
investigated in [24–29].

In this paper, we will reconsider the complexity associated with global AdS space-time
and AdS-Schwarzschild black holes. These are the simplest systems and have, of course,
been investigated already in the very first papers on holographic complexity [10, 11, 30, 31]
and more recently in [19],2 but there are good reasons to have a fresh look at them. If we
take global AdS as a reference state, then we would expect that there exists a procedure (not
reference subtraction) that yields a vanishing action, reflecting the fact that the complexity
of the reference state is, by definition, zero. Adding counter terms does not achieve this
and may even leave a logarithmically divergent term [19]. However, if such a procedure can
be found, then applying it to the AdS-Schwarzschild black hole would give immediately
the complexity of formation without the need of reference subtraction.

We will approach this problem by exploiting the freedom of reparameterization of the
null boundaries of the WdW patch. It is known that the minimal action terms required
by the variational principle (we will review them in section 2) are not invariant under
reparameterization of the null directions on the null boundaries. To achieve invariance, a
counter term must be added, which does not interfere with the variational principle [30].
Although this seems inevitable, the necessity of adding such a counter term may be dis-
puted. First, the null boundary terms carry a physical meaning as the heat flux through
the boundary [41], so that different parameterizations may describe physically different
situations. Second, the counter term is not unique [42]. However, if reparameterization
invariance is given up, then one needs a solid, physically motivated criterion for choosing
a particular parameterization. Our criterion will be that the action in any static vacuum
causal diamond vanishes. A causal diamond is defined as a region bounded only by null
surfaces. Because global AdS is a static vacuum space-time, this procedure achieves the
goal by definition. In the case of the AdS-Schwarzschild black hole, which is also a static
vacuum space-time, the region that effectively contributes to the complexity reduces to a
region bordering with the black hole singularity. This region lies entirely behind the hori-

2Other settings have been considered, e.g., in [32–40].
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zon, which directly incorporates the general expectation that complexity is a probe of the
physics behind the horizon. Moreover, because the region near the space-time boundary
does not contribute, the resulting complexity is intrinsically finite.

The rest of the paper is organized as follows. In section 2, we briefly review the
contributions to the gravitational action on a WdW patch. In section 3 we show how,
through a parameterization choice, we can set the complexity of empty AdS space-time to
zero, effectively making it our pick for the reference state. We then use this idea to compute
the complexity of the AdS-Schwarzschild black hole in section 4. The special case of three
dimensions, in which the relevant solution is the BTZ black hole, is treated separately in
section 5. We conclude in section 6.

2 Action on a WdW patch

The gravitational action on a WdW patch consists of contributions coming form the bulk
of the patch, its boundaries and the joints in which the boundaries meet. Given a bulk
action, the variational principle imposes a number of boundary and joint terms. The most
familiar case for Einstein gravity is the Gibbons-Hawking-York term [43, 44], which applies
to space-like or time-like boundaries. When the boundary is not smooth, additional joint
terms are necessary [45, 46]. In the general case, which includes also null boundaries, the
boundary and joint terms have been constructed, e.g., in [30, 42, 47, 48]. We refer to [42] for
more references to the original work. We shall now review the contributions one at a time.

The bulk contribution is given by the Einstein-Hilbert action with a cosmological
constant Λ

IB = IEH =
∫
M

dDX
√
−g (R− 2Λ) . (2.1)

The boundaries of the patch are hypersurfaces, which one can define in terms of a
scalar function Φ(X) = 0. In this paper, we use the convention that Φ(X) is negative
inside the patch and positive outside of it. These conventions agree with those in [17, 42]
and ensure that the one-form dΦ always points outward. If the hypersurface is space-like
or time-like, then the unit normal is taken to be

nα = ∂αΦ√
|gαβ∂αΦ∂βΦ|

.

In these cases, the boundary contribution to the action is given by the Gibbons-Hawking-
York term

IS = IGHY = 2
∫
B

dD−1x
√
|h|K , (2.2)

where K = ∇αnα is the extrinsic curvature of the boundary, and h is the determinant of
the induced metric.

Instead, if the boundary is a null hypersurface, then ∂αΦ must be proportional to the
null tangent vector,

kα ≡ ∂Xα

∂λ
= eσ(x)∂αΦ . (2.3)

– 3 –
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Here and henceforth, λ denotes the hypersurface coordinate that parameterizes the null
direction. The function σ(x) determines the parameterization of the null direction, i.e., the
choice of λ. This has been discussed extensively in [30].

The analogue of the Gibbons-Hawking-York term is played by3

IN = 2
∫

dλ dD−2x
√
γ κ , (2.4)

where κ is the non-affinity parameter defined by

kβ∇βkα = κkα . (2.5)

In (2.4), γ is the determinant of the induced metric on the codimension-two space-like part
of the boundary that is orthogonal to the null direction.

In addition to the codimension-one boundaries, the WdW patch has also codimension-
two joints in which two boundaries intersect. The contribution of a joint depends on the
type of the intersecting boundaries. In the case of a joint formed by two null boundaries,
it is given by

IC = 2εJ
∫
J

dD−2x
√
γ ln |k1 · k2|

2 , (2.6)

where k1 and k2 are the null tangent vectors of the two intersecting boundaries, and the
sign εJ = ±1 depends on the relative position of the boundaries and the bulk region. The
(convention-dependent) rules can be found in [17, 30]. We remark that there is no real
need to memorize these rules, if one does not fix the parameterization functions σ(x). As
we shall see below, performing an integration by parts in IN , one obtains σ-dependent
contributions localized at the joints, which must cancel against the σ-dependent parts of
the joint term IC . This determines the signs εJ . We refrain from giving the joint terms in
the other cases, because we will not need them.

Adding up all these contributions gives an action with a well-defined action principle.
Moreover, the full action is additive, i.e., one can safely divide a given space-time region
into smaller subregions. However, in the presence of null boundaries, it is not invariant
under a reparameterization of the null directions, which can be seen from the fact that the
arbitrary functions σ(x) remain explicit. A remedy is to add a counterterm such that its
variation under a reparameterization will cancel the variation of the action. We will use
the term suggested in [30]

Ic.t. = 2
∫

dλ dD−2x
√
γΘ ln(l̃ |Θ|) , (2.7)

where Θ is the null geodesic expansion. It is defined by Θ = ∂λ ln√γ. The constant l̃ is of
dimension length and plays the role of a renormalization scale.

It has been pointed out in [42] that the choice (2.7) is not unique. There are, in fact,
other terms that would serve the same purpose, such as

I ′c.t. = 2
∫

dλ dD−2x
√
γΘ ln dλ

dt , (2.8)

3The different sign with respect to the expression given in [30] derives from different conventions for kα

and Φ.
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where t is an arbitrary affine parameterization, or

I ′′c.t. = 2
∫

dλ dD−2x
√
γΘ ln sabsab , (2.9)

where sab is the shear tensor of the null geodesic congruence. We will use the term (2.7)
because, as it turns out, (2.8) is not compatible with the additive properties of the action,
while (2.9) is not regular on the surfaces we need to study.

3 Global AdS

In this section, we will compute the complexity of pure AdS spacetime, with the intention
to find a systematic and well-defined way to set it to zero. The motivation behind our
intention is that we want to treat the CFT ground state dual to the AdS vacuum as
the reference state, the complexity of which is null by definition. Then, we can interpret
the holographic complexity of other systems, e.g., black holes, obtained using the same
prescription, as the complexity relative to the ground state. Thus, what we are looking
for is a way to set the action on the WdW patch in AdS vacuum to zero. First, we will
see how this can be achieved making use of the parameterization dependence of the null
surface terms, if no counter term is included. Then, we show that the counter term (2.7),
which renders the action parameterization independent, is generically divergent. Setting it
to zero would require fine tuning the renormalization scale l̃.

We consider n+ 2-dimensional AdS space-time in global coordinates, with the metric

ds2 = L2

cos2 ρ

(
− dt2 + dρ2 + sin2 ρ dΩ2

n

)
. (3.1)

Here, L is the AdS curvature radius, dΩ2
n the metric of a unit n-sphere, and the AdS

boundary is located at ρ = π/2. Note that our metric tensor has dimension length2,
whereas the coordinates are dimensionless. This requires a slight change with respect to
the general construction in the previous section, which we will mention in due course.

The WdW patch is bounded by two null hypersurfaces, which meet at the AdS bound-
ary in a joint. Using the time translation invariance, we are free to choose t = 0 at this joint.
Because of the divergences arising at the boundary, the WdW patch must be regulated.
We shall use a regularization in which the radial coordiante of the joint is ρ∗ = π/2 − ε.
Then, the following two scalar functions define the null boundaries:

Φ±(t, ρ) = ρ− ρ∗ ± t . (3.2)

The contributions to the action to be calculated are the bulk term (2.1), the non-
affinity terms on the null hypersurfaces (2.5) and the joint term (2.6). Later, we will also
consider the covariance counter term (2.7). Let us consider them one at a time. The bulk
contribution (2.1) is

IB =
∫

dn+2x
√
−g (R− 2Λ) = −2(n+ 1)

L2

∫
dn+2x

√
−g

= −4(n+ 1)LnΩn

ρ∗∫
0

dρ tann ρ
cos2 ρ

(ρ∗ − ρ) = −4LnΩn

ρ∗∫
0

dρ tann+1 ρ , (3.3)

where we have integrated by parts in the last step. Ωn denotes the volume of a unit n-sphere.
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Let us now consider the null surface terms. Following the prescription outlined in
section 2, the null tangents are, in coordinates (t, ρ, ~Ω),

kµ± = eσ± cos2 ρ

L

(
∓1, 1,~0

)
, (3.4)

where σ± are two auxiliary functions of λ incorporating the freedom of parameterization of
the null directions. We remark that we have multiplied the expression resulting from (2.3)
by a factor of L, because our space-time coordinates, according to (3.1), are dimensionless,
while the coordinates in (2.3) have dimension of length. Notice that (3.4) implies

∂ρ

∂λ
= cos2 ρ

L
eσ± . (3.5)

Because this is positive, λ increases towards the corner on both boundaries.
The non-affinity parameters κ± turn out to be κ± = ∂λσ±, so that the action term IN

is the sum of

IN± = 2LnΩn

∫
dλ tann ρ ∂λσ±

= 2LnΩn

σ±(ρ∗) tann ρ∗ −
ρ∗∫
0

dρ σ±
n tann−1 ρ

cos2 ρ

 . (3.6)

We have integrated by parts, and σ±(ρ∗) denotes the values of σ± at the joint.
The corner contribution is simply

IC = −2LnΩn tann ρ∗ ln k+ · k−
2 = −2LnΩn tann ρ∗ [σ+(ρ∗) + σ−(ρ∗) + 2 ln cos ρ∗] . (3.7)

We remark that the sign of the corner term follows easily from the fact that the terms with
σ±(ρ∗) must cancel between IN± and IC .

Adding the contributions (3.3), (3.6) and (3.7) yields the action without the covariance
term,

IB+IN +IC = −4LnΩn

ρ∗∫
0

dρ
[
tann+1 ρ+ n

2 (σ+ + σ−)tann−1 ρ

cos2 ρ

]
−4LnΩn tann ρ∗ ln cos ρ∗ .

(3.8)
We can further rewrite the integral from the bulk contribution as

ρ∗∫
0

dρ tann+1 ρ = −
ρ∗∫
0

dρ tann ρ ∂ρ ln cos ρ

= − tann ρ∗ ln cos ρ∗ + n

ρ∗∫
0

dρ tann−1 ρ

cos2 ρ
ln cos ρ , (3.9)

so that (3.8) becomes

IB + IN + IC = −2nLnΩn

ρ∗∫
0

dρ tann−1 ρ

cos2 ρ
(σ+ + σ− + 2 ln cos ρ) . (3.10)
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We note that, written in this form, the integrand that gives the total action is proportional
to a term that has the same structure as the corner term. We also remark that the
dependencies of σ+ and σ− on ρ are to be intended implicitly along the null boundaries to
the future and the past of the WdW patch, respectively.

It is now obvious that there exists a class of parameterizations, for which (3.10) van-
ishes. For example, one may choose

on N+: σ+(λ) = a+ ln cos ρ(λ) , on N−: σ−(λ) = a− ln cos ρ(λ) , (3.11)

where a+ and a− are two constants satisfying the constraint a+ +a− = 2. We also see that
the corner term (3.7) vanishes separately with such a choice.

As we mentioned at the beginning of this section, a vanishing action on the WdW
patch is exactly what we were looking for in the case of pure AdS. Nevertheless, let us also
discuss the covariance term (2.7), which, for general parameterization, is

Ic.t. = 2LnΩn

ρ∗∫
0

dρ (∂ρ tann ρ) (2C − 2 ln tan ρ+ σ+ + σ−) . (3.12)

Here, we have abbreviated

C = ln nl̃
L
. (3.13)

For general parameterizations, the terms with σ± in (3.12) cancel those in (3.10) as ex-
pected.

If we adopt the parameterization (3.11), for which the counter term represents the
entire parameterization-invariant action, (3.12) becomes

Ic.t. = 4LnΩn

tann ρ∗ (C − ln sin ρ∗) +
ρ∗∫
0

dρ tann−1 ρ

 . (3.14)

The integral on the right hand side of (3.14) can be evaluated in closed form,

ρ∗∫
0

dρ tann−1 ρ =
[n−1

2 ]∑
k=1

(−1)k−1 tann−2k ρ∗
n− 2k + (−1)[

n
2 ]
ln cos ρ∗ for even n,
ρ∗ for odd n.

(3.15)

Clearly, (3.14) is generically divergent for ρ∗ → π/2. In order to get a vanishing
result, one could interpret the renormalization scale l̃ or, equivalently, the renormalization
constant C, as a function of the cut-off ρ∗ and fine tune it such that (3.14) vanishes. The
choice C = 0, which was adopted in [19], only removes the leading divergence.

4 AdS-Schwarzschild black hole

4.1 Setup

In this section, we will consider the case of AdS-Schwarzschild space-time with a spherical
horizon. This case was discussed in [10, 11, 30, 31] and more recently in [19]. However, in
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most of these papers, only the time evolution of complexity, ∂C/∂t, was discussed, because
only the difference of the actions in two slightly different WdW patches is needed in such a
calculation and the divergent constant drops out. Here, we will consider the entire WdW
patch and compute the complexity of the black hole with respect to the pure AdS geometry.

AdS-Schwarzschild space-time is described by the metric

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2
n , (4.1)

with
f(r) = r2

L2 + 1− ωn−1

rn−1 . (4.2)

The parameter ω is related to the total mass

M = nΩn

16πGω
n−1 . (4.3)

The horizon radius is defined by f(rH) = 0. The black hole temperature is

TBH = 1
4π

(
n+ 1
L2 rH + n− 1

rH

)
, (4.4)

and the entropy is given by the Bekenstein-Hawking formula

S = A

4~G , (4.5)

where A = Ωnr
n
H is the spatial area of the black hole horizon.

The AdS-Schwarzschild black hole has also a time scale relevant to the time evolution
of the complexity know as the scrambling time [49, 50]. The scrambling time of a system is
a measure of how fast said system can thermalize information by means of the interactions
between its elementary degrees of freedom. For the case of a black hole, the scrambling time
is the time it takes the black hole to completely and uniformly spread a local perturbation
across its horizon. Interestingly enough, black holes are believed to be the fastest scramblers
in nature and their scrambling time is of the order

t∗ ∼ βBH lnS . (4.6)

The Penrose diagram of maximally extended AdS-Schwarzschild space-time is shown
in figure 1. Each of the quadrants I–IV is covered by a set of coordinates (t, r) with
metric (4.1), where r > rH in quadrants I and III and r < rH in II and IV and the future
and past singularities are situated at r = 0. For the upcoming computations it will be useful
to work with Eddington-Finkelstein coordinates. We define the tortoise coordinate by

r∗(r) =
r∫

R

dr
f(r) . (4.7)

Note our choice of the lower integration limit, where R will be taken to agree with the
cut-off instead of the conventional ∞. This will somewhat simplify the calculations.

– 8 –
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r= 0

r= 0

r
=
∞

r
=
∞

r=
rH

r=
r
H

I

II

III

IV

Figure 1. Penrose diagram of the maximally extended eternal AdS-Schwarzschild space-time. The
arrows indicate the flow of the Killing vector field ∂t.

With ingoing Eddington-Finkelstein coordinates, the metric is

ds2 = −f(r) dv2 + 2 dv dr + r2 dΩ2
n , (4.8)

where v = t + r∗. The ingoing Eddington-Finkelstein coordinates cover two quadrants,
I ∪ II or III ∪ IV. Likewise, with outgoing coordinates, the metric is

ds2 = −f(r) du2 − 2 du dr + r2 dΩ2
n , (4.9)

where u = t − r∗. The outgoing Eddington-Finkelstein coordinates cover two quadrants,
I ∪ IV or II ∪ III.

The WdW patch is bounded by the null surfaces intersecting the left and right bound-
aries at the cut-off radius R and at times tL and tR, respectively, and possibly by parts
of the future and past singularities. The cut-off radius R will be taken to infinity at the
end. Furthermore, to simplify, we use time translational invariance to set tR = −tL = τ .
The precise shape of the WdW patch depends on the value of τ . When |τ | < τ0 = −r∗(0),
the WdW patch touches both, the future and past singularities. For τ > τ0, the WdW
patch touches only the future singularity, and two null boundaries meet in the quadrant
IV. Let us call rm the radius at which they meet. It is given implicitly by the relation
r∗(rm) = −τ . Similarly, for τ < −τ0, two boundaries meet in the quadrant II and the WdW
patch touches only the past singularity. Because the setup is symmetric under τ → −τ ,
this last situation does not need to be discussed separately. The WdW patch in the other
two cases are illustrated in figure 2.

4.2 Action in a causal diamond

We are interested in the action in the WdW patch, which represents the complexity of the
dual state. Before considering the entire WdW patch, let us focus on a causal diamond,
which we may place, without loss of generality, in the quadrant I. The causal diamond is

– 9 –
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I

II

III

IV

tRtL

u
=
t R

u
=
t L

v=
t
L

v=
t
R

I

II

III

IV

tRtL

u
=
t R

u
=
t L

v=
t
L

v=
t
R

Figure 2. Left: WdW patch for the case −τ0 < τ < τ0. The WdW patch touches both future and
past singularities. Right: WdW patch for τ > τ0. Two null boundaries meet in the quadrant IV.

1

2

3

4

N
1

N 2

N
3

N 4

u v

Figure 3. A generic causal diamond. The labels of the null boundaries and the corners used in
the text are shown. The arrows on the null boundaries indicate the orientation of the λ-integrals
in the corresponding boundary terms of the action.

bounded by four null surfaces, which we label N1, . . . , N4, counting them clockwise starting
from the north east. The four intersection points are counted clockwise starting from the
north. Obviously, their coordinates satisfy v1 = v2, u2 = u3, v3 = v4 and u4 = u1. The
setup is illustrated in figure 3. In what follows, we work in outgoing Eddington-Finkelstein
coordinates (4.9).

The four scalar functions defining the null surfaces are given by

Φ1(u, r) = u+ 2r∗(r)− v1 , (4.10a)
Φ2(u, r) = u2 − u , (4.10b)
Φ3(u, r) = v3 − u− 2r∗(r) , (4.10c)
Φ4(u, r) = u− u4 . (4.10d)
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From these, we obtain the following expressions for the null tangent vectors,

kα1 = eσ1

(
− 2
f
, 1,~0

)
, (4.11a)

kα2 = eσ2
(
0, 1,~0

)
, (4.11b)

kα3 = eσ3

( 2
f
,−1,~0

)
, (4.11c)

kα4 = eσ4
(
0,−1,~0

)
. (4.11d)

The four functions σ1, . . . , σ4 implement the parameterization dependence.
Let us start with the surface terms (2.4). For all four surfaces, we have κ = dσ

dλ . The
orientation of the λ-integrals can be read off from (4.11a)–(4.11d), because kα = dxα

dλ . For
example, for N1 we get

IN1

2Ωn
=
∫

dλ rnκ =
r2∫
r1

dr rn dσ1
dr = −n

r2∫
r1

dr rn−1σ1 + rn2σ1(r2)− rn1σ1(r1) . (4.12)

Proceeding similarly for the other three boundaries and summing up all the terms, we find

IN
2Ωn

=−n
r2∫
r1

dr rn−1σ1−n
r2∫
r3

dr rn−1σ2−n
r4∫
r3

dr rn−1σ3−n
r4∫
r1

dr rn−1σ4 (4.13)

−rn1 [σ1(r1)+σ4(r1)]+rn2 [σ1(r2)+σ2(r2)]−rn3 [σ2(r3)+σ3(r3)]+rn4 [σ3(r4)+σ4(r4)] .

The bulk action (2.1) gives

IB
2Ωn

= − 1
L2

u4∫
u2

du
[
ρ1(u)n+1 − ρ3(u)n+1

]
, (4.14)

where the functions ρ1(u) and ρ3(u) are defined implicitly by Φ1(u, ρ1) = 0 and Φ3(u, ρ3) =
0, respectively. Using

ρ

L2 = 1
2

[
df(ρ)

dρ − (n− 1)ω
n−1

ρn

]
= − d

du ln |f(ρ)| − 1
2(n− 1)ω

n−1

ρn
,

we can rewrite (4.14) as

IB
2Ωn

=
u4∫
u2

du
[
ρn1

d
du ln |f(ρ1)| − ρn3

d
du ln |f(ρ3)|

]
. (4.15)

After integrating by parts and changing the integration variable, this becomes

IB
2Ωn

= n

r2∫
r1

dr rn−1 ln |f(r)|+ n

r4∫
r3

dr rn−1 ln |f(r)| (4.16)

+ rn1 ln |f(r1)| − rn2 ln |f(r2)|+ rn3 ln |f(r3)| − rn4 ln |f(r4)| .
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This is identical to

IB
2Ωn

= nau

r2∫
r1

dr rn−1 ln |f(r)|+ nau

r4∫
r3

dr rn−1 ln |f(r)| (4.17)

+ nav

r2∫
r3

dr rn−1 ln |f(r)|+ nav

r4∫
r1

dr rn−1 ln |f(r)|

+ rn1 ln |f(r1)| − rn2 ln |f(r2)|+ rn3 ln |f(r3)| − rn4 ln |f(r4)| ,

where au and av are two real constants that are constrained by au + av = 1.
The corner terms (2.6) contribute

IC
2Ωn

= rn1 [σ1(r1) + σ4(r1)− ln |f(r1)|]− rn2 [σ1(r2) + σ2(r2)− ln |f(r2)|] (4.18)

+ rn3 [σ2(r3) + σ3(r3)− ln |f(r3)|]− rn4 [σ3(r4) + σ4(r4)− ln |f(r4)|] .

It is apparent that we have manipulated the surface and bulk actions in such a way that
the boundary terms arising from the integrations by parts precisely cancel the corner
contribution. Thus, after summing (4.13), (4.17) and (4.18), the action of a causal diamond
is obtained as

IB+IN +IC
2Ωn

= n

r2∫
r1

dr rn−1 [au ln |f(r)|−σ1]+n

r2∫
r3

dr rn−1 [av ln |f(r)|−σ2] (4.19)

+n

r4∫
r3

dr rn−1 [au ln |f(r)|−σ3]+n

r4∫
r1

dr rn−1 [av ln |f(r)|−σ4] .

Here, we note that the integral involving σ1 must proceed along the null surface N1, because
σ1 is defined only on N1, and similarly for the others.

Now, we can require that the action in any causal diamond (of a vacuum region)
vanishes. This means that we must choose a parameterization such that

on N1: σ1(λ) = au ln |f(r(λ))| , on N3: σ3(λ) = au ln |f(r(λ))| ,
on N2: σ2(λ) = av ln |f(r(λ))| , on N4: σ4(λ) = av ln |f(r(λ))| .

(4.20)

Interestingly, because au+av = 1, this choice implies that all corner terms in (4.18) vanish
separately.

Our choice (4.20) has an important consequence for the complexity calculation. Using
the additivity of the action, we now know that portions of the WdW patch that are bounded
only by null segments do not contribute to the action. Non-zero contributions may come
only from the remaining regions, which border with the singularity. These are the dark
shaded areas in figure 4. Notably, these areas lie entirely behind the horizon. We will now
turn to the action on these remaining regions.

– 12 –
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Figure 4. The only portions of the WdW patch that contribute to the action in our computation
are those shaded in dark gray.

4.3 Action on the WdW patch

We have seen in the previous subsection that the calculation of the action can be reduced
to the regions that border with the past and future singularities. We first recall that the
time translation symmetry is fixed by setting tR = −tL = τ . Let us start with the case
τ > τ0 = −r∗(0). In this case, there is only one contributing region, because the WdW
patch touches only the future singularity. It is bounded by the two null surfaces u = tR+2τ0
and v = tL− 2τ0, as well as the part of the future singularity with tL− τ0 ≤ t ≤ tR + τ0. In
outgoing Eddington-Finkelstein coordinates, the bulk region is given by tL ≤ u ≤ tR + 2τ0
and 0 < r ≤ ρ(u), where ρ(u) is determined implicitly by

u+ 2r∗(ρ) = tL − 2τ0 . (4.21)

The bulk term is easily computed,

IB
2Ωn

= − 1
L2

tR+2τ0∫
tL

du [ρ(u)]n+1 . (4.22)

Now consider the null surface contribution. Without loss of generality, let us pick the
values au = 1, av = 0 in (4.20). Then, only the null surface with constant v contributes,
with σ = ln(−f). Its tangent vector is

kα = eσ
( 2
f
,−1,~0

)
=
(
−2, f,~0

)
. (4.23)
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This gives

IN
2Ωn

=
∫

dλ rn d
dλ ln(−f) = −

tR+2τ0∫
tL

du [ρ(u)]n d
du ln(−f) = 1

2

tR+2τ0∫
tL

du ρn d
dρf(ρ)

= 1
L2

tR+2τ0∫
tL

du [ρ(u)]n+1 + 1
2(tR − tL + 2τ0)(n− 1)ωn−1 . (4.24)

As we mentioned at the end of the previous subsection, the corner term from the
joint between the two null surfaces vanishes in our choice of parameterization. The two
corners at the future singularity do not contribute either, because their volumes are zero.
The remaining contribution is the Gibbons-Hawking-York term (2.2) at the singularity.
Consider a surface with small, but constant r, which will be sent to zero at the end. In
Schwarzschild coordinates, the normalized, outward-pointing normal vector on this surface
is nα = (0,

√
−f,~0), so that the extrinsic curvature reads

K = 1
rn
∂r
(
rn
√
−f
)

= n

r

√
−f − 1√

−f

[
r

L2 + (n− 1)ωn−1

2rn

]
. (4.25)

Therefore, the Gibbons-Hawking-York term is

IS
2Ωn

=
tR+τ0∫
tL−τ0

dt lim
r→0

(
rn
√
−fK

)
= 1

2(tR − tL + 2τ0)(n+ 1)ωn−1 . (4.26)

Adding up all contributions yields

IWdW = IB + IN + IC + IS = 4nΩnω
n−1(τ + τ0) , (4.27)

where we have set tR = −tL = τ in the final result.
Eq. (4.27) holds for τ > τ0 only. The other cases can be obtained using the t → −t

symmetry. In particular, for |τ | < τ0, we need to add the contribution from the region
bordering with the past singularity. Its contribuition is simply (4.27) with τ replaced by
−τ . The sum of the contributions from the two regions results in a constant, IWdW,0 =
8nΩnω

n−1τ0.
We are now in a position to translate our result into a complexity. Using (1.1) and

I = 16πGS, we obtain

C = 4M
π~

|τ |+ τ0 for |τ | > τ0,
2τ0 for |τ | ≤ τ0.

(4.28)

To conclude this subsection, let us discuss what we have found. First, the complexity
is manifestly finite. This is ensured by the fact that the corners at the cut-off boundary,
where divergences may occur, belong to causal diamonds, which do not contribute following
our prescription. No further counter term is needed. We will see in the next subsection
that including the covariance counter term re-introduces the generic divergence. The limit
R → ∞ has not been taken explicitly. In fact, the only R-dependence is hidden in τ0 =
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−r∗(0), which includes R as the lower integration limit in (4.7). τ0 remains finite in the
limit R→∞. For example, for n = 2 we have

τ0 = L2

3r2
H + L2

rH
2 ln

(
1 + L2

r2
H

)
+ 3r2

H + 2L2√
3r2
H + 4L2

arctan

√
3r2
H + 4L2

rH


= L

α

1 + 3α2

[
1
2 ln

(
1 + α−2

)
+ 2 + 3α2
√

4 + 3α2
arctan

√
3 + 4α−2

]
. (4.29)

On the second line we have introduced the adimensional ratio α = rH
L . We will always

assume α > 1 (when α < 1 the black hole is not stable).
Our second observation is that the complexity grows linearly for τ > τ0 and saturates

the Lloyd bound [10, 11, 51].4 Compare this to the reparameterization-invariant approach,
which we will review in the next subsection. There, linear growth holds only at late times.
Third, (4.28) is constant in the time interval −τ0 ≤ τ ≤ τ0. Using (4.29), the constant
value of the complexity is (for n = 2)

C0 = 4L2α2(1 + α2)
π~G(1 + 3α2)

[
1
2 ln

(
1 + α−2

)
+ 2 + 3α2
√

4 + 3α2
arctan

√
3 + 4α−2

]
. (4.30)

If we perform an expansion in the large black hole limit, α� 1, we find

C0 = 4L2

3
√

3~G

[
α2 +

√
3
π

+ 2
3 −

2
27α

−4 +O
(
α−6

)]

= 4
3
√

3π
S + 4π2CT

81 (9 + 2
√

3π)− 8π11C3
T

37
√

3
1
S2 +O

(
S−3

)
. (4.31)

The final expression has been written in terms of physical expressions, in particular the
black hole entropy (4.5) and the central charge of the boundary CFT [52], CT = 3L2

π3~G .
We can interpret this constant value as the complexity of formation of the black hole from
the empty AdS space-time [21]. The leading order of (4.31) shows the same linear relation
between complexity of formation and black hole entropy highlighted in [19, 21], at least
up to a numerical factor. The sub-leading terms are different, and in particular we do
not have the logarithmic divergence term that shows up in [19, 21]. These differences are
due to the fact that a different parameterization was used in the computation. In [21] an
affine parameterization is used, so that the boundary contribution of the null segments
can be discarded. Incidentally, such a parameterization gives the same result as with the
parameterization invariant action, which was used in [19].

Last, for τ < τ0, the complexity decreases linearly. This behaviour does not appear
to be physical, and we interpret it as an artifact of the eternal, two-sided black hole. In
subsection 4.5 we will show that treating the black hole as a thermofield double state
removes this artifact as well as the plateau at small τ .

4To compare with the standard expression for Lloyd’s bound, one should set t = 2τ .
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4.4 Parameterization invariant action

As we mentioned above, the complexity (4.28) is not invariant under a change of parame-
terization of the null boundaries. Because parameterization independece may be considered
as a necessary feature, we will calculate here the counter term (2.7) that would render the
action invariant.

The quantity we need to compute the counter term is the null expansion along the
boundaries

Θ = n
d

dλ ln r(λ) = n

r
kr . (4.32)

First, we consider the causal diamond of subsection 4.2. For the segment N1 we readily
find

Ic.t.,N1

2Ωn
= n

r2∫
r1

dr rn−1 ln nl̃
r

+ n

r2∫
r1

dr rn−1σ1

= r2

(
ln nl̃
r2

+ 1
n

)
− r1

(
ln nl̃
r1

+ 1
n

)
+ n

r2∫
r1

dr rn−1σ1 . (4.33)

It is evident that the dependence on the parameterization function σ1 in (4.33) cancels
the corresponding integral term in (4.12). The contributions of the other boundaries take
essentially the same form, and the total counter term reads

Ic.t.
2Ωn

= 2r2

(
ln nl̃
r2

+ 1
n

)
−2r1

(
ln nl̃
r1

+ 1
n

)
−2r3

(
ln nl̃
r3

+ 1
n

)
+2r4

(
ln nl̃
r4

+ 1
n

)
(4.34)

+n

r2∫
r1

dr rn−1σ1 +n

r2∫
r3

dr rn−1σ2 +n

r4∫
r3

dr rn−1σ3 +n

r4∫
r1

dr rn−1σ4 .

The action in the causal diamond, including the counter term, is obtained by adding (4.34)
to (4.19), which gives

Itot
2Ωn

= 2n
r2∫
r1

dr rn−1 ln nl̃
√
|f |
r

+ 2n
r4∫
r3

dr rn−1 ln nl̃
√
|f |
r

. (4.35)

Here, we have chosen to leave the counter term in integral form. As expected, the result is
independent of the parameterization of the null boundaries. However, there is no way to
set this action generically to zero.

To see what are the consequences of this and the differences with the result (4.28), we
compute the action of the whole WdW patch with the contribution of the counter term.
Let us focus on the more interesting case τ > τ0. The counter term contribution of the
four null boundaries reads

Ic.t.
2Ωn

= n

R∫
0

dr rn−1
(

2 ln nl̃
r

+ σ1 + σ4

)
+ n

R∫
rm

dr rn−1
(

2 ln nl̃
r

+ σ2 + σ3

)
. (4.36)
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In computing (4.27) we have set av = 0 and au = 1, which by (4.20) implies σ1 = σ3 = ln |f |
and σ2 = σ4 = 0. Using this parameterization in (4.36) we find

Ic.t. = 4nΩn

R∫
0

dr rn−1 ln nl̃
√
|f |
r

+ 4nΩn

R∫
rm

dr rn−1 ln nl̃
√
|f |
r

= I0
c.t. − 4nΩn

rm∫
0

dr rn−1 ln nl̃
√
|f |
r

, (4.37)

where we have defined the constant contribution

I0
c.t. = 8nΩn

R∫
0

dr rn−1 ln nl̃
√
|f |
r

. (4.38)

I0
c.t. is just the counter term of the case |τ | < τ0, when the WdW patch touches both
singularities. We note that it diverges in the R→∞ limit.

We can now sum (4.37) and (4.27) to find the action on the WdW patch with the
counter term,

IWdW,tot = 4nΩn

ωn−1(τ + τ0)−
rm∫
0

dr rn−1 ln nl̃
√
|f |
r

+ I0
c.t. . (4.39)

The second term in the brackets, which stems from the counter term, is also time-dependent,
because τ = −r∗(rm). The time derivative of the action is

İWdW,tot = 4nΩn

[
ωn−1 + rn−1

m f(rm) ln nl̃
√
|f(rm)|
rm

]
. (4.40)

Let us briefly discuss the second term in the brackets. At late times, when rm → rH , it
vanishes, reproducing the known linear growth of the complexity. For τ just above τ0, i.e.,
when the WdW patch detouches from the past singularity just after the time interval with
constant action, it tends to −∞. This behaviour was observed already in [31], where it
was proposed to smooth out the spike in the complexity by averaging over a time interval
shorter than the thermal time.

In figure 5 we plot (4.40) for some values of l̃ (we use the n = 2 case for simplicity). We
can see that at late times (4.40) agrees with the expected behaviour, namely linear growth,
for any value of l̃. We also see however, that at early times the actions is decreasing. The
time interval for which we have a decrease in the action is dependent on the arbitrary scale l̃.

The growth in complexity of the black hole is supposed to reflect the growth of the
bulk volume behind the horizon, and as such it is expected to be at least non decreasing.
Moreover, we find the fact that the time interval for which the action is decreasing depends
on the arbitrary scale l̃ is even more unphysical.
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Figure 5. Time evolution of the action as a function of rm for different values of l̃. Solid line:
l̃ = 0.5rh, dashed line: l̃ = rh, dash-dotted line: l̃ = 2rh. (n = 2, α = 5).

4.5 Thermofield double state

As we have seen in the previous subsections, the action on a WdW patch in the eternal
(two-sided) Schwarzschild-AdS black hole spacetime, with or without the counter term, is
symmetric under time reflection, τ → −τ . Moreover, it is constant in the time interval
|τ | < τ0. These two features are difficult to interpret when the action is taken as a measure
for complexity. Now, we will show that taking literally the interpretation of the two-sided
Schwarzschild-AdS black hole spacetime as the dual of a thermofield double state [53–55]
resolves both issues.

Consider a quantum system with Hilbert space H, Hamiltonian H and the energy spec-
trum H |n〉 = En |n〉. A thermofield double state is the following temperature-dependent
entangled state in the doubled Hilbert space H⊗H,

|ψ〉 = 1√
Z(β)

∑
n

e−β
En

2 |nL〉 ⊗ |nR〉 . (4.41)

The subscripts L and R refer to the two copies of the Hilbert space, Z(β) is the partition
function of the theory, and β the inverse temperature. The state (4.41) is prepared by an
Euclidean path integral over the interval τE ∈ (0, β2 ), which prepares the state at some
initial Lorentzian time τ = 0. For τ > 0, we will use the convention that τ = tR = −tL,
so that no time reflection is needed in the bulk description. This can be acieved by taking
HL = −HR, or by considering a bra state 〈nL| instead of |nL〉.

The bulk geometry of the Schwarzschild-AdS thermofield double state is obtained by
gluing the half of the Lorentzian space-time with τ > 0 to the Euclidean geometry with
τE ∈ (0, β2 ) [53]. Therefore, this construction gives us a precise definition of an initial time.
The resulting geometry is illustrated in figure 6, where we also show a WdW patch.

When we compute the action on the WdW patch using the prescription that causal
diamonds do not contribute, then the region that effectively gives the action is the dark
shaded area in figure 6, which borders with the singularity. We note that the triangular
regions bordering with the τ = 0 spacelike hypersurface, which remain after removing
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Figure 6. WdW patch in the thermofield double state. The shaded area indicates a WdW patch,
the darker part is the region that effectively gives the action.

causal diamonds, do not contribute. This is because they effectively add up to a causal
diamond and the τ = 0 hypersurface has zero extrinsic curvature, so that the corresponding
surface term vanishes. Therefore, the result is simply given by (4.27),

C = 4M
π~

(τ + τ0) . (4.42)

It is evident that the complexity growth is now linear at all times τ > 0.
When τ = 0, the complexity is half the complexity of the double sided black hole, as

we would expect since the WdW patch touches only one singularity. Consequently, the
complexity of formation of the black hole is also halved.

We can quite easily see how the action would look like if we included again the counter
term contribution. Such contribution takes the same form as (4.37), we only need to
exchange rm with the radius r0 in which the wdw patch intersects the boundary at τ = 0.
The τ -dependence of r0 is given implicitly by: r∗(r0) = −τ . When τ = 0 we have r0 = R,
and as τ grows to ∞ r0 approaches rH . The action with the counter term is then:

IWdW,tot = 4nΩn

ωn−1(τ + τ0)−
r0∫

0

dr rn−1 ln nl̃
√
|f |
r

+ I0
c.t. . (4.43)

This expression suffers the same problems that affect (4.39). The term I0
c.t. introduces a

divergence in the complexity, and the time derivative reads

İWdW,tot = 4nΩn

[
ωn−1 + rn−1

0 f(r0) ln nl̃
√
|f(r0)|
r0

]
. (4.44)

Now r0 goes from R to rH as time increases. As show in figure 7, in the limit R → ∞,
when τ → 0, (4.44) is divergent, while at late times it agrees again with the previous result,
for any value of l̃. However as an improvement with respect to (4.40), the action is now
always increasing.
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Figure 7. Time dervative of the action for different values of l̃. Solid line: l̃ = 0.5rh, dashed line:
l̃ = rh, dash-dotted line: l̃ = 2rh. (n = 2, α = 5).

5 BTZ black hole

In this section, we briefly discuss the special case of tridimensional bulk space (n = 1).
The vacuum solution, AdS3, is not different from its higher dimensional counterparts, and
the discussion of section 3 is unchanged.

The black hole solution is different instead. The BTZ black hole [56] is an asymptoti-
cally AdS3 solution to gravity with a negative cosmological constant, and it is actually an
orbifold of AdS3 space-time. The solution is defined by the metric

ds2 = −f(r) dt2 + f(r)−1 dr2 + r2 dθ2 , (5.1)

with
f(r) = r2

L2 −m. (5.2)

The black hole has an horizon at rH =
√
mL and a singularity at r = 0.5 The mass,

temperature, and entropy of the black hole read

M = m

8G, T = rH
2πL2 , S = πrH

2G , (5.3)

respectively. The causal structure and the Penrose diagram of the BTZ black hole are
identical to the Schwarzschild case shown in figure 1. The tortoise radial coordinate can
be computed explicitly

r∗(r) =
r∫
∞

dr
f(r) = rH

2m ln |r − rH |
r + rH

. (5.4)

The WdW-patch is similar to the patch of the Schwarzschild case (see figure 2), with only
one difference. Since t0 = −r∗(0) = 0, the patch is in contact with only one of the two
singularities when |τ | > 0, but touches both the future and past singularities when τ = 0.

The computation of the action of the WdW-patch proceeds in the same way we have
already shown for the AdS-Schwarzschild black hole with no significant differences. In
particular, the action in any causal diamond is vanishing when choosing a parameterization

5We only consider m > 0. For m < 0, the solution represents a point-like conical defect without horizon.
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like (4.20), with f(r(λ)) given by (5.2). The contribution to the action of the WdW-patch
can then only come from the regions in contact with the singularity (see figure 4), and the
complexity is

C = 4M
π~
|τ | . (5.5)

The fundamental difference respect to the complexity of the AdS-Schwarzschild black hole
is that the complexity is linearly increasing for all τ > 0, with no initial constant plateau.
In particular, we observe that the complexity is zero when τ = 0, meaning that the com-
plexity of formation of the BTZ black hole with respect to empty AdS space-time is zero.
In [21], the complexity of formation of the BTZ black hole was computed by subtracting the
complexity of AdS3 from the complexity of the black hole, using an affine parameterization
to compute the null boundaries’ contributions to the action. There it was found that the
complexity of formation depends on the type of vacuum chosen for the boundary theory,
and it is zero only in the case of the Ramond vacuum. This suggests that the criterion
proposed for choosing a parameterization, namely that the action of any empty causal
diamond must vanish, automatically chooses the type of vacuum of the boundary theory.

6 Conclusions

In this paper, we have reconsidered the holographic complexity of pure AdS space-time and
the AdS-Schwarzschild black hole in the C = A approach. The novelty of our treatment
lies in the departure from the requirement that the on-shell action be invariant under
reparameterizations of the null components of the boundary of the WdW patch. This
requirement would mandate a counter term in addition to the minimal action determined by
the variational principle and would leave the renormalization scale l̃ as the only parameter.
Instead, we regard the parameterization dependence as a feature that allows to describe
physically different situations. On the bulk side, the action terms on the null boundaries
describe the heat content on these boundaries [41]. We think that the interpretation in
the dual CFT is related to the details of the definition of circuit complexity, i.e., the
reference state and the set of elementary gates, but we do not have anything precise to
say on this point. Having disposed of reparameterization invariance, we have introduced a
new criterion that selects physically sensible parameterizations. Our criterion is that the
action in any static vacuum causal diamond vanishes. This immediately sets the action on
the WdW patch in pure global AdS space-time to zero, fixing this state as the reference
state. This was not possible in approaches similar to holographic renormalization. For
the AdS-Schwarzschild and BTZ black holes, our criterion renders the action intrinsically
finite, because the regions near the space-time boundary can now be discarded. In these
cases, the region that effectively gives the complexity lies entirely behind the horizon and
borders with the singularity. The new criterion entails that the preferred parameterization
functions on the null boundaries are given in terms of the logarithm of the blackening
function, see (4.20), up to free numerical coefficients that must add up to unity between
two neighbouring boundaries.

In the case of the eternal (two-sided) black hole, our calculation not only confirms the
linear growth of complexity at late times, but makes the growth linear at all times τ > τ0,
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where τ0 is a critical time, saturating the Lloyd bound. In particular, the peculiar dip
immediately after the WdW patch detaches from the past singularity [31], which was found
in the counter term approach, is absent. For 0 < τ < τ0, the complexity is constant. This
constant value is interpreted as a complexity of formation and agrees up to a numerical
factor and to leading order with previous results for that quantity [19, 21]. Only the
tridimensional case is special. For the BTZ black hole, we find linear growth for all τ > 0,
with τ0 = 0. We also considered the thermofield double state interpretation of the AdS-
Schwarzschild black hole replacing the unphysical region of negative τ (where complexity
decreases) with an appropriate Euclidean space-time region that creates the thermofield
double state. In this case, the complexity turns out to be linear at all times τ > 0, starting
at a positive value that can again be interpreted as a complexity of formation.

One might object that the divergence of holographic complexity in the reparameteriza-
tion-invariant approach, when the cut-off is sent to infinity, reflects the generic divergence
of circuit complexity when the precision parameter ε is sent to zero. Although it is true,
this argument has a loop hole. Physically, one can reformulate this expectation by saying
that constructing, with infinite precision, a generic target state from a given reference state
using a given set of elementary operations requires, generically, infinitely many operations.
However, this is only the generic situation, and holographic complexity still is divergent
when generic parameterizations of the null boundaries are considered. It all depends on
what happens to the set of elementary operations as the limit ε→ 0 is taken. In the extreme
case in which all unitary operations are allowed as elementary operations, only a single
operation would be needed to obtain the target state, trivializing complexity. Therefore,
one should think that for parameterizations satisfying our criterion the set of elementary
operations is suitably enlarged in the limit ε→ 0, such that the complexity remains finite.6

An obvious question that arises is how to apply our new criterion to charged or rotating
black holes. In such black holes, which typically have an inner and an outer horizon, the
WdW patches are always causal diamonds, which never come in contact with the singularity.
Asking that the action vanish in any causal diamond would then imply that the holographic
complexity vanishes, which cannot be the correct answer. Therefore, rather than applying
the criterion to any causal diamond, one should extend the parameterization functions
found here to the more general cases. In particular, we found here that the preferred
choice of the parameterization functions is in terms of the blackening function, see (4.20).
This choice of parameterization must be extended by analogy to the more general cases
and gives rise to a non-vanishing action of causal diamonds in the charged and rotating
cases, simply because they are not vacuum or static. We have considered these cases, as
well as Vaidya space-time, in a follow-up paper [57].

Another interesting direction would be the study of the complexity behaviour under
conformal transformations. [58, 59], since when using the “Complexity=Action” conjecture,
the counter term gives rise to effects of difficult physical interpretation.7

6There is an easy, although not very rigorous, analogy in binary terms. As ε decreases, the number of
bits necessary to distinguish a positive number from zero increases. At the same time, the length of binary
numbers manipulated by the elementary operations should also increase.

7We thank Mario Flory for pointing this out to us.
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