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Abstract
In this paper, relations between some kinds of cumulative entropies and moments of
order statistics are established. By using some characterizations and the symmetry of a
non-negative and absolutely continuous random variable X, lower and upper bounds for
entropies are obtained and illustrative examples are given. By the relations with the moments
of order statistics, a method is shown to compute an estimate of cumulative entropies and
an application to testing whether data are exponentially distributed is outlined.
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1 Introduction

In reliability theory, to describe and study the information associated with a non-negative
absolutely continuous random variable X, we use the Shannon entropy, or differential
entropy of X, defined by Shannon (1948)

H(X) = −E[log(X)] = −
∫ +∞

0
f (x) log f (x)dx,

where log is the natural logarithm and f is the probability density function (pdf) of X. In
the following, we use F and F to indicate the cumulative distribution function (cdf) and the
survival function (sf) of X, respectively.
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In the literature, there are several different versions of entropy, each one suitable for a
specific situation. In Rao et al. (2004) introduced the Cumulative Residual Entropy (CRE)
of X as

E(X) = −
∫ +∞

0
F(x) log F(x)dx.

Di Crescenzo and Longobardi (2009) introduced the Cumulative Entropy (CE) of X as

CE(X) = −
∫ +∞

0
F(x) log F(x)dx. (1)

If the random variable X is a lifetime of a system, this information measure is suitable when
uncertainty is related to the past. It is a concept dual to the cumulative residual entropy
which relates uncertainty on the future lifetime of the system.

Mirali et al. (2016) introduced the Weighted Cumulative Residual Entropy (WCRE) of
X as

Ew(X) = −
∫ +∞

0
x(1 − F(x)) log(1 − F(x))dx.

Mirali and Baratpour (2017) introduced the Weighted Cumulative Entropy (WCE) of X

as

CEw(X) = −
∫ +∞

0
xF(x) log F(x)dx.

It should be mentioned that the above measures can also be defined for random variables
X with support over the entire real line provided the involved integrals exist (as in some
examples discussed in later sections).

Recently, various authors have discussed different versions of entropy and their applica-
tions (see, for instance, Cali et al. 2017, 2019, 2020; Longobardi 2014).

The paper is organized as follows. In Section 2, we study relationships between some
kinds of entropies and moments of order statistics and present various illustrative exam-
ples. In Section 3, bounds are given by using some characterizations and properties (as
the symmetry) of the random variable X, and some examples and bounds for a few
well-known distributions are also presented. In Section 4, we present a method based on
moments of order statistics to estimate the cumulative entropies and an application to testing
exponentiality of data is also outlined.

2 Relationships Between Entropies and Order Statistics

We recall that, if we have n i.i.d. random variables X1, . . . , Xn, we can introduce the order
statistics Xk:n, k = 1, . . . , n. The k-th order statistic is equal to the k-th smallest value from
the sample. We know that the cdf of Xk:n can be given in terms of the cdf of the parent
distribution as

Fk:n(x) =
n∑

j=k

(
n

j

)
[F(x)]j [1 − F(x)]n−j ,

while the pdf of Xk:n is

fk:n(x) =
(

n

k

)
k[F(x)]k−1[1 − F(x)]n−kf (x).
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Choosing k = 1 and k = n, we get the smallest and largest order statistics, respectively.
Their cdf and pdf are given by

F1:n(x) = 1 − [1 − F(x)]n, f1:n(x) = n[1 − F(x)]n−1f (x),

Fn:n(x) = [F(x)]n, fn:n(x) = n[F(x)]n−1f (x).

In the following, we denote by μ and μk:n the expectation or mean of X and the mean of the
k-th order statistic in a sample of size n with parent distribution as that of X, respectively,
i.e., μ = E(X) and μk:n = E(Xk:n). Moreover, we denote by μ(2) and μ

(2)
k:n the second

moment of X and the second moment of k-th order statistic in a sample of size n with parent
distribution as that of X, respectively, i.e., μ(2) = E(X2) and μ

(2)
k:n = E(X2

k:n). We recall
that if X is a random variable with finite expectation μ, then the first moment of all order
statistics is finite, and if the second moment of X is finite, then the second moment of all
order statistics is also finite; see David and Nagaraja (2003) for further details.

2.1 Cumulative Residual Entropy

Let X be a random variable with finite expectation μ. The Cumulative Residual Entropy
(CRE) of X can also be written in terms of order statistics as follows:

E(X) = −
∫ +∞

0
(1 − F(x)) log(1 − F(x))dx

= −x(1 − F(x)) log(1 − F(x))
∣∣+∞
0 −

∫ +∞

0
x log(1 − F(x))f (x)dx

−
∫ +∞

0
xf (x)dx

=
∫ +∞

0
x[− log(1 − F(x))]f (x)dx − μ

=
∫ +∞

0
x

[+∞∑
n=1

F(x)n

n

]
f (x)dx − μ

=
+∞∑
n=1

1

n(n + 1)
μn+1:n+1 − μ, (2)

provided that limx→+∞ −x(1 − F(x)) log(1 − F(x)) exists and CRE is finite. In this case,
the previous limit is equal to 0. We note that Eq. 2 can be rewritten as

E(X) =
+∞∑
n=1

(
1

n
− 1

n + 1

)
μn+1:n+1 − μ. (3)

Remark 1 We want to emphasize that, under the assumptions made, the steps in Eq. 2 are
correct. The improper integral can be written as

lim
t→+∞

∫ t

0
x lim

N→+∞

N∑
n=1

F(x)n

n
f (x)dx. (4)

Hence, we observe that the sequence SN(x) = ∑N
n=1

F(x)n

n
is increasing and converges

pointwise to the continuous function − log(1 − F(x)) for each x ∈ [0, t] and, by applying
Dini’s theorem for uniform convergence (Bartle and Sherbert 2000), the convergence is
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uniform. Then, Eq. 4 can be written as

lim
t→+∞ lim

N→+∞

N∑
n=1

∫ t

0
x

F(x)n

n
f (x)dx. (5)

In order to apply Moore–Osgood theorem for the iterated limit (Taylor 2010), we have to
show that

lim
t→+∞

N∑
n=1

∫ t

0
x

F(x)n

n
f (x)dx =

N∑
n=1

1

n(n + 1)
μn+1:n+1

converges pointwise for each fixed N , and this is satisfied if X has finite mean. Hence, by
applying Moore–Osgood theorem for the iterated limit, Eq. 5 can be written as

lim
N→+∞ lim

t→+∞

N∑
n=1

∫ t

0
x

F(x)n

n
f (x)dx =

+∞∑
n=1

1

n(n + 1)
μn+1:n+1.

In the following examples, we use Eq. 3 to evaluate the CRE for the standard exponential
and uniform distributions.

Example 1 Consider the standard exponential distribution with pdf f (x) = e−x , x > 0.
Then, it is known that

μ = 1 and μn:n = 1 + 1

2
+ · · · + 1

n
;

see Arnold and Balakrishnan (1989) for further details. Then, from Eq. 3, we readily have

E(X) =
(

1 − 1

2

)
μ2:2 +

(
1

2
− 1

3

)
μ3:3 +

(
1

3
− 1

4

)
μ4:4 + · · · − μ

= (μ2:2 − μ) + 1

2
(μ3:3 − μ2:2) + 1

3
(μ4:4 − μ3:3) + . . .

= 1

2
+ 1

2 · 3
+ 1

3 · 4
+ . . .

=
+∞∑
n=1

1

n(n + 1)
= 1.

Example 2 Consider the standard uniform distribution with pdf f (x) = 1, 0 < x < 1.
Then, it is known that

μ = 1

2
and μn:n = n

n + 1
.

So, from Eq. 2, we readily find

E(X) =
+∞∑
n=1

1

n(n + 1)

n + 1

n + 2
− 1

2

= 1

2

+∞∑
n=1

(
1

n
− 1

n + 2

)
− 1

2

= 1

2

(
1 + 1

2

)
− 1

2
= 1

4
.
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2.2 Cumulative Entropy

Let X be a random variable with finite expectation μ. The Cumulative Entropy (CE) of X

can also be rewritten in terms of the mean of the minimum order statistic; in fact, from
Eq. 1, we easily obtain

CE(X) = −xF(x) log F(x)
∣∣+∞
0 +

∫ +∞

0
x log F(x)f (x)dx +

∫ +∞

0
xf (x)dx

=
∫ +∞

0
x log[1 − (1 − F(x))]f (x)dx + μ

= −
∫ +∞

0
x

+∞∑
n=1

(1 − F(x))n

n
f (x)dx + μ

= −
+∞∑
n=1

1

n(n + 1)
μ1:n+1 + μ, (6)

provided that limx→+∞ −xF(x) log F(x) exists and CE is finite. We note that Eq. 6 can be
rewritten as

CE(X) = −
+∞∑
n=1

(
1

n
− 1

n + 1

)
μ1:n+1 + μ. (7)

In the following examples, we give an application of Eq. 7 to the standard exponential
and uniform distributions.

Example 3 For the standard exponential distribution, it is known that

μ1:n = 1

n
,

and so from Eq. 7, we readily have

CE(X) = −
+∞∑
n=1

(
1

n
− 1

n + 1

)
1

n + 1
+ 1

= −
+∞∑
n=1

1

n(n + 1)
+

+∞∑
n=1

1

(n + 1)2
+ 1

= π2

6
− 1,

by the use of Euler’s identity.

Example 4 For the standard uniform distribution, using the fact that

μ1:n = 1

n + 1
,
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we obtain from Eq. 6 that

CE(X) = −
+∞∑
n=1

1

n(n + 1)(n + 2)
+ 1

2

= 1

2
− 1

2

+∞∑
n=1

[
1

n
− 2

n + 1
+ 1

n + 2

]

= 1

2
− 1

2

+∞∑
n=1

[
1

n
− 1

n + 1

]
+ 1

2

+∞∑
n=1

[
1

n + 1
− 1

n + 2

]

= 1

4

by the use of Euler’s identity.

Remark 2 If the random variable X has finite mean μ and is symmetrically distributed about
μ, then it is known that

μn:n − μ = μ − μ1:n,

and so the equality E(X) = CE(X) readily follows.

2.3 Weighted Cumulative Entropies

In a similar manner, the Weighted Cumulative Residual Entropy (WCRE) of X, with finite
second moment, can be expressed as

Ew(X) = −x2

2
(1 − F(x)) log(1 − F(x))

∣∣+∞
0 − 1

2

∫ +∞

0
x2 log(1 − F(x))f (x)dx

−1

2

∫ +∞

0
x2f (x)dx

= 1

2

∫ +∞

0
x2[− log(1 − F(x))]f (x)dx − μ(2)

2

= 1

2

∫ +∞

0
x2

[+∞∑
n=1

F(x)n

n

]
f (x)dx − μ(2)

2

= 1

2

+∞∑
n=1

1

n(n + 1)
μ

(2)
n+1:n+1 − μ(2)

2
, (8)

provided that limx→+∞ − x2

2 (1 − F(x)) log(1 − F(x)) exists and WCRE is finite.
In the following example, we use Eq. 8 to evaluate the WCRE for the standard uniform

distribution.

Example 5 For the standard uniform distribution, using the fact that

μ
(2)
n+1:n+1 = n + 1

n + 3
and μ(2) = 1

3
,
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we obtain from Eq. 8 that

Ew(X) = 1

2

+∞∑
n=1

1

n(n + 1)

n + 1

n + 3
− 1

6

= 1

6

+∞∑
n=1

(
1

n
− 1

n + 3

)
− 1

6

= 1

6

(
1 + 1

2
+ 1

3

)
− 1

6
= 5

36
.

Moreover, we can derive the Weighted Cumulative Entropy (WCE) of X in terms of the
second moment of the minimum order statistic as follows:

CEw(X) = −x2

2
F(x) log F(x)

∣∣+∞
0 + 1

2

∫ +∞

0
x2 log F(x)f (x)dx

+1

2

∫ +∞

0
x2f (x)dx

= 1

2

∫ +∞

0
x2 log[1 − (1 − F(x))]f (x)dx + μ(2)

2

= −1

2

∫ +∞

0
x2

+∞∑
n=1

(1 − F(x))n

n
f (x)dx + μ(2)

2

= −1

2

+∞∑
n=1

1

n(n + 1)
μ

(2)
1:n+1 + μ(2)

2
, (9)

provided that limx→+∞ − x2

2 F(x) log F(x) exists and WCE is finite.

3 Bounds

In the following, we use Z to denote the standard version of the random variable X, i.e.,

Z = X − μ

σ
,

where σ is the standard deviation of X. By construction, the relation between a variable and
its standard version holds for order statistics and so we have

Zk:n = Xk:n − μ

σ
,

for k = 1, . . . , n. Hence, the mean of Xk:n and the mean of Zk:n are directly related and, in
particular, for the largest order statistic, we have

E(Zn:n) = μn:n − μ

σ
.

We remark that this formula also holds by considering a generalization of the random vari-
able Z with an arbitrary location parameter μ in place of the mean, and an arbitrary scale
parameter σ in place of the standard deviation.
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Let us consider a sample with parent distribution Z such that E(Z) = 0 and E(Z2) = 1.
Hartley and David (1954) and Gumbel (1954) have then shown that

E(Zn:n) ≤ n − 1√
2n − 1

.

Using the Hartley-David-Gumbel bound for a parent distribution with mean μ and
variance σ 2, we get

μn:n = σE(Zn:n) + μ ≤ σ
n − 1√
2n − 1

+ μ. (10)

Theorem 1 Let X be a random variable with mean μ and variance σ 2. Then, we obtain an
upper bound for the CRE of X as

E(X) ≤
+∞∑
n=1

σ

(n + 1)
√

2n + 1
� 1.21 σ . (11)

Proof From Eqs. 2 and 10, we get

E(X) =
+∞∑
n=1

1

n(n + 1)
μn+1:n+1 − μ

≤
+∞∑
n=1

1

n(n + 1)

(
σ

n√
2n + 1

+ μ

)
− μ

=
+∞∑
n=1

σ

(n + 1)
√

2n + 1
� 1.21 σ,

which is the upper bound given in Eq. 11.

Remark 3 If X is a non-negative random variable, we have μn+1:n+1 ≥ 0, for all n ∈ N. For
this reason, using finite series approximations in Eq. 2, we get lower bounds for E(X) as

E(X) ≥
m∑

n=1

1

n(n + 1)
μn+1:n+1 − μ, (12)

for all m ∈ N.

Remark 4 If X is a non-negative random variable, we have μ1:n+1 ≥ 0, for all n ∈ N. For
this reason, using finite series approximations in Eq. 6, we get upper bounds for CE(X) as

CE(X) ≤ −
m∑

n=1

1

n(n + 1)
μ1:n+1 + μ,

for all m ∈ N.
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In the following theorem, we consider a decreasing failure rate distribution (DFR). We
recall that the failure rate, or hazard rate, function of X, r(x), is defined as

r(x) = lim
Δx→0+

P(x < X ≤ x + Δx|X > x)

Δx

= 1

1 − F(x)
lim

Δx→0+
P(x < X ≤ x + Δx)

Δx
= f (x)

1 − F(x)
,

where the last equality occurs under the assumption of absolute continuity. Then, the random
variable X is said to be DFR when the function r(x) is decreasing in x; see Barlow and
Proschan (1996) for further details on hazard rate functions and DFR distributions.

Theorem 2 Let X be DFR. Then, we have the following lower bound for CE(X):

CE(X) ≥ μ −
√

μ(2)

2

(
2 − π2

6

)
. (13)

Proof Let X be DFR. From Theorem 12 of Rychlik (2001), it is known that for a sample of
size n, if

δj,n =
j∑

k=1

1

n + 1 − k
≤ 2 j ∈ {1, . . . , n},

then

μj :n ≤ δj,n√
2

√
μ(2).

For j = 1, we have δ1,n = 1
n

≤ 2 for all n ∈ N, so that

μ1:n ≤
√

μ(2)

√
2 n

.

Then, from Eq. 6, we get the following lower bound for CE(X):

CE(X) ≥ −
+∞∑
n=1

1

n(n + 1)2

√
μ(2)

2
+ μ

= μ −
√

μ(2)

2

(
2 − π2

6

)
.

Remark 5 We note that we can not provide an analogous bound for E(X) because δn,n ≤ 2
is not fulfilled for n ≥ 4.

From Eqs. 2 and 6, we get the following expression for the sum of the cumulative residual
entropy and the cumulative entropy:

E(X) + CE(X) =
+∞∑
n=1

1

n(n + 1)
(μn+1:n+1 − μ1:n+1). (14)

Calı̀ et al. (2017) have shown a connection between (14) and the partition entropy studied
by Bowden (2007).
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Theorem 3 We have the following bound for the sum of the CRE and the CE:

E(X) + CE(X) ≤
+∞∑
n=1

√
2 σ

n
√

n + 1
� 3.09 σ . (15)

Proof From Theorem 3.24 of Arnold and Balakrishnan (1989), it is known that the bound
for the difference between the expectations of the largest and smallest order statistics from
a sample of size n + 1 is

μn+1:n+1 − μ1:n+1 ≤ σ
√

2(n + 1), (16)

and so using Eq. 16 in Eq. 14, we get the following bound for the sum of the CRE and the
CE:

E(X) + CE(X) ≤
+∞∑
n=1

σ
√

2(n + 1)

n(n + 1)
=

+∞∑
n=1

√
2 σ

n
√

n + 1
� 3.09 σ,

as required.

In Table 1, we present some of the bounds obtained in this section for a few know
distributions.

3.1 Symmetric Distributions

In this subsection, we obtain bounds for a symmetric parent distribution. David and
Nagaraja (2003) have stated that if we have a sample Z1, . . . , Zn with parent distribution Z

symmetric about 0 and with variance 1, then

E(Zn:n) ≤ 1

2
nc(n), (17)

where

c(n) =

⎡
⎢⎢⎣

2

(
1 − 1

(2n−2
n−1 )

)

2n − 1

⎤
⎥⎥⎦

1
2

.

Using the bound in Eq. 17 for a random variable X symmetric about mean μ and with
variance σ 2, we have

μn:n = σE(Zn:n) + μ ≤ 1

2
σnc(n) + μ. (18)

Table 1 Some bounds for known distributions

Support CDF E(X) Bound Thm.1 E(X) + CE(X) Bound Thm.3

x > 0 1 − exp(−λx) 1
λ

1.21
λ

π2

6 λ
3.09
λ

0 < x < a x
a

a
4

1.21 a

2
√

3
a
2

3.09 a

2
√

3

x ∈ (0, 1) 1
x2 exp

(
2

(
1 − 1

x

))
0.1549 0.1999 0.2936 0.5105

x > 0 1 − 1
(x+1)3 0.75 1.0479 1.1115 2.6759

x ∈ (0, 1) x2 0.1869 0.2852 0.4091 0.7283

x ∈ (0,+∞) exp
(
− 1

exp(x)−1

)
0.9283 1.1238 1.5246 2.87
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Remark 6 It is clear that a non-negative random variable X that is symmetric about the
mean has a bounded support.

Theorem 4 Let X be a symmetric random variable with mean μ and variance σ 2. Then,
an upper bound for the CRE of X is given by

E(X) ≤ σ

2

+∞∑
n=1

c(n + 1)

n
. (19)

Proof From Eqs. 2 and 18, we get

E(X) =
+∞∑
n=1

1

n(n + 1)
μn+1:n+1 − μ

≤
+∞∑
n=1

1

n(n + 1)

(
1

2
σ c(n + 1)(n + 1) + μ

)
− μ

= σ

2

+∞∑
n=1

c(n + 1)

n
,

which is the upper bound given in Eq. 19.

The bound in Eq. 17 is equivalent to (see Arnold and Balakrishnan 1989)

E(Zn:n) ≤ n√
2

√
1

2n − 1
− B(n, n), (20)

where B(n, n) is the complete beta function defined as

B(α, β) =
∫ 1

0
xα−1(1 − x)β−1dx = Γ (α)Γ (β)

Γ (α + β)
,

where α, β > 0 (see Abramowitz and Stegun (1964) for further details). In fact

1

2
nc(n) = 1

2
n

⎡
⎢⎢⎣

2

(
1 − 1

(2n−2
n−1 )

)

2n − 1

⎤
⎥⎥⎦

1
2

= 1√
2
n

[
1 − (n−1)!(n−1)!

(2n−2)!
2n − 1

] 1
2

= n√
2

[
1

2n − 1
− (n − 1)!(n − 1)!

(2n − 1)!
] 1

2

= n√
2

[
1

2n − 1
− B(n, n)

] 1
2

.

Then, the bound in Eq. 18 is equivalent to

μn:n = σE(Zn:n) + μ ≤ σ
n√
2

√
1

2n − 1
− B(n, n) + μ. (21)

Hence, we have the following theorem which is equivalent to Theorem 4.
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Theorem 5 Let X be a symmetric random variable with mean μ and variance σ 2. Then,
an upper bound for the CRE of X is

E(X) ≤ σ√
2

+∞∑
n=1

1

n

√
1

2n + 1
− B(n + 1, n + 1). (22)

Example 6 Let us consider a sample with parent distribution for X ∼ N(0, 1). From Harter
(1961), we have the values of means of largest order statistics for samples of size up to
100. Hence, we compare the finite series approximations of Eqs. 2 and 22 and we expect
the same result as the true value because truncated terms are negligible. We thus get the
following result:

E(X) �
99∑

n=1

1

n(n + 1)
μn+1:n+1 � 0.87486

<
1√
2

99∑
n=1

1

n

√
1

2n + 1
− B(n + 1, n + 1) � 0.94050,

computed by truncating the series in Theorem 5.

For a symmetric distribution, Arnold and Balakrishnan (1989) have stated that if we have
a sample Z1, . . . , Zn from a parent distribution symmetric about mean μ and with variance
1, then

E(Zn:n) − E(Z1:n) ≤ n
√

2

√
1

2n − 1
− B(n, n), (23)

where B(n, n) is the complete beta function.
Using the bound in Eq. 23 for a parent distribution symmetric about mean μ and with

variance σ 2, we have

μn:n − μ1:n = σ (E(Zn:n) − E(Z1:n)) ≤ σn
√

2

√
1

2n − 1
− B(n, n). (24)

Theorem 6 Let X be a symmetric random variable with mean μ and variance σ 2. Then,
an upper bound for the sum of the CRE and the CE of X is given by

E(X) + CE(X) ≤ √
2 σ

+∞∑
n=1

1

n

√
1

2n + 1
− B(n + 1, n + 1). (25)

Proof From Eqs. 14 and 24, we have

E(X) + CE(X) =
+∞∑
n=1

1

n(n + 1)
(μn+1:n+1 − μ1:n+1)

≤
+∞∑
n=1

1

n(n + 1)

(
σ(n + 1)

√
2

√
1

2n + 1
− B(n + 1, n + 1)

)

= √
2 σ

+∞∑
n=1

1

n

√
1

2n + 1
− B(n + 1, n + 1),

which is the upper bound given in Eq. 25.
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4 Computation and Application

4.1 Numerical Evaluation

In this subsection, we present a method for the evaluation of an estimate of cumulative
entropies based on the relationships with moments of order statistics derived in Section 2.
The method is based on finite series approximations. About the CRE, we will use the result
shown in Eq. 12:

E(X) ≥
m∑

n=1

1

n(n + 1)
μn+1:n+1 − μ,

where the difference between LHS and RHS is infinitesimal for m → +∞. Starting from a
sample X = (X1, . . . , XN), we estimate the CRE by

Ê(X) =
m∑

n=1

1

n(n + 1)
μ̂n+1:n+1 − μ̂, (26)

where μ̂ is the arithmetic mean of the realization of the sample and μ̂n+1:n+1 is an estimate
for the mean of largest order statistic in a sample of size n + 1. In order to obtain an esti-
mate of the mean of largest order statistic in a sample of size n + 1, we generate several
simple random samples starting from X of size n + 1, for example, by using the function
randsample of MATLAB. Then, we consider the maximum of each sample and by the
mean we obtain μ̂n+1:n+1. Specifically, for a fixed n ∈ {1, . . . , m}, starting from X, we
generate K simple random samples of size n + 1, (X1,k, . . . , Xn+1,k), k = 1, . . . , K . For
each of them, we can consider the maximum, i.e., Xn+1:n+1,k , k = 1, . . . , K . Then, we take
as estimate of the mean of the maximum order statistic in a sample of size n + 1 from X by

μ̂n+1:n+1 = 1

K

K∑
k=1

Xn+1:n+1,k .

Using similar techniques, we can get estimates for the second moment of the largest order
statistic and the first and second moments of the smallest order statistic and, in analogy with
Eq. 26, we obtain estimates for the other cumulative entropies, ĈE(X), Êw(X), ĈEw

(X).

Example 7 By using the function exprnd of MATLAB, we generated a sample of size
N = 1000 values from an exponential distribution with parameter 1. We obtain estimates
for cumulative entropies stopping the sum at m = 100. For each sample size n from 2 to 101

Table 2 Approximations of cumulative entropies in the exponential case

Entropy Theoretical value Estimator

CRE 1 0.9220

CE 0.6449 0.6331

WCRE 2 2.1119

WCE 0.8470 0.8735
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Table 3 Experimental results for testing exponentiality

Distribution Success with threshold 0.1 Success with threshold 0.25

Exponential(1) 757 999

chi–square(3) 206 620

Weibull(3,4) 0 0

we generate K = 100 random samples of size n by the function randsample. In Table 2,
we compare these results with the corresponding theoretical results.

4.2 Application to Test for Exponentiality

We recall a result proved in Rao et al. (2004) about the maximum cumulative residual
entropy for fixed moments of the first and second order.

Theorem 7 Let X be a non-negative random variable. Then,

E(X) ≤ E(X(μ)),

whereX(μ) is an exponentially distributed random variable with meanμ = E(X2)/2E(X).

There are many situations in which we have a sample and we want to investigate about
the underlying distribution, and in some of these situations, it may be of interest to test if
the data are distributed according to an exponential distribution. In the literature, there are
several papers about testing exponentiality of data; see, for example, Balakrishnan et al.
(2007).

From Theorem 7, we know that the CRE of X is lower than E(X2)/2E(X) because,
for an exponential random variable Y , we have E(Y ) = E(Y ). If we have the realization
of a sample X = (X1, . . . , XN), we can consider the difference between the estimate of
CRE, given in Eq. 26, and μ̂(2)/2μ̂, where μ̂ and μ̂(2) are given by the arithmetic means
of X1, . . . , XN and X2

1, . . . , X
2
N , respectively. If this difference is small enough in absolute

value, we may suppose that the data are exponentially distributed and, as the difference
increases, it becomes less plausible that the sample is exponentially distributed.

We fixed as threshold values 0.1 and 0.25 and we tested data generated in MATLAB
from different distributions. For each distribution, we generated K = 1000 samples of size
N = 1000, Xk , and the obtained results are presented in Table 3, where the success with
threshold α, S(α), is given by

S(α) = #{k ∈ {1, . . . , K} : |Ê(Xk) − μ̂
(2)
k /2μ̂k| < α}.

It will, of course, be of interest to develop a formal testing procedure along these lines.
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