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Abstract: Chronic respiratory infections are the main cause of morbidity and mortality in cystic fibrosis
(CF) patients, and are characterized by the development of multidrug resistance (MDR) phenotype
and biofilm formation, generally recalcitrant to treatment with conventional antibiotics. Hence, novel
effective strategies are urgently needed. Antimicrobial peptides represent new promising therapeutic
agents. Here, we analyze for the first time the efficacy of three versions of a cryptide identified in
human apolipoprotein B (ApoB, residues 887-922) towards bacterial strains clinically isolated from CF
patients. Antimicrobial and anti-biofilm properties of ApoB-derived cryptides have been analyzed by
broth microdilution assays, crystal violet assays, confocal laser scanning microscopy and scanning
electron microscopy. Cell proliferation assays have been performed to test cryptide effects on human
host cells. ApoB-derived cryptides have been found to be endowed with significant antimicrobial
and anti-biofilm properties towards Pseudomonas and Burkholderia strains clinically isolated from
CF patients. Peptides have been also found to be able to act in combination with the antibiotic
ciprofloxacin, and they are harmless when tested on human bronchial epithelial mesothelial cells.
These findings open interesting perspectives to cryptide applicability in the treatment of chronic lung
infections associated with CF disease.

Keywords: antibiotic resistance; cystic fibrosis; antimicrobial peptides; host defense peptides;
cryptides; anti-biofilm peptides; synergistic effects

1. Introduction

Cystic fibrosis (CF) is a rare autosomal recessive disease affecting 1 in 2500 newborns in Europe [1].
More than 2000 mutations have been identified in the Cystic Fibrosis Transmembrane conductance
Regulator (CFTR) gene and have been associated with the disease. CFTR gene encodes a chloride
ion channel whose malfunctioning causes the production of viscous secretions coating the airway
epithelia [2,3]. This phenomenon is responsible for the accumulation of trapped microbes, including
Pseudomonas aeruginosa, with consequent deterioration of lung tissue and impairment of respiratory
functions [4]. Indeed, chronic respiratory infections and inflammation are the main causes of death
in CF [5]. Despite aggressive antibiotic treatments, Pseudomonas strains often grow in CF lungs and
lead to chronic and recalcitrant infections characterized by a robust host inflammatory response [6,7].
Pulmonary infections due to the Gram-negative P. aeruginosa strain are the main cause of lung decline
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and death in patients suffering from CF [8–10]. P. aeruginosa colonization of host tissues is mediated by
an initial attachment of bacteria to epithelial cells [11,12], followed by internalization into cells [13–16].
This phenomenon protects bacteria from host defense mechanisms and from the killing action of
conventional antibiotics that hardly enter epithelial cells [17]. This is generally responsible for systemic
diffusion of bacteria and for the consequent chronic nature of P. aeruginosa lung infections [18]. Moreover,
chronic inflammation and mucus provide an environment favorable to the development of resistance
phenotype for bacteria in biofilms, thus hampering antibiotic efficacy [19]. Burkholderia species also
cause serious challenges in CF patients, even if infections associated with these strains are relatively
rare [20]. Indeed, a main post-transplant complication is represented by infections caused by multidrug
resistant (MDR) bacteria, with the Burkholderia species recognized as significant contributors to CF
morbidity and mortality associated with increased post-transplant death rate [21,22]. Conventional
antibiotics generally appear ineffective and their prolonged use is responsible for the development
of the MDR phenotype. The concomitant decrease in the pharmaceutical industry research pipeline
for novel antimicrobial agents during the last three decades has, thus, resulted in an urgent need
for the discovery of novel effective antimicrobial strategies [23]. In this scenario, naturally occurring
antimicrobial peptides (AMPs), or their derivatives, represent an appealing source for the generation
of new therapeutic agents able to treat chronic MDR bacterial infections [24,25]. AMPs are produced
by all living organisms as the first line of defense against invading microorganisms, and the majority of
them are characterized by net positive charge at neutral pH and by the tendency to form amphipathic
structures in a hydrophobic environment [26,27]. So far, hundreds of naturally occurring AMPs have
been isolated and characterized as highly efficacious, safe, and tolerable antimicrobials [28,29]. Being
able to selectively interact with bacterial cytoplasmic membranes in a manner not dependent upon
specific receptors, AMPs are generally endowed with broad-spectrum antimicrobial activity [30,31],
and several of them have been reported to combat biofilms because of their potent bactericidal activity
and their ability to first penetrate and then to disorganize biofilm structures [32]. Furthermore, AMPs
frequently synergize with antimicrobial compounds to repress molecular pathways leading to biofilm
development [32]. Here, we analyze for the first time the antimicrobial and anti-biofilm properties of
two recently characterized AMPs [33] towards Pseudomonas and Burkholderia strains clinically isolated
from CF patients. AMPs under test have been identified in human apolipoprotein B (ApoB) by using a
bioinformatic method developed by our research group [33–41]. Indeed, it is increasingly evident that
eukaryotic proteins, with functions not necessarily related to host defense, act as sources of “cryptic”
bioactive peptides released upon proteolytic processing by bacterial and/or host proteases [42–44]. We
previously characterized two variants of the cryptide identified in human ApoB (residues 887–922), i.e.,
peptides ApoB887–923 and ApoB887–911 [33]. These two host defense peptides (HDPs), recombinantly
produced in bacterial cells, have been here named r(P)ApoBL

Pro and r(P)ApoBS
Pro because of the

presence of a Pro residue becoming the N-terminus of the peptides released by the acidic cleavage of an
Asp-Pro bond [33,36]. Here, we also characterized a further peptide, i.e., a version of the longest peptide
characterized by the presence of an Ala residue instead of a Pro residue in position six of peptide
sequence, here named r(P)ApoBL

Ala. Peptides r(P)ApoBL
Pro and r(P)ApoBS

Pro have been previously
found to be endowed with antimicrobial, anti-biofilm, wound healing and immunomodulatory
properties, and are able to synergistically act in combination with either conventional antibiotics or
EDTA [33]. On the other hand, peptides have been found to be neither toxic nor hemolytic towards
mammalian cells [33]. It has been also demonstrated that electrostatic interactions between negatively
charged bacterial membranes and positively charged ApoB-derived AMPs play a key role in mediating
peptide toxicity, although they are strongly influenced by the composition of negatively charged
bacterial surfaces and by defined extracellular microenvironments [35]. Here, we demonstrate that
the three ApoB-derived cryptides exert significant antimicrobial and anti-biofilm effects towards
Pseudomonas and Burkholderia strains clinically isolated from CF patients and that they are able to act
in combination with the ciprofloxacin antibiotic, widely used to treat chronic lung infections in CF
patients [45]. Furthermore, ApoB-derived cryptides have been found to be not toxic when tested on
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human bronchial epithelial mesothelial cells. Altogether, these findings open interesting perspectives
to peptide applicability, suggesting the possibility to develop in the future successful combinatorial
therapeutic approaches, based on the concomitant administration of AMPs and conventional antibiotics,
with a consequently very low potential to induce a resistance phenotype.

2. Results

2.1. Evaluation of ApoB-Derived Peptide Effects on Clinically Isolated Baterial Strains

In order to evaluate the ApoB-derived peptide ability to counteract microbial infections in CF, their
effects were tested on six clinically isolated bacterial strains, i.e., P. aeruginosa RP 73, P. aeruginosa KK 27,
P. aeruginosa 14, P. aeruginosa AA2, Burkholderia multivorans LMG 17582, and Burkholderia cenocepacia
LMG 18863. To this purpose, the susceptibility of planktonic bacteria to ApoB-derived peptides
was examined by using broth microdilution method [33] that allows the measurement of minimum
inhibitory concentration (MIC) values. As reported in Table 1, the three ApoB-derived peptides under
test were found to exert antimicrobial effects on three out of six bacterial strains tested. In particular,
bacterial strains P. aeruginosa RP 73, P. aeruginosa KK 27, and B. multivorans LMG 17582 were found to
be susceptible to ApoB-derived peptide antimicrobial activity, with MIC100 values ranging from 5 to 40
µM (Table 1). Peptide r(P)ApoBL

Ala was found to be the most active in directly killing bacterial cells
(Table 1).

Table 1. Minimum inhibitory concentration (MIC) values determined for r(P)ApoBL
Pro, r(P)ApoBL

Ala

and r(P)ApoBS
Pro tested on clinically isolated bacterial strains.

MIC100 (µM)

r(P)ApoBL
Pro r(P)ApoBL

Ala r(P)ApoBS
Pro

P. aeruginosa RP 73 10–20 5–10 20–40

P. aeruginosa 14 >40 >40 >40

P. aeruginosa AA2 >40 >40 >40

P. aeruginosa KK 27 20–40 10–20 20–40

Burkholderia cenocepacia LMG 18863 >40 >40 >40

Burkholderia multivorans LMG 17582 10–20 10–20 20–40

2.2. Evaluation of ApoB-Derived Peptide Anti-biofilm Activity on Clinically Isolated Baterial Strains

2.2.1. Evaluation of ApoB-Derived Peptide Anti-Biofilm Activity by Microtiter Plate Assay

To evaluate whether recombinant ApoB-derived peptides are endowed with anti-biofilm activity,
analyses were performed on clinically isolated bacterial strains P. aeruginosa RP 73, P. aeruginosa KK 27,
P. aeruginosa 14, P. aeruginosa AA2, B. multivorans LMG 17582, and B. cenocepacia LMG 18863 in 0.5X
Mueller Hinton Broth (MHB). By following different experimental approaches, peptide effects were
tested on the three main stages of biofilm development, such as attachment, formation and detachment.
To test peptide effects on biofilm attachment, following overnight growth, a bacterial culture was
diluted into MHB medium containing increasing concentrations of the peptide under test (0–40 µM),
and incubated for 4 h at 37 ◦C [33]. When, instead, peptide effects were tested on biofilm formation,
the experimental procedure described above was followed with the only exception that bacterial cells
were incubated with increasing concentrations of peptides for 24 h at 37 ◦C [33]. Finally, the effects of
ApoB-derived peptides were tested on biofilm detachment [33]. In each case, following incubation with
peptides, biofilm was analyzed by staining with crystal violet. As shown in Figure 1, ApoB-derived
peptides have been found to be effective on biofilm attachment, with the greatest effects obtained in
the case of P. aeruginosa KK 27 and P. aeruginosa 14 bacterial strains for all the three peptides under test.
In the case of biofilm formation, the greatest effects were found to be exerted by r(P)ApoBL

Ala and
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r(P)ApoBS
Pro on P. aeruginosa 14 (~50% inhibition) (Figure 1). Even more interestingly, about 30%–40%

biofilm eradication was observed in the case of B. cenocepacia LMG 18863 upon treatment with 2.5 µM
r(P)ApoBL

Ala (Figure 1). A similar effect was obtained upon treatment of P. aeruginosa KK 27 preformed
biofilm with 2.5 µM r(P)ApoBS

Pro (Figure 1). Moreover, about 20% biofilm eradication was observed
upon treatment of P. aeruginosa RP 73 with very low concentrations (1.25 µM) of r(P)ApoBS

Pro.
Altogether, obtained data indicate that peptides exert anti-biofilm effects even on bacterial strains

not sensitive to their direct antimicrobial activity. In most of the cases, significant anti-biofilm effects
were detected at peptide concentrations (1.25–2.5 µM) lower than those required to directly kill
planktonic cells (Table 1 and Figure 1). Data reported in Figure 1 represent the mean ± standard
deviation (SD) of at least three independent experiments.

2.2.2. Evaluation of ApoB-Derived Peptides Anti-Biofilm Activity by Laser Scanning
Confocal Microscopy

In order to further investigate anti-biofilm properties of ApoB-derived peptides, analyses were also
performed by confocal laser scanning microscopy (CLSM). For this approach, we selected two bacterial
strains not responsive to ApoB-derived peptides direct antimicrobial activity, such as B. cenocepacia
LMG 18863 and P. aeruginosa 14. Peptide effects on biofilm attachment, formation and detachment were
evaluated upon sample staining with LIVE/DEAD BacLight bacterial viability kit. Analyses revealed
that all three peptides are able to affect biofilm attachment and formation in the case of B. cenocepacia
LMG 18863 (Figure 2). Even more interestingly, peptides are able to affect pre-formed biofilm with
the strongest effects observed in the presence of r(P)ApoBL

Ala (Figure 2). By staining bacterial biofilm
with SYPRO® ruby dye, which is able to specifically stain biofilm extracellular matrix, the appearance
of highly fluorescent aggregates is clearly evident upon treatment with peptides (Figure 2), thus
indicating that peptides induce strong alterations of biofilm matrix architecture, as previously reported
for different anti-biofilm agents [46]. Similar results were obtained also in the case of P. aeruginosa
14 (Figure 3). These findings are also supported by biofilm biovolume determinations by CLSM
reported in Figure 4, that indicate a strong and significant effect of r(P)ApoBS

Pro peptide on biofilm
eradication in the case of both bacterial strains (Figure 4c,f). Furthermore, peptides have been found
to exert significant effects on biofilm biovolume when attachment is tested (Figure 4a,d), except for
r(P)ApoBL

Ala for which no significant reduction in biovolume is observed, although a disaggregating
effect is clearly evident (Figures 2 and 3). This might be due to the fact that, upon treatment with
r(P)ApoBL

Ala peptide, planktonic cells escape from biofilm by floating, with a consequent significant
contribution to biovolume. Altogether, these findings confirm that peptides are able to exert significant
anti-biofilm effects even on bacterial strains not sensitive to their direct antimicrobial activity.

2.2.3. Evaluation of ApoB-Derived Peptides Anti-Biofilm Activity by Scanning Electron Microscopy

To analyze morphological modifications of bacterial biofilm upon treatment with peptides,
scanning electron microscopy (SEM) analyses were also performed on bacterial strains not responsive to
peptide direct antimicrobial activity, such as B. cenocepacia LMG 18863 and P. aeruginosa 14. In untreated
samples, bacteria present smooth and intact surfaces and appear embedded into the extracellular
biofilm matrix in the case of both bacterial strains (Figure 5). When bacteria are treated with peptides,
instead, a significant decrease or disappearance of biofilm matrix is clearly evident with a concomitant
decrease of cell density.
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Figure 2. Effects of r(P)ApoBL
Pro, r(P)ApoBL

Ala, and r(P)ApoBS
Pro peptides on B. cenocepacia LMG

18863 biofilm attachment, formation and detachment. Biofilm cells were stained by using LIVE/DEAD
BacLight bacterial viability kit (Molecular Probes, Eugene, OR, USA) containing 1:1 ratio of Syto-9
(green fluorescence, all cells) and propidium iodide (PI, red fluorescence, dead cells) and FilmTracer™
SYPRO® Ruby biofilm matrix staining (Invitrogen™, F10318). Images are 3D projections of biofilm
structure obtained by laser scanning confocal z-stack using Zen Lite 2.3 software. All images were
taken under identical conditions.
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Figure 3. Effects of r(P)ApoBL
Pro, r(P)ApoBL

Ala and r(P)ApoBS
Pro peptides on P. aeruginosa 14 biofilm

attachment, formation and detachment. Biofilm cells were stained by using LIVE/DEAD BacLight
bacterial viability kit (Molecular Probes, Eugene, OR, USA) containing 1:1 ratio of Syto-9 (green
fluorescence, all cells) and propidium iodide (PI, red fluorescence, dead cells) and FilmTracer™
SYPRO® Ruby biofilm matrix staining (Invitrogen™, F10318). Images are 3D projections of biofilm
structure obtained by laser scanning confocal z-stack using Zen Lite 2.3 software. All images were
taken under identical conditions.
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Figure 4. Analysis of the effects of r(P)ApoBL
Pro, r(P)ApoBL

Ala and r(P)ApoBS
Pro peptides on biofilm

attachment (a,d), formation (b,e) and detachment (c,f) in the case of B. cenocepacia LMG 18863 (a–c) and
P. aeruginosa 14 (d– f). Biovolume (µm3/µm2) was measured by using Zen Lite 2.3 software. Significant
differences were indicated as * p < 0.05 or ** p < 0.01 for treated versus control samples.
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Figure 5. Morphological analyses of B. cenocepacia LMG 18863 (top panel) and P. aeruginosa 14 (lower
panel) preformed biofilms by SEM. Representative images are shown upon treatment of bacterial
biofilm with 5 µM r(P)ApoBL

Pro, r(P)ApoBL
Ala, and r(P)ApoBS

Pro. Bars 5 µm.

2.3. Combinatorial Therapeutic Approach

To verify whether ApoB-derived peptides are able to synergistically act in combination with
conventional antibiotics to counteract bacterial infections associated with biofilm in CF, CLSM
analyses were performed to evaluate the effects of combinations of r(P)ApoBL

Pro or r(P)ApoBL
Ala and

ciprofloxacin on preformed biofilm. Analyses were performed on B. cenocepacia LMG 18863 bacterial
strain, since chronic lung infections associated with this strain strongly contribute to CF morbidity and
mortality and are generally recalcitrant to conventional antibiotics [21,22]. Effects of r(P)ApoBL

Pro or
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r(P)ApoBL
Ala peptide in combination with ciprofloxacin were tested on preformed biofilm, in order to

better simulate clinical conditions.
As shown in Figure 6, by comparing the effects of combinations of r(P)ApoBL

Pro and ciprofloxacin
with the effects of single agents on preformed biofilm, a significantly greater reduction of biofilm
biovolume is observed in the case of the sample treated with the compound mixture together with
a concomitant increase of the number of dead cells embedded into the biofilm matrix (Figure 6).
Similarly, about the effects of combinations of r(P)ApoBL

Ala and ciprofloxacin on preformed biofilm,
a significantly greater reduction of biofilm biovolume is observed in the presence of compounds
combination (Figure 7).
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Figure 6. Effects of r(P)ApoBL
Pro, ciprofloxacin and a combination of the two compounds on preformed

biofilm (a). Biofilm cells were stained by using LIVE/DEAD BacLight bacterial viability kit (Molecular
Probes, Eugene, OR) containing 1:1 ratio of Syto-9 (green fluorescence, all cells) and propidium iodide
(PI, red fluorescence, dead cells). Images are 3D projections of biofilm structure obtained by laser
scanning confocal z-stack using Zen Lite 2.3 software. All images were taken under identical conditions.
Biovolume (µm3/µm2) was measured by using Zen Lite 2.3 software. Significant differences were
indicated as * p < 0.05 for treated versus control samples (b). Numbers of live and dead cells were
evaluated by using Zen Lite 2.3 software (c).
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Figure 7. Effects of r(P)ApoBL
Ala, ciprofloxacin and a combination of the two compounds on preformed

biofilm (a). Biofilm cells were stained by using LIVE/DEAD BacLight bacterial viability kit (Molecular
Probes, Eugene, OR) containing 1:1 ratio of Syto-9 (green fluorescence, all cells) and propidium iodide
(PI, red fluorescence, dead cells). Images are 3D projections of biofilm structure obtained by laser
scanning confocal z-stack using Zen Lite 2.3 software. All images were taken under identical conditions.
Biovolume (µm3/µm2) was measured by using Zen Lite 2.3 software. Significant differences were
indicated as * p < 0.05 for treated versus control samples (b). Numbers of live and dead cells were
evaluated by using Zen Lite 2.3 software (c).

2.4. Evaluation of Peptide Biocompatibility

Peptide applicability in therapeutic approaches aimed at counteracting bacterial infections
associated with CF is strongly dependent on the absence of any toxic effect towards host cells. For this
reason, biocompatibility assays were performed to test ApoB-derived peptide effects on immortalized
human bronchial epithelial mesothelial (BEAS) cells. As shown in Figure 8, only slight toxic effects
were detected and the most biocompatible peptide was found to be r(P)ApoBL

Ala. Indeed, in the
presence of this peptide, only slight toxic effects were detected upon 72 h treatment and at the highest
peptide concentrations tested (Figure 8).
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cells. Cell viability was assessed by MTT assays, and expressed as the percentage of viable cells with
respect to controls (untreated cells). Error bars indicate standard deviations obtained from at least three
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were indicated as * p < 0.05, ** p < 0.01 or *** p < 0.001 for treated versus control samples.

3. Discussion

AMPs represent novel promising effective alternative agents to counteract chronic bacterial
infections affecting CF patients. Indeed, as these infections are generally recalcitrant to conventional
antibiotics because of the development of the MDR phenotype and of biofilm formation, the
development of novel therapeutic strategies is strongly necessary. To this purpose, three versions of a
cryptide identified in human ApoB [33,35] have been here tested towards six bacterial strains clinically
isolated from CF patients, such as P. aeruginosa RP 73, P. aeruginosa KK 27, P. aeruginosa 14, P. aeruginosa
AA2, B. multivorans LMG 17582, and B. cenocepacia LMG 18863. ApoB-derived cryptides have been
found to exert direct antimicrobial activity towards three out of six bacterial strains tested. Indeed,
ApoB-derived AMPs have been found to be active on P. aeruginosa RP 73, P. aeruginosa KK 27, and B.
multivorans LMG 17582, with MIC100 values ranging from 5 to 40 µM. This is in agreement with recent
findings indicating that ApoB-derived cryptides direct antimicrobial activity, although mediated by
electrostatic interactions between cationic peptides and negatively charged bacterial membranes, is
strongly influenced by chemical composition of LPS molecules exposed on the surface of different strains
of P. aeruginosa [35]. Indeed, although several bacterial resistance components against antimicrobial
peptides have been reported [47], LPS chemical composition has been proposed to play a key role
in the case of ApoB-derived cryptide antimicrobial activity [35]. It has been reported that different
Burkholderia strains present different LPS chemotypes, such as rough, partial rough, or smooth [48].
In particular, in the case of B. cenocepacia LMG 18863, the LPS chemotype has been identified as
smooth [48]. These differences in LPS chemotype might be responsible for the different susceptibility of
Burkholderia strains to ApoB-derived cryptides’ direct antimicrobial activity. It also has to be highlighted
that several B. cenocepacia strains have been reported to be naturally resistant to different classes of
antibiotics and even to several antimicrobial peptides [49]. This is probably due to the ability of B.
cenocepacia strains to acquire a resistance phenotype by modifying the LPS chemical composition
by substituting a phosphate group with a cationic charged residue of 4-amino-4-deoxy-L-arabinose
(L-Ara4N), with a consequent reduction in membrane negative potential, that plays a key role in
the interaction between bacterial membranes and antimicrobial peptides [50,51]. Based on these
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observations, ApoB-derived cryptides direct antimicrobial activity towards B. multivorans LMG 17582
appears to be really interesting. It also has to be considered that, in the case of chronic infections
affecting CF patients, the mucus phenotype favors bacterial biofilm formation [20]. Bacteria embedded
into biofilm matrix are more resistant to conventional antibiotics for several reasons: i) low antibiotic
diffusion rate inside biofilm matrix; ii) bacteria metabolic changes due to nutrients missing, with a
consequently lower susceptibility to antibiotics; and iii) appearance of persisted cells recalcitrant to
conventional antibiotics and playing a key role in long-term infections [52]. Anti-biofilm cationic
amphipathic peptides represent an alternative promising approach to treat infections associated
with biofilm formation, since peptides act on biofilm specific targets, such as matrix components
and/or highly conserved regulatory mechanisms [53]. Here, we tested the ability of r(P)ApoBL

Pro,
r(P)ApoBL

Ala and r(P)ApoBS
Pro to affect the biofilm of bacterial strains clinically isolated from CF

patients. In particular, we analyzed the ability of ApoB-derived cryptides to interfere with the three
main stages of biofilm development, i.e., attachment, formation and detachment [33]. We found that
all the three ApoB-derived cryptides are able to exert significant effects on biofilm attachment and
formation. Even more interestingly, ApoB-derived cryptides have been found to exert significant
anti-biofilm effects even on bacterial strains not sensitive to their direct antimicrobial activity. In
particular, ApoB-derived AMPs have been found to affect P. aeruginosa 14 biofilm attachment and
formation and B. cenocepacia LMG 18863 preformed biofilm at a very low concentration (2.5 µM).
As reported for different AMPs, obtained data allow us to exclude any correlation between peptide
direct antimicrobial activity and their anti-biofilm properties. Indeed, peptide IDR-1018 has been
reported to be endowed with strong anti-biofilm activity towards a pool of P. aeruginosa and Burkholderia
strains in the absence of any direct antimicrobial effect [54]. To deeply characterize ApoB-derived
cryptides anti-biofilm activity, we also performed analyses by confocal laser scanning microscopy
(CLSM) and scanning electron microscopy (SEM) on P. aeruginosa 14 and B. cenocepacia LMG 18863, two
strains not sensitive to ApoB-derived AMP’s direct antimicrobial activity. CLSM analyses revealed
the ability of ApoB-derived cryptides to alter biofilm architecture, as indicated by the appearance
of highly fluorescent aggregates only in treated samples upon staining with SYPRO® Ruby, a dye
able to specifically label biofilm extracellular matrix. Accordingly, a significant reduction in biofilm
biovolume has been evaluated in the case of samples treated with ApoB-derived cryptides. Furthermore,
scanning electron microscopy analyses clearly indicate the ability of ApoB-derived cryptides to disrupt
the biofilm matrix of bacterial strains not responsive to the peptides’ direct antimicrobial activity.
These observations are in perfect agreement with data reported for peptide 6K-F17, which is able
to strongly affect P. aeruginosa biofilm by disrupting the extracellular matrix, thus determining a
significant decrease of biofilm biovolume [55]. However, CLSM and SEM analyses indicate only a
slight increase of bacterial cells death upon treatment with 6K-F17 [55]. Based on obtained results, we
also evaluated the possibility to set up effective combinatorial therapeutic approaches by concomitantly
administrating ApoB-derived cryptides and conventional antibiotics to bacterial cells. To this purpose,
we analyzed the anti-biofilm properties of combinations of r(P)ApoBL

Pro or r(P)ApoBL
Ala and the

antibiotic ciprofloxacin, which is widely used to treat bacterial infections in CF patients [45]. The effects
of compound mixtures have been tested on P. aeruginosa 14 or B. cenocepacia LMG 18863 preformed
biofilm. Effects of combinations of r(P)ApoBL

Pro or r(P)ApoBL
Ala and ciprofloxacin on preformed

biofilm have been found to be stronger than those of single agents, with more severe effects on
biofilm biovolume. It has been previously reported that, upon biofilm treatment with the ciprofloxacin
antibiotic, a deep alteration of the matrix structure and a strong decrease of biofilm biovolume are
immediately observed, probably associated with a high killing rate of bacterial cells embedded into
the biofilm matrix [56]. However, upon a prolonged exposure to ciprofloxacin, the activation of
specific mechanisms leading to a variation of biofilm phenotype makes the antibiotic ineffective [56].
This phenomenon might be overcome by the development of successful combinatorial therapeutic
approaches, which present several advantages over conventional therapeutic treatments based on the
administration of single agents. Indeed, several anti-biofilm peptides have been reported to be able to
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act in synergism with a broad range of conventional antibiotics [57]. This allows us to significantly
reduce the effective dose of antibiotics up to 64-fold, with a consequent lower possibility to induce
MDR phenotype and to simultaneously reduce effective peptide concentrations [57]. In the case of
CAMA peptides, synergism with the conventional antibiotics tobramycin, ciprofloxacin and colistin
has been demonstrated in the treatment of P. aeruginosa biofilm, with the consequent possibility of
reducing antibiotics doses up to 8-fold and peptide concentrations up to 10-fold [58]. Since one of the
bottlenecks for the development of successful peptide-based therapies is peptide cytotoxicity, we also
tested ApoB-derived cryptides effects on immortalized human bronchial epithelial mesothelial (BEAS)
cells, and found that peptides are biocompatible, since slight toxic effects are detected only upon 72 h
cell treatment and at the highest peptide concentrations tested. Altogether, obtained findings open
interesting perspectives to the applicability of ApoB-derived cryptides in the treatment of bacterial
chronic infections associated with biofilm formation and characterized by MDR phenotype, such as
those affecting CF patients, and to the development in the future of successful combinatorial therapeutic
approaches based on the concomitant administration of peptides and conventional antibiotics.

4. Materials and Methods

4.1. Materials

All the reagents were purchase from Sigma-Aldrich (Milan, Italy), unless differently specified.

4.2. Recombinant Production of ApoB-Derived Peptides

Expression and isolation of recombinant ApoB-derived peptides was carried out as
previously described [33,35]. Pro → Ala substitution in position six of the longest peptide
was obtained by QuikChange II site-directed mutagenesis performed by using the following
primers: primer forward 5’-CATTTTACCCGCTTTCAGCGCAACATGCGGGTG-3’ and primer reverse
5’-GATCCGCATGTTGCGCTGAAAGCGGGTAAACTG-3’.

4.3. Bacterial Strains and Growth Conditions

Bacterial strains P. aeruginosa RP 73, P. aeruginosa KK 27, P. aeruginosa 14, P. aeruginosa AA2, B.
multivorans LMG 17582, and B. cenocepacia LMG 18863 were kindly provided by Dr. Alessandra
Bragonzi (Infection and CF Unit, San Raffaele Scientific Institute, Milan, Italy). Bacterial strains were
grown in MHB (Becton Dickinson Difco, Franklin Lakes, NJ, USA) and on Tryptic Soy Agar (TSA;
Oxoid Ltd., Hampshire, UK). In all the experiments, bacteria were inoculated and grown overnight in
MHB at 37 ◦C.

4.4. Eukaryotic Cells and Growth Conditions

Immortalized human bronchial epithelial mesothelial cells (BEAS) were cultured in high-glucose
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum and 1%
penicillin-streptomycin at 37 ◦C in the presence of 5% carbon dioxide (CO2).

4.5. Cell Viability Assays

Peptide effects on eukaryotic cell viability was evaluated by seeding cells in 96-well plates (100
µL/well) at a density of 3×103 cells/well. Upon 24 h, cells were incubated with increasing peptide
concentrations (0–40 µM), for 24, 48 and 72 h. At the end of the treatment, cell viability was assessed by
the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. MTT reagent, dissolved
in DMEM without phenol red, was added to the cells (100 µL/well) at a final concentration of 0.5
mg/mL. After 4 h at 37 ◦C, the culture medium was removed and the resulting formazan salts were
dissolved by the addition of isopropanol containing 0.1 N HCl (100 µL/well) [41]. Absorbance values of
blue formazan were determined at 570 nm by using an automatic plate reader (Synergy™ H4 Hybrid
Microplate Reader, BioTek Instruments, Inc., Winooski, VT, USA). Cell survival was expressed as the
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percentage of viable cells in the presence of the peptide under test, with respect to control cells grown
in the absence of the peptide.

4.6. Antimicrobial Activity Assays

To test the antimicrobial activity of ApoB-derived peptides, a previously described experimental
procedure was used [33]. MIC100 values correspond to the lowest concentration of peptide associated
with no detectable bacterial growth.

4.7. Anti-Biofilm Activity by Crystal Violet Assay

ApoB-derived peptides effects on biofilm attachment, formation and detachment were evaluated
as previously described [33]. Optical densities at 595 nm of biofilm stained biomasses were measured
by using a microtiter plate reader (Synergy™ H4 Hybrid Microplate Reader, BioTek Instruments, Inc.,
Winooski, VT, USA).

4.8. Anti-Biofilm Activity by CLSM Analyses

Bacterial biofilm was grown on glass cover slips in 24-well plates in 0.5X MHB in static conditions.
In particular, bacterial cells from an overnight culture were diluted to about 1 × 108 CFU/mL and then
seeded into wells for 4 or 24 h at 37 ◦C in the presence of the peptide under test, in order to evaluate
biofilm attachment and formation, respectively. When effects on preformed biofilm were evaluated,
bacterial biofilms were formed for 24 h at 37 ◦C, and then treated with peptides under test for further
24 h to evaluate their ability to eradicate preformed biofilm. Afterwards, non-adherent bacteria were
removed by gently washing samples with sterile phosphate buffer and viability of cells embedded
into biofilm structure was determined by sample staining with LIVE/DEAD® BacLight™ Bacterial
Viability kit (Molecular Probes, Thermo Fisher Scientific, Waltham, MA, USA), while FilmTracer™
SYPRO® Ruby biofilm matrix dye has been used to stain matrices of biofilms (Invitrogen, Carlsbad,
CA, USA). Staining was performed accordingly to manufacturer instructions. Biofilm images were
captured by using a confocal laser scanning microscopy (Zeiss LSM 710, Zeiss, Germany) and a 63X
objective oil immersion system. Biofilm architecture was analyzed by using the Zen Lite 2.3 software
package (Zeiss, Germany). Each experiment was performed in triplicate. All images were taken under
identical conditions.

4.9. Anti-Biofilm Activity by Scanning Electron Microscopy

To perform scanning electron microscopy (SEM) analyses, B. cenocepacia LMG 18863 and P.
aeruginosa 14 cells were incubated with 5 µM r(P)ApoBL

Pro, r(P)ApoBL
Ala or r(P)ApoBS

Pro peptides for
24 h at 37 ◦C. Following incubation, bacterial biofilms were fixed in 2.5% glutaraldehyde. Following
overnight incubation, bacterial biofilms were washed three times in distilled water and then dehydrated
with a graded ethanol series: 25% ethanol (1 × 10 min); 50% ethanol (1 × 10 min); 75% ethanol (1 × 10
min); 95% ethanol (1 × 10 min); 100% anhydrous ethanol (3 × 30 min). Bacterial biofilms deposited
onto glass substrate were sputter coated with a thin layer of Au-Pd (Sputter Coater Denton Vacuum
DeskV) to allow subsequent morphological characterization using a FEI Nova NanoSEM 450 at an
accelerating voltage of 5 kV with Everhart Thornley Detector (ETD) and Through Lens Detector (TLD)
at high magnification.

4.10. Statistical Analysis

Statistical analysis was performed using a Student’s t-test. Significant differences were indicated
as * p < 0.05, ** p < 0.01 or *** p < 0.001.
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Abbreviations

CF Cystic Fibrosis
MDR Multidrug Resistance
ApoB Apolipoprotein B
HDPs Host Defense Peptides
CFTR Cystic fibrosis transmembrane conductance regulator
AMPs Antimicrobial peptides
MIC Minimum inhibitory concentration
MHB Mueller Hinton Broth
CLSM Confocal laser scanning microscopy
SEM Scanning electron microscopy
PI Propidium iodide
LPS Lipopolysaccharide
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