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Abstract: This work presents a microwave reflectometry-based system for monitoring large concrete
structures (during the curing process and also while the structure is in use), through the combined
use of punctual and diffused sensing elements. In particular, the adoption of punctual probes on
a reference concrete specimen allows the development of an innovative and accurate calibration
procedure, useful to obtain the value of the water content on a larger structure made of the same
material. Additionally, a wire-like diffused sensing element can be permanently embedded in
buildings and used to monitor the structure along the entire length of the sensing element. The
adopted diffused sensing element can be used not only to detect dielectric variation during the curing
process, but also throughout the service life of the structure. The combined use of punctual and
diffused sensing elements represents an important innovation from a procedural point of view, able
to provide detailed and quantitative information on the health status of the structure both during
and after construction.

Keywords: microwave reflectometry; era 4.0; frequency domain reflectometry; time domain reflec-
tometry; structural health monitoring; concrete; microwave measurements; dielectric permittivity;
water content; construction 4.0

1. Introduction

Construction 4.0 indicates the digital transformation of the construction sector, and
it includes the introduction of digital solutions to build faster, cheaper and smarter mon-
itoring solutions for maintenance and prognostics [1–8]. In this regard, the application
of innovative Information and Communication Technology-based monitoring strategies
contributes to this goal. Attention must be paid to monitoring in order to ensure the
longevity and efficiency of the built environment. Concrete is one of the most used struc-
tural materials in the civil engineering industry thanks to its relatively low material cost,
high durability and versatility. These properties are intrinsically related to the concrete
curing procedure [9] and also to the monitoring and consequent timely intervention in case
of any anomaly or degradation phenomena. The possibility to monitor ex-ante and ex-post
any structure is a key factor in the era of Construction 4.0 [10–12].

As well known, the hardening phase begins immediately after setting, with a series of
physical and chemical interactions between cement and mixing water and this phase is con-
sidered completed within the first 28 days, period when an accurate monitoring is essential.
A premature removal of formworks may lead to an insufficient strength of the structure and
to the presence of cracks, ultimately leading to the collapse of the entire structure [13,14].
Concrete curing occurs through water evaporation and re-arrangement of particles within
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the mix, resulting in a decrease of the concrete volume and in the development of internal
possible strains that can cause the so-called shrinkage strain, responsible for the small
cracks appearing after the curing process. The adoption of innovative, accurate and reliable
techniques for monitoring the concrete curing of a structure is one of the key pillars of
Construction 4.0, as any technological innovation is always based on the principles of
ensuring the life safety.

On the other hand, an ex-post monitoring through an embedded low-cost diffused
sensing element can be able to promptly detect deterioration of the structures, due to age
or environmental loads as floods, for example in the case of dams [15].

Starting from these considerations, in this paper, an innovative, real-time, low cost,
with portable instrumentation concrete monitoring technique based on microwave reflec-
tometry is proposed, through the combined use of diffuse sensing elements and punctual
probes. The goal of the proposed method is twofold: (1) an ex-ante monitoring of concrete
curing with PCPs and a specific calibration procedure; and (2) an ex-post monitoring,
carried out through diffuse sensing elements, for the detection of dielectric anomalies as a
result of degradation or stress of the structure.

With regard to the ex-ante monitoring, in fact, concrete exhibits good performance
throughout the service life of the structure when the concrete curing proceeds correctly
and completely. For this reason, an innovative and accurate calibration procedure (to be
performed in each specific application case) becomes a key element in the concrete curing
process, allowing to assess the water content value of the structure by simply considering
that of a concrete specimen. Additionally, there are special cementitious compounds that
employ additives that reduce the setting time of concrete, for very fast constructions. In
these cases, the water content is a useful parameter to consider when analyzing the quality
and setting status of concrete.

On the other hand, the continuous ex-post monitoring through permanent, diffuse
sensing elements can give early indications of structural problems. In this way, thanks to the
detection of electrical impedance variations or dielectric variations caused by degradation
phenomena through the diffuse sensing elements, safety measures can be considered in
time, and intervention on the structure can be performed immediately.

The present work is organized as follows. Section 2 addresses the motivations of the
work and provides an overview of state-of-the-art solutions for monitoring concrete curing.
Section 3 describes the basic theoretical background behind the proposed system and
Section 4 describes the used experimental setup. Experimental results, with the use of the
adopted methodological procedures as an innovative MATLAB algorithm to extrapolate
the water content of a large structure, are reported in Section 5. Finally, the conclusions
and the future work are outlined in Section 6. Appendix A details the fitting model used to
extrapolate the calibration surface.

2. State of the Art and Rationale of the Present Work

The properties of concrete are often examined through stress and compression resis-
tance tests on core samples extracted from the structure. Materials are analyzed through
techniques to destroy them, which could also cause damage to the concrete building, which
is an unintended option. In recent years, the focus is mainly on non-destructive strength
evaluation techniques [16,17], which are born as a response of the need for structural dam-
age detection and prevention. There are different types of non-desctructive tests depending
on the fundamental principle on which they are based: thermal, acoustic, electrical, mag-
netic, optical, radiographic and mechanical. Many of these techniques, however, exhibit
significant limitations for practical use.

At the current state of the art, calorimetry represents the standard method to monitor
the hydration process of concrete: in fact, the hydration balance of cement is exothermic,
and for this reason, hydration can be monitored by measuring the heat released by means
of an isothermal calorimeter [18–20]. This method has an important limitation: especially
during the final stage of hydration, the material emits little heat and the technique is not
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very sensitive. The material also must be placed in a thermostatic enclosure, so calorimetry
can only be applied in the laboratory and not in situ [21]. Methods based on plastic optical
fibers [22] exploit the transmission power loss due to the fiber micron-bending, which
can be associated to the curing process, have the same problem of reduced sensitivity.
Other methods use a combination of the Acoustic Emission (AE) Technique with linear
and nonlinear ultrasonic/elastic wave spectroscopy [23], but, in this case, the curing cell
used for monitoring the hardening process in young concrete is very complex (including
AE sensors, thermocouples and compressional and shear transducers). As additional
drawback, the sample must be placed in a climate chamber, thus limiting the in situ analysis.
Techniques based on electromagnetic probing are widely used for evaluation of concrete
curing [24–26], because the electrical and dielectric response of a porous material are
strongly dependent on the water content of the sample, but, in most cases, sensors working
at a single frequency are used [27,28]: the internal water content of the samples could be
measured by tracking the changes in the sensor’s resonant frequency. A single-frequency
monitoring may not be completely exhaustive compared to a broadband monitoring that
provides more information about the electromagnetic interaction between the test signal
and the material under test.

Based on these considerations, this work proposes an innovative strategy based to
microwave reflectometry for monitoring concrete curing. In particular, a dual sensor
system with diffuse sensing element (d-SE) and punctual coaxial probes (PCPs) was
used for the intended purposes. The punctual detection is used to identify a calibration
procedure using a reference concrete specimen. This procedure allows to relate the data
collected in the frequency range of interest to the value of water content. A dedicated
algorithm was developed in order to employ the calibration procedure carried out on the
specimen, even on the large structure from which the specimen was extracted. This aspect
is particularly important because structures of large dimensions cannot be weighed or
subjected to the gravimetric procedure: the adoption of a dedicated algorithm that exploits
PCPs on a reference concrete specimen allows to circumvent this limit. As an additional
detection capability, a long diffused wire-like low-cost sensing element, permanently
embedded in buildings, is used to get feedback along the entire profile of the structure and
to detect possible dielectric variations both during the curing process and also throughout
the service life. The combined use of punctual and diffused can provide detailed and
quantitative information on the state of hydration and health of the structure. Ultimately, a
broadband and low cost reflectometric system using both PCPs and d-SEs with strategic
methodological procedure was validated.

3. Theoretical Background

Microwave reflectometry is an electromagnetic (EM) measurement technique, em-
ployed for a number of diagnostics and monitoring applications. While one of the major
application fields remains soil moisture content monitoring [29–32], this technique is also
largely used for applications such as leak localization in underground pipes [33–35]; the
characterization of devices [36]; etc.

In microwave reflectometry, an EM test signal is propagated through a sensing element
inserted in the system under test (SUT). As a result of the dielectric interaction with the
SUT, the test signal is partially reflected towards the measuring instrument. Through the
analysis of the reflected signal and through an application-tailored processing, it is possible
to retrieve the desired information on the SUT (e.g., water content; structural defects; liquid
level; etc.).

Microwave reflectometry-based measurements can be performed either in time do-
main (time domain reflectometry—TDR) or in frequency domain (frequency domain
reflectometry—FDR). Depending on the specific application, one approach may be more
suitable than the other. In this work, a combined method is used: in particular, TDR
technique is used with d-SEs and FDR technique is used with PCPs.
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In TDR measurements, the EM stimulus is usually a step-like signal that propagates
along the SE, through the SUT, and any impedance variation, generally due to changes in
dielectric properties, causes the partial reflection of the propagating signal. The reflection
coefficient ρ is acquired by the TDR instrument, and its value is displayed as a function of
time (or as a function of the traveled apparent distance, dapp). It is expressed as:

ρ =
vre f l(t)
vinc(t)

(1)

where, vre f l(t) is the amplitude of the reflected signal and vinc(t) is the amplitude of the
incident signal.

The quantity dapp represents the distance the EM signal would travel, in the same time
interval, if it was propagating in vacuum. In fact, the signal propagation velocity inside the
medium depends on the dielectric properties of the material in terms of effective relative
dielectric permittivity εapp, which describes the interaction between the electromagnetic
signal and the SUT. Knowing the physical length of the SE (Lreal), it is possible to obtain
the effective dielectric constant of the material in which the probe is inserted through the
estimation of the apparent length (Lapp) evaluated from the reflectogram.

εapp =

(
Lapp

Lreal

)2
(2)

FDR is often used for the characterization of the dielectric behavior of materials. FDR
measurements are generally carried out by connecting the sensing element to a vector
network analyzer (VNA), which is used to measure the reflection scattering parameter,
S11( f ). In this case, the excitation signal is a sinusoidal signal whose frequency is swept
over the desired range of analysis. Clearly, frequency-domain data can also be obtained
starting from TDR measurements and applying the Fourier transform. An advantage
of the frequency-domain approach is that, in this domain, it is possible to employ well-
established error correction models that, through specific calibration procedures (such as
the short-open-load calibration), can reduce the influence of systematic errors [37,38].

4. Materials and Methods
4.1. Experimental Setup

For the validation of the proposed monitoring system, two structures were prepared
from the same concrete mix: (1) a beam with dimensions 300 cm× 25 cm× 25 cm; and (2) a
cubic specimen with sides 15 cm. Figure 1 shows a sketch of the experimental setup.

As mentioned in the Section 1, two types of sensing element were used to implement
the proposed monitoring system: a PCP and a d-SE.

Figure 2a shows a sketch of the PCP. The PCPs used were N-type connectors. Clearly,
this probe configuration could provide information on a very limited volume. As detailed
in the following section, this probe was used for punctual, off-site measurements.

One PCP was used in the specimen and one in the beam. As detailed later, the PCP in
the specimen allowed us to obtain a calibration curve from measurements on the specimen,
which could later be used for on-site measurements. On the other hand, the PCP in the
beam was used to verify that the MR response of the specimen was consistent and in
accordance with the specimen results.

Figure 2b shows a sketch of the diffused sensing element. This consisted of two
conductors that ran parallel to each other and were mutually insulated through a plastic
jacket. This sensing element configuration, d-SE, provided a diffused monitoring of the
SUT. In practical applications, the d-SE was permanently embedded in the SUT; one end of
the d-SE remained accessible for carrying out measurements.
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(a) (b)

Figure 1. Sketch of the experimental measurement setup: (a) reference concrete specimen with an
embedded PCP; (b) concrete beam with embedded a PCP and a d-SE.

(a) (b)

Figure 2. Sketch of the adopted sensing elements: (a) Punctual Coaxial Probe (PCP) with dimension
in mm; (b) Diffused Sensing-Element (d-SE).

Generally, d-SEs can be permanently embedded in buildings, structures, infrastruc-
tures at the time of construction, and they are capable to return a response based on diffuse
dielectric characteristics of the structure, also particularly useful for early identification of
destructive phenomena.

From Figure 2b, it can be noticed that the diffused SE also included a coaxial cable,
parallel to the two wires. The coaxial cable served the purpose of evaluating the actual
length of the SE. In fact, because the dielectric characteristics of the coaxial cable are known
and independent of the concrete, by propagating the TDR signal along the coaxial cable, it
is possible to evaluate the actual distance of the SE from (2), as reported in [33]. Clearly,
on a laboratory scale, this step may be avoided, since the physical length of the SE can be
easily measured; however, in practical applications in building structures, the length of the
embedded SEs is not necessarily known in advance.

As described later in Section 5.5, however, the coaxial cable could also be sued for
ex-post monitoring for detecting possible mechanical stress and consequent deformations
of the concrete structures.
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Figure 3 shows the pictures of the experimental setup. Two measuring instruments
were used: a Campbell-Scientific TDR200 (Leicestershire, UK) (operating in the time do-
main) and a miniaturized VNA operating in the frequency domain (nanoVNA) (Amsterdam,
The Netherlands).

(a) (b)

Figure 3. Experimental setup for measurements on the concrete beam: (a) nanoVNA with PCP for
FDR measurements; (b) TDR with d-SE for TDR measurements.

The nanoVNA is a compact, low-cost VNA (dimensions 15 cm × 10 cm × 6 cm),
with 50 kHz–3 GHz frequency range. One of the advantages of FD measurements is the
possibility of carrying out a preliminary calibration procedure through measurements on
standard electrical loads (short, open, load-SOL), thus allowing to reduce the influence
of systematic errors. To this purpose, a preliminary calibration procedure was carried
out on each of the PCPs, before inserting them in the concrete samples. The calibration
data were stored in the software of the miniaturized VNA thus compensating for each
daily measurement.

The TDR200 is a low-cost, portable TDR measuring instrument, with approximate
dimensions 22 cm × 5 cm × 11 cm. The TDR200 generates a step-like voltage signal, with
a 200-ps rise time, which corresponds to a frequency bandwidth of approximately 1.7 GHz.

It is important to mention that the presence of steel in the concrete beam did not
affect the investigated method and the measurement results; this was also verified through
specific full-wave simulations carried out through CST Microwave Studio software (not
reported here for the sake of brevity).

4.2. Methodological Procedures and Description of the Experiments

The overall experimental procedure is outlined in Figure 4. It consisted of two major
phases: a calibration procedure (a) and the on-site monitoring procedure (b).

The first step required us to measure the |S11( f )| through FDR measurements on the
PCP inserted in the cubic specimen. These measurements were carried out daily over a
28-day period (in fact, generally, after this period, more than 90% of the overall mechanical
strength of a structure had developed). During the same observation period, the specimen
was weighed on a daily basis, and the corresponding volumetric water content (θ) was
evaluated through the gravimetric method. After 28 days, the obtained data were used
to obtained an empirical calibration surface relating the θ values of the specimen to the
|S11( f )|measurements.

The second phase of the procedure outlined in Figure 4 relates to the on-site monitor-
ing. The calibration surface obtained in the first step was used to infer the water content of
the beam, starting from on-site FDR measurements of the reflection scattering parameter
obtained from the PCP in the beam, |S11,meas( f )|. As detailed in the following section,
the evaluation of θ was carried out through a specifically-developed Matlab algorithm.
The algorithm extrapolated from the calibration surface the |S11( f )| curve that best fit
|S11,meas( f )|, and returned the unknown θ value.
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Finally, the θ values of the beam could also be associated to the distributed dielectric
characteristics of the beam, through TDR measurements on the d-SE. This allowed us to
obtain a diffused monitoring of the beam, starting from the combination of punctual and
elongated sensing elements.

Figure 4. Diagram of the combined monitoring procedure: Preliminary Calibration Procedure (left)
and procedure for on-site monitoring procedure (right).

5. Experimental Results
5.1. Preliminary Calibration Procedure

Figure 5 shows a picture of the preparation of the cubic specimen with an embedded
PCP. The reference specimen was used to carry out the calibration procedure through
which the measurements made on the beam was correlated to the water content of the
beam structure.

The θ value of the cubic specimen during the 28-days period, was assessed through
the gravimetric method. The total weight varied from 7747.6 g (in the first day) to 7536.5 g
on the 29th day. The last weighing, after drying the specimen in an oven, was equal to
7325 g. This condition was considered as a reference dried condition (i.e., θ = 0 %) for the
sample. The measured θ values are summarized in Table 1.
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Table 1. Volumetric water content percentage in the concrete specimen throughout the
observation period.

Day θ [%] Day θ [%] Day θ [%] Day θ [%]

1 12.52 2 10.55 3 9.67 4 9.25
6 8.78 8 8.35 9 8.14 10 8.10

11 7.92 12 7.85 15 7.45 16 7.42
17 7.35 18 7.30 19 7.21 22 6.79
23 6.75 24 6.69 25 6.57 29 6.27

(a) (b)

Figure 5. Picture of the preparation of the reference concrete specimen. The PCP is inserted in the
fresh mixture.

During the observation period, the |S11( f )| of the PCP inserted in the specimen
was measured through the nanoVNA. Figure 6 shows the obtained results. It can be
noticed that, as the hydration proceeded, the |S11| curves shifted towards higher values
(and, accordingly, the water content decreased). The measurements were acquired in the
0–400 MHz frequency range, since in this frequency range, a better sensitivity was observed.
For FDR measurements, the specifications of the nanoVNA provided an instrumental
uncertainty of 2%.

0 50 100 150 200 250 300 350 400
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Figure 6. Trend of the S11 with each passing day in the cubic specimen case in 0–400 MHz.
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Each |S11( f )| curve was associated to the corresponding θ value of the specimen. This
resulted in a three-dimensional graph. The resulting 3D scattered plot was fitted with
MATLAB Curve Fitting Toolbox (see Appendix A), in order to obtain a calibration surface:

Θ = Θ( f , |S11( f )|) (3)

The graphical representation of the fitting is shown in Figure 7.

Figure 7. Graphical representation of the calibration surface.

5.2. Comparison of Results Obtained from the Specimen and from the Beam

To demonstrate that the calibration surface obtained from the specimen could also be
used for the beam monitoring, it was important to verify that the frequency behavior found
on the reference cubic specimen was consistent with that of the beam. To this purpose,
during the 28-day observation period, FD measurements were carried out also through the
PCP inserted in the concrete beam, as shown in Figure 3a. Overall, during the observation
period, a similar trend of the |S11| was observed from the PCP in the specimen and from
the PCP in the beam. For the sake of example, Figure 8 shows the comparison of the |S11|,
measured at 400 MHz, during the observation period: specimen (black squares) and beam
(red circles). To assess the agreement between the two curves, the root mean square error
(RMSE) was used a figure of merit. The obtained value was 0.0207. This low value indicates
that the curves obtained on the specimen were representative of those on the beam and that
it was safe to assume that the two structures exhibited the same dielectric characteristics.

5.3. Procedure for On-Site monitoring

As mentioned in Section 4.2, a dedicated automated algorithm was developed to
be used on site, for evaluating the volumetric water content of the beam, θb, using the
calibration surface. Figure 9 summarizes the major steps of the procedure; in this section,
the procedure is applied to the considered experimental case.
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Figure 8. Comparison of the |S11|, measured at 400 MHz, during the observation period: from the
PCP in the specimen (black squares) and from the PCP in the beam (red circles).

Figure 9. Flowchart of MATLAB algorithm developed to extrapolate the volumetric water content of
the beam using the calibration surface.
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Let us suppose that we wanted to assess θb at a generic day. The first step consisted
in measuring the |S11( f )| from the PCP in the beam, as shown in Figure 3a. The obtained
measurement points were considered as pairs ( fi, S11,i) with i = 1, . . . , N, where N is the
number of frequency points. Through a Matlab routine, we singled out from the calibra-
tion surface the moisture content values, θi, that corresponded to each of the measured
( fi, S11,i) pairs:

θi = Θ( fi, S11,i) i = 1, . . . , N (4)

Then, the algorithm calculated the average of the moisture content values obtained
from the previous step:

θav =
1
N

N

∑
i

θi (5)

Then, from the calibration surface (Θ), we calculated the iso-θ curves that corresponded
to a constant value of θ, with a step of 0.1%, in an interval around the value of θav.

The final step consisted in comparing the measured |S11| curve with each of the iso-θ.
In fact, the measured |S11| curve could be considered as an iso-θ curve for which the θ
value was unknown. The aforementioned comparison was carried out in terms of RMSE. In
particular, the algorithm automatically identified the iso-θ curve that provided the lowest
RMSE with respect to the measured |S11|. The θ value that minimized the RMSE was the
volumetric water content associated to the beam, θb.

Figure 10 shows the iso-θ curves obtained in the considered experimental case. The
curve with circles indicates the measured |S11|. The lowest RMSE between the measured
|S11| and the iso-θ curves corresponded to a volumetric water content θb of 9%. This
highlighted the great potential of this method. In fact, any structure (even a large one)
could be monitored in terms of water content using a reference specimen made from the
same concrete mix and two (or more) PCPs.

Figure 10. Comparison of the measured |S11( f )| (curve with red circles) and the iso-θ curves obtained
from Θ surface.
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5.4. TDR Measurements for On-Site Monitoring

The proposed monitoring systems also included TDR measurements with a diffused
sensing element (d-SE), as reported in Figures 2 and 3. This setup is useful for obtaining,
with a single d-SE, distributed measurements on the beam.

TDR measurements were carried daily throughout the observation period. Figure 11
shows the TDR reflectograms acquired from the d-SE, on the first and on the last days of the
observation period. From the reflectogram, it was possible to identify the beginning and
the end of the SE (denoted respectively by dB,app and dE,app, while the portion of the graph
before and after these two values referred to portion outside the beam). The corresponding
apparent length of the SE, Lapp, could be calculated as

Lapp = dE,app − dB,app (6)

It should be mentioned that the abscissae dB,app and dE,app could be identified automat-
ically through the so-called derivative method (not discussed herein for the sake of brevity):
in fact, the first derivative of the reflectogram emphasizes the variation that correspond to
these points and facilitates the evaluation [33]. As can be seen from Figure 11, because of
the hydration process, dE,app shifted towards lower values. This indicates that the apparent
length Lapp of the d-SE decreased with decreasing dielectric permittivity εapp of the SUT.
This phenomenon was related to the evaporation of water as the hydration proceeded.

3 6 9 12 15
0.2

0.4

0.6

0.8

1.0

1.2

(d
im

en
sio

nl
es
s)

dapp (m)

 Day #1
 Day #28

dB,app dE,app

Lapp

days

Figure 11. TDR reflectograms acquired through the d-SE, for the concrete beam on day #1 and #28.

From each daily TDR reflectogram, the apparent length of the d-SE, Lapp, was eval-
uated using (6). Employing Equation (2), the corresponding εapp can be calculated. The
variation of εapp in time is shown in Figure 12. It appears that the value of εapp varied more
quickly in the first 4 days after setting, and then settles after approximately 8–9 days. The
reason is that the major physical interaction of water with the concrete mixture occurred
during this first period; as a result, the dielectric permittivity of the mixture also underwent
the most significant variations during this time interval, before settling to an approximately
constant value. This behavior was most probably related also to the variation of mechanical
strength developed by the structure, which increased rapidly in the first period after setting
the concrete, and then started to settle in time.
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Figure 12. Trend of εapp during the hydration process.

The final step, as shown in the flowchart in Figure 4, was to relate the obtained
permittivity values to the water content obtained from the algorithm, in order to obtain a
new εapp-θ empirical relationship to monitor the structure along a diffuse profile, as shown
in Figure 13. This step could be carried out because, as can be seen from Figure 11, the
reflectometric signal could be considered practically constant along the length of the d-SE
and this meant that there were no significant variations of water content along the beam;
hence, we could consider a homogeneous value of θ.

It should be mentioned that in Figure 13, each measurement point was obtained from
measurements that were carried out on a daily basis. Because the variations of water
content and (consequently) of εapp are more rapid in the first days after setting, then the
εapp-θ points appear sparser in the upper-right portion of the graph.

[%
]

app

Model Power1
Equation y = A*(abs(x-xc)
Plot um
xc 3.67664 ± 0.002
A 13.4641 ± 0.362
P 0.12322 ± 0.010
Reduced Chi- 0.09115
R-Square (CO 0.96441
Adj. R-Square 0.95848

Figure 13. εapp-θ empirical relationship.
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5.5. Mechanical Tests on the Beam

The d-SEs are also particularly useful in the identification of degradation phenomena
occurred ex-post along the structure, thanks to their ability to immediately identify a
dielectric variation in correspondence of an incipient failure. In this case, alert mechanisms
could also be used to promptly intervene in case of incipient cracks.

Mechanical tests on the beam were carried out for validation purposes of ex-post
concrete strength monitoring. The tests were conducted to analyze whether the diffuse
sensor cable is sensitive to mechanical deformation. The beam was subjected to several
tests with concentrated weights varying from 1000 kgf to 9000 kgf, with an increase of
1000 kgf at each test. More specifically, the beam was tested under four-point bending with
a net span of 2.8 m and a shear span of 0.95 m. Load was applied by means of a 100-ton
hydraulic jack connected to a manual pump and recorded with a 30-ton load cell. Figure 14
shows a picture of the test setup.

Figure 14. Experimental setup post-mechanical tests on the beam.

During the mechanical test, also TDR measurements were carried out on the d-SE. As
explained in Section 4.1, the d-SE also includes a coaxial cable, useful for evaluating the
actual length of the SE but also sensitive to deformation and/or compression phenomena.
As known from the theory, the impedance of the coaxial cable depends on the diameter of
the inner and outer conductors, for which the deformation of the cable causes a variation
of electrical impedance that we immediately identify from the measurements. As shown in
Figure 15, as the weight applied to the beam increased, the reflection coefficient decreaseds,
and the apparent distance increased, indicating the deformation and bending of the cable.

These mechanical tests highlighted how the diffuse sensing element could detect any
degradation phenomena in time, for accurate ex-post monitoring of the strength and health
of the concrete.
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Figure 15. TDR reflectograms and first derivatives acquired through the coaxial cable of the d-SE, for
the concrete beam in the different compression conditions.

6. Conclusions and Future Works

In this work, a combined punctual and diffused approach for smart monitoring of
concrete structures was presented. The use of punctual sensors on a reference concrete
specimen allowed to implement an innovative procedure for extrapolating the water
content of large structures, based on measurements carried out on small specimens. This is
particularly useful for allowing accurate monitoring of the hydration process of concrete
structures. While pouring the concrete mix for a building, in fact, it is easy to use the same
concrete mix to obtain a small sample on which to perform the needed measurements and
the gravimetric procedure (not feasible on large concrete structures). Hence, a dedicated
algorithm was developed to relate on-site measurements to a water content value using
the calibration surface obtained from the specimen having the same dielectric properties as
the structure to be monitored.

Finally, the simultaneous use of d-ES also allows to monitor ex-post the large con-
crete structure throughout its service life, both in terms of water content and possible
mechanical deformation.

Future work will be dedicated to the comparison with other traditional measurement
techniques and to the possibility of relating the water content data to the strength properties
developed by the structure during the hydration period.
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Appendix A. Fitting

To fit all points, a 4th-degree polynomial and a 3rd-degree polynomial were chosen,
for the f axis and for the |S11| axis, respectively.

Figure A1. Description of the fit function and of the resulting coefficients.
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