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Abstract 

Background:  Feature reproducibility and model validation are two main challenges of radiomics. This study aims to 
systematically review radiomic feature reproducibility and predictive model validation strategies in studies dealing 
with CT and MRI radiomics of bone and soft-tissue sarcomas. The ultimate goal is to promote achieving a consensus 
on these aspects in radiomic workflows and facilitate clinical transferability.

Results:  Out of 278 identified papers, forty-nine papers published between 2008 and 2020 were included. They 
dealt with radiomics of bone (n = 12) or soft-tissue (n = 37) tumors. Eighteen (37%) studies included a feature repro-
ducibility analysis. Inter-/intra-reader segmentation variability was the theme of reproducibility analysis in 16 (33%) 
investigations, outnumbering the analyses focused on image acquisition or post-processing (n = 2, 4%). The intraclass 
correlation coefficient was the most commonly used statistical method to assess reproducibility, which ranged from 
0.6 and 0.9. At least one machine learning validation technique was used for model development in 25 (51%) papers, 
and K-fold cross-validation was the most commonly employed. A clinical validation of the model was reported in 19 
(39%) papers. It was performed using a separate dataset from the primary institution (i.e., internal validation) in 14 
(29%) studies and an independent dataset related to different scanners or from another institution (i.e., independent 
validation) in 5 (10%) studies.

Conclusions:  The issues of radiomic feature reproducibility and model validation varied largely among the studies 
dealing with musculoskeletal sarcomas and should be addressed in future investigations to bring the field of radiom-
ics from a preclinical research area to the clinical stage.
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Key points

•	 Radiomic studies focused on CT and MRI of muscu-
loskeletal sarcomas were reviewed.

•	 Feature reproducibility analysis and model validation 
strategies varied largely among these studies.

•	 Radiomic feature reproducibility was assessed in less 
than half of the studies.

•	 Only 10% of the studies included an independent 
clinical validation of the model.

Background
Bone and soft-tissue primary malignant tumors or sarco-
mas are rare entities with several histological subtypes, 
and each has an incidence < 1/100,000/year [1, 2]. Among 
them, osteosarcoma is the most common sarcoma of the 
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bone. Along with Ewing sarcoma, it has a higher inci-
dence in the second decade of life, while chondrosarcoma 
is the most prevalent bone sarcoma in adulthood [1]. The 
most frequent soft-tissue sarcomas are liposarcoma and 
leiomyosarcoma [2]. Due to the rarity of these diseases, 
bone and soft-tissue sarcomas are managed in tertiary 
sarcoma centers according to current guidelines [1, 2]. 
Both biopsy and imaging integrate clinical data prior to 
the beginning of any treatment, with the former repre-
senting the reference standard for preoperative diagno-
sis [1, 2]. However, biopsy may be inaccurate in large, 
heterogeneous tumors due to sampling errors, and, in 
turn, inaccurate diagnosis may lead to inadequate treat-
ment and subsequent need for further interventions, 
with increased morbidity. Additionally, the risk of biopsy 
tract contamination remains a concern. Imaging already 
plays a pivotal role in the assessment of bone and soft-
tissue sarcomas. Magnetic resonance imaging (MRI) and 
computed tomography (CT) are employed for local and 
general staging, respectively [1, 2]. These modalities may 
certainly benefit from new imaging-based tools such as 
those based on radiomics, which may potentially pro-
vide additional information regarding both diagnosis and 
prognosis noninvasively [3].

The term “radiomics” derives from a combination 
of “radio,” referring to medical images and “omics,” 
which indicates the analysis of high amounts of data 
representing an entire set of some kind, like genome 
(genomics) and proteome (proteomics) [3]. Therefore, 
“radiomics” includes extraction and analysis of large 
numbers of quantitative parameters, known as radiomic 
features, from medical images [4]. This technique has 
recently gained much attention in oncologic imaging as it 
can potentially quantify tumor heterogeneity, which can 
be challenging to capture by means of qualitative imaging 
assessment or sampling biopsies. Particularly, radiomic 
studies to date have focused on discriminating tumor 
grades and types before treatment, monitoring response 
to therapy and predicting outcome [5].

Despite its great potential as a noninvasive tumor 
biomarker, radiomics still faces challenges preventing 
its clinical implementation. Two main initiatives have 
addressed methodological issues of radiomic studies to 
bridge the gap between academic endeavors and real-life 
application. In 2017, Lambin et  al. proposed the Radi-
omics Quality Score that details the sequential steps to 
follow in radiomic pipelines and offers a tool to assess 
methodological rigor in their implementation [6]. In 
2020, the Image Biomarkers Standardization Initiative 
produced and validated reference values for radiomic 
features, which enable verification and calibration of dif-
ferent software for radiomic feature extraction [7]. How-
ever, numerous challenges still remain to ensure clinical 

transferability of radiomics. As radiomics is essentially a 
two-step approach consisting of data extraction and anal-
ysis, in the first step (i.e., data extraction), the main chal-
lenge is reproducibility of radiomic features, which can 
be influenced by image acquisition parameters, region 
of interest segmentation technique and image post-
processing technique [8, 9]. In the second step (i.e., data 
analysis), models can be built upon either conventional 
statistical methods or machine learning algorithms with 
the aim of predicting the diagnosis or outcome of inter-
est. In either case, the main challenge is model validation 
[9].

The challenges of reproducibility and validation strat-
egies in radiomics have been recently addressed in a 
review focusing on renal masses [10]. The aim of our 
study is to systematically review radiomic feature repro-
ducibility and predictive model validation strategies in 
studies dealing with CT and MRI radiomics of bone and 
soft-tissue sarcomas. The ultimate goal is to promote and 
facilitate achieving a consensus on these aspects in radi-
omic workflows.

Methods

Reviewers
No Local Ethics Committee approval was needed for this 
systematic review. Literature search, study selection, and 
data extraction were performed independently by two 
recently boarded radiologists with experience in muscu-
loskeletal tumors and radiomics (S.G. and F.M.). In case 
of disagreement, agreement was achieved by consensus 
of these two readers and a third reviewer with radiol-
ogy specialty and doctorate in artificial intelligence and 
radiomics (R.C.). The Preferred Reporting Items for Sys-
tematic reviews and Meta-Analyses (PRISMA) guidelines 
[11] were followed.

Literature search
An electronic literature search was conducted on 
EMBASE (Elsevier) and PubMed (MEDLINE, U.S. 
National Library of Medicine and National Institutes of 
Health) databases for articles published up to Decem-
ber 31, 2020, and dealing with CT and MRI radiomics of 
bone and soft-tissue sarcomas. A controlled vocabulary 
was adopted using medical subject headings in PubMed 
and the thesaurus in EMBASE. Search syntax was built 
by combining search terms related to two main domains, 
namely “musculoskeletal sarcomas” and “radiomics.” The 
exact search query was: (“sarcoma”/exp OR “sarcoma”) 
AND (“radiomics”/exp OR “radiomics” OR “texture”/
exp OR “texture”). Studies were first screened by title 
and abstract, and then, the full text of eligible studies was 
retrieved for further review. The references of selected 
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publications were checked for additional publications to 
include.

Inclusion and exclusion criteria
Inclusion criteria were: (1) original research papers pub-
lished in peer-reviewed journals; (2) focus on CT or MRI 
radiomics-based characterization of sarcomas located in 
bone and soft tissues for either diagnosis- or prognosis-
related tasks; (3) statement that local ethics committee 
approval was obtained, or ethical standards of the institu-
tional or national research committee were followed.

Exclusion criteria were: (1) papers not dealing with 
mass characterization, such as those focused on com-
puter-assisted diagnosis and detection systems; (2) 
papers dealing with head and neck, retroperitoneal or 
visceral sarcomas; (3) animal, cadaveric or laboratory 
studies; (4) papers not written in English language.

Data extraction
Data were extracted to a spreadsheet with a drop-down 
list for each item, as defined by the first author, grouped 
into three main categories, namely baseline study char-
acteristics, radiomic feature reproducibility strategies, 

and predictive model validation strategies. Items regard-
ing baseline study characteristics included first author’s 
last name, year of publication, study aim, tumor type, 
study design, reference standard, imaging modality, data-
base size, use of public data, segmentation process, and 
segmentation style. Those concerning radiomic feature 
reproducibility strategies included reproducibility assess-
ment based on repeated segmentations, reproducibil-
ity assessment related to acquisition or post-processing 
techniques, statistical method used for reproducibility 
analysis, and cut-off or threshold used for reproducibil-
ity analysis. Finally, data regarding predictive model vali-
dation strategies included the use of machine learning 
validation techniques, clinical validation performed on 
a separate internal dataset, and clinical validation per-
formed on an external or independent dataset.

Results

Baseline study characteristics
A flowchart illustrating the literature search process is 
presented in Fig. 1. After screening 278 papers and apply-
ing our eligibility criteria, 49 papers were included in this 

Fig. 1  PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) flowchart of systematic identification, screening, eligibility and 
inclusion information from retrieved studies
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systematic review. Tables 1 and 2 detail the characteris-
tics of papers dealing with radiomics of bone (n = 12) and 
soft-tissue (n = 37) tumors, respectively.

All studies were published between 2008 and 2020. 
Twenty-three out of 49 investigations (47%) were pub-
lished in 2020, 14 (29%) in 2019, 4 (8%) in 2018, and 8 
(16%) between 2008 and 2017. The design was prospec-
tive in 6 studies (12%) and retrospective in the remain-
ing 43 (88%). The imaging modality of choice was MRI 
in 42 (86%), including one or multiple MRI sequences, 
and CT in 7 (14%) cases. The median size of the data-
base was 60 patients (range 19–226). Public data were 
used only in 3 (6%) studies.

The research was aimed at predicting either diagnosis 
or prognosis, as follows: benign versus malignant tumor 
discrimination (n = 14); grading (n = 10); tumor histotype 
discrimination (n = 4); proliferation index Ki67 expres-
sion (n = 1); survival (n = 12); response to therapy, either 
chemotherapy or radiotherapy (n = 8); local and/or met-
astatic relapse (n = 9). It should be noted that the aim 
was twofold in some studies, as detailed in Tables 1 and 
2. In those focused on diagnosis-related tasks, including 
benign versus malignant discrimination, grading, tumor 
histotype discrimination, and proliferation index expres-
sion, histology was the reference standard in all cases 
excepting benign lesions diagnosed on the basis of sta-
ble imaging findings over time in two papers [12, 13]. In 
studies focused on prediction of response to chemother-
apy or radiotherapy, the reference standard was histology 
if lesions were surgically treated, based on the percentage 
of viable tumor and necrosis relative to the surgical tissue 
specimen, or consistent imaging findings if lesions were 
not operated. In studies focused on prediction of tumor 
relapse, the diagnosis was based on histology or consist-
ent imaging findings, as the reference standard. In stud-
ies dealing with survival prediction, survival was assessed 
based on follow-up.

Regarding segmentation, the process was performed 
manually in 45 (92%) studies and semiautomatically in 
4 (8%) studies. In no case, the segmentation process was 
fully automated. The following segmentation styles were 
identified: 2D without multiple sampling in 11 (23%) 
studies; 2D with multiple sampling in 3 (6%); 3D in 35 
(71%). Of note, a single slice showing maximum tumor 
extension was chosen in all studies employing 2D seg-
mentation without multiple sampling, excepting one 
case [14] where it was chosen based on signal intensity 
homogeneity.

Reproducibility strategies
Eighteen (37%) of the 49 studies included a reproducibil-
ity analysis of the radiomic features in their workflow. In 
16 (33%) investigations [13, 15–29], the reproducibility of 

radiomic features was assessed on the basis of repeated 
segmentations performed by different readers and/or 
the same reader at different time points. Two (4%) stud-
ies presented an analysis to assess the reproducibility 
based on different acquisition [30] or post-processing 
[31] techniques. Of note, segmentations were validated 
by a second experienced reader in 15 studies [12, 32–45] 
without, however, addressing the issue of radiomic fea-
ture reproducibility.

The intraclass correlation coefficient (ICC) was the sta-
tistical method used in most of the papers reporting a 
reproducibility analysis [13, 15–18, 20, 22–25, 27–29, 31]. 
ICC threshold ranged between 0.6 [13] and 0.9 [22] for 
reproducible features. The following statistical methods 
were used less commonly: analysis of variance [30, 31]; 
Cronbach alpha statistic [26]; Pearson correlation coeffi-
cient [19], and Spearman correlation coefficient [21].

Validation strategies
At least one machine learning validation technique was 
used in 25 (51%) of the 49 papers. K-fold cross-validation 
was used in most of the studies [13, 25, 28, 31–33, 37, 38, 
40, 43, 44, 46–50]. The following machine learning vali-
dation techniques were used less commonly: bootstrap-
ping [42, 51]; leave-one-out cross-validation [34, 35, 41]; 
leave-p-out cross-validation [52]; Monte Carlo cross-
validation [23]; nested cross-validation [25, 27]; random-
split cross-validation [20]. Figure 2 provides an overview 
of machine learning validation techniques. Figure 3 illus-
trates an example of a radiomics-based machine learning 
pipeline.

Clinical validation
A clinical validation of the radiomics-based prediction 
model was reported in 19 (39%) of the 49 papers. It was 
performed on a separate set of data from the primary 
institution, i.e., internal test set, in 14 (29%) studies [15, 
16, 22, 24, 28, 31, 32, 35, 37, 38, 41, 46, 47, 52]. It was per-
formed on an independent set of data from the primary 
institution (related to a different scanner) or from an 
external institution, i.e., external test set, in 5 (10%) stud-
ies [25, 27, 29, 43, 51].

Discussion
This systematic review focused on the radiomics litera-
ture regarding MRI and CT of bone and soft-tissue sar-
comas with particular emphasis on reproducibility and 
validation strategies. The number of papers reporting the 
assessment of radiomic feature reproducibility and the 
use of independent or external clinical validation was rel-
atively small. This finding is in line with recent literature 
reviews showing that the quality of sarcoma radiomics 
studies is low [53, 54], which may hamper performance 
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Fig. 2  Overview of machine learning validation techniques. a Bootstrapping is based on resampling with replacement, allowing to create n 
datasets from an original sample. These may include any number of copies of a specific instance from the original case, even none. b K-fold 
cross-validation is based on dividing the dataset in k parts, using each in turn as the validation set and the remaining as the training data. c In 
leave-one-out cross-validation, each instance in the dataset is used for model validation, using the remaining for model training. d In nested 
cross-validation, two loops of validation take place. The training data from each outer loop undergo an additional K-fold cross-validation. The figure 
depicts a fourfold outer loop paired with a threefold inner loop. In (e) Monte Carlo and (f) random-split cross-validation, the folds are not made up 
of contiguous data but from random sampling of the entire dataset. During the first, a sample may appear in multiple folds, which is not possible in 
random-split cross-validation. g In leave-P-out cross-validation, the K-fold cross-validation process is iterated to obtain all possible folding splits for 
the data
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Fig. 2  continued
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generalizability of radiomic models on independ-
ent cohorts and, consequently, their practical applica-
tion [53]. Thus, these issues need to be addressed in the 
radiomic workflow of future studies to facilitate clinical 
transferability.

Baseline study characteristics
MRI and CT radiomics of bone and soft-tissue sarcomas 
have progressively gained attention in musculoskeletal 
and oncologic imaging. The number of papers has rapidly 
increased over the recent years, and almost half of those 
included in our review (47%) was published in 2020. 
Radiomics was used in attempt to answer clinical ques-
tions related to both diagnosis and prognosis of musculo-
skeletal sarcomas. Most studies (88%) were retrospective 
in nature, as this design allowed including relatively large 
number of patients with imaging data already available 
and bone or soft-tissue sarcomas, which are rare diseases. 
A prospective analysis, while not strictly necessary in 
radiomic studies [5], may, however, have advantages for 
controlling data gathering in reproducibility assessment 
and matching certain patient or imaging characteristics 
in independent datasets. Public data were used in no 

study regarding bone sarcomas and in a small propor-
tion of the studies (6%) concerning soft-tissue sarcomas. 
A public database [55] available on The Cancer Imaging 
Archive (https://​www.​cance​rimag​ingar​chive.​net) was 
used in all these studies. Public databases afford oppor-
tunities for researchers who do not have sufficient data at 
their institution and allow research groups from around 
the world to test and compare new radiomic methods 
using common data. Thus, research employing radiom-
ics in this field would certainly be enhanced if further 
imaging databases are made publicly available in the near 
future.

Regarding segmentation, the process was performed 
manually in most of the studies (92%) and semiauto-
matically in the remaining, both requiring human inter-
vention to some extent. Even though the influence of 
inter-observer and/or intra-observer variability on the 
reproducibility of radiomic features can be assessed as 
part of the radiomic workflow, fully automated segmen-
tation algorithms would ideally achieve higher reliability 
and deserve future investigation. Annotations included 
the entire lesion volume (3D segmentation) in most of 
the studies (71%) and a single slice (2D), without multiple 
sampling, in the remaining (23%). However, to date no 

Fig. 2  continued

https://www.cancerimagingarchive.net
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study has compared the outcome of 2D and 3D segmen-
tations in musculoskeletal sarcomas. As 2D annotations 
are time saving and have recently proven higher perfor-
mance than 3D segmentation in oropharyngeal cancers 
[56], this should represent another area of research in 
the near future. Of note, a limited number of studies (6%) 
used a 2D segmentation style with multiple sampling as 
a data augmentation technique to increase the number 
of labeled slices [26, 48, 57]. This practice can be useful 
for an uncommon entity as musculoskeletal sarcomas but 
should be employed with care to avoid the introduction 
of bias in the final model. The inclusion of samples from 
the same case in both the training and test sets could lead 
to overly optimistic results.

Reproducibility strategies
A great variability in radiomic features has emerged as 
a major issue across studies and attributed to different 
segmentation, image acquisition, and post-processing 
approaches [4]. Therefore, methodological analyses 
are advisable prior to conducting radiomic studies in 
order to assess feature robustness and avoid biases due 
to non-reproducible, noisy features. This concept is in 
line with recent literature emphasizing the importance 

of reproducibility in artificial intelligence and radiology 
[58]. In our review, we noted that about one third of the 
included papers described a reproducibility analysis in 
their workflow. In this subgroup of papers, inter- and/
or intra-reader segmentation variability was the main 
focus of the reproducibility analysis. Segmentation var-
iability-related analyses outnumbered those addressing 
reproducibility issues due to image acquisition or post-
processing differences, which were reported in one paper 
per each [30, 31]. This finding underlines that further 
research should deal with dependencies of radiomic fea-
tures on image acquisition and post-processing. While 
these analyses may already be performed in retrospective 
series, when patients underwent more than one study in 
a short interval, prospective studies could facilitate the 
identification of reliable radiomic features within this 
domain. Finally, ICC was the statistical method used in 
most of the papers evaluating radiomic feature reproduc-
ibility. Of note, guidelines for performing and assessing 
ICC are available and can be followed to achieve consen-
sus on the cutoff and threshold values [59].

Fig. 3  Example of a radiomics-based machine learning pipeline, listing the most commonly employed steps in an ideal order of execution
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Validation strategies
Proper validation of radiomic models is highly desirable 
to bridge the gap between concepts and clinical appli-
cation [53]. Machine learning validation techniques are 
employed to avoid any information leak from the test to 
the training set during model development [60]. Resam-
pling strategies can be extremely useful, especially with 
relatively limited samples of data, which may not be truly 
representative for the population of interest, with the aim 
of reducing overfitting and better estimating the perfor-
mance of the radiomics-based predictive model on new 
data (i.e., the test set) [61, 62]. K-fold cross-validation was 
the most commonly used technique for this task in the 
studies included in this review.

Ideally, in both prospective and retrospective studies, 
a clinical validation of the model is performed against 
completely independent sets of data, i.e., the external 
or independent test set [4]. We found that clinical vali-
dation was performed against an independent dataset 
from the primary institution (using different scanners) 
or from a different institution only in a small number of 
studies (10%) included in this systematic review. More 
studies (29%) validated the model using a separate set of 
data from the primary institution, i.e., an internal test set. 
Therefore, future studies should be carried out in more 
than one institution and include external testing of the 
model with large and independent sets of data.

Limitations and conclusions
This study is limited to a systematic review of the litera-
ture, and no meta-analysis was performed due to the lack 
of homogeneity between studies in terms of objectives 
and subgroups of sarcoma with a rather limited num-
ber of papers per each objective and subgroup. Different 
metrics were also used, preventing us from providing an 
estimation of model performance for each objective. Fur-
thermore, it was outside of the scope of the review to per-
form a formal assessment of the quality of each included 
study, as our focus was on reporting methodological 
data that can be in and of themselves quality indicators. 
Limitations notwithstanding, we reviewed the radiomics 
literature regarding bone and soft-tissue sarcomas with 
emphasis on the methodologic issues of feature repro-
ducibility and predictive model validation. They varied 
largely among the included studies, and, in particular, 
no reproducibility analysis was provided in more than 
half the papers. Additionally, less than half the studies 
included a clinical validation, and only 10% used an inde-
pendent dataset for this purpose. Thus, in order to bring 
the field of radiomics from a preclinical research area to 
the clinical stage, both these issues should be addressed 
in future studies dealing with musculoskeletal sarcomas.
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