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Abstract The thermodynamic compatibility defined by the Drucker postulate applied to a phenomenological
hysteretic material, belonging to a recently formulated class, is hereby investigated. Such a constitutive model
is defined by means of a set of algebraic functions so that it does not require any iterative procedure to compute
the response and its tangent operator. In this sense, the model is particularly feasible for dynamic analysis
of structures. Moreover, its peculiar formulation permits the computation of thermodynamic compatibility
conditions in closed form. It will be shown that, in general, the fulfillment of the Drucker postulate for
arbitrary displacement ranges requires strong limitations of the constitutive parameters. Nevertheless, it is
possible to determine a displacement compatibility range for arbitrary sets of parameters so that the Drucker
postulate is fulfilled as long as the displacement amplitude does not exceed the computed threshold. Numerical
applications are provided to test the computed compatibility conditions.

Keywords Hysteretic materials · Thermodynamic compatibility · Phenomenological model

1 Introduction

Uniaxial constitutive models describing hysteretic load-response behaviors play a significant role in several
engineering applications. In general, such kinds of response depend on the past history of the applied loads,
while the first derivative of the action can influence (for rate-dependent) or not (for rate-independent) the
current response value [6]. Within this framework, hysteretic models are involved in several applications of
structural engineering such as ductile [15] and fragile materials [2] as well as seismic devices [5,12,13,22].

An important aspect for many applications consists in the fact that it is desirable to adopt models defined
by means of smooth relationships so that the response and its first derivative are continuous, an essential aspect
in a large variety of applications [1,4,9,16].

To this end, several constitutive models have been developed by adopting analytical functions such as the
famous material proposed by Bouc [3] and later extended by Wen in [24] and [23] whose popularity is due
to its capability of reproducing complex and continuous hysteretic loop shapes by means of a single function
and a limited number of parameters.

The Bouc-Wenmaterial belongs to a wider class of differential constitutive models whose formulations are
based on analytical relationships involving both the response and its derivatives. Thus, their main drawback
consists in the necessity of computing the actual response by solving a nonlinear differential equation. This
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is usually done by means of computationally demanding iterative numerical approaches, being closed-form
solutions available for a few structural problems.

In order to overcome such an issue and within the framework of rate-independent, nondegrading symmetric
hysteresis, a new class of uniaxial constitutive models has been recently proposed by Vaiana et al. [20]. Such
materials are capable of modeling a broad variety of hysteretic behaviors by means of smooth curves whose
expression is analytically determined [19,21].

From a qualitative point of view, such a class provides hysteresis loops quite similar to theBouc-Wenmodel,
at least in terms of hysteresis shape and of hardening–softening phenomena, although it is essential to remark
that their analytic background is completely different. Implementation of models belonging to such a class is
very convenient since they do not require to solve any differential equations; hence, they are, in general, faster
and less computationally demanding than Bouc-Wen-basedmodels.Moreover, the possibility of expressing the
response by means of explicit nonlinear equations makes such a class very convenient to address applications
relying on closed-form solutions, such as dynamic viscoelastic problems [8], and especially to determine the
response sensitivity in closed form [18].

A further benefit of themodels belonging to the class presented inVaiana et al. [20], and particularly ofmost
versatile one, the algebraic material developed by Vaiana et al. [21], consists in the fact that their constitutive
parameters can be directly related to quantities deduced from experimental data so that their identification is
straightforward, as discussed in Sessa et al. [18].

In order to ensure physical significance of the computed response, it is important to investigate the ther-
modynamic compatibility of the model and its stability.

Thermodynamic compatibility consists in the fulfillment of the thermodynamic principles by means of
the postulate formulated by Drucker [7]. Specifically, such a condition prescribes that the first derivative
of the energy dissipated by the hysteretic model is always non-negative. Moreover, the stability postulate
introduced by Hill [10] is a stronger condition for which it is necessary that the incremental internal energy
of the system must be nondecreasing. For generic hysteresis loops, both the conditions usually depend on the
adopted constitutive parameters as well on the strain/displacement range.

Materials that fulfill both these criteria are generally well-suited for numerical analysis, while models that
fail to satisfy such criteria are likely to present drawbacks, such as nonuniqueness or singularity, during the
solution process.

It is worth being emphasized that Hill’s stability criterion is never fulfilled in presence of softening,
although modern integration algorithms are capable of determining stable responses even for materials not
fulfilling it. Obviously, if softening is introduced, the designer must be aware of the instability of the model and
should account for it in the response computation. On the contrary, thermodynamic compatibility represents a
fundamental condition in order to avoid physically impossible energy balances of the analyzed material.

The research hereby presented introduces simple analytical conditions that must be fulfilled in order to
ensure the thermodynamic compatibility of rate-independent hysteretic models and investigates their special-
ization for the case of the algebraicmaterial presented inVaiana et al. [21] and belonging to the class formulated
in Vaiana et al. [20].

In particular, a general purpose condition for the fulfillment of the Drucker’s postulate is discussed. This
can be adopted for any of the models belonging to the class Vaiana et al. [20] and even for different materials,
such as the celebrated Bouc-Wen. Such a condition is based on the computation of the incremental energy of
a generic hysteresis loop and on the evaluation of its reversible part. This permits to develop a conservative
analytical condition based on the computation of the tangent and secant stiffness of the analyzed model.

Such a general condition is therefore specialized for the case of the algebraic material proposed in [21]
and the determination of analogous compatibility conditions defined by means of the constitutive parameters.
The computed conditions are finally tested by numerical applications discussed before a few conclusions.

2 Thermodynamic compatibility of a generic hysteretic material

Let us consider a generic state of a uniaxial hysteretic material defined by a current strain value ε, supposed
positive for simplicity, and the associated stress value σ(ε). We emphasize that strain and stress can be
interpreted as generalized quantities in order to refer to displacement and forces.

The first derivative dσ(ε)/dε of the stress σ with respect to the strain ε is the tangent stiffness represented
by the slope of the hysteretic curve at the considered point, as shown in Fig. 1.



Thermodynamic compatibility conditions of a new class...

Fig. 1 Generic initial stress–strain state

Fig. 2 Elastic energy associated with the state [ε, σ (ε)]

Moreover, it is possible to define the unloading curve associated with the state [ε, σ (ε)], represented in
red in Fig. 1, and the residual strain ε0(ε) corresponding to the intercept of the unloading curve with the axis
σ = 0 and associated with the tangent stiffness dσ(ε0)/dε.

The condition defined by the Drucker’s postulate [7] states that the increment of inelastic work must be
non-negative. In particular, making reference to the case of plasticity as example, such a relationship is defined
by means of the plastic strain:

dσ · dεpl ≥ 0 (1)

where the · operator represents the scalar product, being stress and strain tensorial quantities. Moreover, dεpl
is the increment of plastic strain εpl , i.e., the difference between the total strain ε and the residual strain ε0(ε).
From a physical point of view, Equation (1) states that the second degree plastic work is always positive.

Such a condition is less limiting than the Hill’s postulate [10] but is far more significant so that it is often
addressed as thermodynamic compatibility. In fact, plastic work corresponds to the energy which is dissipated
by the constitutive model. In order to fulfill the thermodynamic principles, it is necessary that such a quantity is
never negative. Whenever a stress–strain state does not fulfill Equation (1), the system presents the absurd (and
physically impossible) condition for which its free energy turns out to be greater than the energy introduced
by the external action. Therefore, while the Hill’s stability postulate represents a useful condition to obtain
stable materials from a computational point of view, the thermodynamic compatibility condition (or Drucker’s
postulate) of Equation (1) represents a fundamental constraint to be fulfilled in order to reproduce physically
meaningful constitutive behaviors.

To investigate the fulfillment of the thermodynamic compatibility condition it is convenient to define such
a relationship by means of inelastic work. In fact, computational models belonging to the class proposed in
Vaiana et al. [20] have phenomenological nature; thus, inelastic phenomena are not necessarily related to
plasticity.

Such an inelastic work can be computed as the difference between the total work Wtot associated with
the stress–strain state and the work associated with the unloading curve starting at the current state [ε, σ (ε)],
which is represented by the yellow area in Fig. 2.

This latter quantity is the energy that thematerial releases if the external action is suppressed. For simplicity,
such a contribution will be addressed as elastic energy below.

Computation of the inelastic work increment at a stress–strain state [ε, σ (ε)] depends on the algebraic
sign of the strain increment dε. In particular, the following subsections investigate the cases of negative and
positive ratios separately.
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Fig. 3 Work increment associated with the state [ε, σ (ε)] and dε < 0

Fig. 4 Total work increment dWtot for dε > 0

It is worth being emphasized that, because of the phenomenological nature of the considered models, the
uniaxial relationship may refer to stress and strain as well as to forces and displacements. For this reason, from
now on, strain-like quantities will be addressed as generalized displacements.

2.1 Inelastic work increment for dε < 0

In case of negative displacement increments, the inelastic work increment is trivially zero. In fact, the total
work increment associated with dε, represented in yellow in Fig. 3, turns out to be negative and it is equal to the
released elastic energy since the material follows the unloading curve. Hence, for dε < 0 the thermodynamic
compatibility is always fulfilled.

2.2 Inelastic work increment for dε > 0

In case of positive displacement increments dε > 0, the response follows the blue line. The total work
increment, computed by means of its second-order Taylor series expansion, is:

dWtot = σ(ε)dε + 1

2

dσ+(ε)

dε
dε2 (2)

where dσ+(ε)/dε denotes the tangent operator computed for positive displacement increments on the loading
curve, represented by the blue line in Fig. 4 where the quantity dWtot is represented by the blue area.

Analogously, the increment of elastic energy, represented by the green area in Fig. 5 and reported in detail
in Fig. 6, can be computed by means of a Taylor series expansion. Specifically, the load increment corresponds
to the height of the green area and turns out to be:
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Fig. 5 Elastic energy increment dWel for dε > 0

Fig. 6 Elastic energy increment dWel for dε > 0 (detail)

δv = dσ+(ε)

dε
dε (3)

while the quantity δh is evaluated by means of the tangent stiffness computed along the unloading curve:

δh = δv

[
dσ−(ε0)

dε

]−1

= dσ+(ε)

dε

[
dσ−(ε0)

dε

]−1

dε (4)

where dσ−(ε)/dε represents the tangent operator computed on the unloading curve (red line of Fig. 5). Hence,
the elastic energy increment turns out to be:

dWel = 1

2

dσ+(ε)

dε

{
ε − ε0(ε) + dσ+(ε)

dε

[
dσ−(ε0)

dε

]−1

dε

}
dε (5)

and, finally, the inelastic work increment is computed as the difference of the quantities evaluated by Equations
(2) and (5) as:

dWin = dWtot − dWel = σ(ε) + 1

2

dσ+(ε)

dε

{
dε − ε + ε0(ε) − dσ+(ε)

dε

[
dσ−(ε0)

dε

]−1

dε

}
(6)

We recall that the displacement increment is a positive infinitesimal quantity dε → 0+; thus, the following
infinitesimal quantity:

dε2 − dσ+(ε)

dε

[
dσ−(ε0)

dε

]−1

dε2 ≈ 0 (7)

turns out to be of higher order with respect to the remaining terms within the curly brackets in Equation (6).
Thus, the first derivative of the inelastic work turns out to be:

dWin

dε
= σ(ε) + 1

2
(ε0(ε) − ε)

dσ+(ε)

dε
≥ 0 (8)

To determine the algebraic sign of dWin/dε, it is necessary to determine (ε0(ε) − ε) which yields:

ε0(ε) − ε = −
∫ σ(ε)

0

[
dσ−(ε)

dε

]−1

dσ = −σ(ε)

k̂
(9)
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Fig. 7 Geometric interpretation of k̂

Fig. 8 Example of thermodynamically noncompatible hysteresis

Fig. 9 Example of thermodynamically noncompatible softening

where k̂ is the average stiffness computed along the unloading curve:

k̂ = 1∫ σ(ε)

0

[
dσ−(ε)

dε

]−1
dσ

(10)

The latter quantity can be interpreted as the slope of the regression line matching the unloading curve; i.e.,
a segment which subtends equal areas with respect to the unloading curve, as shown in Fig. 7.

Recalling Equation (9), the thermodynamic compatibility condition of Equation (8) becomes:

k̂ ≥ 1

2

dσ+(ε)

dε
(11)

It is worth being emphasized that such a condition must be fulfilled for all possible load–displacement
states which are, eventually, infinite. With this respect, the quantity dσ(ε)/dε represents the tangent stiffness
at an arbitrary point of the hysteretic curve, while k̂ can span within all possible values that the secant stiffness
ks of the unloading curve can attain. Hence, the thermodynamic compatibility condition can be generalized
as:

min [ks(ε)|∀ε]

max [k(ε)|∀ε]
≥ 1

2
(12)
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The latter relationship aims to avoid thermodynamically not-compatible behaviors such the one represented
in Fig. 8where, provided an equilibrium path denoted by the blue line, we consider thework increment between
the states ε and ε + �ε. In this particular case, the increment of the reversible work �Wel , represented by the
area in yellow underneath the unloading curve in red, turns out to be greater than the total work increment
�Wtot , represented by the cyan area.

Along with the previous one, a further compatibility condition should be checked. In fact, in presence of
softening material, the hysteresis loop may intercept the horizontal axis determining states for which even
the total work Wtot turns out to be negative, as for the example reported in Fig. 9 where the negative work
increment is represented by the cyan area.

Condition of Eq. (12) is a general purpose relationship since it does not refer to peculiar formulations of the
constitutive model. Hence, it can be used to investigate any hysteretic material, as long as the computation of
the tangent and secant stiffness is possible, and can be applied to all models belonging to the class formulated
in Vaiana et al. [20].

3 Thermodynamic compatibility conditions of the algebraic model

The algebraic material Vaiana et al. [21] is a constitutive model capable of reproducing hysteresis loops
with complex shapes. It is defined by means of five constitutive parameters. In particular, ka and kb are
stiffness coefficients relevant to the elastic and inelastic regions, respectively, while parameter α determines
a smooth transition between elastic and inelastic states. Two further parameters, namely β1 and β2, introduce
hardening/softening behaviors, pinching and local minima/maxima of the response.

Within the framework of a dynamic or pseudo-dynamic structural analysis, the values of the generalized
displacement, velocity and response at the last computed time (or pseudo-time) step are denoted by uc, sc and
fc, respectively. In order to compute the response ft associated with a trial generalized displacement ut , it is
necessary to introduce the following auxiliary parameters:

u0 = 1

2

[(
ka − kb

δ

) 1
α − 1

]
(13)

f̄ = ka − kb
2

[
(1 + 2u0)1−α − 1

1 − α

]
(14)

and the history variable:

u j = uc + st (1 + 2u0) − st (�1�2)
1

1−α (15)

with:

�1 = st (1 − α)

ka − kb
(16)

�2 = fc − β1uc
3 − β2uc

5 − kbuc − st f̄ + �3 (17)

and:

�3 = (ka − kb)
(1 + 2u0)1−α

st (1 − α)
(18)

Hence, the trial response is:

ft = β1ut
3 + β2ut

5 + kbut + (ka − kb) (�4 − �5) + st f̄ (19)

with:

�4 =
(
1 + stut − stu j + 2u0

)1−α

st (1 − α)
(20)

and:

�5 = (1 + 2u0)1−α − 1

1 − α
(21)
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(a) (b)

Fig. 10 Physical interpretation of the constitutive parameters

while the tangent operator, i.e., the derivative of the response with respect to the generalized displacement, is:

d ft
dut

= 3β1ut
2 + 5β2ut

4 + kb + st (ka − kb)
(
1 + stut − stu j + 2u0

)−α (22)

It is important to recall the physical interpretation of the constitutive parameters since it represents a pivotal
issue of the compatibility conditions presented in Subsect. 3.1. Specifically, if β1 = β2 = 0, parameter ka
represents the tangent stiffness at the beginning of each loading curve, while kb is the asymptotic tangent, as
shown in Fig. 10a. Moreover, coefficient α rules the transition between the loading branch and the inelastic
region. Such a parameter is not directly represented by the hysteresis loop although it determines the auxiliary
parameters f̄ and u0 of Equations (13) and (14). The quantity f̄ represents the half-distance between the
two asymptotic branches, while u0 is a half of the displacement for which the nonlinear response reaches the
asymptotic branch, as shown in Fig. 10a.

Parameters β1 and β2 determine the nonlinear hardening behavior, as shown in Fig. 10b where a set of
cycles with different values of such parameters have been represented.

3.1 Thermodynamic compatibility conditions

In order to investigate the thermodynamic compatibility of such a constitutive model by the condition of
Equation (12), it is necessary to compute the maximum of the tangent stiffness of Equation (22) and the
minimum of the secant stiffness.

Referring to the original paper [21] for the details, we recall that the maximum of the tangent stiffness
is always greater than parameter ka . In fact, such parameter represents a local maximum reached nearby the
regions of the hysteresis loops where the velocity changes its algebraic sign. Further local maxima of the
tangent stiffness can be achieved within the inelastic region of the loop for which the last addend of Equation
(22) tends to zero. In such a case, local maxima can be computed as the stationary points of the function:

k(ε) ≈ 3β1ε
2 + 5β2ε

4 + kb (23)

where ε denotes the generalized displacement.
The secant stiffness is easily computed by dividing the response of Equation (19) by the trial displacement.

Assuming that velocity is positive, it yields:

ks(ε) = ft
ut

= β1ε
2 + β2ε

4 + kb + f̄

ε
+ ka − kb

ε
(�4 − �5) (24)

The latter equation can be simplified recalling that the minimum of the secant stiffness is attained for high
values of the displacements. In such a case, the last term of the right-hand side of Eq. (24) is negligible so that
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Fig. 11 Trends of the tangent and secant stiffness for β1 = β2 = 0

it can be rewritten as:

ks(ε) = β1ε
2 + β2ε

4 + kb + f̄

ε
(25)

The stationary points of the tangent and secant stiffness depend upon the values of the constitutive param-
eters. Recalling that ka > 0 and kb < ka , it is possible to determine typical cases depending on β1 and
β2.

3.1.1 Condition for the case β1 = β2 = 0

If the two modulating parameters β1 and β2 are both zero, the secant and tangent stiffness present the trend
reported in Fig. 11 so that their minimum and maximum values turn out to be:

min [ks(ε)|∀ε] = kb (26)

max [k(ε)|∀ε] = ka (27)

hence, the compatibility condition depends on ka and kb only and is not dependent by the displacement range:

kb ≥ 1

2
ka (28)

Whenever the latter condition is not fulfilled, it is still possible to determine a range of the generalized
displacement for which the thermodynamic compatibility is ensured. Specifically, being ka the maximum of
the tangent stiffness and on account of Equations (12) and (25), the displacement range ε� is:

|ε| ≤ ε� = f̄

ka/2 − kb
(29)

3.1.2 Condition for the case β1 �= 0 and β2 < 0

If the modulating parameter β2 is negative, the tangent stiffness decreases monotonically and its maximum
is ka , as reported in Figs. 12a and b. Nevertheless, the minimum of the secant stiffness is −∞; thus, it is not
possible to determine conditions about the values of the parameters for which the thermodynamic condition
is always fulfilled. Yet, it is possible to determine a compatibility range ε� of the displacement by accounting
for Equations (12) and (25) which yields:

β1ε
2 + β2ε

4 + kb + f̄

ε
− 1

2
ka ≥ 0 (30)

In such a case, the displacement compatibility range ε� must be determined numerically because the latter
equation has no closed-form solutions.
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Fig. 12 Trends of the tangent and secant stiffness for β2 < 0

An approximate root of Equation (30) can be determined by observing that, if the inelastic region of the
hysteresis has been reached, then f̄ /ε ≤ ka . In such a case, recalling that such ratio is always positive, a
stronger condition is:

β1ε
2 + β2ε

4 + kb + 1

2
ka ≥ 0 (31)

so that the displacement range ε� is determined by the smallest real root of the following:

|ε| ≤ ε� =
√

β1 ±
√

β1
2 − 4β2 (kb + ka/2)

2β2
(32)

It is worth being emphasized that the latter equation always provides at least one real root. In fact, since
β2 is negative and |β1| <

√
β1

2 − 4β2 (kb + ka/2) , the argument:

β1 −
√

β1
2 − 4β2 (kb + ka/2)

2β2
(33)

is always positive.

3.1.3 Condition for the case β1 < 0 and β2 > 0

The third analyzed case assumes β1 < 0 and β2 > 0. Both the secant and tangent stiffness tend to diverge
with positive values, as shown in Fig. 13a.

The minimum of the secant stiffness cannot be computed in closed form although it is greater than the
minimum of the tangent stiffness fulfilling the condition:

dk(ε)

dε
= 6β1ε + 20β2ε

3 = 0 (34)

and attained for ε� = √−3β1/10β2.
Thus, the minimum secant stiffness can be approximated as:

min [ks(ε)|∀ε] ≈ min [k(ε)|∀ε] = k
(
ε�

) = kb − 9β1
2

20β2
(35)

since, being min [ks(ε)|∀ε] ≥ min [k(ε)|∀ε], assumption of Eq. 35 is conservative with respect to condition
of Equation 12.

Besides the global maximum of +∞, the tangent stiffness presents the local maximum: ka attained at
ε = 0. Hence, a first compatibility check consists in the following:

kb
ka

− 9β1
2

20β2ka
≥ 1

2
(36)
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Fig. 13 Trends of the tangent and secant stiffness for β2 > 0

associated with the local minimum of k(ε). Moreover, it is possible to determine the displacement range by
fulfilling the condition:

3β1ε
2 + 5β2ε

4 + kb ≤ 2kb − 9β1
2

10β2
(37)

which yields:

|ε| ≤ ε� =
√

−3β1 ±
√
9β1

2 − 20β2c

10β2
(38)

with:

c = 9

10

β1
2

β2
− kb (39)

We emphasize that, for peculiar values of the parameters, Equation (38) provides complex roots. In such
a case, the displacement compatibility range ε� must be determined by numerically.

3.1.4 Condition for the case β1 > 0 and β2 > 0

If both the modulating parameters are positive, the tangent and secant stiffness have trends similar to the case
of Sect. 3.1.3, as shown in Fig. 12b. Nevertheless, the minimum of the secant stiffness cannot be determined
in closed form since a condition analogous to Equation (34) would have a complex root.

A conservative approximation of the secant stiffness consists in assuming:

min [ks(ε)|∀ε] ≈ min [k(ε)|∀ε] = kb (40)

Being ka a local maximum of the tangent stiffness at ε = 0, a first condition analogous to Eq. (28) yields:

kb ≥ 1

2
ka (41)

If such a condition is fulfilled, accounting for Eq. (23) a further compatibility condition for ε > 0 yields:

β1ε
2 + 5β2

4 − kb ≤ 0 (42)

and the displacement range turns out to be:

|ε| ≤ ε� =
√

−β1 ±
√

β1
2 + 20β2kb

2β2
(43)

where, being β2 > 0 and kb > 0 because of Eq. (41), the condition provides at least one real root.
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Fig. 14 Trends of the tangent and secant stiffness for β2 = 0

3.1.5 Condition for the case β1 < 0 and β2 = 0

A further case assumes β1 < 0 and β2 = 0. As shown in Fig. 14a, both the tangent and secant stiffness are
monotonically decreasing. Hence, their maximum and minimum turn out to be:

max [k(ε)|∀ε] = ka (44)

min [ks(ε)|∀ε] = −∞ (45)

Again, a displacement range can be computed by recalling Equations (44) and (25), and the condition of
Eq. (12) becomes:

f̄

ε
+ β1ε

2 + kb ≥ 1

2
ka (46)

which has three solutions in the complex space. The sole real solution determines the displacement range
which turns out to be:

|ε| ≤ ε� =
3
√
2/3

�
+ �

β1
3
√
18

(47)

with:

� = 3

√√√√−9β1
2 f̄ +

√
12β1

3
(
kb − 1

2
ka

)3

+ 81β1
4 f̄ 2 (48)

3.1.6 Condition for the case β1 > 0 and β2 = 0

The last analyzed case is relevant to β1 > 0 and β2 = 0, and the trends of the tangent and secant stiffness are
reported in Fig. 14b. Hence, the minimum of the secant stiffness turns out to be:

min [ks(ε)|∀ε] = β1

(
f̄

2β1

) 2
3

+ kb + 3
√
2β1 f̄ (49)

and is attained for εmin = 3
√

f̄ /2β1.
The tangent stiffness has a local maximum of ka and the global maximum at ∞. Thus, as long as the

following condition yields:

β1

(
f̄

2β1

) 2
3

+ kb + 3
√
2β1 f̄ ≥ 1

2
ka (50)

the displacement range, computed by recalling Equations (23) and (12), turns out to be:

|ε| ≤ ε� =
√
2β1

(
f̄ /2β1

)2/3 + kb + 2 3
√
2β1 f̄

3β1
(51)
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Fig. 15 Example of the hysteresis loop relevant to the algebraic material (red curve) within the asymptotic curves (blue lines)

Conditions for β1 = 0, β2 �= 0 are not computed because parameter β2 is never used if β1 = 0, as reported
in Vaiana et al. [20].

3.2 Softening thermodynamic condition

Thermodynamically not-consistent conditions may arise whenever the softening branch of the hysteresis
crosses the horizontal axis so that increments of the total work are negative, as in the example of Fig. 9.

Since all parameters but ka and α can assume negative values, the algebraic material may present loops
with noncompatible softening branches. Hence, it is necessary to perform a further compatibility check.

The algebraic constitutive model is analytically formulated so that the response has two asymptotic curves
cu and cl representing the upper and the lower bound, respectively, of all the possible equilibrium states. A
scheme of such boundaries is reported in Fig. 15.

Asymptotic curves are symmetrical and defined by fifth-degree polynomials, specifically:

cu(ε) = β1ε
3 + β2ε

5 + kbε + f̄ (52)

cl(ε) = β1ε
3 + β2ε

5 + kbε − f̄ (53)

The softening compatibility conditions are defined as:

β1ε
3 + β2ε

5 + kbε + f̄ ≥ 0 (54)

β1ε
3 + β2ε

5 + kbε − f̄ ≤ 0 (55)

hence, in general, their solution must be determined numerically.
As a matter of fact, such a condition is far easier to be checked with respect to the thermodynamic

compatibility introduced in Sect. 2 and investigated in Sect. 3.1. In fact, besides checking the shape of the
loop, a simple control on the algebraic sign of generalized force and displacement is sufficient to avoid non
admissible responses.

4 Numerical applications

To investigate the thermodynamic compatibility of the algebraic material, seven set of parameters have been
used to determine the structural response and the energetic quantities of interest.

Specifically, five sets of parameters, denoted by AM1–AM5 and not associated with real materials, have
been chosen in order to be significant of all the conditions exploited in Sect. 3.1 with exception of those with
β2 > 0 which are investigated by two further models based on experimental loops.

The first one has been calibrated on the experimental response of a fiber-reinforced rubber bearer (FREB)
tested by Kelly and Takhirov [11], while the second one (test PW16010L) corresponds to the longitudinal
experimental response of a wire-rope isolator type PWHS 16010 tested in Vaiana et al. [22]. The numerical
values of the parameters relevant to such experimental materials have been calibrated by the identification
procedure proposed in Sessa et al. [18].
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Table 1 Values of the constitutive parameters relevant to the investigated models (δ = 10−8)

Test ka [N/m] kb [N/m] α β1 [N/m3] β2 [N/m5] ε� [m]
AM1 100 10 20 0 0 0.0592
AM2 100 60 40 0 0 ∞
AM3 5.0 · 106 3.5 · 105 280 −1.0 · 107 −1.0 · 109 0.2421
FREB 5.3 · 106 3.7 · 105 280.43 −2.4 · 107 9.8 · 108 0.0520
PW1610L 1.8 · 106 2.6 · 105 704.96 1.0 · 108 5.0 · 1011 0.0389
AM4 1.8 · 106 2.6 · 105 704.96 −1.0 · 108 0 0.0453
AM5 1.8 · 106 2.6 · 105 704.96 1.0 · 108 0 0.0334

Fig. 16 Load–displacement response and work of test AM1

Fig. 17 Load–displacement response and work of test AM2 (boundary ε� = ∞)

Analyses have been performed by using the finite element framework OpenSees [14] in which the algebraic
material has been implemented. A release of the framework can be downloaded at Sessa et al. [17] where
example input files of some analyzed materials are also available.

All the sets of parameters considered in the numerical applications are reported in Table 1 whose last
column reports the maximum displacement range ε� for which the thermodynamic compatibility is fulfilled.

For each set of parameters, the load–displacement response has been computed by performing static
analyses consisting in four cycles with increasing amplitude. The maximum displacement associated with
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Fig. 18 Load–displacement response and work of test AM3

Fig. 19 Load–displacement response and work of test FREB

each set of parameter has been calibrated in order to be physically representative of the material’s behavior.
Such hysteretic responses are reported in Figs. 16a, 17a, 18a, 19a,20a, 21a, 22a.

The work of the static response associated with each step of the analyses is the total work which has been
introduced in the mechanical system. Moreover, the energy dissipated by the model has been computed as
the difference between the total energy and the work associated with a monotonic unloading curve. These are
reported in Figs. 16b, 17b, 18b, 19b,20b, 21b, 22b as functions of the displacement. Moreover, in these figures,
the displacement boundary ε� has been represented by dotted lines.

As a matter of fact, such inelastic work turns out to be nondecreasing for all the considered models and,
despite the fact that the displacement overcomes its boundary for models AM1 FREB and PW16010L, the
load–displacement response does not present any instability or violation of the thermodynamic compatibility
since the inelastic work remains nondecreasing.

Such an aspect confirms the conservative nature of the bounds computed in Sect. 3 consisting in the fact that
conditions reported in Equations (29), (32) and (38) are sufficient but not necessary to ensure thermodynamic
compatibility.

4.1 Dynamic analysis
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Fig. 20 Load–displacement response and work of test PW16010L

Fig. 21 Load–displacement response and work of test AM4

Fig. 22 Load–displacement response and work of test AM5 (boundary ε� = ∞)
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Fig. 23 Base excitation of the Kobe earthquake and response of FREB and PW16010L oscillators

Fig. 24 Force–displacement responses of FREB and PW16010L oscillators subject to the Kobe excitation

Fig. 25 Total and inelastic work of FREB and PW16010L oscillators subject to the Kobe excitation

Displacement paths adopted in the applications of the previous section were regular and are relevant to
quasi-static tests. In order to exploit the compatibility conditions in a common practice context, time history
analyses have been performed and are hereby presented.

In particular, two single degree-of-freedom oscillators have been considered. These adopt the FREB and
PW16010L constitutive relationships with mass of 3000 Kg and 1000 Kg, respectively. No additional damping
has been introduced. Suchmodels have been selected for the time history analysis since they are relevant to real
seismic devices. The remaining models reported in Table 1, while useful to test the compatibility conditions,
may be not effective in dynamic analyses adopting real accelerograms.

The considered base excitation is the longitudinal main shock of the Kobe 1995 earthquake, reported in
Fig. 23a lasting about 40 seconds. Analyses have been performed in OpenSees by a central difference explicit
algorithm.
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The displacement of both the oscillator remains smaller than its compatibility range ε� reported in Table
1 during all the time history analysis as shown in Fig. 23b reporting the displacement as function of time.

Moreover, force–displacement responses, reported in Figs. 24a and 24b, show that the oscillators are subject
to load paths resulting far more irregular than the quasi-static ones of the previous examples.

As a matter of fact, the outcome of the time history analyses confirms the effectiveness of the compatibility
conditions provided in Sect. 3.1. Indeed, while the total work, reported as function of time in Fig. 25a, presents
decreasing regions, the inelastic work, reported in Fig. 25b, is a monotonically increasing curve.

5 Conclusions

The thermodynamic compatibility of the algebraic material presented by Vaiana et al. [21], intended as the
fulfillment of such postulate formulated by Drucker [7], has been investigated. In particular, it is necessary
that the energy dissipated by the model, denoted for convenience as inelastic work, must be nondecreasing.

In general, such a condition is not fulfilled by any possible set of constitutive parameters since it is proved
that it depends on both the maximum tangent stiffness and the minimum secant stiffness that the model can
attain within an interval.

If the values of the constitutive parameters do not ensure the fulfillment of the Drucker postulate for
any possible value of the displacement, a compatibility range can be defined as function of the constitutive
parameters. This ensures that the Drucker postulate is not violated as long as the displacement does not exceed
such a boundary.

Numerical applications have been presented in order to test the compatibility conditions defined in closed
form. In particular, seven constitutive models have been analyzed by means of quasi-static numerical analyses
in which the total and inelastic work have been determined.

Results show that all the models present nondecreasing inelastic work regardless of the attainment of the
displacement boundary. Thus, the compatibility displacement threshold represents a strongly conservative
condition so that the behavior of the constitutive model does not necessarily become unstable if the boundary
is exceeded.

Two further time history analyses, adopting the Kobe 1995 earthquake acceleration as base excitation, have
been performed in order to test the compatibility conditions in case of irregular and strongly oscillating loads
consistent with real environments. Again, the inelastic work turns out to be monotonically increasing, thus
confirming the outcomes of the quasi-static tests.

The computed conditions represent a useful tool to assess the compatibility of the algebraic material [21]
when it is adopted to perform dynamic analyses in which the displacement path is not defined a priori.
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