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Abstract
Purpose To systematically review and evaluate the methodological quality of studies using radiomics for diagnostic and pre-
dictive purposes in patients with intracranial meningioma. To perform a meta-analysis of machine learning studies for the
prediction of intracranial meningioma grading from pre-operative brain MRI.
Methods Articles published from the year 2000 on radiomics and machine learning applications in brain imaging of meningioma
patients were included. Their methodological quality was assessed by three readers with the radiomics quality score, using the
intra-class correlation coefficient (ICC) to evaluate inter-reader reproducibility. A meta-analysis of machine learning studies for
the preoperative evaluation of meningioma grading was performed and their risk of bias was assessed with the Quality
Assessment of Diagnostic Accuracy Studies tool.
Results In all, 23 studies were included in the systematic review, 8 of which were suitable for the meta-analysis. Total (possible
range, −8 to 36) and percentage radiomics quality scores were respectively 6.96 ± 4.86 and 19 ± 13% with a moderate to good
inter-reader reproducibility (ICC = 0.75, 95% confidence intervals, 95%CI = 0.54–0.88). The meta-analysis showed an overall
AUC of 0.88 (95%CI = 0.84–0.93) with a standard error of 0.02.
Conclusions Machine learning and radiomics have been proposed for multiple applications in the imaging of meningiomas, with
promising results for preoperative lesion grading. However, future studies with adequate standardization and higher methodo-
logical quality are required prior to their introduction in clinical practice.
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Introduction

Meningiomas are the most common primary intracranial tu-
mor in adults, being more frequent in middle-aged women [1].
The average age-adjusted yearly incidence rate is 7.86 cases
per 100.000 individuals, which has increased during the past
30 years due to the improvement of diagnostic imaging [2].
Magnetic resonance imaging (MRI) is the modality of choice

for their radiological diagnosis and follow-up, whereas com-
puted tomography (CT) is used when patients cannot undergo
MRI. The World Health Organization (WHO) classification
of central nervous system tumors of 2016 grades meningio-
mas into three groups: grade I (slowly growing tumors), grade
II (atypical meningioma), and grade III (anaplastic or malig-
nant meningioma) [3]. Among these, grade II and III menin-
giomas are associated with high rates of recurrence and pre-
mature mortality [4]. Although conventional imaging is usu-
ally reliable for meningioma evaluation, it still presents some
limitations, in particular in determining pathological grading
from preoperative scans [5].

The term radiomics includes different quantitative radio-
logical image analysis techniques, ranging from first order
statistics to texture analysis [6]. These produce large amounts
of data that can be challenging to process with classical statis-
tical methods but may contribute novel imaging biomarkers.
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Machine learning (ML), a subfield of artificial intelligence,
has seen growing interest in medicine and especially in radi-
ology for numerous applications [7–10]. In particular, super-
vised learning, based on labeling of data by an expert, is main-
ly employed for classification and regression tasks. Among
the promises of ML for clinical practice, there are automatic
detection and characterization of lesions and the possibility to
predict response to therapy and risk of recurrence [11–13].
Regarding neuroradiology, it has shown good results in dif-
ferent applications, especially in the field of neuro-oncology
[14–16]. In recent years, the number of investigations based
on these techniques published allows for data pooling poten-
tially achieving higher levels of evidence through systematic
reviews and/or meta-analyses.

Aim of this systematic review is to analyze the methodo-
logical quality of prospective and retrospective studies pub-
lished on radiomics analyses of intracranial meningiomas.
Furthermore, a meta-analysis of those employing ML algo-
rithms for the MRI preoperative assessment of meningioma
grading has been performed.

Materials and methods

Literature search

The PRISMA-DTA (Preferred Reporting Items for
Systematic Reviews and Meta-analysis for Diagnostic Test
Accuracy) statement was used for this systematic review
[17]. Primary publications in English using radiomics and/or
ML in MRI exams of meningioma patients, published be-
tween 01/01/2000 and 30/06/2020, were searched for on mul-
tiple electronic databases (PubMed, Scopus, and Web of
Science). The search terms consisted of machine learning
OR artificial intelligence OR radiomics OR texture AND me-
ningioma; the detailed search string is presented in the supple-
mentary materials.

Two researchers determined the eligibility of the articles
though title and abstract evaluation. Case reports, non-
original investigations (e.g., editorials, letters, reviews), and
studies not focused on the topic of interest were excluded. The
full text of articles in which radiomics was employed on CT or
MRI images of intracranial meningiomas were obtained for
further evaluation. The reference lists of included studies were
also screened for potentially eligible articles and those evalu-
ating the grading of meningioma throughMLwere selected to
perform a meta-analysis.

Data collection and study evaluation

The radiomics quality score (RQS) was used to evaluate the
methodological quality of the studies included in the system-
atic review whereas the Quality Assessment of Diagnostic

Accuracy Studies (QUADAS-2) was used to assess the risk
of bias of the studies included in the meta-analysis [18, 19].
For studies included in the meta-analysis, the predictive accu-
racy was quantified using the AUC for the receiver operator
characteristic (ROC) analysis [20]. The number of low (grade
I) and high (grade II–III) lesions used to test the model, the
source of the dataset, MRI sequences employed to extract the
features, ML algorithm, and type of validation were also
recorded.

The RQS is a tool developed to assess the methodological
quality of studies using radiomics. It evaluates image acquisi-
tion, radiomics features extraction, data modeling, model val-
idation, and data sharing. Each of the 16 items it comprises is
rated, and the summed total score ranges from −8 to 36, con-
verted to a percentage score where −8 to 0 is defined as 0%
and 36 as 100% [18] (Table 1). Three readers with previous
experience in radiomics independently assigned an RQS score
to each article included in the systematic review.

The QUADAS-2 evaluates the risk of bias in different do-
mains (“patient selection,” “index test,” “reference standard,”
and “flow and timing”) and can be personalized according to
the specific research question [21]. It was assessed in consen-
sus by two readers for each of the studies selected for the
meta-analysis.

Statistical analysis

Continuous variables are presented as mean ± standard devi-
ation. Following previous experiences both with RQS and
other scoring systems [22, 23], inter-reader reproducibility
was evaluated by calculating the intraclass correlation coeffi-
cient (ICC) for the total RQS score obtained by each study. In
accordance with recent guidelines, a two-way, random-ef-
fects, single-rater, absolute agreement ICC model was used
[24]. For the remaining descriptive statistics, RQS score
assigned by the most expert reader is reported.

Regarding the meta-analysis, the AUC standard error was
calculated from the total number of positive and negative me-
ningiomas patients. The I2 value was used to assess statistical
heterogeneity, providing an estimate of the percentage of var-
iability among included studies. I2 values of 0–25%, 25–50%,
50–75%, and >75% represent very low, low, medium, and
high heterogeneity, respectively. The I2 statistic describes
the percentage of variation across studies that is due to hetero-
geneity rather than chance [25]. I2 was calculated as follows:
I2 = 100% × (Q − df)/Q. The weight of each study was calcu-
lated with the inverse variance method [26]. The results from
all included studies were pooled, and an overall estimate of
effect size was evaluated using a random effect model. This
approach helped in reducing heterogeneity among studies.
Publication bias was examined using the effective sample size
funnel plot described by Egger et al. [27]. Two-sided p values
≤ 0.05 were considered statistically significant.
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The described statistical analyses were performed using R
(v3.6.2, “irr” and “auctestr” packages) and MedCalc
Statistical Software (version 16.4.3, Ostend, Belgium;
https://www.medcalc.org) [28].

Results

Literature search

In total, 256 articles were obtained from the initial search, of
which 96 were duplicates. Of the remaining 163, 140 were
rejected based on the selection criteria. Finally, 23 articles
were included in the systematic review, 8 of which were eli-
gible for the meta-analysis. The described flowchart is

represented in Fig. 1, whereas Table 2 contains details on
study aim, ML method, and performance.

Study evaluation

The RQS total and percentage scores were respectively 6.96 ±
4.86 and 19 ± 13% (Figs. 2, 3). A detailed report of the RQS
item score by the most expert reader is shown in Table 3.
Inter-reader reproducibility resulted moderate to good, with
an ICC = 0.75 (95% confidence intervals, 95% CI = 0.54–
0.88). RQS scores assigned by the other readers are presented
in the supplementary materials.

Regarding the evaluation of the risk of bias through the
QUADAS-2, the number of studies with high, unclear, and
low risk of bias was respectively 0, 7, and 2, for the four
domains (patient selection, index test, reference standard,

Table 1 Overview of radiomics
quality score items and mode of
the respective scores in the
reviewed studies

RQS
checkpoint

RQS item number
and name

Description and (points) Mode

First Item 1: image
protocol quality

Well-documented protocol (+1) AND/OR publicly available
protocol (+1)

1

Second Item 2: multiple
segmentation

Testing feature robustness to segmentation variability, e.g.,
different physicians/algorithms/software (+1)

0

Item 3: phantom
study

Testing feature robustness to scanner variability, e.g., different
vendors/scanners (+1)

0

Item 4: multiple time
points

Testing feature robustness to temporal variability, e.g., organ
movement/expansion/shrinkage (+1)

0

Third Item 5: feature
reduction

Either feature reduction OR adjustment for multiple testing is
implemented (+ 3); otherwise, (−3)

3

Item 6: multivariable
analysis

Non-radiomic feature are included in/considered for model
building (+1)

0

Item 7: Biological
correlates

Detecting and discussing correlation of biology and radiomic
features (+1)

0

Item 8: cut-off analy-
sis

Determining risk groups by either median, pre-defined cut-off,
or continuous risk variable (+1)

0

Item 9: discrimination
statistics

Discrimination statistic and its statistical significance are
reported (+ 1); a resampling technique is also applied (+1)

2

Item 10: calibration
statistics

Calibration statistic and its statistical significance are reported
(+ 1); a resampling technique is also applied (+1)

0

Item 11: prospective
design

Prospective validation of a radiomics signature in an
appropriate trial (+7)

0

Item 12: validation Validation is missing (−5) OR internal validation (+2) OR
external validation on single dataset from one institute (+3)
OR external validation on two datasets from two distinct
institutes (+4) OR validation of a previously published
signature (+4) validation is based on three or more datasets
from distinct institutes (+5)

2

Item 13: comparison
to “gold standard”

Evaluating model’s agreement with/superiority to the current
“gold standard” (+2)

0

Item 14: potential
clinical application

Discussing model applicability in a clinical setting (+2). 2

Item 15:
cost-effectiveness
analysis

Performing a cost-effectiveness of the clinical application (+1) 0

Item 16: open science
and data

Open source scans (+1) AND/OR open source segmentations
(+1) AND/OR open source code (+1) AND/OR open
source representative features and segmentations (+1)

0

RQS radiomics quality score
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and flow and timing) (Fig. 4). In particular, 4 studies scored an
unclear risk of bias in the patient selection domain as the
authors did not clearly report the steps of patient selection
process [31, 37, 40, 47]. One study scored an unclear risk of
bias in index test domain as the radiomics feature extraction
was performed from both diffusion-weighted images (DWI)
and apparent diffusion coefficient (ADC) maps [37]. Finally,
the time elapsed between MRI and neurosurgery was not re-
ported in 6 studies, thus scoring an unclear risk of bias in the
flow and timing domain [31–45, 49]. All the studies included
in the meta-analysis had low concerns regarding applicability
for the three domains (patient selection, index test, and refer-
ence standard).

Meta-analysis

The articles included in the meta-analysis are reported in
Table 4. The ML models for meningioma characterization
showed an overall pooled AUC = 0.88 (95% CI = 0.84–
0.93) with a standard error of 0.02 (Figs. 5 and 6). Study
heterogeneity was 82.5% (p < 0.001).

Subgroup analysis was performed to compare studies eval-
uating the performance of ML for meningioma characteriza-
tion using patients from a single institution (n = 4) and from
multiple centers (n = 4). The pooled AUCwas 0.88 (95%CI =
0.84–0.92), standard error 0.02, and heterogeneity 42.17% (p
< 0.001) in the single institution group and the pooled AUC
was 0.88 (95% CI = 0.81–0.95), standard error 0.03, and het-
erogeneity 88.60% (p < 0.001) in the multi-center group.

Of the included studies, 5 used only post-contrast T1-
weighted. Their pooled AUC was 0.87 (95% CI = 0.82–
0.92), standard error 0.02, and heterogeneity 56.34% (p =
0.05). On the other hand, 3 studies also used conventional

MR sequences, including T1-weighted and T2-weighted im-
aging, in addition to contrast-enhanced T1-weighted imaging.
Their pooled AUC was 0.91 (95% CI = 0.85–0.97), standard
error 0.03, and heterogeneity 85.94% (p < 0.001).

In a subgroup analysis based on pre-processing image type,
the pooled AUC of 6 studies included in the analysis was 0.89
(95% CI = 0.85–0.94), standard error 0.02, and heterogeneity
83.01% (p < 0.001). The remaining studies reported an AUC
value respectively of 0.93 and 0.78.

Four studies applied exclusively k-fold cross-validation for
training and testing of the model. Their pooled AUC was 0.92
(95% CI = 0.88–0.97), standard error 0.02, and heterogeneity
76.52% (p = 0.005). The remaining studies (n = 4) employed a
test set, in 2 cases paired with k-fold cross-validation. Their
pooled AUC was 0.84 (95% CI = 0.78–0.90), standard error
0.03, and heterogeneity 62.09% (p < 0.005). The correspond-
ing plots of subgroup analyses are presented in the supple-
mentary materials.

Discussion

Radiomics has numerous potential applications in neuroradi-
ology and could help in obtaining additional quantitative in-
formation from routine medical images. Even though there are
ongoing efforts to standardize radiomic feature extraction,
their use is not yet justified outside of the research field [50].
The RQS is a recently introduced score whose aim is to eval-
uate the methodological quality of radiomics-based investiga-
tions. It could help identifying high-quality results among the
large number of publications in this field as well as issues
limiting their value and applicability. The average RQS of
the articles included in our systematic review was low (6.96,

Fig. 1 Study selection process
flowchart

Neuroradiology



Table 2 Overview of study aim, ML method, and performance for the included studies

Authors Study aim ML methodology Performance

AlKubeyyer et al. 2020 [29] Development of a computer-aided
detection of the meningioma
tumor firmness

• Support vector machine
• k-nearest neighbor

• F-score=0.95
• Balanced accuracy= 0.87
• AUC=0.87

Arokia Jesu Prabhu et al.
2018 [30]

Automatic classification of
parasagittal meningioma

Support vector machine Accuracy= 0.92

Chen et al. 2019 [31] Automatic classification of
meningiomas

• Linear discriminant analysis
• Support vector machine

Accuracy=0.76

Chu et al. 2020 [11] Prediction of meningiomas grade Logistic regression • Accuracy= 0.95
(training group) and 0.93
(test group)

• Sensitivity= 0.94 training
group) and 0.92 (test group)

Florez et al. 2018 [32] Differentiation of vasogenic from
tumor cell infiltration edema for
radiotherapy

Linear regression AUC>0.71

Hamerla et al. 2019 [33] Differentiation of low grade from
high grade meningioma

• Random forest
• Extreme gradient boosting
• Support vector machine
• Multilayer perceptron

AUC= 0.97 (Extreme gradient
boosting)

Kanazawa et al. 2018 [34] Distinction of solitary fibrous
tumor/hemangiopericytoma from
angiomatous meningioma

Texture analysis • Positive predictive value=0.63
• Specificity=0.63

Ke et al. 2019 [35] Differentiation between benign
and non-benign meningiomas

• Support vector machine • AUC= 0.91
• Accuracy= 0.89
• Sensibility=0.93
• Specificity=0.87

Laukamp et al. 2018 [36] Automatic detection and
segmentation of meningioma

Deep learning • Detection accuracy=0.98
• Mean Dice coefficient for

total tumor volume =0.81 ± 0.10

Laukamp et al. 2019 [37] Prediction of meningioma grade Multivariate logistic regression
model

AUC=0.91

Li et al. 2019 [38] Automatic differentiation of
malignant hemangiopericytoma
from angiomatous meningioma

Texture analysis AUC=0.90

Lu et al. 2018 [39] Prediction of meningioma grade
using ADC maps

• Classic decision tree
• Conditional inference
• Decision forest

Accuracy= 0.62

Morin et al. 2019 [40] Prediction of meningioma grade,
local failure and overall survival

Random forest • Grade= Accuracy 0.65; AUC 0.71
• Local Failure= Accuracy 0.61,

AUC=0.68
• Overall Survival= accuracy 0.67,

AUC= 0.75

Niu et al. 2019 [41] Differentiation of meningioma
subtypes

Fisher discriminant analysis Accuracy= 0.99-0.1

Park et al. 2018 [42] Prediction of grade and
histological subtype

• Support vector machine
• Random forest

AUC= 0.86

Speckter et al. 2018 [13] Prediction of response after
radiosurgery

Texture analysis Correlation coefficient=−0.64

Tian et al. 2020 [43] Contrastive analysis between
craniopharyngioma and meningioma

Binary logistic regression AUC>0.70

Wei et al. 2020 [44] Differentiation of
hemangiopericytoma from
meningioma

Logistic regression model AUC= 0.92–0.99

Yan et al. 2017 [45] Prediction of meningioma grade • Logistic regression
• Naïve Bayes
• Support vector machine

• AUC= 0.73–0.88
• Sensitivity= 0.48–0.91
• Specificity= 0.70–0.96

Zhang et al. 2019 [12] Prediction of recurrence in skull base
meningiomas

Random forest Accuracy= 0.90

Zhang et al. 2020 [46] Discrimination of lesions located
in the anterior skull base

• Linear discriminant analysis
• Support vector machine

AUC>0.80

Neuroradiology



19%), reflecting a lacking overall methodological quality.
This finding is in line with previous systematic reviews
performing a quality assessment with the RQS tool in other
fields of radiology. In detail, Ursprung et al reported a total
RQS score of 3.41 ± 4.43 (9.4% average) in a review of renal
cell carcinoma radiomics CT and MRI studies, Stanzione et al
7.93 ± 5.13 (23 ± 13%) for prostate MRI, and Granzier et al
20.9% for breast MRI [22, 51, 52]. Therefore, the problems
affecting radiomics studies and limiting the RQS score seem
to be general and not restricted to a specific application. The
current situation can be at least in part explained by an expo-
nential growth in interest and number of papers submitted
using radiomics, a dynamic also experienced in the wider field
of ML [7]. On the other hand, the RQS scoring system is
relatively new and has been used in a limited number of oc-
casions [18, 22, 51–53]. Therefore, further revisions and im-
provements after initial feedback may produce a different
weighting of each item and/or modifications in the items
themselves. In our review, we wish to highlight that all studies
collected 0 points on items 3, 4, 10, 11, and 15. In detail,
feature robustness to scanner or temporal variability was never

tested, also due to the retrospective nature of all the investiga-
tions. Similarly, a prospective validation of the radiomics sig-
nature in appropriate trials was missing as well as a cost-
effectiveness analysis.

Regarding the studies included in the meta-analysis, the
QUADAS-2 assessment revealed an overall low risk of bias
but also highlighted some critical issues. In particular, in one
paper, DWI was used for feature extraction together with
ADC maps [37]. As ADC maps are derived from DWI, it
would be more appropriate to only use one of the two for
feature extraction and probably ADC maps are preferable
due to their qualitative nature. Furthermore, only two studies
reported time elapsed between the MRI exam and surgery, a
possible source of bias that should always be specified [11,
48] None of the articles selected scored a high risk of bias in
relation to the reference standard as histopathological grading
was always employed. Overall, radiomics features analyzed
with a ML approach turned out to be promising for

Table 2 (continued)

Authors Study aim ML methodology Performance

• Random forest
• Adaboos
• K-nearest neighbor
• GaussianNB
• Logistic regression
• gradient
• boosting decision tree
• Decision tree

Zhu et al. 2019 [47] Automatic prediction of
meningioma grade

Convolutional neural network AUC= 0.83

Zhu et al. 2019 [48] Automatic prediction of
meningioma grade

Deep learning • AUC= 0.81
• Sensitivity= 0.8
• Specificity=0.9

AUC area under the receiver operating characteristic curve

Fig. 2 Histogram (bars, bin number = 10) and kernel density estimation
(line) plot of RQS percentage score distribution

Fig. 3 RQS percentage score line plot in relation to publication year. Bars
represent 95% confidence intervals, calculated with bootstrapping (1000
iterations)
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meningioma grading, with an AUC of 0.88. All the included
studies used handcrafted radiomics except for Zhu et al. who
employed deep learning [48]. This is understandable given
that deep learning requires a large amount of data to be ad-
vantageous over other ML algorithms, often not available in
this setting. Almost all studies (n = 7) performed a 3D seg-
mentation of the lesion, though it is still not clear whether this
approach is clearly better than 2D segmentation [48]. Only
Morin et al. trained a model using radiomics features together
with demographic data [40]. Despite this, its AUC value is
among the lowest (0.78) suggesting that these may not be
essential in the preoperative definition of meningioma grad-
ing. It is also interesting to note that most (n = 5) of the studies
used linear ML models [11, 31, 37, 48, 49] while only one
included a data augmentation technique [33].

In the subgroup analyses, AUCwas higher (0.91 vs 0.87) for
studies (n = 3) that paired T1 contrast-enhanced sequences with
other sequences [11, 31, 40]. This finding supports the use of
multiple imaging sequences rather than relying exclusively on
T1 contrast-enhanced sequences for future investigations.
Similarly, the good accuracy (AUC = 0.89) obtained by studies
(n = 6) who included image pre-processing in their pipeline also

suggests the usefulness of this step [11, 33, 37, 45, 48, 49].
While the AUC for single institution (n = 4) and multicenter
studies was equally high (AUC = 0.88), external testing of ML
models is always preferable to demonstrate their ability to gen-
eralize. Similarly, while k-fold cross-validation helps in
extracting more information and reliable results from small
datasets, its exclusive use may present some issues as there is
no final model whose performance can be tested on unseen data.
In all, 4 studies only employed cross-validation, with better re-
sults than the remaining (AUC = 0.92 vs 0.84) [11, 40, 48, 49].
Ideally, it would be preferable to use cross-validation for model
tuning and initial testing followed by further assessment on new
data, as done in 2 cases (AUC = 0.82 and 0.83). This approach
combines the advantages of both testing strategies [48, 49].

As previously reported, the presentation of accuracy met-
rics in radiomics and ML studies is often inconsistent and
incomplete [21]. Due to this situation, our meta-analysis could
only employ AUC values as these were the most commonly
reported. However, sensitivity and specificity analysis could
have provided additional insights if feasible.

Indeed, ROC AUC treats sensitivity and specificity as equal-
ly important overall when averaged across all thresholds. For

Table 3 Radiomics quality scores for all included articles

First author Year Item
1

Item
2

Item
3

Item
4

Item
5

Item
6

Item
7

Item
8

Item
9

Item
10

Item
11

Item
12

Item
13

Item
14

Item
15

Item
16

RQS
(total)

RQS
(%)

Alkubeyyer 2020 0 0 0 0 −3 0 0 0 2 0 0 2 0 2 0 0 3 8

Arokia Jesu
Prabhu

2018 0 0 0 0 −3 0 0 0 0 0 0 2 0 0 0 0 0 0

Chen 2019 1 0 0 0 3 0 1 0 1 0 0 2 0 2 0 0 10 28

Chu 2020 1 0 0 0 3 0 1 0 1 0 0 2 0 2 0 0 10 28

Florez 2018 1 1 0 0 3 0 0 0 1 0 0 −5 0 0 0 0 1 3

Hamerla 2019 1 0 0 0 3 0 1 0 2 0 0 5 0 2 0 0 14 39

Kanazawa 2018 1 0 0 0 −3 0 1 1 1 0 0 −5 0 2 0 0 0 0

Ke 2019 1 0 0 0 3 0 1 0 1 0 0 3 0 2 0 0 11 31

Laukamp 2018 1 0 0 0 −3 0 0 0 0 0 0 4 2 2 0 0 6 17

Laukamp 2019 1 0 0 0 3 0 1 0 1 0 0 −5 0 2 0 0 3 8

Li 2019 1 0 0 0 3 0 1 0 1 0 0 2 2 2 0 0 12 33

Lu 2018 1 0 0 0 3 1 1 0 1 0 0 2 2 2 0 0 13 36

Morin 2019 0 0 0 0 3 1 1 0 1 0 0 3 2 2 0 0 13 36

Niu 2019 1 0 0 0 3 0 1 0 0 0 0 2 0 2 0 0 9 25

Park 2018 1 0 0 0 3 0 1 0 2 0 0 2 0 2 0 0 11 31

Speckter 2018 0 0 0 0 3 0 1 0 0 0 0 −5 0 2 0 0 1 3

Tian 2020 0 0 0 0 3 0 0 0 2 0 0 −5 0 2 0 0 2 6

Wei 2020 1 1 0 1 3 0 0 0 2 0 0 2 0 0 0 1 11 31

Yan 2017 1 0 0 0 3 0 1 0 0 0 0 2 0 2 0 0 9 25

Zhang 2019 1 0 0 0 3 0 0 0 0 0 0 −5 0 2 0 0 1 3

Zhang 2020 1 0 0 0 3 0 0 0 0 0 0 2 0 2 0 0 8 22

Zhu H 2019 0 0 0 0 −3 0 1 0 0 0 0 2 0 2 0 0 2 6

Zhu Y 2019 1 0 0 0 3 0 1 0 1 0 0 2 0 2 0 0 10 28

RQS radiomics quality score
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example, poor sensitivity could mean missed diagnosis and de-
layed treatment or even death, whereas poor specificity means
unnecessary test. ROC AUC ignores clinical differentials in

“misclassification cost” and, therefore, risks finding a new test
worthless when patients and physicians would consider other-
wise. ROC AUC weighs changes in sensitivity and specificity

Fig. 4 Methodological quality of
the studies included in the meta-
analysis according to the
QUADAS 2 tool for risk of bias
and applicability concerns. Green,
yellow, and red circles represent
low, unclear, and high risk of bias,
respectively

Table 4 Characteristics of the studies included in the meta-analysis

Paper AUC Low grade High grade Data source Sequences Model Validation

Chen et al. 0.93 12 18 Single institution CE T1 LDA CV

Chu et al. 0.95 24 4 Single institution CE T1 Logistic regression Test set

Hamerla et al. 0.97 102 45 Multicenter CE T1+others XGBoost CV

Ke et al. 0.83 60 19 Multicenter CE T1+others SVM CV + test set

Laukamp et al. 0.91 46 25 Multicenter CE T1+others Logistic regression CV

Morin et al. 0.78 67 18 Multicenter CE T1 RF Test set

Yan et al. 0.87 110 21 Single institution CE T1 SVM CV

Zhu et al. 0.82 69 13 Single institution CE T1 LDA CV + test set

AUC area under the receiver operating characteristic curve, CE T1 contrast-enhanced T1-weighted sequence, LDA linear discriminant analysis, SVM
support vector machine, RF random forest, CV cross validation
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equally only where the curve slope equals one. Other points
assign different weights, determined by curve shape and without
considering clinically meaningful information, e.g., a 5 % im-
provement in sensitivity contributes less to AUC at high speci-
ficity than at low specificity. Thus, AUC can consider a test that
increases sensitivity at low specificity superior to one that in-
creases sensitivity at high specificity [54].

Greater care should be given in future research to avoid this
issue, ideally confusion matrices should always be reported if
possible.

The ability to distinguish low-grade from high-grade me-
ningiomas based on preoperative MR images could influence
personalized treatment decisions. In particular, in patients with
meningiomas at certain locations where biopsy is difficult to
obtain due to a high risk of mortality and morbidity (e.g.,
petroclival meningiomas), a tailored radiation treatment in
the high-grade forms may be recommended [55].
Furthermore, in asymptomatic patients with small meningio-
mas, radiotherapy may be avoided for benign lesions, while
high-grade meningiomas could undergo radiation treatment
before resection [56]. Therefore, noninvasive MRI prediction
of meningioma grading could address in the future small

meningioma treatment strategy, also without histological con-
firmation. However, radiomics are not currently ready for clin-
ical implementation due to the issues found in RQS.

Our study has some limitations that should be acknowl-
edged. The RQS is relatively recent and a purely methodolog-
ical scoring system and does not consider differences in study
aim. Regarding the meta-analysis, a relatively low number of
papers met the selection criteria. While the QUADAS-2 anal-
ysis presented some unclear elements, no high-risk sources of
bias were identified. Study heterogeneity was high, but this is
in line with other machine learning meta-analyses and diag-
nostic meta-analyses in general [21, 57, 58]. Finally, not all
articles were specified if the WHO 2016 classification of cen-
tral nervous system tumors was used. However, meningioma
grading did not change substantially compared to the previous
version, except for the introduction of brain invasion as a
criterion for the diagnosis of grade II lesions [3].

In conclusion, radiomics studies show promising results for
improving management of intracranial meningiomas, though
they require more methodological rigor. The prediction of
meningioma grading from preoperative brain MRI also dem-
onstrated good results in our meta-analysis. Well-designed,
prospective trials are necessary to demonstrate their validity
and reporting of methods and results has to be standardized
prior to their use in daily clinical practice.
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