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Abstract 
Different environmental contaminants disturb the thyroid system at many levels. AlkylPhenols (APs), by-products of micro-
bial degradation of AlkylPhenol Polyethoxylates (APEOs), constitute an important class of Endocrine Disrupting Chemicals 
(EDCs), the two most often used environmental APs being 4-nonylphenol (4-NP) and 4-tert-octylphenol (4-t-OP). The pur-
pose of the present study was to investigate the effects on the thyroid gland of the bioindicator Podarcis siculus of OP alone 
and in combination with NP. We used radioimmunoassay to determine their effects on plasma 3,3′,5-triiodo-L-thyronine 
 (T3), 3,3′,5,5′-L-thyroxine  (T4), thyroid-stimulating hormone (TSH), and thyrotropin-releasing hormone (TRH) levels in 
adult male lizards. We also investigated the impacts of AP treatments on hepatic 5′ORD (type II) deiodinase and hepatic 
content of  T3 and  T4. After OP and OP + NP administration, TRH levels increased, whereas TSH,  T3, and  T4 levels decreased. 
Lizards treated with OP and OP + NP had a higher concentration of  T3 in the liver and 5′ORD (type II) activity, whereas 
 T4 concentrations were lower than that observed in the control group. Moreover, histological examination showed that the 
volume of the thyroid follicles became smaller in treated lizards suggesting that that thyroid follicular epithelial cells were 
not functionally active following treatment. This data collectively suggest a severe interference with hypothalamus–pitui-
tary–thyroid axis and a systemic imbalance of thyroid hormones.
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Graphic Abstract

Thyroid is a gland with an endocrine activity and a follicular 
organization. This gland secretes thyroid hormones (THs), 
and its secretory activity is regulated by the thyroid-stimulat-
ing hormone (TSH) secreted by the anterior pituitary gland, 
which in turn is regulated by the thyrotropin-releasing hor-
mone (TRH) produced by the hypothalamus. This hormonal 
crosstalk plays a pivotal role in the regulation of thyroid 
function (Esposito et al. 2015; Hay et al. 2019). The two 
main thyroid hormones are 3,3′,5,5′-L-thyroxine  (T4) and the 
active 3,3′,5-triiodo-L-thyronine  (T3) (Esposito et al. 2019; 
Perna et al. 2018) through which thyroid regulates protein 
synthesis, metabolism, growth, and rate of function of many 
other systems present in the body (Ji et al. 2012; Santangelo 
et al. 2016).

The incidence of thyroid diseases has continuously 
increased in recent years (Tingi et al. 2016), and it seems to 
correlate to exposure to several environmental pollutants, 
such as endocrine-disruptor chemicals (EDCs) (Benedetti 
et al. 2017; Djordjevic et al. 2020).

EDCs are a broad group of persistent and lipophilic com-
pounds detected in different environmental matrices, able 
to bioaccumulate in animals and humans, and thus interfer-
ing temporarily or permanently with the hormonal signal-
ing pathways in the endocrine system. As a consequence, 
they adversely affect different organs by binding to hormone 

receptors or interfering with the production, metabolism, 
and transfer of hormones and/or modifying gene expression 
(Ghassabian and Trasande 2018). Literature has extensively 
described the harmful effects of exposure to different EDCs 
in different organisms at multiple levels. For instance, the 
pesticide mancozeb, which has been shown to induce neu-
rodegenerative effects in marine teleosts (Zizza et al. 2017, 
2018), is considered to act as an oxidative stressor of both 
gills and blood (Kubrak et al. 2012) and an inductor of 
oxidative damage of lipids and proteins in brain, liver, and 
kidney of fishes (Atamaniuk et al. 2013). Mancozeb also 
exerts numerous injurious effects related to the function of 
the thyroid gland (Axelstad et al 2011; Goldner et al 2010). 
Additionally, several reports suggested a xenoestrogenic 
activity of alkylphenols (APs), such as Bisphenol A (BPA), 
NonylPhenol (NP), an OctylPhenol (OP) (Acconcia et al. 
2017; Forte et al. 2016, 2019; In et al. 2015; Liu et al. 2017). 
These substances are largely used in industry to optimize 
the production of different products, such as herbicides, 
pesticides, lubricants, plastics, and personal care products 
(Asimakopoulos et al. 2012; Raecker et al. 2011). Their 
wide use has determined their detection in many environ-
mentally relevant matrices as wastewaters, surface waters, 
sediments, and soil (Kung et al. 2018). Moreover, they have 
been detected in several aquatic species (Staniszewska et al 
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2017) and in human blood samples, including amniotic fluid, 
urine, breast milk, fetal cord serum, and placenta (Ademollo 
et al. 2008; Calafat et al. 2007; Shekhar et al. 2017). APs 
are effective not only on reproductive system, but also can 
have neurotoxic effects on organisms (Liu et al. 2019), affect 
adrenal glands (De Falco et al. 2010, 2014; Di Lorenzo et al. 
2020a, 2020b), or inhibit cell proliferation in gastric adeno-
carcinoma (Manente et al. 2011).

Some interesting evidence highlighted the impact of APs 
on thyroid. BPA, among its different mode of actions, affects 
the hypothalamic-pituitary-thyroid axis (HPT) both in vitro 
and in vivo (Benedetti et al. 2017; Fernandez et al. 2018; 
Moriyama et al. 2002; Tan et al. 2003; Wetherill et al. 2007; 
Zoeller et al. 2005).

Few studies investigated the effects of NP and OP on 
HPT, suggesting that both chemicals are capable of inter-
fering with its function and, consequently, influence basic 
growth as well as development (Göktekin and Barlas 2008; 
He et al. 2019; Naderi et al. 2014; Wang et al. 2019; Xi et al 
2013).

We have already demonstrated in a previous study that 
acute exposure to NP affects the function of thyroid glands 
in adult male lizard Podarcis siculus (Sciarrillo et al. 2010). 
The purpose of the present study was to evaluate the effects 
on the thyroid gland of the lizard species Podarcis siculus 
of OP, administered alone or combined to NP. P. siculus 
was chosen for this study, because it is a sentinel species 
for biomonitoring the ecotoxicological impact of EDCs, due 
to its ecological and life history characteristics, such as its 
distribution in a variety of habitats, wide geographical range, 
longevity, site fidelity (i.e., philopatric), and high sensitivity 
to the effects of contaminants (Verderame et al. 2016a,b).

The effects of OP and OP + NP exposure on  T3,  T4, TSH, 
and TRH plasma levels in adult lizards were determined by 
radioimmunoassay. Hepatic  T3 and  T4 contents and deio-
dinase types II (5′ORD2) activity also was investigated to 
identify the effect of OP and OP + NP on the liver, which is 
the principal target organ of THs. Besides, we investigated 
the histological changes of the thyroid glands.

Materials and Methods

Compounds

OctylPhenol (OP) and NonylPhenol (NP) were obtained 
from FLUKA (Sigma-Aldrich Co., St. Louis, MO) (ECHA 
2019, n.d.).

Animals and Housing Conditions

Adult specimens of Podarcis siculus, weighing 13–15 g, 
were live-captured in the neighborhood of Naples in June 

when their thyroid gland was in full functional activity (Sci-
arrillo et al. 2000). Lizards were maintained in a soil-filled 
terrarium containing heather and indoor exposed to natural 
photoperiod and temperature. They were fed with Tenebrio 
molitor larvae and water dishes were always available in 
the terraria. Before starting the treatments, an acclimatiza-
tion period of approximately 15 days was allowed to reverse 
capture-related stress (Rosati et al. 2020). The experiments 
were performed in accordance with the ethical provisions 
imposed by the European Union and permitted by the 
National Committee of the Italian Ministry of Health on 
in vivo experimentation.

Experimental Procedure

Podarcis siculus specimens were treated with OP and 
OP + NP. Compound concentrations administered were 
established based on preliminary dose–response tests and 
data (De Falco et al. 2014; Di Lorenzo et al. 2020b; Sciar-
rillo et al. 2010).

Lizards were divided into eight groups (6 treated and 2 
control groups), each consisting of ten animals (5 males and 
5 females). OP was used at the concentration of 0.161 µg and 
NP at 0.172 µg; both compounds were dissolved in 50 µL 
of corn oil and administered through intraperitoneal injec-
tions every 2 days. Lizards were daily inspected for signs of 
toxicity and death.

Control Group: Untreated control lizards were sacrificed 
after having been housed for 20 days in nonpolluted ter-
raria (time zero controls); an additional control group (group 
treated with oil) was intraperitoneally injected with 50 µL 
of corn oil for 22 times. From this group, five lizards were 
sacrificed 24 h after the last injection and five 15 days after 
last injection.

Study Group I: Lizards were treated with 12 intraperi-
toneal injections of OP and sacrificed 24 h after the last 
injection.

Study Group II: Lizards were treated with 22 intraperi-
toneal injections of OP and sacrificed 24 h after the last 
injection.

Study Group III: Lizards were treated with 22 intraperi-
toneal injections of OP and sacrificed 15 days after the last 
injection (recovery OP group).

Study Group IV: Lizards were treated with 10 intraperi-
toneal injections of OP + NP and sacrificed 24 h after the 
last injection.

Study Group V: Lizards were treated with 17 intraperi-
toneal injections of OP + NP and sacrificed 24 h after the 
last injection.

Study Group VI: lizards were treated with seventeen (17) 
intraperitoneal injections of OP + NP and sacrificed 15 days 
after the last injection (recovery OP + NP group).
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Lizards were anesthetized and sacrificed by decapitation 
immediately after collection of blood samples the day after 
the last injection.

Hormone Assay

Blood samples were collected by intracardiac puncture and 
put into heparinized tubes. Plasma for hormonal dosages 
was obtained by centrifuging blood samples for 10 min at 
1,500 rpm at 4 °C. TRH and TSH levels were determined 
by immunoradiometric assay (IRMA) as previously reported 
by Sciarrillo et al. (2009).  T3 and  T4 levels were determined 
using radioimmunoassay (RIA) (Sciarrillo et al. 2009, 2010).

Hepatic Thyroid Hormones  (T4 and  T3) Content 
and 5‑T4 ORD (type II) Monodeiodinase Activity

Livers were removed and rinsed in a buffer composed by 
50 nM of MOPS and 1 mM of EDTA at pH 7.4, homog-
enized in sucrose buffer (0.25 M sucrose, 5 mM Tris, pH 
8.0) using a Pyrex tissue grinder held on ice. Homogen-
ate was then centrifuged at 4 °C and 1,000 rpm for 10 min. 
Pellet was suspended in sucrose buffer and centrifugated 
again, whereas supernatant was centrifugated at 4 °C and 
12,000  rpm for 5  min. The resulting final supernatant 
(premicrosomal fraction) was centrifugated in an ultracen-
trifuge at 4 °C and 78,000 rpm for 90 min. Microsomal pel-
lets were suspended in MOPS and stored at − 80 °C. The 
content of  T3 and  T4 in hepatic tissue was determined by 
RIA and was expressed as ng/mg of tissue (fresh weight) 
(Sciarrillo et al. 2000). Thirty microliters of the homogen-
ate was incubated at 12 °C for 20 min with 3 volumes of 
buffer containing 50 mM of 1–4 dithio-DL-threitol (DTT) 
and 1 nM radiolabeled T4. Cold ethanol was added to the 
samples, which were kept at 4 °C overnight, and then cen-
trifugated at 4 °C and 1400 rpm for 20 min. Supernatant was 
used to determine 5′-T4 ORD type II (ORD II) monodeio-
dinase activity, expressed as pM  T3/g (of liver)/h (Sciarrillo 
et al. 2000).

Light Microscopy

Animals were anaesthetized by hypothermia and decapi-
tated. Thyroid glands were removed and immediately fixed 
in Bouin’s fixative and processed for light microscopy 
(LM) observation. Serially cut paraffin sections  (7 µm) 
were stained with Galgano stain and observed using a Zeiss 
Axioskop microscope. The height of the follicular cells was 
measured in 30 cells always using the second section of both 
normal and treated samples every three slides, using a digital 
system of image (KS 300).

Statistical Analysis

Statistical analysis was performed using the Graph-
Pad Prism 8 software. Data obtained were expressed as 
means ± standard error of mean (SEM). Experimental 
data of all the groups was tested together for significance 
using one-way ANOVA, followed by Bonferroni’s multiple 
comparison test. Differences were considered statistically 
significant when the p value was at least p < 0.05.

Results

Sign of Toxicity and Animal Mortality

Sign of toxicity and mortality of the animal were con-
tinuously monitored during the experiment. Lizards from 
groups treated with OP alone or combined to NP showed 
evident signs of toxicity and mortality (Table 1). Interest-
ingly, lizards remained in groups on the bottom of the 
terraria moving very slowly when treated with OP.

The effect of OP seemed to correlate with the dura-
tion of treatment. Lizards treated with OP (Study Group 
I) showed dyspnea after 12 intraperitoneal injections, 
whereas animals from study Group II and III showed hind-
limb paralysis after 22 intraperitoneal injections of OP 
(Table 1). A similar pattern of toxicity was observed in all 
the groups of lizards treated with the mixture of OP and 
NP. A mortality of 20% was observed in lizards treated 
with OP + NP both after 10 and 17 i.p. injections (Table 1). 
No significant body weight changes were noticed between 
control and study groups (data not shown).

Table 1  Mortality and signs of toxicity of specimens of Podarcis sic-
ula treated with OP and OP + NP mixture (see Materials and Methods 
section)

Treatments Dead animals (% of 
animal mortality)

Signs of toxicity

Control time 0 0 None
Control with oil 0 None
OP treated
 Group I 0 Dyspnea
 Group II 2 (10%) Dyspnea, hind-limb paralysis
 Group III 2 (10%) Dyspnea, hind-limb paralysis

OP + NP treated
 Group IV 4 (20%) Dyspnea, hind-limb paralysis
 Group V 4 (20%) Dyspnea, hind-limb paralysis
 Group VI 4 (20%) Dyspnea, hind-limb paralysis
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Hormone Plasma Levels

Lizards treated with 12 injections of OP (Study Group 
I) showed an almost three-time increase in TRH level 
compared with control group (8.03 ± 0.40 µUI/mL vs. 
3.15 ± 0.16 µUI/mL) (Table 2; Fig. 1a). In contrast, TSH 

plasma level decreased from 7.23 ± 0.36 µUI/mL (Control 
group) to 3.21 ± 0.16 µUI/mL (Group I) (Table 2; Fig. 1b). 
 T3 and  T4 values also were reduced,  T3 passing from 
5.21 ± 0.26 ng/mL (Control group) to 1.22 ± 0.06 ng/mL 
(Group I), and  T4 from 6.18 ± 0.31 ng/mL (Control group) 

Table 2  Plasma TRH, TSH, 
 T3, and  T4 levels in P. sicula 
subjected to OP and OP + NP 
treatments (see Materials and 
Methods section)

Asterisks indicate statistically significant differences from the control group (*p < 0.05, ***p < 0.001)

Treatments TRH (µUI/mL) TSH (µUI/mL) T3 (ng/mL) T4 (ng/mL)

Control time 0 3.15 ± 0.16 7.23 ± 0.04 5.21 ± 0.10 6.18 ± 0.05
Control with oil 3.19 ± 0.14 7.24 ± 0.02 5.22 ± 0.08*** 6.14 ± 0.08
OP
 Group I 8.03 ± 0.05*** 3.21 ± 0.06*** 1.22 ± 0.02*** 1.46 ± 0.02***
 Group II 8.48 ± 0.11*** 1.98 ± 0.05*** 1.00 ± 0.05*** 2.43 ± 0.03***
 Group III 7.15 ± 0.15*** 2.15 ± 0.10*** 1.26 ± 0.01*** 1.55 ± 0.02***

OP + NP
 Group IV 9.23 ± 0.46*** 1.41 ± 0.07*** 1.01 ± 0.05*** 0.98 ± 0.05***
 Group V 10.2 ± 0.51*** 1.01 ± 0.05*** 0.93 ± 0.04*** 0.45 ± 0.02***
 Group VI 4.15 ± 0.21* 1.63 ± 0.08*** 1.15 ± 0.06*** 1.36 ± 0.07***

Fig. 1  Plasma levels of TRH (a), TSH (b),  T3(c),  T4 (d) after OP and OP + NP treatments (*p < 0.05, ***p < 0.001, in the comparison with the 
control). A more detailed description in the text
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to 1.46 ± 0.07 ng/mL (Group I) (Table 2; Fig. 1c, d), which 
is in accordance with the decreased level of TSH.

As previously noticed, the hormonal fluctuation seemed 
to depend on the duration of the treatment. An even further 
increase in TRH plasma level (8.48 ± 0.42 µUI/mL), and 
decrease in TSH plasma levels (1.98 ± 0.10 µUI/mL) were 
observed in the specimens treated with 22 injections of OP 
(Study Group II) (Table 2; Fig. 1a, b). Similarly,  T3 and  T4 
passed to the value of 1.00 ± 0.05 ng/mL and 2.43 ± 0.12 ng/
mL, respectively (Study Group II) (Table 2; Fig. 1c, d).

Concentration of hormones of HPT axis was reversed in 
specimens treated with 22 injections of OP and sacrificed 
15 days after the last injection (recovery OP group-Study 
Group III). In particular, a lesser increase of TRH levels was 
observed (7.15 ± 0.36 µUI/mL; Study Group III), but this 
was still significantly higher than the level recorded in the 
control specimens (3.15 ± 0.16 µUI/mL) (Table 2; Fig. 1a). 
The pituitary hormone (TSH) and the thyroid hormones  (T3 
and  T4) also inverted the trend observed during the treat-
ment, but similarly to TRH levels, these values remained 
still higher than those of the control group. In particular, 
increased TSH plasma levels reached 2.15 ± 0.11 µUI/mL 
(Table 2; Fig. 1b) and  T3 and  T4 were 1.26 ± 0.06 ng/mL and 
1.55 ± 0.07 ng/mL, respectively (Study Group III) (Table 2; 
Fig. 1c, d).

Biochemical data showed that Podarcis siculus thyroid 
secretory activity was inhibited after treatment with the mix-
ture of OctylPhenol and NonylPhenol (Table 2).

Particularly, plasma levels of the hypothalamic factor 
TRH increased reaching the value of 9.23 ± 0.46 µUI/mL 
(Study Group IV) after 10 injections of OP + NP, being three 
times higher than control group value (3.15 ± 0.16 µUI/mL) 
(Table 2; Fig. 1a). On the contrary, the plasma levels of 
the pituitary hormone TSH (1.41 ± 0.07 µUI/mL) (Table 2; 
Fig. 1b) and of the thyroid hormones  T3 (1.01 ± 0.05 ng/
mL) and  T4 (0.98 ± 0.05 ng/mL) (Study Group IV) were 

significantly reduced compared with the values recorded 
in the control group (TSH: 7.23 ± 0.36  µUI/mL;  T3: 
5.21 ± 0.26 ng/mL;  T4: 6.18 ± 0.31 ng/mL) (Table 2; Fig. 1c, 
d).

This inhibitory effect was even more prominent in the 
specimens treated with 17 injections of OP + NP (Study 
Group V) where TRH increased up to 10.2 ± 0.51 µUI/
mL, and TSH,  T3, and  T4 decreased to 1.01 ± 0.05 µUI/mL, 
0.93 ± 0.04 ng/mL, and 0.45 ± 0.02 ng/mL, respectively 
(Table 2; Fig. 1a–d).

Lizards treated with 17 injections of the mixture OP + NP 
and sacrificed 15 days after the last injection (Study Group 
VI-recovery OP + NP group) were characterized by a reduc-
tion in TRH plasma levels (4.15 ± 0.21 µUI/mL) and an 
increased TSH (1.63 ± 0.08 µUI/mL),  T3 (1.15 ± 0.06 ng/
mL), and  T4 (1.36 ± 0.07 ng/mL) plasma levels, although 
these values remained higher than those recorded in the con-
trol group (Table 2; Fig. 1a–d).

Hepatic Thyroid Hormones Content and 5‑T4 ORD 
(type II) Monodeiodinase Activity

Lizards treated with OP had a higher liver  T3 concentra-
tion and 5′ORD (type II) activity, whereas  T4 concentration 
was lower than that of control lizards (Table 3; Fig. 2a–c). 
An increase of 5′ORD (type II) activity was observed in 
lizards exposed to 12 injections of OP (Study Group I) 
(4.06 ± 0.05 pM  T3/g/h) and 22 injections of OP both after 
24 h (4.99 ± 0.04 pM T3/g/h) (Study Group II) than that 
detected 15 days after the last injections (5.03 ± 0.04 pM 
 T3/g/h) (Study Group III) (Table 3; Fig. 2c). A more signifi-
cant increase of 5′ORD (type II) activity was observed in 
lizards treated with 17 injections of a mixture of OP + NP 
and sacrificed 15 days after the last injections (Study Group 
VI) (5.98 ± 0.14 pM  T3/g/h) (Table 3; Fig. 2c).

Table 3  Hepatic  T3,  T4 content 
and monodeiodinase activity 
(type II) levels in P. sicula 
subjected to OP and OP + NP 
treatments (see Materials and 
Methods section)

Asterisks indicate statistically significant differences from the control group (***p < 0.001)

Treatments T3 (ng/mg of tissue fresh 
weight)

T4 (ng/mg of tissue fresh 
weight)

5′ORD II monodeiodi-
nase activity (pM  T3/g 
/h)

Control time 0 3.15 ± 0.05 4.89 ± 0.05 3.89 ± 0.08
Control with oil 3.22 ± 0.04 4.95 ± 0.06 3.98 ± 0.07
OP
 Group I 3.72 ± 0.04*** 4.52 ± 0.06*** 4.06 ± 0.05***
 Group II 4.96 ± 0.05*** 2.25 ± 0.02*** 4.99 ± 0.04***
 Group III 5.12 ± 0.05*** 2.96 ± 0.02*** 5.03 ± 0.04***

OP + NP
 Group IV 4.44 ± 0.06*** 3.12 ± 0.04*** 4.98 ± 0.05***
 Group V 4.96 ± 0.05*** 2.89 ± 0.03*** 5.54 ± 0.04***
 Group VI 5.95 ± 0.05*** 2.32 ± 0.05*** 5.98 ± 0.14***
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Hepatic  T3 increases both in the lizards treated with OP 
and in those treated with OP + NP, being particularly high 
in animals belonging to study group VI (5.95 ± 0.05 ng/
mg of tissue fresh weight) compared with the controls 
(3.15 ± 0.05 ng/mg of tissue fresh weight) (Table 3; Fig. 2a). 
On the contrary, the hepatic contents of  T4 decreased in all 
groups treated with OP and OP + NP, becoming especially 
low in animals treated with 17 injections of OP + NP and 
sacrificed 15 days after the last injection (Group VI- recov-
ery OP + NP group) (2.32 ± 0.05  ng/mg of tissue fresh 
weight) (Table 3; Fig. 2b).

Thyroid Gland Histology After Treatments

The thyroid gland transversely crosses the middle of the tra-
chea in Podarcis siculus specimens, looking like a ribbon-
shaped structure consisting of follicles that are connected to 
each other by an interfollicular connective tissue that holds 
blood vessels. The gland is wrapped in a capsule of superfi-
cial connective tissue that branches out and forms a network 

that surrounds the follicles. Each follicle is enveloped in a 
high cuboidal epithelium (15.1 ± 0.02 µm) (Table 4; Fig. 3), 
formed by thyrocytes and containing a medium-sized col-
loidal mass (Fig. 4a).  

The thyroid gland of lizards treated with 12 injections of 
OP appeared richly vascularized with a medium follicular 
epithelium (12.5 ± 0.03 µm) (Table 4; Fig. 3); thyrocytes had 
still a cubic shape and colloid showed numerous reabsorp-
tion vacuoles (Fig. 4b). After 22 injections of OP, lizards 
showed a thyroid gland with a lower follicular epithelium 
(4.51 ± 0.04 µm) (Table 4; Fig. 3) and a retracted colloid 
without reabsorption vacuoles (Fig. 4c). Morphologically, 
in specimens treated with 22 injection of OP and sacrificed 
15 days after the last injections (recovery OP group), there 
was no histological sign of recovery, which is in contrast to 
what was observed from a hormonal point of view (Fig. 4d).

Morphological analysis of the thyroid gland in speci-
mens treated with 10 injections of the mixture OP + NP 
showed a slight reduction in the height of the folli-
cular epithelium and a partial retroaction of the colloid 

Fig. 2  Hepatic content of  T3 (a),  T4 (b), 5′ORD II monodeiodinase activity (c) after OP and OP + NP treatments (***p < 0.001, in the compari-
son with the control). A more detailed description in the text
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(Fig.  4e), which is in accordance with hormonal dos-
ages results. Overlapping results were observed in the 
group treated with 17 injections of the mixture OP + NP 
(Fig. 4f). The follicular epithelium was lower than normal 
(2.5 ± 0.02 µm) (Table 4; Fig. 3), and the nuclei of the 
thyrocytes were small and elongated with dense chromatin 
and a greatly reduced cytoplasm. The colloid was retracted 
with few reabsorption vacuoles. The thyroid gland showed 
very evident signs of a poor functional activity. In the 
recovery OP + NP group, the histological evaluation did 
not show any signs of recovery of the organism (Fig. 4g).

Discussion

The release, accumulation, and fate of numerous pollutants 
in the environment is attracting a lot of attention for its 
potential negative impact on human health. Several envi-
ronmental pollutants are classified as endocrine-disrupting 
chemicals (EDCs) for their potential to disrupt the endo-
crine system. Thyroid can be a target of different EDCs, 
which can impair its physiology at different levels, includ-
ing its central regulatory system in the hypothalamus and 
pituitary axis, thyroid hormone production and transfer, as 
well as hormone function, metabolism, and bioavailability 
(Calsolaro et al. 2017; Mughal et al. 2018).

In the lizard Podarcis siculus, thyroid hormones (THs) 
production is primarily regulated by two components: 
“central control” and “peripheral control” (Sciarrillo et al. 
2000). Under the central control, the thyroid-stimulating 
hormone (TSH), a glycoprotein secreted by the anterior 
pituitary gland, regulates the synthesis and release of THs 
by the thyroid follicles. In lizards, 3,3′,5,5′-L-thyroxine 
 (T4) is the predominant thyroid follicle secretion (Sciar-
rillo et al. 2000); it has strong negative feedback effects on 
TSH levels.  T4 is transported to the peripheral tissues (e.g., 
liver) via the circulatory system and is either converted to 
the more bioactive 3,3′,5-triiodo-L-thyronine  (T3) or to the 
inactive degradation products by iodothyronine deiodinase 
(type II, D2) under peripheral regulation. The primary 
control of  T3 levels is known to occur mainly in peripheral 
tissues (Sciarrillo et al. 2000). THs exert their physiologi-
cal effects mainly by interacting with the nuclear thyroid 
receptors (TRs), which belong to a large super-family of 
ligand-induced transcription factors (Virgilio et al. 2004).

To date, few investigations have been conducted about 
the effects of alkylphenols on the thyroid gland. There-
fore, in this study we have evaluated the impact of OP as 
such or in combination with NP on the thyroid gland of 
the lizards Podarcis siculus in vivo. Our results indicate 
that treatment with both compounds cause structural and 
functional alterations in the thyroid gland of the lizards. 
In particular, OP and OP + NP treatments caused a strong 
time- and dose-dependent inhibition of the functionality 
of the gland, which is in line with what we previously 
reported for NP treatment (Sciarrillo et al. 2010).

Functionally, OP and OP + NP treatments might cause 
hypothyroidism as they determine a secretory blockage 
in the pituitary gland. This conclusion emerged from the 
analysis of biochemical data that showed an increase in 
TRH levels and a decrease in the hormones TSH,  T3, and 
 T4 following both treatments.

Structurally, lizards exposed to OP and OP + NP 
showed a reduced height of the follicular epithelium and 
a retracted colloid with fewer reabsorption vacuoles. 

Table 4  Variations of epithelium height of the follicular cells of the 
thyroid gland in P. sicula subjected to OP and OP + NP treatments 
(see Materials and Methods section)

Asterisks indicate statistically significant differences from the control 
Group (***p < 0.001)

Treatments Height of follicular 
epithelium (µm)

Control time 0 15.1 ± 0.02
Control with oil 15.3 ± 0.05
OP
 Group I 12.5 ± 0.03***
 Group II 4.51 ± 0.04***
 Group III 3.12 ± 0.03***

OP + NP
 Group IV 5.01 ± 0.03***
 Group V 2.50 ± 0.02***
 Group VI 3.23 ± 0.05***

Fig. 3  Height of follicular epithelium after OP and OP + NP treat-
ments (***p < 0.001, in the comparison with the control). A more 
detailed description in the text
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Follicular epithelium height and colloid are indices of 
secretory activity of the gland (Movahedinia et al. 2018) as 
well as useful parameters for the observation of EDC mor-
phological effects on the thyroid. Moreover, epithelial cell 
height is a histological method of thyroid gland assessment 
as it is considered to be roughly proportional to the degree 
of response to thyroid-stimulating hormone (TSH) (Moc-
cia et al. 1981). In this study, OP and OP + NP induced a 
decrease in the height of thyroid follicular cells, follicular 
cell hyperplasia, shrunken follicular epithelial cells, and 
decreased cytoplasm quantity in the thyroid gland. These 
observation suggest that EDCs could influence the micro-
scopic structures of the thyroid gland. In addition, it is 
possible to speculate that the HPT axis may be targeted by 
AlkylPhenolic compounds, such as OP, alone or in com-
bination with NP.

Our results confirm the inverse association between APs 
doses and circulating levels of thyroid hormones in Podarcis 
siculus lizards. The thyroid function is regulated by sensitive 
feedback mechanisms of circulating thyroid hormones at the 
hypothalamic (TRH) and pituitary levels (TSH). The appro-
priate response of the feedback would result in declined/
reduced TSH levels, which might result in compensatory 
hypoplasia of thyroid tissue. Histopathological changes 
that we observed in all treated animals suggest the possible 
effects of APs on feedback mechanisms of Hypothalamic-
Pituitary-Thyroid (HPT) axis (Santos-Silva et  al. 2018; 
Sheikh 2020; Xie et al. 2019).

Despite advances in analytical methods to study these 
chemicals in biological tissues, the identification of reliable 
markers to measure the effects of APs on thyroid function, 
the exact way, and/or mechanisms of action remains still 

Fig. 4  Thyroid gland of lizard’s P. siculus (stain Galgano I); Scale 
bar: 20  μm. a Control lizard: the cuboidal follicular epithelial cells 
(ep), the colloid (c), and the reabsorption vacuoles (arrow) are shown. 
b Lizards treated with OP for 12  days and sacrificed 24  h after the 
last injection: the follicular epithelium (ep) is lower than in control 
animals. c Lizards treated with OP for 22  days and sacrificed 24  h 
after the last injection: the follicular epithelium (ep) is very low and 
the decrease of colloids (c) in follicles is very evident compared with 
untreated animals. d Lizards treated with OP for 22 days and sacri-
ficed 15 days after the last injection (recovery OP group): the folli-
cular epithelium (ep) is lower than normal, but the colloid (c) is pre-

sent in the follicles. e Lizards treated with OP + NP for 10 days and 
sacrificed 24 h after the last injection: the follicular epithelium (ep) 
is lower than normal and no reabsorbing vacuoles are visible in the 
colloid (c). f Lizards treated with OP + NP for 17 days and sacrificed 
24 h after the last injection: the follicular epithelium (ep) is very low 
compared with normal epithelium, and no reabsorbing vacuoles can 
be seen in the colloid (c). g Lizards treated with OP + NP for 17 days 
and sacrificed 15  days after the last injection (recovery OP + NP 
group); the follicular epithelium (ep) is lower than normal epithelium, 
but the colloid (c) is present in the follicles
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difficult. APs may interfere with TH homeostasis in dif-
ferent ways. Many of the physiological functions of tissue 
cells (i.e., liver) depend on the dynamic regulation of THs 
and therefore the iodothyronine deiodinase is critical to this 
regulation. Hepatic 5′ORD (Type II) activity in all treated 
groups was significantly higher than in the control group, 
along with a decreased  T4 and an increased  T3 contents. 
Based on these observations, we hypothesize that reduction 
of liver  T4 content is dependent on the down-regulation of 
5′ORD (Type II) after exposure to APs. These results indi-
cate that APs could induce an abnormal thyroid function by 
influencing levels of deiodinases in peripheral tissues (i.e., 
liver) and TRs. Environmental APs might enhance the meta-
bolic rate of TH in vivo by inhibiting binding of THs to TRs, 
thus causing a decrease in TH activity and an increase in 
iodothyronine deiodinase activity. Inhibition of TH-binding 
by OP might damage the TRH–TSH–THs regulatory path-
way. In addition, APs might accelerate the TH metabolic 
rate by enhancing the activity of iodothyronine deiodinase, 
leading to a decrease in  T3 and  T4 activity (He et al. 2020).

APs might influence TH activity via the regulation of 
multiple targets within the complex regulatory network of 
TH metabolism and activity, including TRs binding and 
activation. This mechanism mediates gene regulation in 
response to  T3 deiodinase, which catalyzes deiodination of 
 T4 to be converted to the biologically active  T3 form, and 
the Hypothalamus–Pituitary–Thyroid axis, which contains 
the TRH–TSH–THs negative feedback (Street et al. 2018).

Conclusions

Our results suggest that EDCs and in particular APs interfere 
with thyroid function in P. siculus at different levels, includ-
ing the central regulatory system in the hypothalamus and 
pituitary, thyroid hormone production at the thyroid gland, 
thyroid hormone transfer, as well as hormone bioavailability, 
function, and metabolism in peripheral organs.
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