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Abstract— This paper addresses the problem of 3D registra-
tion of outdoor environments combining heterogeneous datasets
acquired from unmanned aerial (UAV) and ground (UGV) vehi-
cles. In order to solve this problem, we introduced a novel Scale
Invariant Registration Method (SIRM) for semi-automated
registration of 3D point clouds. The method is capable of
coping with an arbitrary scale difference between the point
clouds, without any information about their initial position and
orientation. Furthermore, the SIRM does not require having a
good initial overlap between two heterogeneous datasets. Our
method strikes an elegant balance between the existing fully
automated 3D registration systems (which often fail in the case
of heterogeneous datasets and harsh outdoor environments)
and fully manual registration approaches (which are labour-
intensive). The experimental validation of the proposed 3D
heterogeneous registration system was performed on large-
scale datasets representing unstructured and harsh outdoor
environments, demonstrating the potential and benefits of the
proposed 3D registration system in real-world environments.

I. INTRODUCTION

Heterogeneous ground-aerial robot systems are becoming

increasingly important due to many advantages provided by

merging the capabilities of aerial and ground robots into

a single collaborative system [1]. Increasing robustness of

these systems through fault tolerance as well as their dis-

tributed perception and motion possibilities are essential in

complex and difficult safety-critical applications, like search

and rescue missions. Therefore, this heterogeneous system

can achieve a promising performance and higher quality,

acquiring more complete information of the environment

versus individual robot. However, each platform imposes

some limitations. The ground vehicle can sometimes be

incapable of traversing and perceiving the entire environment

with limited or even unviewable vantage points. On the other

hand, the aerial robot typically has limited payload capacities

and mostly operates in a shorter time than the ground vehicle.

The logical step would be to fuse capabilities of these

different platforms to overcome the limitations of each

single one. The main concern in this field of heterogeneous

robotic systems is to combine the strengths of the unmanned

aerial and ground vehicles [2], [3], [4]. Different cooperative

approaches, where the ground vehicle uses the aerial data to
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2Jasmin Velagić is with the Department of Automatic Control and Elec-
tronics, Faculty of Electrical Engineering, Sarajevo, Bosnia and Herzegovina
jasmin.velagic@etf.unsa.ba

3Bruno Siciliano is with the Department of Electrical Engineering and
Information Technology, University of Naples Federico II, Napoli, Italy
siciliano@unina.it

improve traversability analysis and path planning, have been

proposed in [5]. In [6], a group of ground robots is guided

by an aerial vehicle and a human operator while carrying

objects within an industrial area. Although deploying a group

of heterogeneous aerial and ground robots has become an

important topic, very little research has addressed the issues

of fusing the 3D data coming from different robots as

well as from different sensors. The problems of registering

ground and aerial 3D point clouds are related to the dif-

ferent vantage perspectives of the ground and aerial robots.

Another problem is a different spatial resolution obtained by

the heterogeneous perception systems with different sensor

modalities. In our paper, we used UGV with a lidar and

the UAV equipped by a high resolution digital camera.

The advantages of using a heterogeneous robotic system in

an indoor disaster scenario, within an earthquake-damaged

building, have been demonstrated in [7]. A team of aerial and

ground vehicles performed a collaborative 3D mapping of the

building indoors and provided a degree of their damages.

The problem gets more difficult for a large-scale unstruc-

tured outdoor environment. Some preliminary work related to

this type of environment has been done in [8] for cooperative

mapping missions. They proposed a solution for a global

alignment of the aerial and ground point clouds based on the

Monte Carlo Localization. Their method requires an overlap

between the aerial and ground maps and a 3D structure in

the scene. Another limitation is that this method does not

converge for a completely flat environment. The validation

of this system is mostly done indoors, while for the outdoor

validation the registration accuracy is not provided due to

the fact that no ground truth was available. Our proposed

approach successfully handles the limitations for an overlap

between the aerial and ground point clouds and does not

depend on any environmental characteristics. It is capable of

dealing with a large-scale outdoor environments with high

geometrical accuracy, as validated with ground-truth data.

In order to overcome limitations of dealing with 3D data

sets from different sensors and different perspectives of

the environment, we propose a semi-automated and robust

3D registration approach based on the SIRM method. This

method includes a scale adaptation and consistent alignment

of two heterogeneous point clouds. It should be underlined

that our heterogeneous system is fully independent. While

many of the existing approaches are more focused on the

collaboration between the aerial and ground robots, our

research is related to the data fusion of the cluttered 3D

environment. In our approach, the aerial map is generated us-

ing a photogrammetric structure from motion approach. The

2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
Würzburg, Germany, September 2-4, 2019

978-1-7281-0778-3/19/$31.00 ©2019 IEEE



UGV is equipped with a 3D lidar range-finder sensor, and

the registration of the single 3D scans into a map is done by

our proposed LME-ICP method [9], [10]. Two heterogeneous

maps are combined into a consistent global map providing an

extended view of the environment. Experimental validation

of our proposed method is performed in order to demonstrate

a real-world applicability of the proposed 3D registration

method within search and rescue missions.

The rest of the paper is organized as follows. Section II

describes the proposed SIRM method. The obtained experi-

mental results are presented in Section III. In Section IV the

conclusions and directions for the future work are given.

II. PROPOSED HETEROGENEOUS REGISTRATION

The proposed semi-automated 3D registration approach

based on the SIRM method is shown in Fig. 1. This method

is primarily used to align the UAV and UGV point cloud

datasets in order to obtain an accurate registration. Its main

parts are initial scaling of point clouds and fine alignment

with adaptive scaling. The SIRM method is used to solve the

problems of displacement, orientation and scale difference

between the point clouds. The proposed approach is based

on manually marking at least three corresponding point pairs

in both point clouds. The transformation between the point

clouds is computed and the SIRM method is performed.

Therefore, the SIRM is capable of coping with an arbitrary

scale difference between the point clouds, without any infor-

mation about their initial position and orientation.

Before applying the SIRM, we manually select Kps of

corresponding points within the two heterogeneous point

clouds, acquired by the UGV and UAV. Let R = {rk}
and B = {bk}, k = 1, . . . ,Kp, be sets of corresponding

points in the UGV and the UAV point cloud, respectively,

where Kp is the number of points in each point cloud

and Kps ≥ 3. The set R ∈ Mmodel and B ∈ P source,

where Mmodel = {mi}, i = 1, . . . ,Mp and P source =
{pj}, j = 1, . . . , Np, are respectively the UGV and UAV

point clouds. The selection of the corresponding points is

based on some recognized landmarks, e.g. edge of a house,

roof, etc. It is very important to note that the proposed

SIRM method overcomes the error between the selection of

the corresponding points of heterogeneous point clouds in a

range of few meters. This is shown in Fig. 2, where Kps = 5
preselected red points representing the corresponding points

within the UGV point cloud. The same number of points are

selected within the UAV point cloud, which are blue colored.

It is obvious that the UAV point cloud has a larger scale and

a translational displacement.

A. Initial scaling of point clouds

After selecting corresponding points, the next step is to

determine the initial scale. This step is important because

we want to achieve homogeneity of the two point clouds

by firstly getting them to a similar scale. The initial scale

is computed using the mean distances of all possible con-

nections between the selected points as shown in Fig. 3. We

have introduced the following expression for the initial scale:

SIRM - Scale invariant registration method

Initial Scaling of point clouds

Point cloud scaling

Non-referent point cloud resized

Selected points

Initial mean scale s0

Fine aligment with adaptive scaling

Estimated transformation using SVD

Fine aligment with ICP

Error estimation using MSE

while
di > ξ

Scale adaptation

Output homogeneous point clouds (with same scale)

Point clouds with similar scale

Roughly aligned point clouds

Aligned point clouds

Current error estimation value (ei)

From data acquisition and pre-processing

Corresponding points selection

PCUAVPCUGV

Fig. 1: Proposed Architecture of the Semi-automated 3D

registration based on SIRM.
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Fig. 2: Illustration of the corresponding point selection.

s0 =

∑Kps

i=1

∑Kps

j=i+1

‖ ri − rj ‖

‖ bi − bj ‖

Nps

(1)

where ‖ ri − rj ‖ and ‖ bi − bj ‖ are the Euclidean

distances between two corresponding points in the same

point cloud and Nps is number of all possible connections

of the preselected points, Nps =
k(k − 1)

2
.

Once the first initial scale s0 is computed, we apply its

value to resize the UAV (blue) point cloud to be close to the

similar scale as the UGV (red) point cloud. In our case, we
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Fig. 3: Illustration of the initial scale estimation process.

rescale the UAV point cloud and use the UGV point cloud

as a reference model. Then, we obtain two point clouds with

a relative similar scale which allows us to proceed to the

second module of the proposed 3D registration approach,

the fine alignment with adaptive scaling.

B. Fine Alignment and Adaptive Scaling

After obtaining the similar scale of the two heterogeneous

point clouds, a transformation between them is calculated

using the singular value decomposition (SVD) [11]. An ini-

tial transformation has registered two point clouds relatively

close to each other. However, this kind of registration is

dependent on the precision of the pre-selected corresponding

points and the initial scale computation. Therefore, a good

selection of the corresponding points in both point clouds can

have a major impact on the scale computation and the final

registration results. In order to minimize the error, introduced

by the user while selecting the corresponding points, a fine

alignment based on ICP method [12] is exploited. In every

iteration, the ICP will improve the point clouds alignment.

Further improvement is obtained by fine tuning the initial

scale computation and transformation registration. For this

purpose, the proposed SIRM involves a mechanism for

adaptive scale tuning of the mean scale s. It produces the

correcting scale factor sc which is related to the relative

difference between two consecutive mean square errors of the

two heterogeneous point clouds. The computed value of sc is

then added to the previous mean scale s. After each iteration,

the sc is adjusted and a new transformation between the two

points clouds is calculated. The performed transformation is

illustrated with black lines in Fig. 4.

In order to evaluate the registration quality, the displace-

ment between the two point clouds in every iteration is

computed using a mean squared error (MSE). It is based

on the Euclidean distance between the nearest neighbouring
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Fig. 4: Fine alignment tuning and registration.

points from the Mmodel and P source point cloud. The mean

square error e is expressed by the following equation:

e =

N∑

i=1

‖ mi − pi ‖
2

N
(2)

In addition, only point pairs with distances shorter than a

predefined radius r are taken into account. This radius based

error computation is introduced because a significant error

is generated by points from the target point cloud which are

not captured in the source point cloud, i.e. only the points

in the overlapping area with radius r are considered. In each

iteration of the adaptive scaling and fine alignment step, we

estimated the current error value el in accordance to (2).

Then, the previous error value el−1 is subtracted from the

current obtained error value el, where the initial error is set

to a large value. The difference between them is given by:

dl = el − el−1 (3)

The updated mean scale s is computed in each iteration by

using the following relation:

sl = sl−1 + scl (4)

where scl is correcting scale factor and l is the number of

the current iteration. This correcting factor is updated in each

iteration based on dl and error ratio el and el−1:

scl = dl · (el/el−1) (5)

This adaptive mechanism is proceeded while the error dif-

ference dl becomes larger than the predefined threshold

value ξ. The scl factor indicates the quality of point clouds

alignment with respect to ones in the previous iteration. The

smaller values of scl mean the better quality of point clouds

alignment. This performance index has a smaller value in the

case of a simultaneous smaller value of the current el and

larger value of dl.

The proposed semi-automated 3D registration obtains rel-

atively accurate initial point clouds alignment when the

selected points are corresponding in both point clouds. In

this case, the scale adaptive mechanism will very quickly

provide accurate point clouds matching with a small mean

square error in few iterations. The main power of the SIRM

lies in the fast error convergence in heterogeneous point

clouds alignment when the selected points from both point

clouds are non-corresponding. The initial error alignment is

larger than in the first case, but the scale adaptive mechanism

will reduce the error in several iterations and produce very

precise final point cloud. These statements will be confirmed

in Section III. It will be concluded that the scale adaptive

mechanism ensures fast convergence of the alignment error

and provides very accurate final point cloud. The pseudocode

of the proposed semi-automated registration is presented in

Algorithm 1.
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Algorithm 1 Semi-automated 3D registration method

INPUT

:

PCUGV and PCUAV point clouds

OUTPUT

:

Final point cloud PCF

Select 3 or more corresponding points in point clouds

Calculation of initial mean scale s0 between selected points

Set initial estimation error e0
Resize non-reference point cloud using s0
do

Point clouds transformation using SVD

Fine alignment using ICP

Error estimation based on MSE scale adaptation
while (dl > ξ);
return [Final point cloud PCF ]

III. EXPERIMENTAL RESULTS

A. Validation Setup

The effectiveness of the proposed approach will be verified

for three large scale outdoor environments, entitled Village,

Rubble and Dovo. Dimensions of the mapped environments

are significantly large (Rubble and Village: 600m× 200m;

Dovo: 300m×250m). We have performed a qualitative and

quantitative evaluation by randomly introducing additional

scale, translational and rotational errors. The performance

of the proposed method was assessed by two different

experiments considering the difference between the selected

corresponding points in the heterogeneous point clouds. In

the first experimental study (Subsection III-B), the user has

visually selected the good Corresponding Points (gCP) in

both point clouds. The gCP represents the paired points

from both point clouds which are selected from the set

of recognized landmarks, e.g. edge of a house, roof, etc.,

with satisfactory small displacement between them (in cm).

The second study (Subsection III-C) considers the situation

where the user introduced an uncertainty in the selection of

Corresponding Points (uCP) in a range of several meters. It

is a significant translation error for the scale and registration.

Each of the considered scenarios has been evaluated on

the Dovo dataset, introducing a randomly generated scale

and transformation displacement error on the non-referent

point cloud, in our case the UAV point cloud. The scale error

coefficient kse represents the scale differences between the

two point clouds. It was generated up to ten times and it

took respectively the following values kse = [1, 10]. The

transformation displacement error etd = [et, er]
T represents

the displacement error between the two heterogeneous point

clouds, as a vector with two components, translational and

rotational errors. The range for the translational error was

introduced with values of et ∈ [−50m, +50m] for the all

Cartesian coordinates (x, y, z). For the rotational error the

φ, θ, ψ (roll, pitch, yaw) angles were randomly assigned

within the range of er ∈ [−75◦, +75◦] for each axis.

The quality and computational efficiency of the proposed

method in both experimental studies for the Dovo dataset are

evaluated and the performance analysis is presented. For the

qualitative analysis, the following evaluation indicators are

used for translation, rotation and scale:

• average error µ for Cartesian coordinates x, y and z
and φ, θ, ψ angles,

• average Euclidean error ρ for average coordinate errors

and angles, minimal and maximal error min and max,

• standard deviation and variance of the error σ and σ2.

The performance analysis (Subsection III-D) was per-

formed considering all above-mentioned datasets. The last

experimental validation was performed with an accurate

ground truth reference model, by analysing the accuracy of

our registered 3D model with respect to the high accurate

geodetic reference model (Subsection III-E).

B. Results with Good Pre-selected Corresponding Points

In this study, we have analysed the case when the user

has pre-selected four gCPs in both point clouds of the Dovo

dataset. The translation error between the pairs of these

points is approximately around 10 cm. The experiment was

repeated ten times with different range of error values etd
and scale error coefficient kse as in (Subsection III-A).

It is obvious from the obtained results (Table I) that the

proposed method provides satisfactory matching between the

heterogeneous point clouds, regardless of the introduction of

large displacement errors for scale, translation and rotation.

In the considered Dovo dataset, the average translational

errors are respectively 0.61m, 0.59m and 0.65m, while the

average angular errors are 0.30◦, 0.48◦ and 0.28◦, while the

average scale value is 0.04. The computed average Euclidean

translational and rotational errors (1.07m and 0.63◦) are rela-

tively low, where the introduced transformation displacement

and scale difference error was high. The results obtained for

the average Euclidean translational and rotational errors can

be treated as a very good outcome of the proposed method.

This statement will be confirmed in the Subsection III-D, by

showing the quantitative evaluation of our proposed method

with respect to a geodetic high precision reference model.

In summary, the proposed semi-automated 3D registration

method with good pre-selected corresponding points exhibits

a promising robustness against large introduced displacement

errors for translation and rotation as well as large scale

differences. All the qualitative indicators have noticeable

small values which guarantees a good matching accuracy

of the considered heterogeneous point clouds.

TABLE I: Analytical representation of the results with good

pre-selected corresponding points (Dataset: Dovo).

Dataset Dovo
Par x [m] y [m] z [m] φ [deg] θ [deg] ψ [deg] Scale
µ 0.61 0.59 0.65 0.30 0.48 0.28 0.04
min 0.30 0.01 0.10 0.05 0.00 0.09 0.01
max 1.00 1.42 1.57 0.86 0.89 0.47 0.10
σ 0.24 0.55 0.42 0.26 0.27 0.13 0.03

σ2 0.06 0.30 0.17 0.07 0.07 0.02 0.00
Translational Error [m] Rotation Error [deg]

ρ 1.07 0.63
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C. Uncertainty in Corresponding Points Selection

This experiment is related to the uncertainty in the pro-

cess of the manual selection of the corresponding points.

It uses the same ten scenarios with the same conditions,

as in the previous study, but the error of the pre-selected

corresponding points is between 2 - 3m. That is a remarkable

large displacement error in the pre-selected points and it has

a significant impact on the accuracy of the heterogeneous

point cloud scale and alignment. The obtained values of the

considered quantitative indicators using the SIRM are listed

in Table II. These values validate the robustness against an

uncertainty due to an error in the manual selection of the

corresponding points in both heterogeneous point clouds.

The error values of the considered indicators are a bit

larger than in the previous experimental study (Table I).

However, taking into account the significantly large error

value in the selection of the corresponding points, the ob-

tained results are very satisfactory. The SIRM provides well-

aligned point clouds, even in the case of large errors in the

selection of corresponding points and with large introduced

displacement errors for scale, translation and rotation.

D. Performance analysis

For the performance analysis a different number of se-

lected corresponding points in each scenario was used. The

minimum number of points used in the Rubble field scenario

is four, while the maximum number of points used for the

Village scenario was six In addition we used the range for

the translational error with values of et ∈ [50m, 250m] for

all the Cartesian coordinates (x, y, z) and the rotational error

the φ, θ, ψ (roll, pitch, yaw) angles were assigned within the

range of er ∈ [−25◦, +25◦] for each axis, respectively. The

scale error coefficient was set to kse = 2. All these errors

were introduced for each dataset of the UAV point clouds.

Each of the UGV point clouds was set as the reference model

while the UAV point clouds were registered on it.

To evaluate the performance of the proposed framework,

we use an additional set of parameters: Number of Se-

lected Points (NSP), Computation Time (CT) and Required

computer resources (CPU load) for the completion of the

specified task. The computational time is the time needed for

the proposed SIRM method to register the UAV and UGV

datasets into a comprehensive global map. The obtained

values of these parameters for our proposed method are listed

in Table III. The results indicate that the proposed SIRM

TABLE II: Obtained results with uncertainty in selection of

corresponding points (Dataset: Dovo).

Dataset Dovo
Par x [m] y [m] z [m] φ [deg] θ [deg] ψ [deg] Scale
µ 0.92 0.98 0.69 0.59 0.67 0.54 0.15
min 0.51 0.81 0.13 0.15 0.54 0.13 0.13
max 1.15 1.25 1.25 1.38 1.29 1.01 0.21
σ 0.29 0.19 0.60 0.58 0.34 0.40 0.04

σ2 0.08 0.04 0.36 0.34 0.11 0.16 0.00
Translational Error [m] Rotation Error [deg]

ρ 1.52 1.04

method requires between three and a half and ten minutes to

register the datasets in both experimental studies, with and

without uncertainty in the preselected corresponding points.

It is important to note that the SIRM requires this amount

of time because of two reasons. The first one is that our

datasets have a high density with millions of points in both

point clouds. The second reason is that we used the proposed

scale adaptive mechanism for fine-tuning of the scale and

transformation. Therefore, the proposed adaptive mechanism

is running through the iteration in order to minimize the

alignment error between the UGV and UAV data set. The

CPU load needed for the global map registration is between

27 - 35%. The hardware we used was PC with an Intel i7-

4650 4 Core @ 1.7GHZ CPU and 16GB of RAM. The

resulting global UAV-UGV maps achieved by the proposed

SIRM method are shown in Fig. 5.

(a) (b)

(c) (d)

(e) (f)

Fig. 5: Semi-automated 3D registration with pre-selected

points and registered UAV-UGV global maps, where a), c)

and e) show the manually selected points and the red and

blue points which represent the UGV and UAV datasets re-

spectivelly, whereas b), d) and f) show the final output where

the SIRM is applied and the two datasets are registered.

TABLE III: Performance analysis with gCP-good preselected

Corresponding Points and uCP-uncertainty in CP selection.

NSP gCP uCP

Dataset CT (s) CPU load (%) CT(s) CPU load (%)

Dovo 5 223.57 35.05 229.12 36.34

Rubble 4 606.78 26.95 628.23 31.12

Village 6 301.52 32.35 312.41 34.51
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In Fig. 5, the UGV point cloud is represented with the

elevation (height) map colored with blue and green, while

the UAV point cloud is the colorized map. The red dots

are the selected corresponding points in the UGV dataset,

and the blue dots are the pre-selected corresponding points

in the UAV point cloud. Each selected point in one point

cloud should have a complementary pair point in the other

point cloud. Figs. 5a), c) and e) present the non-registered

UGV and UAV point clouds. The obtained maps show the

visual representation of all three considered datasets with

good pre-selected corresponding points in both point clouds.

A very similar result is obtained in the case of an introduced

error (about 3m) while selecting the corresponding points.

The reason for that is the small deviation of the scale and

alignment errors between the point clouds. Therefore, the

visual representation of the resulting maps is not shown. Figs.

5b), d) and f) show the resulting output as a registered UGV-

UAV global map. The UAV dataset is scaled and transformed

and a good initial alignment is achieved. It can be concluded

that the proposed SIRM produces a comprehensive global

map satisfying requirements to accurately register datasets.

E. Experimental Study with Ground Truth Reference Model

For the final evaluation we used an accurate ground truth

reference model created by a terrestrial geodetic laser system

and registered with geodetic precision. We compared the

registered UGV-UAV data with the proposed SIRM method

with respect to the ground truth using the least square method

(LSM). The ground truth and registered maps for the Rubble

and Village datasets are shown in Fig. 6.

(a) (b)

(c) (d)

Fig. 6: Comparison of the reference ground truth model

(multi-colored) and resulting UGV-UAV datasets. a), b)

Rubble and c), d) Village dataset.

The results of the ground truth benchmarking are presented

in Fig. 7 and Table IV. Fig. 7 illustrates the point-to-point

histograms of the point distribution with respect to their

distances. We calculated the distances between points from

the ground truth reference model and the co-registered UAV-

UGV datasets generated by our proposed SIRM method. It is

shown that the proposed SIRM method yielded good results,

Fig. 7: Point to point error histograms calculated by the

distances between points from the ground truth reference

model and the registered UAV-UGV map generated by our

proposed SIRM method.

where 90% of the points are within the distance of 0.51m
and 0.59m, for the rubble and village scenarios, respectively.

The average error for the rubble scenario is 0.23m and for

the village scenario 0.25m (Table IV).

IV. CONCLUSIONS

In this paper we introduced a novel heterogeneous 3D

registration approach for large-scale outdoor environments,

which combines heterogeneous datasets acquired from UGV

and UAV robots. This approach is based on the proposed

SIRM method, which combines a scale invariant method and

the ICP algorithm. It performs initial scaling of point clouds

as well as an iterative fine alignment with a scale adaptive

mechanism. The adaptive mechanism optimizes the scale

based on the relative difference between two consecutive

mean square errors of the heterogeneous point clouds. This

3D registration is robust to errors in the process of selecting

the corresponding pairs of points in both point clouds. The

SIRM is capable to cope with an arbitrary scale difference

between the point clouds, without any information about

their initial position and orientation. Furthermore, it does

not require having a good initial overlap between the two

heterogeneous UGV and UAV point clouds. The proposed

method was validated using large scale datasets, acquired in

unstructured outdoor environments. Moreover, a quantitative

validation of the reconstruction result was performed by

using a reference ground truth data model obtained using a

high accuracy geodetic precision measurement system. The

obtained results and the performed analyses indicate a good

performance of the proposed SIRM method, demonstrating

its potential in real world environments.

TABLE IV: Quantitative representation of the point-to-point

evaluation for the proposed SIRM method.

90% of the points are within

Type Rubble(m) Village(m) Rubble Average(m) Village Average(m)

SIRM 0.51 0.59 0.23 0.25
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